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Abstract

Several discussions have emerged about the remark-
able results that Learning Endowed Generative Systems
are achieving in various well-accepted creative fields
and their impact on jobs in those areas. But (how)
can we study formally creative limitations? Computa-
tional Creativity has prolifically provided us with philo-
sophical concepts to address such argument, systemat-
ically leaving ”learning” out of the equation. Before
that, Formal Learning Theory, also informally known
as ”learning in the limit”, allowed to study some of the
limits of learning, yet mainly pinning these results to
the language acquisition and scientific discovery prob-
lems, with no known example of generalized analogies
to other more widely accepted creative domains. At-
tempting to create tools to formally and philosophically
address questions involving both creativity and learn-
ing, we endeavoured to explore the parallels between
these two currently disparate areas, Computational Cre-
ativity and Formal Learning Theory, through a transdis-
ciplinary approach. This merged view is believed not
only to spawn new studies in generative models, com-
putability of learning, and computational creativity but
mainly to bring new insights to some philosophical de-
bates on the relationship between Artificial Intelligence,
Machine Learning and Computational Creativity.

Motivation
For a long time, creativity was believed to be so hard to
automatize that it was considered to be a human-exclusive
capacity. This capacity in humans is constantly described
as infinite, unlimited and unbounded, yet, in an opposite
argument, human creations usually seem to result from an
appropriation, transformation or combination of previously
known things, i.e., that everything we create ”is a remix”
(Ferguson 2011). Assuming there are inherent limitations
to what one can learn from the environment, it then seems
reasonable to explore the boundaries to the infinity of both
human and computer creativity. Given this goal, we ask the
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question: (How) can we systematically and formally study
these philosophical limitations?

We believe that to answer this question, we need new for-
mal tools that abstract and model characteristics of both cre-
ative and learning behaviours. Besides, we focus on formal
tools, i.e., tools that can be used to draw fundamental con-
clusions about the limitations of creativity by making use
of other previously developed formal paradigms. We start
walking this path by comparing different frameworks and
paradigms relating to creativity and learning, namely and
Formal Learning Theory (FLT) à la Gold respectively, to an-
swer the question: (how) can we formalize the relationship
between Learning and Creativity?

Background
During the last decade, Machine Learning (ML) techniques
allowed computers to autonomously create new realistic-
looking things, those being faces (Karras et al. 2020), il-
lustrations (Chen et al. 2020) or music (Dong et al. 2018;
Espı́rito Santo 2019). Tools like DALL-E and ChatGPT
came to plunge forward the state-of-the-art on image and
text generation systems. Not only are these deep generative
models such as GAN’s, VAE’s, Transformers and Diffusion
Models (Goodfellow et al. 2014; Kingma and Welling 2013;
Vaswani et al. 2017; Dhariwal and Nichol 2021; Foster
2019; Goodfellow, Bengio, and Courville 2016) becoming
the backbone of very powerful Learning Endowed Genera-
tive Systems (LEGS) but are also dominating the academic
research and reaching the public. These new ML capabili-
ties seem to challenge several traditional arguments against
“creativity in machines” (Du Sautoy 2019).

The Computational Creativity (CC) area has explored cre-
ativity as a branch of AI since the late 1990s. The spectrum
of CC approaches (y Pérez 2018; Ackerman et al. 2017)
encompasses opposing approaches: at one extreme, those
that simulate creative behavior with machines, at the other,
theoretical approaches that focus on modeling general cre-
ativity. Concerning modelling creativity, although authors
have agreed that creativity involves novelty and usefulness
(Mumford 2003), there are still several kinds of creativity
to take into account (Boden 2009; Kaufman and Beghetto
2009) and several different complex components (Rhodes
1961). One formal model deserves mentioning at this point:
the Creative Systems Framework (CSF) (Wiggins 2006a;



2006b). There are many other references of neurologi-
cal, psychological, educational, philosophical, and cognitive
debates around creativity and its domains (Koestler 2014;
Pigrum 2009; Wallas 1926; Hill and Monroy-Hernández
2013). However, and even though adaptability has been con-
stantly considered a way to implement creativity (Ackerman
et al. 2017), there is still no known formal text explicitly and
methodically discussing the role of learning in creativity and
most of the works that try to shed light on how creativity al-
lows learning lack the very insightful view provided by the
point of view of ML.

On learning, in the 1960s, Gold (1965) formalizes a
model for inductive learning, motivated by language ac-
quisition in infants, and proves that not all classes of lan-
guages can be identified by every kind of ”learner”. On
top of this framework, Blum and Blum (1975), Case (1983;
2012) and several other authors contributed to create a the-
ory with definitions and criteria for ”scientists” identify-
ing both recursive functions (scientist for functions) and
recursively enumerated sets (scientists for sets) on a pro-
vided text, i.e., a sequence of positive information such
as any enumeration of a function’s points or any enumer-
ation of sentences in a language. We refer to this theory
as the Formal Learning Theory (FLT), which is addressed
and compiled in (Kelly 1996; Martin and Osherson 1998;
Jain et al. 1999). FLT has been used to prove some re-
sults that confront some widely spread ideas about learn-
ing and knowledge while also, according to Costa (2013;
2017; 2019), providing a better understanding on the “large
scale limitations of scientific discovery”. We believe that
these insights can and should be applied to other creative
domains such as music, a unique domain according to Wig-
gins (2020), in order to also grasp the limitations of creativ-
ity. Moreover, we believe the formal foundations of FLT
deserve to be known in a broader context for its generality,
elegance and interesting yet controversial results and their
implications in other fields of research.

Methodology
1. Study FLT by exploring the book (Jain et al. 1999) and

its results, while keeping notes might bring new insights
to CC;

2. Re-read some proposals in CC that might be promising for
expansion to include learning, namely (Wiggins 2006a)
and (Ritchie 2006);

3. Follow a series of though experiments concerning LEGS
and creative humans aiming at creating a set of formal
definitions of Computational Creativity (CC) concepts
and their counterparts in FLT;

4. Translate results from FLT to CC, or explore new results
given this new set of definitions;

5. Illustrate the obtained definitions and results using some
grounded examples in domains such as scientific discov-
ery and music;

6. Document and share our results at different conferences,
workshops and communities to obtain feedback and dif-

ferent opinions as well as disseminate the new insights the
spawn from this investigation.

Expected results
• Proposals of new learning paradigms, criteria, or strate-

gies, for FLT à la Gold, motivated by the creativity con-
text, that might lead to new results and might be leveraged
to better understand the limitations of learning;

• Expansions for some CC models in order to better formal-
ize and include learning as part of the process;

• Parallels and relationships between FLT and CC models,
considering the new definitions and results achieved on
the previous point, possibly resulting in a new formal
model for general creative concepts, and producing new
viewpoints on the relationship between learning, creativ-
ity, and intelligence;

• Some views on how these new formal models take form
on several learning and creativity related domains such
as scientific discovery (usually more associated to learn-
ing) and music (undoubtedly related to creativity), possi-
bly studying the theoretical limitations and highlighting
the clear interdisciplinarity of both FLT and CC;

• Potentially, a taxonomy for LEGS based on the way they
can be formalized using the new formal tools developed;

• New attention towards the new insights brought by the
two rather disjoint and underrated areas of FLT and CC.

Preliminary results
From our research, we developed a paper entitled “Towards
a Formal Creativity Theory: Preliminary Results in Nov-
elty and Transformativeness,”1 submitted to ICCC’24 (the
long paper was rejected). In this paper, we introduce the
main formal concepts behind E. Mark Gold’s (1965) learn-
ing paradigm. We suggest that one of the main relationships
between learning and creativity is what Boden (1994) de-
scribes as transformational creativity, where learning hap-
pens during the exploration process. Based on these defi-
nitions, we are able to model the contextualized properties
of artefacts such as novelty and transformativeness, i.e., the
power of an artefact to change an agents mind after expe-
riencing a certain sequence of other artefacts. We provide
some simple preliminary results to illustrate what we can
prove given this formalization: we prove that, for all possi-
ble behaviours we can have in an agent, novelty is not neces-
sary nor sufficient for transformativeness. This suggests that
if one aims at creating transformative artefacts then search-
ing for novelty does not guarantee nice results, unless we
constrain ourselves to a proper subclass of possible agents,
that is actually strictly less powerful and for many cases can
be an oversimplification of the human behaviour.

We are preparing a new batch of results in typicality and
utility, in the context of CSF.

1Availalble in: https://arxiv.org/abs/2405.02148
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