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Abstract

Creativity is already regularly attributed to AI systems
outside specialised computational creativity (CC) com-
munities. However, the evaluation of creativity in AI
at large typically lacks grounding in creativity the-
ory, which can promote inappropriate attributions and
limit the analysis of creative behaviour. While CC re-
searchers have translated psychological theory into for-
mal models, the value of these models is limited by a
gap to common AI frameworks. To mitigate this lim-
itation, we identify formal mappings between Boden’s
process theory of creativity and Markov Decision Pro-
cesses (MDPs), using the Creative Systems Framework
as a stepping stone. We study three out of eleven map-
pings in detail to understand which types of creative
processes, opportunities for (aberrations), and threats to
creativity (uninspiration) could be observed in an MDP.
We conclude by discussing quality criteria for the selec-
tion of such mappings for future work and applications.

Introduction
Since the inception of Artificial Intelligence (AI), re-
searchers have sought to model creativity in artificial sys-
tems (McCarthy et al., 2006; Boden, 2015). Until recently,
most Computational Creativity (CC) research has been
driven by relatively small subfields of the larger AI commu-
nity (Cook and Colton, 2018). But now, AI at large has pro-
gressed greatly, and creativity is now attributed to systems
developed outside CC subfields, e.g., AlphaGo (Bory, 2019;
Natale and Henrickson, 2022), with increasing frequency.

Echoing, e.g., Besold (2016), we hold that many instances
of AI already exhibit creativity to an extent. To what extent
though is an open question, as attributing creativity to such
systems is usually based on intuitive judgement and not the-
oretically grounded.1 This may promote incorrect attribu-
tions of creativity, including failure to recognise creativity in
a system entirely. Additionally, it limits our ability to distin-
guish distinct types of creativity exhibited by systems, which
may inhibit system development for specific purposes.

1Intuitive judgement remains a valuable type of creativity eval-
uation (Colton and Wiggins, 2012; Natale and Henrickson, 2022),
but we contend that structured and theoretically grounded accounts
are at least equally important for supporting scientific progress.

The required systematic reflection on the creativity of AI
can be supported by insights into how a system’s compo-
nents and dynamics, captured formally, relate to creativity
theory. Translational research between Psychology and AI
has recently gained more traction (e.g., van Rooij et al.,
2023; Lintunen et al., 2024; Ady et al., 2022). It is no-
toriously hard though, in part due to the challenge of in-
terpreting informal theory formally. Drawing on psycho-
logical theory, CC researchers have developed a few for-
mal frameworks for evaluating systems’ (potential) creativ-
ity (e.g., FACE, Colton, Charnley, and Pease, 2011; Dev-
ER, Aguilar and Pérez y Pérez, 2015; CSF, Wiggins, 2019).
However, most AI systems are not originally formalised
through creativity frameworks. Assessing a given system’s
creativity through theory thus involves considerable inter-
pretation, which requires effort and expertise and may intro-
duce inconsistency. Specifically, AI systems that engage in
sequential decision-making are most prevalently formalised
with Markov Decision Processes (MDPs) (Sutton, 1997,
p. 273). A formal mapping between a creativity framework
and agents in interaction with MDPs would immediately al-
low for the standardised analysis of numerous AI systems in
terms of how they might be considered creative. To fulfil this
purpose, mapping would need to express how each mathe-
matical object involved in one formal framework could be
understood as one of the mathematical objects in the other.

Here, we propose formal mappings between AI systems
modelled using MDPs to Margaret Boden’s (2004) process
theory of creativity. We chose Boden’s theory because it
allows to distinguish different types of, obstacles to, and op-
portunities for creativity, while not assuming specific cogni-
tive faculties. Moreover, it has already been formalised–and,
enabled by formal rigour, further differentiated–twice in
the Creative Systems Framework (CSF; Wiggins, 2006a,b,
2019; Ritchie, 2012), allowing us to use the CSF as a step-
ping stone for mapping Boden’s theory to MDPs.

Colin et al. (2016) made a pioneering effort to map be-
tween the CSF and hierarchical MDPs (see Related Work).
We here extend their work by proposing mappings to the
more general framework of MDPs, and additionally illus-
trate ambiguity in our possible mappings. Our contributions
are: (1) We argue for MDPs as a minimal framework from
which to map Boden’s theory (2) We identify eleven poten-
tial mappings between MDPs and the CSF and evaluate three



in detail; (3) We discuss which types of creative processes,
uninspiration, and aberration could be observed in an MDP
under the three mappings detailed; (4) We propose quality
criteria to surface mapping issues and to support selecting
from mapping candidates for future analytical work and ap-
plications. We thus follow the call made by Ady and Rice
(2023) for CC researchers to explain choices made in select-
ing and interpreting definitions.

This paper thus does not conclude, but opens up an inter-
disciplinary research agenda, establishing a new formal ba-
sis to strengthen the dialogue between CC and Psychology
with AI research at large. As such, it benefits and is written
for an audience of multiple stakeholders. CC researchers re-
ceive the means to better analyse AI systems beyond CC to
further the field’s engineering and cognitive research contin-
uum (Pérez y Pérez, 2018). AI researchers from other fields
can better understand the (potential) creativity of their sys-
tems, and means to foster it. Boden’s original theory and
the CSF have been widely used for CC evaluation and sys-
tem design, and extended in several ways (e.g., Wiggins and
Forth, 2018; Linkola and Kantosalo, 2019; Linkola, Guck-
elsberger, and Kantosalo, 2020; Kantosalo and Toivonen,
2016). Our mappings to MDPs promise to make this CC re-
search heritage more relevant and accessible to AI at large.
Finally, our mappings can allow psychologists to simulate
process theories of creativity in more diverse systems to-
wards alleviating the formalisation and replication crises in
Psychology (Oberauer and Lewandowsky, 2019).

Background
Boden’s Process Theory of Creativity
Theories of creativity have been conceived from four distinct
perspectives (Rhodes, 1961; Jordanous, 2016): the person or
producer as originator of the work, the process as the steps
the producer undertakes when being creative, the product as
the outcome, and the press as the sociocultural environment
which shapes our views on, and the assessment of, creativity.

We focus on process theories, which, by treating how cre-
ative products are made, have been deemed central to un-
derstanding and supporting the evaluation of creativity in
natural (e.g., Walia, 2019) and computational domains (e.g.,
Colton, 2008), and have been promoted for including “many
important ideas that can and should influence the design of
a creative system” (Lamb, Brown, and Clarke, 2018).

Crucially though, from Wallas’ (1926) classic four-stage
model to Green et al.’s (2023) recent definition, many theo-
ries of the creative process assume human cognitive features
such as attention or unconscious reasoning, limiting their ap-
plicability to artificial systems (Lamb, Brown, and Clarke,
2018). A notable exception is the theory of Margaret Boden,
who distinguishes three types of creative processes: combi-
natorial, exploratory, and transformational. These rest on
what Boden denotes a conceptual space: a structured way
of thinking which both constrains and makes possible a par-
ticular variety of thoughts (2004, p. 58). It can be conceived
as a space of all complete and incomplete things (including
both mental concepts and physical artefacts) that could be
generated according to a set of (agreed) rules.

Combinatorial creativity refers to the creation of new con-
cepts by combining features of existing ones. Exploratory
creativity corresponds to exploring the conceptual space for
new and valued concepts. Finally, Boden introduces trans-
formational creativity as reaching new points only made ac-
cessible by altering the rules defining the space itself “so that
thoughts are now possible which previously (...) were liter-
ally inconceivable” (Boden, 2004, p. 6). Many process the-
orists consider transformational creativity as the most pro-
found (summarised by Lamb, Brown, and Clarke, 2018), in-
cluding Boden herself, who notes that transformational cre-
ativity is “the most arresting of the three” and relatively rare
(Boden, 2013, pp. 6–8). For this reason, an important focus
in our paper will be on how systems, as viewed through our
mappings, might exhibit transformational creativity.

The Creative Systems Framework
Abstaining from assumptions of human cognitive facilities,
Boden’s theory has unsurprisingly become the most popu-
lar process theory of creativity in CC (Lamb, Brown, and
Clarke, 2018). Wiggins (2006a,b, 2019) formalised the the-
ory in set-theoretic terms, hereby providing a more con-
crete interpretation and adding to Boden’s account. Ritchie
(2012) later re-formulated and extended Wiggins’ frame-
work while retaining backward compatibility. We rely on
Ritchie’s formulation because it simplifies the formalism,
dropping Wiggins’s reliance on a universal language and in-
terpreters. Moreover, it has been used by Colin et al. (2016)
in the only instance of related work; using the same frame-
work thus also eases comparison. The definitions that follow
are taken from Ritchie (2012) and Wiggins (2019), modified
only for brevity or clarity; most of our notation is that of
Ritchie (2012, see p. 43 for relation to Wiggins).

Definition 1 (General notation).
1. For any sets A and B, BA denotes the set of functions

from A to B. In particular, [0, 1]A denotes the set of func-
tions from A to real values between 0 and 1, inclusive.

2. For any set A, tuples(A) denotes the set of all finite tuples
of elements in A; e.g., if A = {1, 2, 3}, then tuples(A) =
{1, 2, 3, (1, 1), (1, 2), . . . }.

3. For any set of tuples X , we define the set of distinct
elements in the tuples of X as elements(X) := {x |
∃(y1, . . . , yn) ∈ X ∧ ∃ i ∈ {1, . . . , n} : x = yi}. This
flattens a set of tuples into a set of distinct elements: for
set A and X = tuples(A), we have elements(X) = A.

4. For any set A, function f ∈ [0, 1]A, and threshold α ∈
[0, 1], we define the strong α-cut of A as f>α(A) := {a ∈
A | f(a) > α}.

To formalise transformational creativity, Wiggins intro-
duced a set representing all conceivable concepts.

Definition 2 (Universe). The universe, U , is a set (specifi-
cally a multidimensional space; Wiggins, 2019, p. 26) capa-
ble of representing anything, and all possible distinct con-
cepts correspond with distinct points in U .

Axiom 1 (Universality). All possible concepts, including
the empty concept, ⊤, are represented in U .



Axiom 2 (Non-identity of concepts). All concepts repre-
sented in U are non-identical, meaning ∀c1, c2 ∈ U , c1 ̸= c2.
Axioms 3 & 4 (Universal inclusion). All conceptual spaces
(3) are strict subsets of U and (4) include ⊤.

Ritchie (2012, p. 43) adapts Wiggins’ formulation to de-
fine an exploratory creative system2 as a 4-tuple:
Definition 3 (Exploratory Creative System, ECS). We define
an ECS E as a 4-tuple (P,N ,V,Q) consisting of:

1. P ⊆ U , sub-universe
2. N ∈ [0, 1]P , acceptability function
3. V ∈ [0, 1]P , evaluation function
4. Q : [0, 1]P×[0, 1]P→ tuples(P)tuples(P), traversal strategy

A conceptual space, defined below, is the set of accept-
able concepts out of a subset, P , of all concepts. Restriction
to subset P ⊆ U (a sub-universe) allows us to make distinc-
tions between systems w.r.t. their access to the full universe
(Ritchie, 2012, p. 42).
Definition 4 (Conceptual space). For acceptability function
N ∈ [0, 1]P , acceptability threshold α ∈ [0, 1], and sub-
universe P ⊆ U , we define the conceptual space C as

C := N>α(P) = {c ∈ P | N (c) > α} (1)

While, according to Wiggins, evaluation, V , does not play
into the definition of a conceptual space (see Critical As-
sumptions), value is a core requirement of creativity (e.g.,
Runco and Jaeger, 2012). Thus, not only the acceptability
function, N , but also the evaluation function, V , influence
the traversal strategy, Q. The ECS starts at an initial concept
and “searches” through the conceptual space by means of its
traversal strategy. In the CSF, exploratory creativity corre-
sponds to exploring the conceptual space C for new concepts
valued in terms of V .

Wiggins (2006a, p. 454) offered a mechanistic explana-
tion of transformational creativity by formalising it as ex-
ploratory creativity, but on a meta level. A meta-level cre-
ative system, (Pmeta,Nmeta,Vmeta,Qmeta), searches a con-
ceptual space in which the concepts are triples (N ,V,Q),
with the sub-universe, Pmeta, being the set of all such triples
(Ritchie, 2012, p. 44). Recursively, a creative system could
have many such levels. The lowest level is considered the
object-level system.

Boden (2004, p. 58) originally explained transformation
as modifying the existing rules of a conceptual space to
make possible concepts that were not possible before. Wig-
gins extended the notion of transformation to changing the
traversal strategy, noting that such a change might “make
accessible concepts which were not previously available” to
the agent (2019, p. 32). We therefore consider:
• N -transformation: modifying the conceptual space via

changes to the acceptability function.
• Q-transformation: changing the traversal strategy.

2We adopt the name “exploratory creative system” by conven-
tion. We do not want to convey the impression that such a system
exhibits creativity at any moment. Instead, we hold that it has the
potential to exhibit creativity as defined by Boden (2004).

For the purpose of assessing transformational creativity, we
follow Wiggins’ (2019, p. 33) suggestion that a transforma-
tion is valued if, given a fixed object-level evaluation func-
tion V , the transformation admits new concepts valued under
V , either to the set of reachable concepts (defined below)
or the conceptual space itself. Following Boden’s (2004,
p. 10) requirements for creativity to involve both novelty and
value, we assume a transformation can only be considered
transformational creativity if it is valued.

Wiggins (2006a, p. 456) additionally introduced aberra-
tions, characterising the traversal strategy Q reaching a set
of concepts B which lie outside the conceptual space (cf.
Ritchie, 2012, p. 45). Aberrations could be used to trigger
and guide transformations as opportunities for creativity.

Definition 5 (Set of reachable concepts). Let ECS E =
(P,N ,V,Q). Then, starting from an initial tuple of con-
cepts B, we denote the set of reachable concepts within E in
m steps by

Em(B) := elements

(
m⋃

n=0

Q(N ,V)n(B)

)
(2)

where exponent n denotes repeated applications of traversal
strategy Q. Notably, B can be given by ⊤, i.e. the empty
concept, corresponding to a blank canvas.

An aberration occurs when B := E∞(B) \ C is non-
empty. Aberrations fall into three categories depending on
how this set B is valued, given threshold β ∈ [0, 1]:3 per-
fect (V>β(B)=B), productive (V>β(B)⊂B) and pointless
(V>β(B)=∅) aberrations.

Wiggins furthermore characterises three cases of uninspi-
ration, causing the system to fail at being creative (notation
adopted from Ritchie, 2012, pp. 43–46):

• Generative uninspiration. When the traversal strategy
does not find any valued concepts, V>β(E∞(⊤)) = ∅.

• Conceptual uninspiration. When there are no valued con-
cepts in the conceptual space, V>β(C) = ∅.

• Hopeless uninspiration. When there are no valued con-
cepts in the sub-universe, V>β(P) = ∅.4

A threat to creativity, uninspiration complements aberration.

Markov Decision Processes
A Markov Process (MP; Markov, 1906; Levin and Peres,
2017) models stochastic transitions between states of a sys-
tem. As per the Markov property, the probability of moving
to a specific next state depends only on the current state. The
structure of MPs often remains useful even if the Markov

3Crisp sets ease discussion, but yield binary descriptions of con-
ceptual spaces, uninspiration, and aberration, contradicting Bo-
den’s philosophy (2004, p. 2): “Rather than asking ‘Is that idea
creative, yes or no?’ we should ask ‘Just how creative is it, and in
just which way(s)?’” However, modifying the CSF is out of scope.

4Ritchie’s (2012, pp. 43, 45) re-definition of hopeless uninspi-
ration is contradictory, leaving unclear whether it refers to a lack of
valued concepts in the sub-universe, P , or universe, U .



property does not exactly hold, and so MPs are used abun-
dantly across many academic fields to model the dynamics
of natural and artificial systems, and especially within AI.

A Markov Decision Process (MDP) extends MPs by intro-
ducing a notion of agency in the form of actions that influ-
ence the transition between states. Actions are chosen based
on the current state via a policy. Moreover, MDPs define re-
wards as scalar feedback from state transitions to define the
problem to be solved with a suitable policy.
Definition 6 (Markov Decision Process). We define a
discrete-time MDP as a 4-tuple (S,A, T,R), consisting of
state space S, action space A, stationary transition proba-
bilities T , and stochastic reward function R.

In this paper, we chose to focus on discrete-time MDPs
for its fit with the use of discrete “steps” in the CSF. We
denote the probability of transitioning from state s to the
next state s′ with action a as

Ta(s, s
′) := P (s′ | s, a) (3)

with the intuition that each action results in a unique tran-
sition matrix indexed by states. We assume both the reward
function R : S×A×S → R and policy π : S×A → [0, 1] to
be stochastic, without loss of generality. While the stochas-
tic policy is characterised by a probability distribution, our
stochastic reward function directly samples rewards from an
underlying reward distribution. For generality, the output
of R(s, a, s′) need only depend on a subset of these inputs.
Excluding the policy from Definition 6 lets us discuss tran-
sitioning through the same MDP with different policies.

The goal for the agent is to maximize its return.
Return, Gt, can be formalized in multiple ways, but
is a function of the rewards observed after time t:
R(st, at, st+1), R(st+1, at+1, st+2), · · · . Different formu-
lations of return include discounted or undiscounted sums
of rewards or as the sum of differences between received
rewards and the average reward (Sutton and Barto, 2018,
pp. 54–55, 249–250); we do not assume a particular formu-
lation here. Under a given policy, π, the return allows us to
define the value of each state (ibid, p. 54):

vπ(s) := Eπ [Gt|st = s] (4)

The definition of return changes the problem the agent is set
to solve, but in each case, solving the problem means finding
an optimal policy π∗ such that vπ∗(s) ≥ vπ(s) for all states
s ∈ S and all policies π (ibid, p. 62).

Such an optimal policy π∗ as one solution to the sequen-
tial decision-making problem defined by the MDP can be
found with a plethora of techniques, e.g., from reinforce-
ment learning (Sutton and Barto, 2018). Some techniques
maintain an estimate of some vπ(s), which we denote by V .

MDPs are part of a family of extensions to MPs, in-
cluding Partially Observable Markov Decision Processes
(POMDPs), which extend MDPs with partial observations of
the state, and Hierarchical MDPs, which extend MDPs with
temporally extended actions and a hierarchical structure. We
focus here on MDPs for their generality and widespread ap-
plication (Sutton, 1997, p. 273), but other members of this
larger family may be worth considering for other mappings
(cf. Colin et al., 2016, Related Work).

Mappings
In this paper, we seek to construct mappings from agents
in interaction with MDPs to the CSF. AI systems employ
numerous different algorithms and architectures, but with
MDPs, one way of abstracting at least part of their agency5

or individuality is via their policy. For this reason, we model
an agent in interaction with an MDP as a pairing between an
MDP and a (potentially non-stationary) policy. Our goal,
then, is to understand any given MDP-policy pair as an
ECS. We thus aim to construct mappings of the form:

M :

ß
(S,A, T,R, π)

∣∣∣∣ (S,A, T,R) an MDP,
π a policy

™
(5)

→
ß
(U ,P,N ,V,Q)

∣∣∣∣ U a universe,
(P ⊆ U ,N ,V,Q) an ECS

™
Ideally, each mapping should be a total function, capable of
mapping any MDP-policy pair to an ECS. We can then use
the CSF to analyse any system that is modelled as a policy
over an MDP. By virtue of this choice, we can retain the ex-
pressivity of Boden’s framework. This in turn enables study-
ing the extent to which different types of creative processes,
opportunities for, and obstacles to creativity are expressed in
specific MDP instances, or the MDP framework in general.

We map agents in interaction with MDPs to Boden’s the-
ory, but usually only capture agents w.r.t. their policy; In
some cases, though, we also used the agent’s estimated
value function (extending the 5-tuple in the domain shown
in Equation 5 to a 6-tuple to include V ). We were initially
concerned that this choice would be limiting, as many algo-
rithms do not use estimated value functions (see, e.g., Sut-
ton and Barto, 2018, p. 321). However, we only use V in
defining the evaluation function V . Since Q only can, but
does not have to be, dependent on V (Wiggins, 2019, p. 29),
with careful choice of Q, V can be safely ignored if it is
not implemented in a system of interest. This allows the
mapping to retain the semantic similarity of the value func-
tion to evaluation. Below, we explore in one mapping the
use of rewards (which “determine the immediate, intrinsic
desirability of environmental states”) and in two others the
use of values (which “indicate the long-term desirability of
states”) for their semantic similarity to the value component
of evaluation (Sutton and Barto, 2018, p. 6).

Under the paradigm of sequential decision-making and
creative autonomy (Jennings, 2010; Saunders, 2012), we as-
sume exploration, transformation, abberation, and uninspi-
ration to be driven by the agent, rather than a separate cause
(such as the system designer). Therefore, in our interpreta-
tions of these dynamics, we only consider elements that the
agent can change, notably excluding S,A, T , and R.

MDPs as Mapping Domain
MDPs are very widely used (Sutton and Barto, 2018, Sec-
tion 1.7), but are an extension of a simpler process model:
MPs. If we mapped MPs, we could map any MDP by ex-
tension. However, we determined that mapping MPs is not

5Defining agency in AI systems is an ongoing effort,
cf. e.g., Biehl and Virgo (2022); Kenton et al. (2023).



appropriate since the CSF requires a means to evaluate con-
cepts; defining an ECS requires a choice of evaluation func-
tion V . Some authors consider evaluation to be a minimal re-
quirement for creative autonomy (Jennings, 2010) and trans-
formational creativity (Wiggins, 2019). Neither states nor
transition probabilities (nor combination of them) have sim-
ilar meaning to the evaluation function in the CSF.

Intuitively, MDPs as extensions of MPs appear as the
most natural next mapping domain in that the evaluation
function in the CSF has clear analogues in MDP defined
in terms of the reward function. We recognise that further
generalisations of MDPs such as POMDPs and Hierarchi-
cal MDPs would offer interesting viewpoints for mappings;
however, they are in less widespread use than MDPs and
their use would further expand the space of potential map-
pings, resulting in more candidate mappings to select from.
Further benefits over MDPs in terms of semantic or for-
mal connections to Boden’s theory, as well as Wiggins’ and
Ritchie’s CSF are not apparent.

Mapping Procedure
Within the limited scope of this paper, we only discuss a
selection of mappings without being exhaustive. Mirroring
two-phase models of creativity (e.g., Kleinmintz, Ivancov-
sky, and Shamay-Tsoory, 2019), our mapping procedure in-
volved two phases: a generation phase followed by an eval-
uation phase. In the generation phase, we explored potential
mapping candidates, beginning with the decision of what as-
pect of the MDP and agent might be mapped to concepts
(elements of U). Table 1 lists all candidates we considered.
In this phase, we considered not only the components listed
on the left-hand side of Equation 5, but also policy-learning
algorithms and their hyperparameters.

Mapping Concepts c ∈ C
Ml Policy-learning algorithms l ∈ L
Mλ Hyperparameters λl ∈ Rn

Ml,λ (l, λl) ∈ L× Rn

Mπ Policies π ∈ Π
⋆Ms States s ∈ S
Ma Actions a ∈ A
Mr Rewards r ∈ R
Ms,a Tuples (s, a) ∈ S ×A
Ms,a,r Tuples (s, a, r) ∈ S ×A× R
⋆Ms,a,s′ Transitions (s, a, s′) ∈ S ×A× S
⋆Mτ Trajectories (s, a, s′, . . . , slast) ∈ Tr

Table 1: Possible conceptual spaces identified in the ex-
ploratory stage. Starred ⋆ options were examined further.

In the evaluation phase, we filtered our initial candidates,
aiming to keep a small but diverse sample to discuss in de-
tail. In this phase, we followed our intuition about which
candidates best match Boden’s theory and its extension via
the CSF. Further below, we provide a detailed reflection
on our intuitive choices, informing potential quality criteria
for assessing mappings. Here, we only briefly express why
we excluded eight of our original candidates. We dropped

mapping Mπ , for which exploratory creativity would cor-
respond to the discovery of new and valued policies. This
is essentially what MDP solvers do, but it resembles more
what Wiggins and Ritchie describe as meta-level explo-
ration, leaving ambiguity at the object-level. The same ap-
plies to Ml, Mλ and Ml,λ which were consequently also
excluded. We excluded Ma since many applications of
MDPs use discrete and small action spaces, which would be
quickly exhausted. We moreover excluded Mr and Ms,a,r,
as understanding a reward as representing a concept does not
seem intuitive. This left us with groups of mappings from
state-action tuples or trajectories to concepts, from which
we picked one each for diversity. We chose Ms,a,s′ over
Ms,a because we saw very natural mappings for the accept-
ability and evaluation functions, as the transition-probability
function and reward function both take (s, a, s′) as input.
This leaves us with the mappings Ms, Ms,a,s′ and Mτ ,
which we detail in Table 2 and the following subsections,
and which form the basis of our discussion.

Mapping Ms

Universe & Sub-universe. We map both universe U and
sub-universe P to the union of all conceivable state spaces⋃

S S. Consequentially, concepts are mapped to states.
Acceptability & Conceptual Space. We map acceptability
N to a membership function µ :

⋃
S S → {0, 1} which out-

puts one if the input state belongs to S and zero otherwise.
That is, this function describes the logic by which states are
included in state space S. As a result, conceptual space C is
mapped to state space S, as long as the acceptability thresh-
old α < 1; if α = 1, then C = ∅ (a consequence of Def. 4).

Evaluation. We map evaluation V to a normalisation V̂ :⋃
S S → [0, 1] of the agent’s estimated value function V .

Traversal Strategy. Traversal strategy Q maps to a one-
step rollout of policy π: s′ ∼ Ta∼π(s)(s, ·) for every state
s in its input. That is, Q takes a tuple of current states as
input, and, for each state s, samples action a from π(s), and
outputs the following state s′ to compose an output tuple. Q
traversing from tuples of concepts to tuples of concepts is
directly from the CSF (Wiggins, 2019, p. 35).6

Transformations. N -transformation would require the
conceptual space C to change, but C corresponds to the state
space S, which we assume cannot be modified by the agent.
Q-transformation maps to a change in policy π.
Aberration & Uninspiration. Aberrations are left un-
mapped since finding states outside of state space S is theo-
retically impossible. Generative uninspiration here reflects
policy π performing poorly with respect to normalised value
function V̂ , as none of the reachable states exceed value
threshold β when evaluated by V̂ . Generative uninspiration
may reflect either a truly suboptimal policy or a poorly esti-
mated value function. Conceptual uninspiration suggests an
ill-formed value function V̂ or value threshold β where no

6Appealingly, potential to traverse multiple rollouts at once may
be suited to more general agents including asynchronous (Mnih et
al., 2016) and model-based agents (Sutton and Barto, 2018, Ch. 8).



CSF Ms Ms,a,s′ Mτ

Concept c State s Transition δ = (s, a, s′) Trajectory τ = (s, a, s′, . . . , slast)
First-order definitions
Universe U

⋃
S S

⋃
S,A S×A×S

⋃
S,A tuples(S×A)

Sub-universe P ⊆ U
⋃

S S S×A×S tuples(S×A)
Acceptability N Membership function µ of S pδ(δ) := Ta(s, s

′)π(a| s) pτ (τ) := P (τ | s, π, T )
Evaluation V V̂ := normalised V R̂ := normalised R V := normalised V (slast)
Traversal strategy Q(N ,V) f : tuples(S) → tuples(S) f : tuples(P) → tuples(P) f : tuples(P) → tuples(P)

Higher-order definitions
Conceptual space C µ>α(P) p>α

δ (P) p>α
τ (P)

N -transformation — π → π′, s.t. C ≠ C′ π → π′, s.t. C ≠ C′

Q-transformation π → π′ π → π′ π → π′

Aberration — Reaching δs s.t. pδ(δ) ≤ α and Reaching τs s.t. pτ (τ) ≤ α and
Perfect — all δs are rewarding. all τs are valued.
Productive — some δs are rewarding. some τs are valued.
Pointless — no δs are rewarding. no τs are valued.

Uninspiration No s ∈ V̂ >β(P) No δ ∈ R̂>β(P) No τ ∈ V
>β

(P)
Generative can be found with π. can be found with π. can be found with π.
Conceptual exists in S. has pδ(δ) > α. has pτ (τ) > α.
Hopeless exists in

⋃
S S exists in P . exists in P .

Table 2: Mappings Ms,Ms,a,s′ and Mτ . Notation: apostrophe ′ indicates succession (state s′ follows state s), “—” denotes no
mapping, the union of all conceivable sets (excluding the union itself) is denoted as

⋃
X X , µ : P → {0, 1} is the membership

function for state space S, f is defined by outputting the result of a one-step rollout of policy π on each concept in its input.
Higher-order definitions are derived from first-order definitions.

states in S are sufficiently valued. Hopeless uninspiration
means no state in any MDP would be sufficiently valued.

Mapping Ms,a,s′

Universe & Sub-universe. Universe U comprises all
conceivable state transitions in all potential MDPs, δ ∈⋃

S,A S×A×S. Sub-universe P then maps to a narrowed
down version S ×A× S defined by a particular S and A in
the mapped MDP.

Acceptability & Conceptual Space. Acceptability N maps
to probability pδ , where pδ(δ) := Ta(s, s

′)π(a|s). Concep-
tual space C then contains transitions with pδ(δ) > α.

Evaluation. We map evaluation V to the normalised reward
function R̂ : S×A×S → [0, 1].

Traversal Strategy. Traversal strategy Q maps transitions
to the next transition triple, given a one-step rollout of policy
π: that is, transition (s, a, s′) maps to (s′, a′, s′′) where s′′ ∼
Ta′∼π(s′)(s

′, ·). As in Ms, inputs and outputs can be tuples.

Transformations. Both N -transformation and Q-
transformation map to changes in policy π. However,
while any change to π corresponds to a Q-transformation,
N -transformation additionally requires that the conceptual
space changes. That is, the probability of some transition
previously ≤ α must now exceed it, or one previously > α
must drop below or meet it.

Aberration & Uninspiration Aberration here refers to ex-
periencing transitions which have at most probability α
of occurring. These aberrations are then further cate-
gorised into perfect, productive, and pointless, depending on

whether all, only some, or none of these aberrant transitions
produce rewards exceeding value threshold β.

Uninspiration here refers to a complete lack of transitions
with rewards exceeding value threshold β, either due to a
flawed policy π (generative and conceptual), or ill-defined
state and action spaces S,A (hopeless).

Mapping Mτ

Universe & Sub-universe. The universe U includes finite
trajectories τ = (s, a, s′, . . . , slast) across all conceivable
state and action spaces. As in Ms,a,s′ , the sub-universe P
comprises only trajectories from the mapped MDP.
Acceptability & Conceptual Space. We map accept-
ability N to a conditional probability distribution pτ over
variable-length trajectories: pτ (τ) := P (τ |s, π, T ) =∏

s,a,s′∈τ π(a)Ta(s, s
′). Our conceptual space C comprises

trajectories with this probability larger than α.
Evaluation. We map evaluation V to some normalisation V
of the agent’s estimated value of the final state in the trajec-
tory, V (slast) such that V : tuples(S×A) → [0, 1].
Traversal Strategy. Traversal strategy Q takes tuples of tra-
jectories as input and outputs the same trajectories appended
with one new action and state resulting from a one-step roll-
out of policy π. During traversal, the observation of each
new state rules out some potential trajectories and changes
the probabilities of others. Consequently, conceptual space
C changes during traversal in accordance with α.
Transformations. N -transformation refers to a change to
policy π such that conceptual space C changes. When we
change our policy, the set of possible trajectories can also
change. Q-transformation maps to any change to policy π.



Aberration & Uninspiration Aberration maps to experi-
encing unlikely trajectories given the trajectory so far, policy
π, and transition probabilities T . A trajectory can have a low
likelihood for two reasons: our policy can assign low prob-
abilities to certain actions, or certain transition probabilities
might be low according to T . Different types of aberration
are categorised similarly as in mapping Ms,a,s′ : perfect,
productive, and pointless aberration correspond to situations
where all, only some, or none of the aberrant trajectories are
valued by the normalised value function V past the value
threshold β. Uninspiration is mapped similarly: generative,
conceptual, and hopeless uninspiration match with no val-
ued trajectory reachable by policy π, with probability larger
than α, or expressible with given state and action spaces
S,A. Additionally, the value function V may be flawed.

Quality of Mappings
Our mappings resulted from an iterative and intuitive pro-
cess, gradually incorporating insights about how our map-
ping choices interplay and whether they retain compatibility
with Boden’s original theory, the CSF, and MDPs. Based
on this process, we formulated quality criteria to guide re-
searchers’ choice of mappings. Our formulation was retro-
spective, non-exhaustive, and independent of additional the-
ory or related work. We demonstrate below that each crite-
rion can surface issues of the quality of a given mapping via
application to Ms,Ms,a,s′ , and Mτ .
Semantic Similarity to Boden’s Original Theory
A mapping should preserve as much of the meaning estab-
lished in Boden’s theory, once cast to the elements and dy-
namics of MDPs. Due to space limitations, we reflect on the
central notion of transformations only. Boden (2004, p. 6)
describes (N -)transformations as the “deepest cases of cre-
ativity.” However, in Ms, mapping the state space S to the
conceptual space C renders N -transformations impossible,
as the agent cannot modify S, contradicting Boden’s theory.
To support generality in the design of our mappings, we im-
posed only minimal requirements (a policy) on our agent,
and in this case found no natural way to allow changes to
C. Relaxing this design choice, a small change to Ms could
overcome the issue, mapping between the conceptual space
and an agent’s current model of the state space (e.g., Lolos et
al., 2017), rather than the MDP’s “objective” state space. In
Ms,a,s′ and Mτ , N -transformation refers to a change in
the policy that changes the conceptual space. Thus, a con-
ceptual space is partly determined by the policy. This as-
sociation is semantically similar to Boden’s description of
conceptual spaces as a style of thinking: “actions might be
totally mental” (Sutton, 1997, p. 275), and a policy reacts to
the situation and past experiences to decide what to do next.
Functional Similarity to the CSF
In the CSF, acceptability N and evaluation V are parameters
to traversal strategy Q. This gives Q “awareness” of concep-
tual space C and enables decision-making based on evalua-
tion V . In Ms, acceptability N is formalised as a mem-
bership function µ to state space S. Q, then, does not make
use of N , as all possible outputs will themselves be states,
and therefore elements of the conceptual space. In contrast,

evaluation V , mapped to value function V̂ , quite reasonably
informs Q, as policies are commonly inferred from value
functions. A problem regarding N as a parameter to Q also
exists in Ms,a,s′ and Mτ : acceptability N is rarely avail-
able (Sutton, 1997, p. 275) to the agent, which often only
implicitly “experiences” the transition probabilities T while
rolling out a policy. Another concern with Ms,a,s′ and Mτ

is the dependency between N - and Q-transformation: the
former forces the latter, excluding the possibility of chang-
ing our acceptability N without change to traversal strategy
Q. In the CSF, these two are independent components. Even
though the behaviour of Q will be impacted by a change in
N or V , the traversal strategy itself will not change.
Compatibility Between Frameworks
Rewards and values are arguably the most semantically
aligned choice with the CSF evaluation function. However,
in contrast to the latter, they are not meant to be squashed
into the unit interval; their potential to extend the real line
allows them to flexibly represent both real-world quantities
and challenges. We leave open how to normalise these quan-
tities, introducing undesirable ambiguity. As another com-
patibility issue, in Ms, aberrations are left unmapped due
to policies operating strictly inside state spaces.
Applicability Across Diverse AI Systems
In Ms, acceptability N is defined as the membership func-
tion µ, outputting binary values. For some systems, a con-
tinuous µ may be more appropriate; e.g., fuzzy definitions of
state space S have been used (Buşoniu et al., 2010). Alterna-
tively, acceptability N could be correspond to a probability
of a state belonging to state space S, perhaps combined with
a notion of confidence (Grace and Maher, 2015).

Identifying Types of Creativity
We aim to identify exploratory and transformational cre-
ativity in our mappings. For brevity, “sufficiently valued”
concepts here mean concepts that pass value threshold β.
Exploratory Creativity (finding novel valued concepts)

Ms : finding novel states with sufficient estimated value.

Ms,a,s′ : finding novel transitions with sufficient reward.

Mτ : finding novel trajectories with sufficient estimated
value for the final state.

Transformational Creativity
(finding N and Q that admit novel valued concepts)

Ms : N -transformational creativity (N -TC) requires re-
defining the membership function µ such that the state
space S admits new states with sufficient estimated value.
Q-transformational creativity (Q-TC) requires updating
policy π such that new valued states are found.

Ms,a,s′ : N -TC here is updating policy π such that new
sufficiently rewarded transitions are found, but with the
additional requirement that the set of transitions that pass
probability α, i.e. the conceptual space C, changes. Q-TC
works similarly but without said requirement.

Mτ : N -TC and Q-TC are the same as in mapping Ms,a,s′

but instead of transitions we have entire trajectories.



Critical Assumptions
This research required a very close reading and comparison
of Boden’s original account and Wiggins’/Ritchie’s formal-
isations, highlighting several inconsistencies.

Boden (2004, p. 4) defines a conceptual space as “any
disciplined way of thinking that is familiar to (and valued
by) a certain social group”, suggesting that all concepts in
the space are considered by default valuable. Wiggins and
Ritchie in contrast assume that membership in the concep-
tual space is only conditional on the typicality of the con-
cept/artefact, and that value is evaluated separately through
V (e.g., Wiggins, 2019, p. 28). We adopt this view for its
useful distinction between typicality and value.

We also consider Wiggins (2019, p. 28) and Ritchie
(2012, p. 44) describing V as defining “value” problematic;
it suggests the evaluation is only of value, leaving open how
the other core components of creativity, most importantly
novelty but also surprise (Boden, 2004, p. 1), are assessed.
Here, we assume that V may or may not evaluate these core
components. In neither mapping do we specify which com-
ponents the reward or value function mapped to evaluation
capture; consequently, we leave it open whether traversal
under this mapping actively promotes exploratory creativity.

Related Work
We relate our contributions to Colin et al.’s (2016) work
as the only close predecessor in terms of goals and meth-
ods. They mapped the CSF as formalised by Ritchie (2012)
to hierarchical MDPs as instantiated in the options frame-
work proposed by Sutton, Precup, and Singh (1999). Their
object-level conceptual space comprises policies, evaluation
is mapped to a discounted return function and traversal is
mapped to a policy update function. Via online learning (e.g.
standard temporal difference learning), an agent traverses
the space of possible policies. On the meta-level, it traverses
pairs of discounted return and policy update functions, with
meta-level evaluation assessing the value of a given pair for
solving the problem at hand. The policy update function is
constrained to evolving policies within a single option only,
i.e. policies that start from a specific set of initiation states,
and end on a specific termination condition. Traversal over
these pairs changes which option and underlying space of
potential policies is used to tackle the problem at hand.

Colin et al.’s object-level thus matches our proposed map-
ping Mπ , which we did not pursue further as we considered
it a meta-level interpretation. Crucially though, the CSF al-
lows for many meta-levels and Colin et al. thus complement
the present work by contributing a candidate mechanism to
facilitate transformational creativity on the space of policies
by extending MDPs to include behavioural hierarchies. Cru-
cially though, the focus on hierarchical MDPs and the op-
tions framework as only one (albeit popular) formalisation
thereof limits the wider applicability of their findings. We,
in contrast, map MDPs as a more general but less expressive
framework to increase the applicability of our findings while
understanding MDPs’ limitations w.r.t. modelling creativity.

As a second distinction, Colin et al. propose only a single
mapping, not motivated beyond its relevance to robot con-

trol. In contrast, we discuss three of eleven potential map-
pings in depth, complemented with domain-agnostic quality
criteria for probing and comparing different mappings.

As a third and final distinction, Colin et al. focus on
computational models of insight, corresponding to trans-
formational creativity, but do not integrate uninspiration as
threats to, and aberration as opportunities for creativity. Re-
lated, they do not consider N part of the explored meta-level
triplets, hence providing a mapping for Q-transformation
and revisions to V only. Despite being interested in in-
sight, they thus do not explicitly address N -transformation
as the most widely known and accepted type of transfor-
mational creativity, and only instance presented by Boden
(2004) originally. We interpret aberration, uninspiration and
transformational creativity under each mapping, thus em-
bracing Boden’s theory and the CSF more comprehensively.

Conclusion & Future Work

We have set out to provide theoretically grounded tools for
the assessment of creativity in AI systems at large. To this
end, we put forward eleven, and discuss in detail three, for-
mal mappings between agents in interaction with Markov
Decision Processes (MDPs) and Margaret Boden’s process
theory of creativity, using the Creative Systems Framework
(CSF) as a stepping stone. We leveraged these three map-
pings to reflect on the types of, opportunities for, and threats
to creativity conceivable in a system formalised on an MDP.

Our findings motivate exploration of further mappings as
the most imminent future work, which will be supported by
our critical reflection on quality criteria, and our discussion
on the constraints on potential mappings imposed by formal
features of MDPs and the CSF. The influence of hyperpa-
rameters α and β must also be investigated. This object-
level effort should be complemented with formalising the
corresponding meta-levels to highlight not only which forms
of creative transformations are possible, but also how they
can be brought about. This can for instance shed more light
on the mechanisms behind policy changes and, in conse-
quence, different forms of transformational creativity. Fol-
lowing this exploratory research, the best mapping candi-
dates should be further tested through application to existing
systems that have been attributed creativity, or that realised
major AI milestones for which creativity is commonly con-
sidered necessary. Our present focus on MDPs allowed us
to define potential mappings by trading off simplicity and
widespread applicability; as another avenue for future work
and prerequisite for evaluating the creativity of more con-
strained but realistic systems, e.g., with partial observability
and a need to learn models of the world, we recommend
leveraging this foundation to integrate creativity theory and
more general–but also more complex–sequential decision-
making frameworks such as POMDPs.

The synthesis of established creativity theory and AI
frameworks can significantly enhance our understanding of,
and consequently the potential for, creativity in AI. We in-
vite researchers from Psychology and AI more generally and
CC specifically to join this interdisciplinary effort.
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