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Abstract

This paper proposes the cognitive science paradigm of
enaction as a theoretical framework for co-creative ar-
tificial intelligence (AI). Enaction describes how mean-
ing emerges through the interaction of an agent with the
environment in a process of sense-making. Enaction is
different from information processing (IP) theories of
cognition as it does not employ plans, but rather impro-
vised and situated meaning construction processes. This
paper argues that enaction can be used as the theoreti-
cal basis to design, evaluate, and describe co-creative
AI systems. The five pillars of enaction are described:
autonomy, sense-making, embodiment, emergence, and
experience. Each category is applied to co-creative AI
to create a descriptive framework to categorize and sys-
tematically describe co-creative AI systems. An anal-
ysis is conducted of 20 co-creative AI systems from
the literature, including ChatGPT, Stable Diffusion, and
Google’s Gemini. Enactive design recommendations
are provided for each of the enactive categories.

Introduction
Co-creative artificial intelligence (AI) systems that collabo-
rate with users on a shared creative product or performance
are becoming more prevalent with the advent of genera-
tive AI. The future is clear that co-creative systems will re-
main an important piece of the AI landscape. Co-creative
AI is a subfield of computational creativity (Colton, Charn-
ley, and Pease 2011; Toivonen and Gross 2015) and artifi-
cial intelligence. The concept of mixed-initiative co-creative
AI, which originated in the game design domain, typically
involves a turn-taking approach between humans and AI
(Yannakakis, Liapis, and Alexopoulos 2014; Deterding et
al. 2017) and share similarities with co-creative AI systems.
Human-AI co-creativity researchers design, evaluate, and
study systems that collaborate with users on a shared cre-
ative product or performance (Davis 2013). Co-creation can
be an improvisational activity with contributions influencing
both collaborators through time (Davis 2013). Co-creation
features many of the same mechanisms as sense-making and
participatory sense-making described by the enactive litera-
ture (Davis et al. 2016b), such as interaction dynamics (e.g.
turn-taking, communication strategies, coordination) and in-
teraction couplings (e.g. mutually influential turns).

The lenses that we have to look at co-creativity and co-
creative systems for theorizing and designing are insuffi-
cient. There is a theoretical and practical need for a cognitive
theory guiding co-creative AI. The dominant paradigm in
cognitive science is the information processing (IP) theory
of cognition, which views cognitive agents as information
processing systems that sense and act based on goal-based
planning (Schank and Abelson 1975; Laird 2019). How-
ever, co-creation is inherently improvisational, dynamic, and
open-ended with meaning emerging from the interactions of
the collaborators. The IP theory of cognition needs to be
supplemented to describe the dynamics of co-creation. The
cognitive science theory of enaction, on the other hand, is
particularly well suited to study co-creative AI.

The cognitive science paradigm of enaction views cogni-
tion as emerging from the interaction of an agent with the en-
vironment and other agents in the environment (De Jaegher
and Di Paolo 2007; Velmans 2007; Varela, Thompson,
and Rosch 2017). The agent regulates its interaction with
the environment to increase its autonomy in a process re-
ferred to as sense-making (De Jaegher and Di Paolo 2007;
Thompson and Stapleton 2009). The agent’s autonomy is
the self-organizing and self-sustaining principle of living
cognitive systems that enables them to survive and thrive
in their environment (Varela, Thompson, and Rosch 2017).
When multiple agents are engaged in sense-making together,
a new domain of relational dynamics emerges through the
coordination of interactions in a process referred to as par-
ticipatory sense-making (Fuchs and De Jaegher 2009). En-
activists use dynamical systems theory to understand these
relational dynamics, such as interaction coupling, i.e. the
mutually influential turn taking process wherein some of the
characteristics of the turn correspond to their partner’s previ-
ous turn (De Jaegher and Di Paolo 2007). The dynamics of
interaction are particularly relevant to the study and design
of co-creative systems.

This paper begins by reviewing the co-creative AI litera-
ture and the enactive cognitive science literature. The paper
strives to ignite a synergy between enaction and co-creative
AI similar to the reciprocally beneficial relationship between
traditional cognitive science and AI. Next, we develop and
describe a framework to interpret and analyze co-creative AI
using the five pillars of enaction. Applying the five pillars of
enaction to co-creative AI systems can structure the design



and study of such systems by mapping conceptual relations
between enactive cognitive theory and AI. Then, an analy-
sis is conducted of 20 co-creative systems using the enactive
classification framework. A discussion follows that consid-
ers how to combine the techniques identified here to evaluate
co-creative systems, and a set of enactive design recommen-
dations for co-creative systems is provided. In summary, this
paper makes the following contributions:

• This paper introduces a framework for interpreting and
analyzing co-creative AI using the five pillars of the cog-
nitive science theory of enaction.

• An analysis of 20 existing co-creative AI systems is pre-
sented using the framework.

Background
Co-Creative AI Systems
In co-creative AI systems, humans and AI contribute as
collaborators in the creative process (Davis 2013), distin-
guished from autonomous creative AI systems, which gen-
erate creative products independently, and creativity support
tools that support human creativity (Kantosalo and Takala
2020; Davis et al. 2015). Kantosalo & Takala provide a de-
scriptive definition of human-computer co-creativity in their
Five C framework for co-creation (Kantosalo and Takala
2020):

“The creative human–computer collective consists of
at least one human and one computational collabora-
tor. The collaboration of the collective consists of indi-
vidual and collaborative creative processes and interac-
tions that support them. The collaboration results in
an artefact or a product that represents the contribu-
tions of the collective. These contributions are com-
municated to and shared with a wider community of
peers, audiences, and other social influences. The co-
creative collaboration takes place in a context repre-
senting the environment of the creative act, including
e.g. cultural artefacts and conventions, and more im-
mediate factors such as material affordances and shared
mental resources, such as the creative task.”(Kantosalo
and Takala 2020)

This definition takes into account multiple collaborators
working together on a shared product in a creative process
that is situated in a broader cultural context. The Five C
framework is useful in a distributed cognitive analysis of
co-creation by analyzing the artifacts and social processes
onto which cognition is distributed during the co-creative
process. However, the interaction dynamics of co-creation
(e.g. turn-taking, communication strategies, feedback, coor-
dination, and interaction modes) are absent from the defini-
tion of Kantosalo and Takala (2020) despite being an inte-
gral part of co-creation. In a co-creative system, interaction
between humans and AI makes the creative process complex
and emergent (Rezwana and Maher 2023)) and the creativity
that emerges from the co-creation cannot be credited either
to the human or to the AI alone (Yannakakis, Liapis, and
Alexopoulos 2014). Fantasia et al. propose an embodied
approach to collaboration, considering it as an intrinsic part

of interaction processes, emphasizing the importance of in-
vestigating interaction dynamics, context, environment, and
sense-making to enhance knowledge and understanding of
collaboration. (Fantasia, De Jaegher, and Fasulo 2014).

Co-creative AI has been segmented into alternating co-
creativity (turn-taking on a single task) and task-divided co-
creativity (user and agent work on separate creative tasks)
(Kantosalo and Toivonen 2016). The user and agent can
both take initiatives in a creative process in co-creative AI
(Yannakakis, Liapis, and Alexopoulos 2014).

The role a co-creative AI agent can play has been an-
alyzed. Lubart (2005) proposes four modes a co-creative
agent can take: nanny, pen-pal, coach, and colleague. A
nanny watches over the work to check for mistakes. A
pen-pal facilitates communication between collaborators. A
coach tries to improve the creativity of the user. A colleague
collaborates with the user on a shared product. On the other
hand, Kantosalo et al. describe the roles of co-creative AI
as generator, evaluator and concept definer (Kantosalo and
Toivonen 2016).

Enactivism
Enactivism articulates a cognitive science perspective em-
phasizing that cognition is not a passive process but arises
from active engagement with the environment (Shapiro
and Spaulding 2021; Ward, Silverman, and Villalobos
2017; Gallagher and Bower 2013; Di Paolo, Rohde, and
De Jaegher 2010; De Jaegher and Di Paolo 2007). This
framework counters traditional views that cognition in-
volves internal computations detached from real-world in-
teractions. Instead, enactivism posits that cognitive pro-
cesses emerge from an organism’s sensorimotor activities,
interactions, and broader environmental engagements, em-
phasizing the intertwined nature of perception, action, and
cognition. There are broadly three varieties of enactivism:
autopoietic enactivism, sensorimotor enactivism, and rad-
ical enactivism (Ward, Silverman, and Villalobos 2017;
Gallagher and Bower 2013).

Autopoietic enactivism focuses on the self-organizing na-
ture of living systems. Thompson (Thompson 2010) char-
acterizes autopoietic enactivism as the idea that an organ-
ism’s cognition is fundamentally tied to its ongoing pursuit
of maintaining its own operational identity. This means that
cognitive processes are continuous with the organism’s life
processes – there is no clear demarcation between what is
mental and what is a life-sustaining activity. From this per-
spective, cognition is seen as the organism’s active regula-
tion of its exchanges with the environment, ensuring its con-
tinuity as a viable system.

Sensorimotor enactivism, another strand within the enac-
tive approach, views cognition as arising from an organism’s
embodied action in the world. Accordingly, sensorimotor
enactivism posits that cognitive processes develop through
the organism’s exploration of the environment, leading to
a network of dependencies between sensory inputs, motor
outputs, and the ecological context (Shapiro and Spauld-
ing 2021). This exploration is not random but is structured
by the organism’s sensorimotor contingencies – the rules
that govern the coordination between sensory experiences



and motor actions. This strand of enactivism captures the
essence of “thinking by doing,” where cognition results from
skillful interaction with the world.

Radical enactivism extends the enactive argument further
by rejecting the traditional cognitivist reliance on mental
representations. Ward et al. (2017) describe radical en-
activism as focusing on the dynamic, adaptive patterns of
interaction an organism has with its environment. In this
view, cognition does not require the construction of inter-
nal models of the world; instead, it is directly embodied in
the organism’s actions and interactions. Radical enactivism,
therefore, seeks to explain cognition without invoking inter-
nal mental states, emphasizing the importance of real-world
engagements over internal computations.

Participatory Sense-Making (PSM) is a theoretical ap-
proach developed by Di Paolo and De Jaegher (2007) to pro-
vide a deeper insight into how we understand social cogni-
tion. Within the broader context of enactivism, particularly
autopoietic enactivism, PSM extends the concept of cog-
nition from an individual-centric to a social-centric frame-
work. It underscores the role of interpersonal interactions
in forging shared meanings and collective understandings,
positing that the cognition observed during social engage-
ments emerges through the dynamic interplay of these inter-
actions rather than being a simple aggregation of individual
cognitive processes. While PSM is primarily rooted in the
principles of autopoietic enactivism, it also resonates with
sensorimotor enactivism to some extent, particularly in its
acknowledgment of cognition as an emergent and interac-
tive phenomenon. The approach accentuates that social un-
derstanding is collaboratively constructed, evolving from the
mutual and interconnected activities of individuals actively
engaged in their social worlds.

While enactivism encompasses a broad spectrum of ideas,
PSM specifically hones in on the interactional and so-
cial dimensions of cognition, positioning itself as a valu-
able framework for examining enaction in co-creative sys-
tems. This approach synthesizes elements from both au-
topoietic and sensorimotor enactivism, focusing on dy-
namic social engagements. Within this context, enac-
tivism is founded upon five critical concepts: auton-
omy, sense-making, embodiment, emergence, and experi-
ence (De Jaegher and Di Paolo 2007; Di Paolo, Rohde,
and De Jaegher 2010; Thompson and Stapleton 2009; Ver-
non 2010; Varela, Thompson, and Rosch 2017). Auton-
omy, in the five pillar framework, is defined as the self-
organizing principle that enables an agent to maintain its
identity through interactions with its environment. Sense-
making describes the process by which agents derive mean-
ing and understanding through their engagement with envi-
ronmental stimuli, mediated by sensorimotor feedback. Em-
bodiment emphasizes the role of the physical body in shap-
ing cognitive processes and how cognitive experiences are
inherently grounded in bodily interactions with the world.
Emergence in enactivism pertains to how complex meanings
and cognitive phenomena spontaneously arise from sim-
pler interactive dynamics. Lastly, experience in this context
refers to the cumulative history of an agent’s interactions,
shaping its ongoing responses to its environment and influ-

encing its future interactions.

Enactive Co-Creative AI
The five pillar framework applies the five core concepts
of enaction: autonomy, sense-making, embodiment, emer-
gence, and experience, to analyze and articulate co-creative
AI. Each category offers a conceptual framework with which
to describe co-creative AI. Together, they offer a vision of
what co-creative AI systems can potentially achieve. Using
the five pillars of enaction, a fully enactive co-creative AI
system can be defined as follows:

At least one human and one agent collaborating on a
shared creative product where the autonomy of the user
and agent is maintained and meaning is built through
interaction, coordination, communication, and feed-
back. The agent and user engage in sense-making (reg-
ulating interaction with the environment) and partici-
patory sense-making (regulating a social sense-making
process) to understand each other’s creative intentions
and enact or bring forth meaning in the environment.
Both the user and agent are embodied, with interactions
constrained and afforded by their bodies. The agent en-
gages in improvised interaction to yield emergent inter-
action dynamics. The agent remembers its experience,
storing the interaction history and utilizing that to in-
form the creative trajectory of the interaction.

There are degrees of enaction a system exhibits, from highly
enactive to minimally enactive. Highly enactive systems
would include features from most of the pillars, while mini-
mally enactive systems would have one or a few of the enac-
tive features. In the next sections, each of the enactive pillars
is considered with full, partial, and none classifications for
describing the presence of the feature in co-creative AI sys-
tems.

Autonomy
In the context of co-creative AI, autonomy refers to the abil-
ity of the agent to choose its creative action and determine
when to contribute in a co-creative session. The ability to
make creative choices and decide when to take actions are
the defining characteristics of autonomy in the five pillars
framework.

Fully autonomous Agent takes initiatives to act and
chooses its creative action. Similar to mixed-initiative sys-
tems where both collaborators take turns “constraining, sug-
gesting, producing, evaluating, modifying, or selecting cre-
ative outputs in response to the other, such that creative
agency and initiative cannot be easily ascribed to one side
alone.” (Deterding et al. 2017). An example of this would
be a drawing system that chooses when it wants to contribute
as well as what it wants to contribute.

Semi-autonomous Agent does not take initiatives to act,
but chooses its creative action. For example, the system may
wait for the user to take a turn before taking a turn of its
own. This would be a user-initiated semi-autonomous sys-
tem. Some of the casual creativity literature (Compton and



Mateas 2015) describes systems that would fall into this cat-
egory. The user can define some parameters and seed values
to a system that then generates a creative product based on
that specification.

User directed Agent is directed by the user on what to do.
In this situation, the agency lies with the user. The user’s cre-
ative process drives the interaction, and the system behaves
in well-defined ways. Creativity support tools (Shneiderman
2007) are an example of this type of interaction where the
user directs the system to do.

Embodiment
Embodiment refers to the bodily constraints and affordances
offered by the unique capabilities of the agent’s body and
how the human’s cognition and conceptual structures are in-
herently rooted in the body (Varela, Thompson, and Rosch
2017; Clark 1999). For co-creative AI, this would mean the
an AI agent that has bodily constraints, affordances, and
an embodied presence of a character to visualize the AI
and with which the agent takes actions in the environment
(Guckelsberger et al. 2021). Having an embodied presence
can enhance the user experiences in co-creative systems, by
making the system more relatable and helping to establish
rapport between the user and system (Rezwana, Maher, and
Davis 2021).

Fully embodied Agent has a body and actions constrained
and afforded by that body. For example, in LuminAI (Long
et al. 2017), the AI has a body it uses to dance, and the dance
moves are constrained by the physical characteristics of the
agent’s body.

Partially embodied Agent has a (real/virtual) body, but
actions are not constrained or afforded by the body. This
example would include static icons and avatars representing
the AI agent. The actions the AI takes are not animated by
the agent.

Non-embodied In this scenario, there is no virtual or
physical character representing the AI. The actions the agent
takes are disembodied and just appear in the working cre-
ative space of the system. The Sentient Sketchbook is a
MICI that supports users in generating game level designs.
Similar to other MICIs, the Sentient Sketchbook does not
have a virtual AI character and is therefore, disembodied.

Emergence
Emergent systems arise from the interaction of simpler sys-
tems and processes in a complex interplay. There are two
forms of emergence: strong emergence and weak emer-
gence. Strong emergence occurs when the resulting behav-
ior of the phenomena cannot be deduced from the low level
domains that make up the system (Chalmers 2006). Weak
emergence, on the other hand, produces unexpected behav-
ior, but it can be deduced from the initial conditions and rule-
set of the system (Chalmers 2006). Cellular automata are an
example of weak emergence, where they achieve complex
and unexpected behavior with the interaction of a few sim-
ple rules.

Fully emergent Agent produces contributions that are
strongly emergent, highly variable, spontaneous, and unpre-
dictable and cannot be deduced from low-level features of
the system (Chalmers 2006). Fully emergent systems are
unpredictable, even with knowing how the algorithms of the
system work. ChatGPT is an example of a fully emergent
system as its responses are varied and unpredictable. It will
give a different response to different users given the context
of the conversation. The search space of the ChatGPT model
is large enough to provide varied responses.

Partially emergent Agent produces weakly emergent
contributions that are unexpected, but deductible from the
initial conditions and rule-set of the agent. Here, the co-
creative agent produces contributions that may seem unpre-
dictable without knowledge of how the system works. How-
ever, given the rule-set of the agent, the responses are pre-
dictable. For example, in the Drawing Apprentice (Davis et
al. 2015), the agent transforms user input (e.g. translating,
rotating, scaling) and draws it on the canvas. Knowledge of
this rule-set makes the contributions of the agent more pre-
dictable.

Non-emergent Agent’s interaction is based on scripted
knowledge. The agent does not improvise in this circum-
stance, it recognizes cases that it responds to with associ-
ated knowledge. The results of such algorithms will be more
predictable than partially emergent and fully emergent ap-
proaches.

Sense-Making
Sense-making is the process of exploring the environment
through interaction (De Jaegher and Di Paolo 2007; Thomp-
son and Stapleton 2009). Agents engage in sense-making
both individually with systems in the world, and together, as
social coordination. Social coordination requires feedback
and interaction and can lead to interaction couplings, where
the structure of one turn is related to the structure of another
turn (De Jaegher and Di Paolo 2007).

Full sense-making Agent regulates its interaction with the
environment through coordination and feedback. This type
of agent would be capable of achieving participatory sense-
making or joint sense-making with the user as it would use
feedback to coordinate the interaction. The use of feedback
(e.g. positive/negative feedback) is a basic requirement for
a full sense-making system. This feedback can be bidirec-
tional—either from the user to the agent or vice versa. More
nuanced feedback would enrich the communication channel
and enable greater coordination.

Partial sense-making The AI agent orients itself to the
user’s input, but there is no communication channel for feed-
back and coordination. This type of agent would engage
in more reactive sense-making where the agent is reacting
to what is happening in the environment (Deshpande et al.
2023).

Non sense-making Agent does not regulate actions based
on coordination and feedback from the partner. This would



Table 1: Enactive coding scheme for co-creative systems.
Full (code = 3) Partial (code = 2) None (code = 1)

Autonomy Agent can take initiative to act
and choose their creative ac-
tion.

Agent does not take initiative
to act, but chooses its own cre-
ative action.

Agent is directed by the user
what to do.

Sense-Making Agent coordinates interaction
with feedback. Agent achieves
PSM.

Agent responds to its environ-
ment to achieve reactive sense-
making.

Agent utilizes no feedback and
engages in individual sense-
making.

Embodiment Agent has a (real/virtual) body
with actions constrained and
afforded by that body.

Agent has a (real/virtual) body
(including static icons), but ac-
tions are not constrained or af-
forded by the body.

Agent has no body or represen-
tation of a body.

Emergence Agent produces strongly emer-
gent contributions that are
highly variable, spontaneous,
and unpredictable that cannot
be deduced from low-level fea-
tures of the system.

Agent produces weakly emer-
gent contributions that are un-
expected, but deductible from
the initial conditions and rule-
set of the agent.

Agent uses scripted interac-
tions and predefined actions to
interact.

Experience Agent learns from interaction
history and guides the tra-
jectory of co-creative experi-
ences.

Agent learns from experience
to inform creative decision
making.

Agent does not use any inter-
action history to inform its cre-
ative decision making.

equate to a system trying to follow a script in the inter-
action. One difficulty of using a script-based approach in
improvisational contexts is the uncertainty, ambiguity, and
flexibility of responses that can occur. The script may not
be adequate to account for all the different variations a co-
creative experience could take. In this type of system, mean-
ing would not emerge through interaction, but rather could
be pre-programmed in a large knowledge base.

Experience
The experience category represents the interaction history
(and its use in decision making) between the cognitive agent
and the environment, including other agents within that en-
vironment (Vernon 2010). In human interaction, the inter-
action history informs the trajectory of the interaction and
serves as the groundwork upon which further interactions
are based (De Jaegher and Di Paolo 2007). Co-creative sys-
tems can record the interaction history, analyze it, model it
in some manner, and utilize it to inform creative interactions
in the moment.

Fully experiential Agent learns from all aspects of previ-
ous interactions and applies that knowledge in the moment
to inform its creative decision making. A fully experiential
agent could learn from its experiences to inform its interac-
tions in the moment. This type of agent would recognize
the trajectory or arc of the creative experience and interact
according to this trajectory.

Partially experiential Agent retains some knowledge
from previous experience and applies that knowledge in the
moment to inform creative decision making. In this sce-
nario, the agent retains a subset of experiential data and
stores it to serve as knowledge for the future. However, the

agent is not aware of the creative trajectory or arc of the cre-
ative experience.

Non-experiential Agent does not use any interaction his-
tory knowledge to inform its creative decision making. This
type of co-creative agent would rely on the interaction dy-
namics in the moment to inform its creative decisions. The
agent would not record actions or use them to determine fu-
ture actions. The system could respond to the last action
alone.

Enactive Co-Creative AI Analysis
Convenience sampling was used to select systems from the
literature seeded by systems the authors were familiar with.
To perform the analysis, 3 researchers (the authors) indepen-
dently coded the 20 co-creative systems based on the sys-
tems’ descriptions in their respective publications, then con-
vened with a fourth researcher to discuss discrepancies us-
ing the consensus assessment technique (CAT) (Hennessey,
Amabile, and Mueller 1999). The coding rubric was an-
alyzed to see where discrepancies were occurring and up-
dated, and the systems were re-coded. Then, disagreements
were discussed and updated to reflect the group consensus.

Highly Enactive Systems
Systems are considered highly enactive if their total score,
calculated as the sum of the scores across all five pillars, is
at least 12 out of a maximum possible score of 15. Highly
enactive systems are either semi-autonomous or fully au-
tonomous. They feature full sense-making processes with
feedback and coordination in the moment. These systems
have full or partial AI embodiment that is used during the
co-creation. The actions that these AI agents perform are
typically fully emergent, and they cannot be reduced to the



Table 2: Analysis of 20 co-creative systems. Dark blue = Fully present = 3; Blue = Partially present = 2; Light blue = Not
present = 1.

Co-Creative System Autonomy Sense-
Making

Embodiment Emergence Experience #

Shimon (Hoffman and
Weinberg 2010)

14

Github Copilot (Github
2024)

12

Google Gemini (Reid et
al. 2024)

12

Cobbie (Lin et al. 2020) 12
ChatGPT (Achiam et al.
2023)

12

Drawing Apprentice
(Davis et al. 2015)

11

LuminAI (Long et al.
2017)

11

Creative PenPal
(Rezwana, Maher, and
Davis 2021)

11

Story Drawer (Zhang et
al. 2021)

11

CreativeConnect (Choi et
al. 2023)

10

Reframer (Lawton et al.
2023)

9

Drawcto (Deshpande and
Magerko 2021)

9

DuetDraw (Oh et al.
2018)

9

Stable Diffusion (Podell et
al. 2023)

8

Creative Sketching Part-
ner (Karimi et al. 2020)

8

CharacterChat (Schmitt
and Buschek 2021)

7

ALYSIA (Cheatley et al.
2020)

7

Poetry Machine (Kantos-
alo and Riihiaho 2019)

7

Stable Walks (Rost and
Andreasson 2023)

7

FashionQ (Jeon et al.
2021)

7

Average Code 1.75 2.35 1.65 2.4 1.55
Code Count 35 47 33 48 31

initial conditions and rule-set of the agent. Highly enactive
agents include the experience of the interaction as a part of
their knowledge set, adding a layer of context to their con-
tributions.

Our analysis identifies Shimon, Google Gemini, Chat-
GPT, Github Copilot, and Cobbie, as highly enactive sys-
tems within the dataset. All these generative AI systems are
semi-autonomous, with the exception of Shimon, which is
fully autonomous and can define its own creative objectives.

All these AI systems can coordinate their interaction with
feedback, such as Shimon using embodied gestures as visual
cues to communicate turn-taking and musical beats. Among
these systems, only Shimon has a physical body, while oth-
ers use icons for minimal virtual representation of the AI.
All of these systems generate emergent contributions, such
as ChatGPT produces highly emergent and variable contri-
butions when using it as a creative storyteller. These systems
keep interaction histories that shape creative decision mak-



ing.

Moderately Enactive Systems

Moderately enactive systems, with a total score ranging
from 11 to 9, typically exhibit semi-autonomous character-
istics. They feature a mix of full sense-making (with feed-
back, coordination, and participatory sense-making) and
partial sense-making processes, where the system reacts and
adapts to the user’s contribution. AI embodiment in mod-
erately enactive systems ranges from fully embodied to no
embodiment. The contributions of moderately enactive co-
creative agents are a mix of strong emergence and weak
emergence. Moderately enactive systems are typically par-
tially experiential or non-experiential.

Within our dataset, we found 8 co-creative systems as
moderately enactive. Most of these systems, such as Cobbie,
are semi-autonomous, which can not take initiative but can
define its creative objective. These systems have either full
or partial sensemaking; for instance, Drawing Apprentice
can coordinate contributions based on feedback, whereas
LuminAI only reacts and adapts to user input. We see a lot of
variability in terms of AI embodiment, with Cobbie boast-
ing a physical body, Drawing Apprentice having a virtual
one, and ALYSIA lacking embodiment. We see both strong
emergence, like Reframer generating highly emergent draw-
ings, and weak emergence, like Creative Penpal generating
somewhat emergent inspirational sketches depending on the
visual and structural similarity of users’ contributions. Lu-
minAI learns from user contribution without guiding the cre-
ative trajectory while ALYSIA does not learn from previous
interactions.

Minimally Enactive Systems

Systems that have a total score below 9 reclassified as mini-
mally enactive systems. Minimally enactive systems are typ-
ically either semi-autonomous or user-directed. They fea-
ture partial sense-making processes, where the system is re-
acting to the user’s contribution but does not explicitly use
feedback to coordinate its interaction. Minimally enactive
systems typically do not use AI embodiment. The contribu-
tions of minimally enactive systems typically feature weak
emergence, where they are unpredictable without knowl-
edge of how the system works. Minimally enactive systems
have a mix of non-experience and partial experience-based
algorithms.

In our dataset, we identified 7 minimally enactive sys-
tems. For instance, Drawcto exhibits partial autonomy by
defining creative objectives but lacks initiative, while sys-
tems like Stable Diffusion are entirely user-directed. Many
of these systems, such as Creative Sketching Partner, em-
ploy partial sense-making by reacting and adapting to user
input and do not use AI embodiment. Contributions from
systems like DuetDraw exhibit some level of emergence, al-
though they remain deducible by initial conditions and rules.
Notably, systems like Poetry Machine do not learn from user
interactions.

Discussion
Enaction offers a theoretical framework relevant for co-
creative AI. Enaction describes cognition as a sense-making
process of interacting with the environment to maintain au-
tonomy. “Meaning” is an emergent property of that interac-
tion, and it is dynamic and improvisational. The five pillars
of enactive cognition provide a way to systematically dis-
sect co-creative AI systems to analyze and compare their in-
teraction and cognition. Each pillar provides a lens through
which to view co-creative AI. When viewed in tandem, it is
possible to envision a new type of enactive co-creative agent
that has full autonomy, sense-making, embodiment, emer-
gence, and experience.

Our analysis revealed that Shimon was a prime example
of an enactive system with its autonomous improvisation
and internally generated goals. Shimon also has a sense-
making process of coordinating musical interaction with the
user through head bob and gaze. The agent is fully embod-
ied in a robot with a perceptual process rooted in that body.
The system could become more enactive if it remembered
previous parts of the musical interaction and incorporated
them into the current context.

The analysis demonstrates that many of the co-creative
systems are user-directed (7 systems), without any form of
autonomy. This shows that the co-creative systems surveyed
largely do not take the initiative in a creative process and
contribute the content the user determines. Many of the co-
creative systems analyzed were also disembodied (8/15 sys-
tems). They had no virtual character or presence in the inter-
face other than their creative output. Additionally, animating
the co-creative agent’s response, such as done in ChatGPT
and Gemini, can improve the interaction design and make
the system more engaging.

From the enactive analysis, the average rating for experi-
ence is the lowest at 1.55. This demonstrates a significant
opportunity for co-creative AI research to investigate sys-
tems that utilize their experience to inform their creative de-
cision making. The average rating for autonomy and embod-
iment are similarly low at 1.75 and 1.65, respectively, which
demonstrates the majority of the AI systems surveyed have
limited embodied presence and are semi-autonomous or user
directed. Sense-making and emergence were higher at 2.35
and 2.4, respectively. The generative AI systems surveyed
generally have emergent properties, especially LLMs.

The sense-making category has all systems at least at par-
tial sense-making except for one (Stable Walks), meaning
they are analyzing the user’s input and making sense of it in
some way so as to act upon it. The emergence category is
all partially emergent. All of the systems are demonstrating
some unpredictability, with some of them achieving a coded
value of 3, indicating that the user could not deduce the con-
tribution based on the initial rule set of the agent.

Enactive Design Recommendations
The five pillar framework was synthesized with findings
from the enactive co-creative AI analysis to yield a set of
design recommendations. These recommendations empha-
size how to include enactive features in a co-creative system.



Practitioners can choose to apply all or some of the princi-
ples to their work in co-creative AI depending on the context
of the application and use case.

Autonomy Based on the purpose of the co-creative AI,
autonomy could be included to make the co-creation more
spontaneous. Long et al. suggest that AI agents should
have creative autonomy (Long, Jacob, and Magerko 2019)
and found that the level of AI autonomy that is appropri-
ate is heavily dependent on context. They suggest design-
ing the AI so that the degree of creative autonomy can
be modulated according to the context of the co-creation.
However, control between the AI and the humans should
be considered when deciding on the degree of autonomy
of a co-creative AI. Existing literature shows that human
collaborators tend to want more control over the behav-
ior and actions of co-creative AI (Rubidge 2002; Davis et
al. 2016a). Research shows that users want to lead in
co-creation while AI follows their lead (Oh et al. 2018;
Winston and Magerko 2017). Future research is necessary
to understand the balance between AI autonomy and control
between humans and AI.

Sense-making Include explicit feedback mechanisms to
help the co-creative system coordinate its interactions with
the user. Several systems used binary voting mechanisms
(e.g. Gemini, Drawing Apprentice, Cobbie, Creative Pen-
Pal) to inform the system whether the user liked its contri-
bution. Shimon uses embodied feedback mechanisms, such
as bobbing its head to the rhythm and directing its gaze at the
person who is supposed to play next. The feedback mech-
anism could be more fine-grained than binary, such as in-
forming the system what it was about the contribution they
did not like (e.g. content, location, timing). Other types of
communication could be present as well, such as both the
user and system explaining their actions, providing instruc-
tions, and ideating content. This human-to-AI and AI-to-
human communication (Rezwana and Maher 2023) relates
to the recent push for explainable computational creativity
(Llano et al. 2022).

Embodiment The creation of a virtual or physical charac-
ter that embodies the AI and animates its actions may help
the user relate to the agent and improve the perception of
the AI system. Several co-creative AI systems had an AI
virtual character, and some of these systems animated the
actions of the system. This type of embodied creativity is
more engaging in the interaction than static creative contri-
butions that just appear. For example, ChatGPT has a black
circle that animates the text it is typing as it types it, whereas
Google’s Gemini animates the response line by line, mak-
ing it less embodied. Shimon and Cobbie have robot bodies
within which their perception is rooted, making them fully
embodied agents. The inclusion of a virtual/physical char-
acter or avatar improves the presence of the agent as a col-
laborative partner (Rezwana, Maher, and Davis 2021), im-
proves user trust in the agent (Rezwana, Maher, and Davis
2021), and improves user confidence of an agent performing
a task (Kim et al. 2018a). The literature asserts that embod-
ied communication aids synchronization and coordination

in improvisational human-computer co-creativity (Hoffman
and Weinberg 2011). Users’ confidence in an AI agent’s
ability to perform tasks is improved when imbuing the agent
with embodiment compared to the agent solely depending
on conversation (Kim et al. 2018b).

Emergence Consider the size of the co-creative agent’s
search space and the complexity of the rules governing
its behavior. More emergent systems like ChatGPT and
Google’s Gemini are difficult to predict and cannot be re-
duced down to a rule set. More emergent systems may be
able to sustain the user’s creative engagement for longer pe-
riods due to the unpredictability and spontaneity of the sys-
tem.

Experience Record and utilize the interaction history of
the co-creative session to inform the agent’s creative deci-
sion making. The interaction history can provide context
and inform the trajectory of the interaction. Including inter-
action history as part of the design of a co-creative agent can
make it more contextually aware and engaging. Several of
the LLM dialog systems include interaction history, making
them fully experiential. Other co-creative systems record
the user’s actions and feedback and utilize them in creative
decision making (e.g. Drawing Apprentice, Cobbie, Cre-
ative PenPal). Consider adding a Creative Trajectory Moni-
tor (Davis et al. 2014) to the co-creative system that models
user interaction dynamics and feedback to determine how to
respond in the moment.

Conclusions
This paper presented the five pillars of enaction as a potential
theoretical framework for co-creative AI, which can be used
in the design, articulation, and evaluation of co-creative AI
systems. Enaction was described as a cognitive theory that
emphasizes the role that interaction and coordination play
in perception and meaning formation. The core pillars of
enaction were described and applied to the context of co-
creative AI by segmenting the categories into fully present,
partially present, and not present in a co-creative system. 20
co-creative systems were analyzed using this enactive classi-
fication framework. Several highly enactive systems feature
feedback (e.g. binary voting) to enhance the communica-
tion channel between the user and agent. All the systems
were at least partially emergent, signifying they were not
scripted interactions. Several of the systems using LLMs
received a rating of fully emergent due to the size of the
agent’s search space and unpredictability of its responses.
The robotic marimba player Shimon was found to be the
most enactive of the systems reviewed given its full embod-
iment and autonomous nature.
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