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Abstract

The field of computational creativity (CC) stands to
benefit significantly from the establishment of a bench-
mark test to validate and compare CC systems. While
previous efforts have identified criteria necessary for
creating such a benchmark, we identify a crucial miss-
ing element: the ability to overcome bias. In human
tests of creativity, a key focus lies in determining an in-
dividual’s capacity to surmount cognitive biases. Sim-
ilarly, we argue that CC systems must overcome algo-
rithmic biases. To address this, we introduce defini-
tions of bias and overcoming bias within CC systems,
leveraging Wiggins’ creative systems framework. Con-
sequently, this raises questions about transformational
creativity and how it is to be characterized.

It took me four years to paint like Raphael, but a
lifetime to paint like a child. – Pablo Picasso

Introduction
The computational creativity (CC) community needs
a creativity benchmark test to gauge the efficacy and
advancement of CC systems. While there might be
reservations about state-of-the-art chasing (Jordanous
2022) in the CC field, it is evident that benchmark-
ing has driven progress in various realms of artificial
intelligence (AI) research, exemplified by benchmarks
such as Imagenet for computer vision and Atari for rein-
forcement learning (RL). Providing clear objectives has
proven beneficial for many fields. However, the design
of a benchmark test for CC presents unique challenges.

Evaluating CC systems is difficult both because the
domains of interest are so varied and disparate, making
the discovery of a unified evaluation approach difficult
and because evaluating outcomes in said domains is of-
ten subjective, leading to disagreement on whether one
system is “more creative” than another. Moreover, em-
ploying human evaluators for such assessments can be
costly and time-consuming. Despite these challenges,
we are optimistic regarding the feasibility of establish-
ing a computational benchmark for evaluating creative
systems.

Recent research provides compelling arguments re-
garding a potential methodology and criteria that might
be useful in developing a benchmark test. Particularly

noteworthy is the idea that testing within a creative do-
main with objective rules and evaluation metrics, as in
the case of creative word games (Spendlove and Ventura
2022), significantly ameliorates the hurdle of subjectiv-
ity. Additionally, (Spendlove and Brown 2023) argues
for certain criteria necessary for a task that requires
creativity, one of which is the presence of a large mean-
ingful state space that cannot be brute-force searched.
While we agree with this sentiment, we believe that
even toy problems with small state spaces can offer a
valid mechanism for testing creativity under the right
circumstances. Therefore, we propose a more general
criterion as a hallmark of creativity, that of overcom-
ing bias, which might also be referred to as “thinking
outside the box”.

A bias is a(n) (un)conscious decision that is “in-
formed, either correctly or incorrectly, by some a priori
belief or understanding we already possess” (Loughran
2022). Biases may be beneficial or detrimental, both
providing heuristics for rapid decision-making and ob-
fuscating the otherwise obvious.

It is commonly accepted that when a human over-
comes a cognitive bias to reach a solution that diverges
from their predispositions, they are engaging in a cre-
ative process, and notably, numerous assessments of hu-
man creativity center on discerning just such a capacity
to overcome bias. We therefore advocate for the inclu-
sion of this criterion in the evaluation of CC systems,
asserting that for CC systems to engage in the creative
process they too must overcome their (algorithmic) bi-
ases: The ability to overcome bias is fundamental to the
(computational) creative process.

Subsequent sections will explain the rationale behind
this claim; explore the effects of this perspective in the
context of P- and H-creativity (Boden 1991); and ex-
tend the notion of overcoming bias to computational
systems, utilizing Wiggins’ creative systems framework
(CSF) (Wiggins 2006).

Overcoming Bias
There is a difference between the ability to create an
artefact that is deemed creative by society and the abil-
ity to engage in the creative process, and this distinction
will be explored later when the role of bias on P- and



H-creativity is discussed. Our central thesis contends
that the creative process involves overcoming bias. We
support our claim by dissecting human tests of creativ-
ity, each of which tests the subject’s ability to escape
cognitive biases, whether implicitly or explicitly. Fur-
thermore, we categorize tests of creativity in a way that
underscores bias as a foundational element.

Human Tests of Creativity

There are many tests for human creativity: Duncker’s
Candle Problem (Duncker 1974), Guilford’s Alterna-
tive Uses Task (Guilford 1967), Remote Associates Test
(RAT) (Mednick 1962), Divergent Association Task
(DAT) (Olson et al. 2021), etc. Usually, these tests
are categorized as either convergent or divergent. A
convergent task will usually require someone to think
about a problem with a single solution, while a diver-
gent task allows for multiple solutions. RAT and the
Candle problem are examples of convergent tasks with
a single solution; the Alternative Uses Task and DAT
are divergent tasks, allowing the subject to come up
with many solutions to a problem. All of these tests
challenge an individual’s ability to escape from a bias:

1. Candle Problem: The task involves providing a
subject with a matchbook, a box of tacks, and a can-
dle, with the objective being to attach the candle to
a wall and light it without getting wax on the floor.
The solution to this test is to use the box that holds
tacks as a basin to hold the candle and collect the
wax. The main focus of the candle problem is func-
tional fixedness: the unlikeliness of the subject to
use an object other than for its intended purpose.
The box with tacks presents itself as a box meant
for holding tacks and not for holding a candle and
so a subject rarely uses the box for the test. Later
experiments show that you can discourage functional
fixedness based on how you present the information.
For example, (Frank and Ramscar 2003) underlines
the words “matchbook”, “tacks”, “candle” and “box”
which doubled the number of subjects that solved the
candle problem.

2. Alternative Uses Task: This task evaluates a sub-
ject’s ability to name alternative uses of common ob-
jects, such as a brick, by using metrics such as the
number of proposed uses and the uniqueness of each
suggestion. Similar to the Candle Problem, the Al-
ternative Uses Task highlights the challenge of over-
coming functional fixedness biases by prompting par-
ticipants to envision novel applications for familiar
objects.

3. Remote Associates Task: A subject is provided
a list of three remotely associated words and tasked
with identifying a fourth word that links all three,
e.g. fish, mine, rush → gold. Usually, the words
are associated in different contexts: some might be
parts of a compound word, others synonyms, and still
others semantically similar. The biases in these ex-
periments are examples of semantic and associative

priming. The term “remote” underscores the depar-
ture from common word associations and therefore
common human biases such as commonly associated
words, e.g. dog, cat, horse → animal.

4. Divergent Association Task: DAT can be seen
as a divergent counterpart to RAT; the subject must
name n words that are as far from each other se-
mantically as possible. This task challenges individ-
uals to overcome biases inherent in word association,
where the tendency to conceive of semantically simi-
lar words often inhibits one’s ability to find semanti-
cally dissimilar words.

Creativity Versus Proficiency

Creativity tests are not proficiency tests. If a subject is
tasked with solving a creative test like the candle prob-
lem but is provided the solution beforehand, they may
“pass” the test by simply recalling the solution. Tests
such as history or doctoral examinations often include
memorization of factual information as a measure of
success in the test. However, proficiency in reproduc-
ing a memorized solution does not equate to success in
a creative test.

What if the test precludes memorized solutions?
Consider an algebra problem like nx − y = 0 with a
varying n and y so that memorized solutions are im-
practical. In such cases, proficiency is demonstrated
through the application of memorized procedural steps.
However, the ability to utilize a memorized procedure
to solve a problem also does not signify passing a cre-
ative test.

The distinguishing factor between tests of creativity
and tests of proficiency lies in the extent to which bias
must be overcome. In instances where the answer or
procedure is memorized, subjects do not confront bias.
However, introducing bias that the subject must over-
come makes the test a measure of creativity. Moreover,
it stands to reason that the more difficulty the subject
may have in overcoming that bias, the better the test
for measuring creativity.

Contrasting Creative Artefact
Generation and Creative Process

Under the premise that the creative process requires
the ability to escape bias, one may be perceived as
creative from a societal standpoint without being per-
ceived as creative from a personal one. Any creative
society (artists, dancers, mathematicians, etc.) may be
viewed as a confluence of biases that results in a distinc-
tive (amalgamated) bias. Consequently, an individual
may be deemed creative when their work lies beyond the
boundaries of the group’s collective bias. This does not
necessarily imply that the individual has engaged in the
creative process; rather, it reflects that their output di-
verges from the collective bias. Even in instances where
the group analyzes the individual’s creative process, the
uniqueness perceived by the group is predicated upon
the individual’s departure from the collective bias.



8809 = 6 8603 = 4

7856 = 3 9762 = 2

4646 = 4 3315 = 0

1234 = 1 6666 = ?

Figure 1: What is the solution to this problem?

For example, when given the problem shown in
Figure 1, a mathematician’s inclination is to view it
through a numerical lens—due to their developed math-
ematical bias, they completely overlook the perspec-
tive that numbers can be perceived as shapes. Here,
the solution is to sum the number of holes on the left
side of the equation, i.e. {8} has 2 holes, {0, 4, 6, 9}
have 1 hole, and {1, 2, 3, 5, 7} have 0 holes, so 6666 has
1 + 1 + 1 + 1 = 4 holes. If you ask a kindergartener to
solve this problem, they are much more likely than the
mathematician to see the pattern, because they have
different biases than mathematicians. If, in a hypothet-
ical scenario, a roomful of mathematicians witnesses a
child successfully solving the problem, they may regard
the child as creative. However, if subsequent children
also independently solve the problem, the perception of
the initial child’s creativity may be reconsidered.

In Surely You’re Joking, Mr. Feynman (1985) Feyn-
man reflects on how others perceived him as a math-
ematical genius because he could solve problems that
they couldn’t. Feynman had a different perspective. He
attributed his problem-solving not to any innate supe-
riority, but rather to his diverse set of problem-solving
techniques not commonly found among his peers. When
others’ conventional methods failed to solve the prob-
lem, Feynman was able to solve them with his uncon-
ventional methods that appeared brilliant in compari-
son. It is worth noting that this perspective does not di-
minish Feynman’s exceptional abilities but rather sheds
light on how he believed his unique problem-solving
toolkit contributed to his reputation.

The book Rookie Smarts (Wiseman 2015) under-
scores the advantages rookies have within their work-
place, over industry veterans, because they aren’t
shackled by preconceived notions of “how things are
supposed to be done”.

These examples emphasize the notion that an indi-
vidual’s being deemed creative from a group’s perspec-
tive does not necessarily signify that the individual has
in fact undertaken a creative process. However, the
value of such artefacts created without active engage-
ment in the creative process should not be diminished,
as they can serve to challenge biases and foster creativ-
ity within the group.

The Time-Traveling Artist Let us consider a hy-
pothetical scenario in which an artist memorizes and
replicates renowned works of art. Afterward, the artist

makes trips back in time to a period just before each
great work of art was created by the original artist to
present his own plagiarized work. In such a situation,
society would characterize the artist as creative. How-
ever, given the context, the artist should not, in fact, be
labeled creative but rather a plagiarist (Ventura 2016).
While society may afford them the title of a creative
artist, their endeavors do not authentically embody the
creative process, again reemphasizing the point that so-
ciety’s evaluation of creativity does not imply that the
product so judged was a result of engagement in the
creative process.

Computational Creativity

Given the dichotomous possibilities of being judged cre-
ative while engaging in a creative process and while not
engaging in a creative process, evaluation of CC systems
may be effected within either paradigm. CC systems do
not have to engage in a creative process to be useful or
to output creative artefacts. However, if the aim is for
a CC system to engage in the creative process, either to
better understand the process itself or because it may
enhance the creativity of its artefacts, then the system
must overcome its algorithmic biases. The next section
constructs a mathematical framework for characteriz-
ing bias in the context of computational creativity and
for analyzing the ability of a CC system to overcome
bias.

Mathematical Framework
Creative System Framework We will describe the
CSF using Ritchie’s simplified notation (Ritchie 2012),
although we will make slight notational changes. As
with Ritchie’s notation, tuples(X ) denotes the set of fi-
nite tuples of set X and elements() is a function that
reverts a tuple into a set. The CSF is built upon the
universe of concepts U , which contains the set of all
possible (in)complete concepts, e.g. c ∈ U , includ-
ing the empty concept ⊤. Three main functions are
used to interact with P ⊆ U , namely the value function
V : P → [0, 1], acceptability function N : P → [0, 1],
and exploration function Q : tuples(P) → tuples(P).1
The output of V determines how valued a concept is,
and the output of N determines level-of-membership
for a concept in the domain measured by N (e.g. clas-
sic rock, music, movies, mathematics, etc.). The search
function Q is responsible for finding new concepts given
some inspiring sequence I of concepts.
An exploratory system can be described as a 4-tuple

(P, V,N,Q), and its search over time can be described
as a dynamical system:

It+1 = Q(It)

1In Ritchie’s notation Q is technically a mapping to map-
pings, i.e. Q : [0, 1]P × [0, 1]P → (tuples(P) → tuples(P)),
where [0, 1]X denotes the set of all possible mappings of X
to a real number between 0 and 1 inclusive, and notationally
is represented as Q(V,N)(I), but we elect to use a simpler
notation and assume V and N are “baked into” Q.



where I0 is an initial inspiring sequence of concepts,
which might be empty or contain only the empty con-
cept ⊤. Another function used to understand ex-
ploratory systems is the reachability function:

ρ(Q, h, I0) =

h⋃
t=0

elements(It)

which returns all reachable concepts for a given search
strategy Q, time horizon h, and initial inspiring se-
quence I0.
If P ′ ⊂ U is a set containing (V,N,Q) triplets then

a system (P ′, V ′, N ′, Q′), where V ′, N ′, and Q′ oper-
ate on P ′, is called a transformational system. We will
make use of Wiggins’ assumption that all value func-
tions V in P ′ are static. We will continue to use ′ to
differentiate between exploratory systems (P, V,N,Q)
and transformational systems (P ′, V ′, N ′, Q′).
The search dynamics of a transformational system

are usually described in the same way as an exploratory
system’s search dynamics; however, implicitly a trans-
formational system could run and analyze the search
performed by exploratory systems to determine their
level of promise. Since it is generally uncomputable to
determine how a program will function without run-
ning it, transformational search will likely involve run-
ning exploratory systems. We will make this capability
explicit by defining the search dynamics of a transfor-
mational system as:

I ′t+1, Īt = Q′(I ′t, I0:t) (1)

V,Nt+1, Qt+1 = σ(I ′t+1) (2)

It+1 = Qt+1(Īt) (3)

where I0 and I ′0 are initial inspiring sequences and I ′0
must include at least the empty concept ⊤.
At a high level, the dynamics involve a search step

from the transformational system (step 1), the selec-
tion of an exploratory system with the select function
σ : tuples(U) → U (step 2), and performing a search
step from the selected exploratory system (step 3).

Note the change in the domain and range of Q′ (when
compared with Q). The domain has been expanded
to incorporate not only its own inspiring sequence I ′t
but also the sequence of all previous inspiring sequences
given to past exploratory systems, I0:t = (I0, I1, . . . , It).
This domain change is also propagated to both V ′ and
N ′, and I0:t serves as feedback from the exploratory
systems to the transformational system, allowing the
transformational system to make changing evaluations
about exploratory systems as more information is re-
ceived by running them. This feedback loop between
the transformational and exploratory systems is key for
understanding bias and the overcoming of bias for CC
systems.

The range of Q′ has also been modified (compared
with Q) to include Īt, a filtered version of the ex-
ploratory system’s inspiring sequence that will be given

to the (selected) exploratory system. There are mul-
tiple ways Q′ can filter It, but we consider only two:
stateless:

Īt =

{
I0 if (V,Nt, Qt) ̸= (V,Nt+1, Qt+1)

It otherwise

and stateful:

Īt =

{⊕t
k=0 Ik if (V,Nt, Qt) ̸= (V,Nt+1, Qt+1)

It otherwise

where ⊕ is concatenation.
Another notable change (from the original dynam-

ics) is the select function σ, which selects a single ex-
ploratory system2 to run at timestep t+1. Here, we as-
sume that σ retrieves the first element from a sequence
and assume that all Q′ are well-formed in the sense that
they put the exploratory system intended for selection
at the beginning of their updated inspiring sequence
I ′t+1. The selected exploratory system can be an incom-
plete exploratory system or even the empty concept ⊤;
we interpret all such systems’ search functions as the
identity function, i.e. Q(It) = It. To include the pos-
sibility that σ may function differently than described
here, the definition of a transformational system is a
5-tuple (P ′, V ′, N ′, Q′, σ) that includes σ.

Bias Let Vα(P) = {c ∈ P | V (c) > α} be the set of
all concepts with a value greater than threshold α. If
ρ(Q, h, I0) ∩ Vα(P) = ∅ then the system is described
as being uninspired (Wiggins 2006). Wiggins provides
different classifications of uninspiration, but here we fo-
cus specifically on generative uninspiration, where the
system can’t find highly-valued concepts due to some
limitation of its search capability—an issue that can
only be resolved by updating Q and/or N .3 We will
refer to such a system as uninspired, but may also say
that Q is an uninspired algorithm or search strategy. If
ρ(Q, h, I0)∩Vα(P) ̸= ∅ then we characterize the system
as inspired and may say that Q is an inspired algorithm
or search strategy. It should be noted that characteriz-
ing a search algorithm Q as (un)inspired is dependent
on h, I0 and Vα(P); for example, an exploratory system
that is uninspired with respect to Vα(P) given h and I0
may become inspired with respect to Vα(P) given more
time or different initial conditions.

2While a transformational system can run Q′ multiple
times before running a new Q, run Q multiple times before
running Q′, or run multiple Q in parallel, we lose no gen-
erality describing transformational systems with our search
dynamics. Running Q′ multiple times before running Q is
accomplished by having σ select ⊤, whose search operates as
the identity function, allowing Q′ to search for new Q with-
out adding any additional concepts. Running Q multiple
times before running Q′ is accomplished by Q′ not updating
I ′t and σ continually selecting Qt+1 = Qt. Running multiple
Q in parallel can always be described by a single search in
the same way that any multi-tape Turing machine can be
reduced to a single-tape Turing machine (Sipser 2013).

3Recall that V and N are “baked into” in Q, so N influ-
ences Q’s search.



Given the definitions of inspired and uninspired algo-
rithms, we can define what it means for a system to be
biased and to overcome bias. Let

v′u,t = max
(V,N,Q)k∈I′

t
∧Q uninspired

{V ′((V,N,Q)k, I0:t−1)}

be the value of the V ′-maximized uninspired ex-
ploratory system at time t (or zero if there are no unin-
spired exploratory systems). And similarly let

v′i,t = max
(V,N,Q)k∈I′

t
∧Q inspired

{V ′((V,N,Q)k, I0:t−1)}

be the value of the V ′-maximized inspired exploratory
system at time t (or zero if there are no inspired ex-
ploratory systems). A system overcomes β-bias over h
timesteps if ∃t0, t where 0 < t0 < t ≤ h and the follow-
ing conditions hold:

Condition 1: v′u,t0 − v′i,t0 > β

Condition 2: v′i,t − v′u,t > β

Condition 3: elements(It) ∩ Vα(P) ̸= ∅
Condition 1 means that initially the best uninspired
strategy is valued significantly more than any inspired
one. Condition 2 means that eventually the situation
is reversed and the best inspired strategy is valued sig-
nificantly more than any uninspired one. Finally, Con-
dition 3 states that at timestep t (the same as Con-
dition 2), an inspired Qt was selected, and it found a
highly valued concept. A transformational system
is biased when the first condition is true. A transfor-
mational system has overcome bias when all three
conditions are true, i.e. the system is biased (Condition
1) and it overcomes bias (Conditions 2 and 3).4

The threshold β is included in Condition 1 for two
reasons: the system may require a burn-in period—
a length of time during which Q′ can search for ex-
ploratory systems and establish its “beliefs” about the
exploratory systems; the system may initially arbitrar-
ily select uninspired search strategies or may do so pur-
posefully to gain useful feedback. Only once the system
is confident that an uninspired strategy is better than
any inspired strategy, by a margin of β, is the system
considered biased.

The threshold β is included in Condition 2 in or-
der to disqualify situations in which the system “gets
lucky” by stumbling on an inspired strategy that yields
a high-value concept without being confident that that
strategy is more valuable than the original uninspired
one—overcoming bias should include both discovering
new useful approaches and abandoning old ones that do

4Because the definition of overcoming bias involves h, it
is necessary for the transformational functions Q′ and V ′

(and possibly N ′) to have access to h in order to provide
timely search and evaluation. For the sake of parsimony,
we will assume that h is baked into the transformational
functions.

not work. Finally, as conclusive proof that the trans-
formational system has, in fact, overcome bias, it must
discover a highly-valued concept (Condition 3).

Determining if a system has overcome bias only
makes sense if the system is rational, since a system
can purposefully choose poor search strategies to which
it arbitrarily assigns high values initially before later
lowering the value and choosing a known search strat-
egy that finds high-valued concepts. Finding a formal
definition for rationality is left to future work, and we
will only informally define a rational system as one that
makes decisions to maximize V . Therefore, a system
that purposefully chooses poor search strategies would
be considered irrational.

Feedback The definition of overcoming bias implies
that if β ≥ 0.5 then V ′ must utilize the feedback
I0:t in order for the system to overcome bias, i.e. if
∀i, j V ′((V,N,Q), I0:i) = V ′((V,N,Q), I0:j) then Con-
ditions 1 and 2 will never hold.5 Furthermore, if Q′ is
trying to optimize V ′ then, at least indirectly, it must
also utilize feedback.

An interesting aspect of the feedback mechanism em-
ployed by Q′ is that for stateful Īt, the search strategies
Q can affect each other. Let Qu and Qi be uninspired
and inspired search strategies, respectively, given h, I0,
and Vα(P). If an arbitrary Q runs for the first t < h
steps followed by Qi running the remaining steps, then
it is possible that Qi might no longer be inspired with
respect to Vα(P) because of Īt. The opposite can also
occur—some Q could run first followed by Qu, but since
Īt is stateful, then Qu could become inspired with re-
spect to Vα(P).

Pseudo-Transformational Systems

The definitions of bias and overcoming bias require a
transformational system because the definitions rely
on a comparison between different exploratory sys-
tems evaluated and selected by a transformational sys-
tem. Therefore it is important to distinguish be-
tween transformational systems and exploratory sys-
tems. While it may seem that the two can be dis-
tinguished by their definitions alone, the illustrative
example below shows why some systems that appear
superficially to be transformational systems are, in
fact, operationally equivalent to an exploratory sys-
tem in terms of the exploratory-level concepts
they generate; such systems can therefore be reduced
to exploratory systems and should be considered only
pseudo-transformational.
As an illustration of this idea, consider a system A

5If β ≥ 0.5, then in order for Condition 1 to hold, it
must be the case that v′u,t0 > 0.5. It follows that if V ′

doesn’t change with feedback, v′u,t is bounded below by 0.5
for all time steps t ≥ t0. This means for Condition 2 to
hold, v′i,t must be greater than v′u,t0 + 0.5 which implies
v′i,t > 0.5 + 0.5 which implies v′i,t > 1, but since the range
of V ′ is [0, 1], Condition 2 cannot hold.



Algorithm 1 System A is a pseudo-transformational
system.

1: procedure Q′(I ′t, I0:t)
2: (V,Q∗) = σ(I ′t)
3: for i in 1, . . . , n
4: θi ∼ N
5: It+1 = Qθi(It)
6: if V (σ(It+1)) > V (σ(It))
7: Q∗ = Qθi

8: return (Q∗), It
9:

10: procedure Qθ(It)
11: c∗ = σ(It)
12: for j in 1, . . . ,m
13: zj ∼ N
14: c = G(zj ; θ)
15: if V (c) > V (c∗)
16: c∗ = c
17: return (c∗)

Algorithm 2 System B is an exploratory system that
is equivalent to system A.

1: procedure Q(It)
2: c∗ = σ(It)
3: for i in 1, . . . , n
4: θi ∼ N
5: for j in 1, . . . ,m
6: zj ∼ N
7: c = G(zj ; θi)
8: if V (c) > V (c∗)
9: c∗ = c

10: return (c∗)

(refer to Algorithm 1) containing Qθ, V , Q′, and V ′.6

This system will be composed of a generative neural
network G, parameterized by θ, that takes an input
vector z (sampled from a Gaussian N ) and converts it
into a concept. If the parameters θ are interpreted as
part of the program defining Q, then a change in the
parameters θ is a change of the program Q. Qθ(It)
(line 10) is then defined as a function that generates
m new concepts by randomly sampling m different z
vectors; generating a concept c with G(z; θ) for each
one; and returning the V -max concept among the m
new concepts and the concepts found in It.

The parameters θ can be optimized to create better
concepts according to some objective. This means that
the optimization process can be interpreted as Q′ and
the optimization objective as V ′. Let Q′ (line 1) ran-
domly create n different Qθ by randomly sampling n
parameter vectors and return the V ′-max Qθ among
the newly generated Qθ and the previously found Qθ in

6The rest of the parameters, e.g. N , are unnecessary for
this argument.

I ′t, where

V ′(Qθ, I0:t) = V (σ(Qθ(It)))

and σ selects the first and only (in this example) con-
cept returned by Qθ(It).

7 Note that V is called directly
in place of V ′ (line 6).

An exploratory system B that is equivalent to A may
be constructed (refer to Algorithm 2). Instead of Q ran-
domly sampling z vectors, let it randomly sample both
z and θ and return the V -maximized concept. Because
V ′ in system A does nothing more than act as a wrapper
for V , the exploratory-level concepts generated by both
systems will be identical and therefore they are funda-
mentally the same system, demonstrating that system
A is only pseudo-transformational.8

In contrast, if system A was instead constructed such
that its V ′ incorporated information beyond that pro-
vided by V—e.g., a measure of the complexity of Q, the
diversity of the generated concepts, aesthetic informa-
tion, etc.—the system would not have been reducible to
an equivalent exploratory system and therefore, would
be a true transformational system.

Designing a Creativity Benchmark

(Spendlove and Ventura 2022; Spendlove and Brown
2023) argue for exploring creative domains with a well-
defined and objective V . Both studies suggest the do-
main of creative games, which can be formulated as
Markov games (Littman 1994), as a candidate for fur-
ther exploration. We propose a simplification of such
environments to a single-player Markov game, i.e. a
Markov decision process (MDP) (Puterman 1994) as
the basis for testing the ability to overcome bias. An
MDP is a 5-tuple (S,A, T,R, π0), where S is a set of
states, A a set of actions, T a transition function, R
a reward function, and π0 the start state distribution.
The transition function T : S×A×S → [0, 1] defines the
probability of transitioning from one state to another
given an action. The reward function R : S×A×S → R
assigns a real-value reward given a state st, action at,
and next state st+1. If R is constrained to output a
reward in the range [0, 1], it can be used as V for an

7While we are violating our definition of a transforma-
tional system’s search dynamics by having Q′ and V ′ run Q
and V internally, we do so to keep the example as simple as
possible. Strictly following the definition would involve Q′

selecting newQ and putting them all in I ′1 = (Qθ1 , . . . , Qθn);
cycling through the order, i.e. I ′2 = (Qθ2 , Qθ3 , . . . , Qθn , Qθ1)
. . . I ′n = (Qθn , Qθ1 , . . . , Qθn−2 , Qθn−1); and finally choosing
Q∗ by evaluating I0:t. The point being demonstrated here
is that this additional complexity is important for providing
the feedback necessary for true transformational creativity
but it is misused or ignored in pseudo-transformational sys-
tems.

8This equivalence argument only applies to rational sys-
tems, as it may be possible to construct an irrational ex-
ploratory system that mimics a transformational system.



Algorithm 3 Given an MDP M = (S,A, T,R, π0),
transformational system X = (P ′, V ′, N ′, Q′, σ), hori-
zon h, bias threshold β, and value threshold α.

1: procedure HasOvercomeBias(M,X, h, β, α)
2: s0 ∼ π0

3: I0 = {(·, ·, s0)} ▷ ‘·’ is a dummy variable
4: I ′0 = {⊤}
5: isBiased = False
6: for t in 1, · · · , h
7: I ′t, I0:t = SystemSearch(X, I ′t−1, I0:t−1, T )
8: m = Margin(M,X, I ′t, I0:t−1, h, α)
9: if m < −β

10: isBiased ← True
11: st−1, at−1, st = σ(It)
12: if R(st−1, at−1, st) > α
13: if m > β
14: if isBiased
15: return True
16: return False
17: return False
18:
19: procedure SystemSearch(X, I ′t, I0:t, T )
20: I ′t+1, Īt = Q′(I ′t, I0:t)
21: V,Nt+1, Qt+1 = σ(I ′t+1)

22: It+1 = Qt+1(Īt;T )
23: return I ′t+1, I0:t+1

24:
25: procedure Margin(M,X, I ′t, I0:t−1, h, α)
26: iVals = {} ▷ inspired systems’ values
27: uVals = {} ▷ uninspired systems’ values
28: for (V,N,Q) ∈ I ′t
29: if Inspired(M, (V,N,Q), It−1, h, α)
30: iVals = iVals ∪ {V ′((V,N,Q), I0:t−1)}
31: else
32: uVals = uVals ∪{V ′((V,N,Q), I0:t−1)}
33: return max iVals − max uVals
34:
35: procedure Inspired(M, (V,N,Q), It, h, α)
36: for k in 0, · · · , h− 1
37: It+k+1 = Q(It+k;T )
38: sk, ak, sk+1 = σ(It+k+1)
39: if R(sk, ak, sk+1) > α
40: return True
41: return False
42:
43: procedure Q(It;T )
44: st−1, at−1, st = σ(It)
45: at = Qa(st)
46: st+1 ∼ T (st, at)
47: It+1 = (st, at, st+1)⊕ It
48: return It+1

exploratory system.9 π0 is a distribution over S from
which the initial state s0 is sampled.

Using the MDP framework makes testing whether a
system has overcome bias relatively easy. Each state
can be treated as a concept by letting P = S and there-
fore transitions are rewarded according to the value of
the next state: R(st, at, st+1) = V (st+1). While tech-
nically Q should output a sequence of states/concepts
directly, because MDPs require actions, some part of
Q should output actions. A rigorous treatment of the
(related) idea of incorporating MDPs into the CSF is
provided by the creative action selection framework
(Linkola, Guckelsberger, and Kantosalo 2020).

We provide here a simplified version, leaving the finer
details for future work, and show how a creative task
formulated as an MDP can be utilized to test whether
a system (P ′, V ′, N ′, Q′, σ) has overcome bias (shown
in Algorithm 3). After initializing variables (lines 2-5),
the search for exploratory systems is performed out to
the horizon h (line 6). At each timestep, a single system
search is performed (line 7), using the search dynamics
of a transformational system described above (lines 19-
23). For convenience, an exploratory system Q (line 43)
is composed of an action selection algorithm Qa (line
45) and the transition function T (line 46) and maps
state-action pairs to next states. Q keeps a history of
the transitions as part of I (line 47). After stepping
through the system search and the MDP, the margin
between the highest-valued inspired search strategy in
I ′t and the highest-valued uninspired search strategy in
I ′t (lines 25-33) is computed (line 8) to determine if the
former is valued significantly less than the latter (lines
9-10). A search strategy is categorized as inspired or
uninspired depending on whether or not it finds a valu-
able concept within the horizon h (lines 35-41). Next,
the (state, action, next-state) transition selected by Q
(line 11) is tested to determine if the system has discov-
ered a highly-valued state (line 12). If it has, the sys-
tem’s highest-valued inspired search strategy is again
compared against its highest-valued uninspired search
strategy to see if the former is now valued significantly
more than the latter (line 13). If both statements are
true, satisfying Conditions 2 and 3 respectively, and
if the system was previously biased (line 14), satisfying
Condition 1, then TRUE is returned (line 15) because the
system has overcome bias. If all the conditions are not
satisfied then FALSE is returned (lines 16-17) because it
has not.

A useful aspect of this formulation is that toy prob-
lems can be designed for CC systems with relatively
small state spaces, allowing for quick testing and itera-
tion. Therefore, any classical MDP toy problems used
in reinforcement learning (RL), such as Frozen Lake,10

9Because MDPs rely on the Markov property, the reward
function cannot represent all V , but the space of MDPs is
rich and complex enough that this is not a major limitation.

10https://gymnasium.farama.org/environments/toy_
text/frozen_lake/

https://gymnasium.farama.org/environments/toy_text/frozen_lake/
https://gymnasium.farama.org/environments/toy_text/frozen_lake/


can be employed for testing CC systems in the man-
ner shown here. This begs the question: if a creative
problem is modeled as an MDP, and RL algorithms
are designed to optimize MDPs, does that mean RL
systems engage in a creative process? We argue that
in general the answer is no, because many RL systems
simply maximize average reward, which implies that V ′

is directly maximizing V , and therefore these systems
should be considered only pseudo-transformational, per
the argument made in the section above. However, in
some cases, RL systems may include intrinsic rewards
or leverage other active learning paradigms that utilize
intrinsic values to improve the exploration of a system.
Such a system would not be simply directly optimizing
V with V ′, and, therefore, this subset of RL systems
might be looked at as a mechanism, or at least an inspi-
ration, for designing CC algorithms that can overcome
bias.

While we have asserted here that overcoming bias is
a necessary characteristic of the creative process, we are
not ready to claim that it is a sufficient one. As a result,
while any MDP may be sufficient for testing if a system
has overcome bias, it may not be a strong enough test
to support a claim of creativity. More work is required
to characterize MDPs that may be sufficient for a test
of creativity.

While toy problems are useful, it is more interesting
and applicable to design larger, more complex MDPs
with sparse and even deceptive reward functions that
will serve as better proxies for real-world scenarios re-
quiring creativity. For example, by simulating the
physics of versatile components such as Lego blocks,
ramps, pulleys, hammers, dominoes, etc., and tasking
a system with the objective of transporting a ball from
an initial position to a goal position, the systems’ abil-
ity to design Rube Goldberg machines can be evalu-
ated. The physics of the environment constrain the
conceptual space, giving us an objective N , and check-
ing whether the ball is in the goal position serves as
an objective V . Markov games, such as Codenames
(Spendlove and Ventura 2022), with static agents are
also MDPs and can serve as complex, but objective,
benchmark tests.

Because the definition of overcoming bias is based
on a horizon h, it is important to discuss how time is
measured in this evaluation. We suggest three options
with their pros and cons:

1. Number of Q applications: This can alternatively be
thought of as the number of steps the system inter-
acts with the environment. This makes sense because
we have defined the search process of creative systems
as a dynamical system in which each step involves an
application of Q. Unfortunately, the application of Q
may not be constrained enough for this to always be
a reasonable approach. For example, if the system
creates a model of the environment and then simu-
lates runs within that model, then Q can potentially
run for an arbitrary number of virtual steps before
making a single step in the real environment.

2. Wall clock time: This is an easy method to use, but
it might unfairly benefit multi-processor systems that
can run multiple Q strategies in parallel or single
search strategies that utilize parallel processing for
faster “search” (such as generative neural networks).

3. Computation steps: This is perhaps the most fair
method. However, this might benefit bespoke,
special-purpose systems over more general-purpose
systems. Using the generative neural network as an
example, it takes billions of computations to gener-
ate a single concept, while a special-purpose system
might take only a thousand. On the other hand,
there may be an interesting trade off between the
speed of convergence of special-purpose systems and
the ability of general-purpose systems to more effec-
tively overcome biases.

Conclusion

Determining whether a system has overcome algorith-
mic bias is fundamental to determining if the system
has engaged in the creative process. In this work, we
have outlined definitions for inspired and uninspired
algorithms, transformational search dynamics, biased
systems, and systems that overcome bias. While our
definitions provide necessary conditions to characterize
a system as being biased or overcoming bias, further
constraints can be added to strengthen the conditions,
such as enforcing v′u,t0−v

′
i,t0

> β for multiple timesteps.
We have also suggested a simple methodology for

testing a system’s ability to overcome bias by utiliz-
ing MDPs as a framework. MDPs afford us consider-
able flexibility in designing creative tests that span sim-
ple toy problems to complex creative domains. While
our methodology is a pass/fail evaluation, averaging
pass/fail outcomes across multiple tests can yield a
more nuanced assessment. It should be noted, though,
that failing a creative test does not mean that the sys-
tem cannot in general overcome bias because a test is
specific to β, h, and Vα(P).
Overcoming bias, in combination with criteria pro-

posed in (Spendlove and Brown 2023; Spendlove and
Ventura 2022), moves us one step closer to designing
suitable benchmarks for CC systems. While it is plau-
sible that algorithms excelling on such benchmarks may
still exhibit domain-specific biases—overcoming biases
detectable by specific creative tests while struggling
with biases in other creative domains—we remain op-
timistic that a (set of) useful CC benchmark(s) can be
developed and that doing so will catalyze innovation
and progress in the field of CC.
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