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Abstract
Quality and diversity have been proposed as reason-
able heuristics for assessing content generated by co-
creative systems, but to date there has been little agree-
ment around what constitutes the latter or how to mea-
sure it. Proposed approaches for assessing generative
models in terms of diversity have limitations in that they
compare the model’s outputs to a ground truth that in the
era of large pre-trained generative models might not be
available, or entail an impractical number of computa-
tions. We propose an alternative approach based on en-
tropy of neural network encodings for assessing diver-
sity of sets of images that does not require ground-truth
knowledge and is easy to compute. We also compare
two pre-trained networks and show how the choice re-
lates to the notion of diversity that we want to evaluate.
We conclude with a discussion of the potential applica-
tions of these measures for ideation in interactive sys-
tems, model evaluation, and more broadly within com-
putational creativity.

Introduction
The quality of generative AI text-to-image systems is im-
proving rapidly, whether you assess that by fit-to-prompt,
perceived realism, Frechét Inception Distance (FID) (Heusel
et al. 2017), or by virtually any other measure. In a com-
putational creativity context, however: is “quality” all we
need? Especially in an interactive and/or co-creative con-
text, that seems to be a dangerous assumption, given the
long history in our field of creativity definitions featuring at
least a duopoly of constituent factors: one broad cluster of
factors that have been variously referred to as value, utility,
appropriateness or quality, and another broad cluster usually
referred to as novelty, originality, or surprise. The focus on
quality is natural given the rapid advances of these technolo-
gies, but several specific questions arise when considering
the sufficiency of image quality in our context: What hap-
pens when the prompt is ill-formed, because a user doesn’t
yet know what they want? What happens when a genera-
tor is asked to produce something that deviates substantially
from the training data? What happens when a generator’s
understanding of a word or phrase differs from the user’s?

Algorithmic measures of quality do not – at least at
present – offer a way to address any of those questions. Con-
versely, using human subjects evaluation is too slow and too

expensive to be a feasible source of feedback at the scale
required to improve the underlying models. In this paper
we propose that, at least for interactive contexts, genera-
tor quality (usually defined as some combination of match-
ing the distribution of the data and accurately reflecting any
conditioning stimuli such as prompts) must be accompanied
by generator diversity (which we broadly define as max-
imising the breadth of options among the outputs, although
we provide a more specific entropy-based definition below).
The importance of generators offering users diverse options
has been raised in computational creativity before, partic-
ularly in the field of procedural content for games (Smith
and Whitehead 2010), we seek to expand those notions to
cover all interactive generative AI, at least where output cre-
ativity is a potential goal. Armed with such a measure of
generator diversity, we might begin more-systematically ad-
dressing those broader questions about generative AI and co-
creative systems.

Diversity has been proposed (Preuss, Liapis, and To-
gelius 2014; Ibarrola, Lulham, and Grace 2023) as desir-
able in co-creative systems in the past, and in this pa-
per we expand on those proposals, arguing for the criti-
cality of diversity measures in interactive generative sys-
tems. We contend that the within-set diversity of gener-
ated content is a useful counterpart to quality in evaluat-
ing interactive text-to-image systems, formalise the problem
of measuring it, and then present generalisable algorithms
for doing so. By “within-set diversity” we refer abstractly
to the breadth of a set of responses provided to a user as
part of a single “round” of generation. Our motivation for
this definition is that 1) creative tasks are by definition ill-
specified and effective (human) approaches to combating
that typically involve reframing/reformulation (Schön 1992;
Dorst 2015; Grace and Maher 2016), a general finding that
has been replicated specifically in the text-to-image litera-
ture in the form of iterative prompt “engineering” (Oppen-
laender 2022), 2) a creative system is unlikely to know in
advance the direction in which its user might want to refor-
mulate the “problem”, and 3) in interfaces where users are
presented with multiple options to choose from (common
in text-to-image UIs), traditional single-artefact models of
novelty or surprise may result in duplicate content.

Our focus on diversity as a desirable quality for results
produced during an on-going creative process is further mo-



tivated by research from the Information Retrieval (IR) com-
munity, which has long explored the utility of diversity as
an accompaniment to accuracy/similarity in retrieving sets
of search or recommendation system results (Candillier et
al. 2011; Kunaver and Požrl 2017). In the IR community,
the goal is to maximise the chances that an answer to the
user’s query exists within the top N results – for a concrete
example, consider that “top N” to be on the “first page” of
a search engine. To do so, it’s not sufficient to present a set
of most-similar or most-accurate results, because there’s a
high likelihood that those will be all self-similar: in other
words, the within-set diversity of the results would be low.
In the context of search and recommendations, this repre-
sents a poor use of the available screen real estate, for if
one guess is wrong, all results are useless. We propose that
this finding generalises to interactive text-to-image systems,
and furthermore suggest that maximising within-set diver-
sity alongside whatever measure(s) of quality are useful in
context should – in theory – increase the potential for prob-
lem reframing and/or transformationally creative output.

It’s important to note that our approach does not assume
that there is a “ground truth” for image-set diversity: how
people perceive the differences between objects is clearly
subjective, constrictive, and situational. There is a vast num-
ber of ways that any two things could be compared, and the
number of comparisons within or sets of things can only be
greater. Our goal is not to chase an imaginary objective
measure of perceived diversity, but instead to explore ap-
proximate measures that are sufficiently accurate at the pop-
ulation level to guide future research. This paper explores
definitions for such a measure, concluding with our plans to
empirically validate it.

With those assumptions in mind, it becomes necessary to
precisely operationalise within-set diversity for an interac-
tive text-to-image context. The field of quality-diversity al-
gorithms (Pugh, Soros, and Stanley 2016), a form of multi-
objective optimisation which has been extensively applied
before in computational creativity (Zammit, Liapis, and
Yannakakis 2022; Mccormack, Cruz Gambardella, and Krol
2023; Demke et al. 2023), would seem to be somewhere to
look for inspiration, yet in those cases “diversity” is typically
measured along several domain-specific and pre-defined be-
havioural variables: they offer no general measure of diver-
sity that might be applicable in our context. Some general-
isable ways of measuring diversity have already been pro-
posed in the literature (Naeem et al. 2020), yet most of them
either require a ground truth (a.k.a. access to a specific test
dataset) for comparison, and/or are very expensive to com-
pute. In today’s era of large pre-trained generative models,
access to a dataset representative of the generator’s target
distribution cannot be assumed, and there is a need for a
scalable, general, dataset-blind measure of within-set diver-
sity.

To overcome these issues, we propose and compare two
versions of a more relaxed approach to estimating within-set
diversity that can be computed quickly and without knowing
the distribution of the training data. Our approach is instead
based on general pre-trained network mappings. Having no
ground truth to evaluate our own measures, we also propose

an approach for generating artificial data which we would
expect a-priori to exhibit a pattern of relative diversity levels,
allowing us to check whether the proposed methods align
with our expectations. We argue that our proposed measures
are more useful than the state-of-the-art in terms of practi-
cality, particularly in the domain of high-quality interactive
image generation in computationally creative contexts.

Methods
When deep neural networks are trained for image classifica-
tion or similar tasks, the data from an image flows from each
layer to the next as a tensor of values usually referred to as
layer “activations”. These activations contain information
about the different characteristics of each image, and are in
turn interpreted by the following layer. Since activations are
learnt to be useful for performing the task for which the net-
work was trained – general purpose image recognition, gen-
eration, or segmentation, for example – then pre-trained net-
works are often “cropped” at certain layers, allowing those
layer activations to be used as the input to train (typically
smaller) networks for different purposes (Kora et al. 2022).

This idea has been exploited for other uses, such assess-
ing the quality of image generators using FID (Heusel et
al. 2017). This method uses the second-to-last layer ac-
tivation of the general-purpose pre-trained image network
InceptionV3 (Szegedy et al. 2016) as latent variables, effec-
tively casting them as constituting a “conceptual space” of
all natural images (Boden 2004). FID then compares a test
set of real images to a set of generated ones, with a “per-
fect” score of 0 indicating that the distribution of features in
the generated images is identical to those of the “real” ones.
Specifically, under a normality hypothesis, the Frechét Dis-
tance between the empirical distributions of the latents can
be computed explicitly, giving a good proxy for the quality
of the generative process.

While this provides a reliable assessment of the ability of
a generator to match a dataset, it has two drawbacks. Firstly,
that diversity cannot be measured directly (and in fact mov-
ing away from the original latent distribution by becoming
“more diverse” will produce worse FID scores). And sec-
ondly, this method requires a ground-truth distribution for
computing (a.k.a. a dataset of all relevant “real” images),
which as previously discussed is inconvenient for our pur-
pose.

Nonetheless, the idea of analyzing an image dataset
through the latent space of a pre-trained network can still be
of use. By analyzing the (empirical) probability distribution
of a set of generated images, we may get an idea of diversity
by looking at its entropy, which has been widely used as a
diversity index (Jost 2006) in other fields. Where FID com-
putes quality as the distance between the distributions of a
generated set and a ground truth in a latent space, we instead
seek to assess diversity as the entropy of the generated set’s
same latent variables.

We describe two approaches to doing so below, detailing
how to tractably approximate entropy in a co-creative case.
Both measures are “truncated” in that they use approximate
measures of entropy in order to avoid the requirement of
having at least as many samples (as in generated images) as



the dimensionality of the latent space, which isn’t feasible in
most interactive contexts. The first, Truncated Inception En-
tropy (Ibarrola, Lawton, and Grace 2022), is a measure of di-
versity using the same latent space as in the broadly-adopted
FID, on the motivation that if the second-to-last layer of the
Inceptionv3 model is a good proxy for image features rele-
vant to quality, it should likely be similar with respect to di-
versity. In the second, Truncated CLIP Entropy, we instead
explore the use of Contrastive Language-Image Pre-Training
(CLIP (Radford et al. 2021)), a multi-modal embedding of
both text and images. This is motivated by the assumption
that in some use-cases, diversity in a “semantic” space that
can embed both prompt and images may be more relevant
than the features of a general-purpose image model.

Truncated Inception Entropy
Let us consider a function f that maps images into a latent
space Z ⊂ RD, in such a way that the points have a normal
distribution πf ∼ N (µ,Σi) in Z . This normality assump-
tion is the same one used when computing FIDs, where f is
a truncated version of the InceptionV3 network on the last
layer, with output size D = 2048.1 The resulting latent
space with this choice of network is thus Z = R2048.

Under this hypothesis, we could assess the diversity of a
given set of images A by feeding them to the truncated In-
ceptionV3 network to get their corresponding (normally dis-
tributed) latents, and then computing the differential entropy
h (Shannon 1948), defined as

h(πf ) = −E log(πf ) =
1

2
log det(2πeΣi). (1)

When the number of samples N in a set of images A is
smaller than the dimension D of the latent space, the em-
pirical approximation Σ̂i of Σi is singular, meaning that the
determinant is null and hence the latter computation unfeasi-
ble. To overcome this, it has been proposed (Ibarrola, Law-
ton, and Grace 2022) that a truncated version of entropy can
be used, defined as

TIEK(A)
.
=

K

2
log(2πe) +

1

2

K∑
k=1

log λ
(i)
k , (2)

where TIE denotes Truncated Inception Entropy, and
{λ(i)

k , k = 1, . . . ,K} is the set of the K largest eigenval-
ues of Σ̂. Note that K = D would make the TIE equivalent
to Equation (1), but choosing a smaller value for K would
let us compare diversities of smaller sets of images.

Truncated CLIP Entropy
The InceptionV3 network was trained as a classifier over the
ImageNet database (Deng et al. 2009). Since then, new pre-
trained networks have been made available, such as CLIP, in
which images and text are encoded together in a shared la-
tent space Z ⊂ R512. This is done in such a way that text or

1This choice of layer from which to extract activations is the
standard for FID, yet other intermediate layers might be consid-
ered provided a reliable way to deal with their high dimensionality.
Further exploration is required.

images with the same semantic characteristics are grouped
together, which may be a useful feature of a space in which
we want to calculate within-set diversity.

In an analogous way as with the TIE, we may consider a
set A of N images and g(A)

.
= {g(a), a ∈ A, g(a) ∈ R512}

set of latent CLIP representations of the images (where g de-
notes the CLIP image encoder). From this set, we can cal-
culate the empirical covariance matrix Σ̂c ∈ R512×512, and
subsequently its K largest eigenvalues {λ(c)

k , k = 1, . . . ,K}
to compute the Truncated CLIP Entropy (TCE) as

TCEK(A)
.
=

K

2
log(2πe) +

1

2

K∑
k=1

log λ
(c)
k . (3)

Note that while the computation is the same as that of the
TIE, the values are not directly comparable, since the spaces
in which the InceptionV3 and CLIP latents are defined are
different (hence the supra-index notation on the eigenval-
ues).

Open-source Implementation
The code (Python3) for trying the measures described here
is freely available, and may be installed using pip
$ pip install image-diversity

and tested by running
$ python3 image diversity <path/to/dir>

where <path/to/dir> is a path to a directory containing
a set of images to be evaluated.

More details on installation and usage can be found at
https://github.com/fibarrola/image diversity

Experiments
Comparing diversity as estimated by either TIE or TCE is a
non-trivial problem, given that there is no ground truth on
what the diversity of set of images “should be”. Or rather,
what makes a set of images more or less diverse than an-
other. We are currently in the process of designing a set
of human-subjects evaluations to compare different versions
of these measures on the degree to which they align with
human evaluation. A key challenge in that experimental de-
sign is what exactly to ask people to do, rate, or judge in
order to validate our diversity measures and our hypothe-
sis that generator diversity facilitates output creativity. For
this paper, however, we present a series of in-silico exper-
iments. We have built sets of images using different pro-
cesses that we judge should lead to more or less diversity,
and confirmed whether our diversity measures reflect those
a-priori assumptions. This approach is consistent with past
experiments on computational diversity measures, such as in
the domain of text documents (Bache, Newman, and Smyth
2013). Specifically, we automated the generation of sets of
prompts that vary in content and style in ways that are both
congruous and incongruous.

This was carried out using GPT-3.5 (Brown et al. 2020)
to generate different text prompts, which were in turn used
to generate five datasets: Control with Low Noise (a fixed

https://github.com/fibarrola/image_diversity


Figure 1: Image set generation process for diversity evaluation.

prompt with small variations in random generative compo-
nents), Control with High Noise (a fixed prompt with large
variations in random generative components), Usual (a given
object in different places it might be), Unusual (a given ob-
ject in places it would not be) and Style (a given object in a
Usual place rendered in different visual styles).

If our intuitions about within-set diversity are accurate,
two things should occur. Firstly, the low noise Control set
should be less diverse than the high noise Control set. Sec-
ondly, the low noise Control set should show less diversity
than the Usual set, and both of them less than the Unusual
set. Finally, the Style set’s diversity should be purely visual
with low semantic variations, and hence we expect it might
be assessed differently by TCE and TIE, due to the latter’s
presumed greater reliance on visual rather than semantic dif-
ferences.

The generative process of the image sets is illustrated in
Figure 1, and was conducted as follows. We first chose five
nouns: canoe, car, dog, coffee mug and pigeon and then
gave the LLM instructions to generate three different sets of
prompts as follows:
Usual: Generate a list of 45 places where a [noun] may be.

Print as “A [noun] in <place>”
Unusual: Generate a list of 45 places where finding a

[noun] would be absurd. Print as “A [noun] in <place>”
Style: Generate a list of 45 painting or image styles. Print

as “A [noun] in [place] in <style>”
In each case [noun] was replaced with one of the five ob-

jects in the list above. The Control sets did not use an LLM
to generate as the prompts were fixed to a single place, cho-
sen to be stereotypical for that object. The prompts in this
case were a canoe in a serene lake, a car in a driveway, a
dog in a backyard, a coffee mug in an office, and a pigeon
in a tree. These same “fixed” places were used for each of
the Style prompts. All the images of these three sets were
generated using the same random parameters (or seed) so

that the prompts are the only source of variability. In the
Control sets, since the prompts were fixed, the variations
were obtained by letting the initial random noise parameters
to change (with fixed noise all the images would have been
identical). In the high-noise set these were completely ran-
dom, while in the low-noise Control set, the parameters were
built around a random mean with 20% variance, resulting in
random values much close to each other across the set than
those on the high-noise Control group. The effect of this can
be observed on the samples in Figure 2.

Finally, we used Stable Diffusion (Rombach et al. 2022)
to generate sets of 45 images per prompt, examples of which
can be seen in Figure 2. It can readily be observed that the
low-noise Control set show images very similar both visu-
ally and in terms of the depicted elements, while the high-
noise Control set varies much more visually, yet no more
in terms of elements. The Usual set shows some common
elements besides the canoe itself, such as water and vegeta-
tion, but more variability than the control. In contrast, the
Unusual set shows a variety of elements not quite related to
each other, from which we should expect a larger diversity.
Finally, the Style set is quite consistent in terms of the de-
picted scene, but is more diverse in terms of geometry and
textures.

For each of the 5 objects, we built 10 random subsets of 30
(out of 45) images, and computed the TIE and TCE values,
depicted in Figure 3. It can be seen that, as expected, the
low-noise Control set shows lower diversity than the rest,
and the highest diversity scores are observed for the Un-
usual set with both methods. Unsurprisingly, also, reduc-
ing the variance of the input noise (in the Control set) re-
duces the diversity of the output. However, the TIE marks
the Unusual and Style sets as having comparable diversity,
significantly greater than the mild variations in the Usual
and Noise groups, whereas the TCE tells a different story. In
this case, the variations in visual style carry a lower weight
than those of the elements composing the image, meaning



Control (low noise): “A canoe in a serene lake.”

Control (high noise): “A canoe in a serene lake.”

Usual: “A canoe in a <usual place>”

Unusual: “A canoe in a <unusual place>”

Style “A canoe in a serene lake in <image style>”

Figure 2: Samples of image sets generated with one of three methods to evaluate diversity behaviour.



Figure 3: Diversity values (TIE and TCE) using K = 20 eigenvalues, for sets of images generated with four different criteria.
All the between-set differences are statistically significant (p < 0.01) except for the TIE for the unusual and style sets. Note
that the obtained diversity values are not comparable between methods on account of using different latent spaces.

that TIE and TCE are accounting for diversity in two dif-
ferent senses. This comports with our expectation that TCE
“weights” semantics higher in its accounting of image diver-
sity.

Text diversity

As mentioned before, the CLIP network on which TCE is
based embeds both images and text in a shared latent space.
This means that TCE can be computed (as in 3) on the CLIP
latents of a set of prompts directly, without requiring that
they be first converted into images. This suggests a potential
application of TCE to text diversity, which may be useful by
itself or as a comparison to image diversity.

While a rigorous evaluation would be required before
claiming that TCE could be used on text to assess semantic
diversity in any useful way, we conducted a preliminary ex-
periment of computing the TCE over the prompts (see Fig-
ure 1) used in our previous experiments, with the exclusion
of the Control sets for which the prompts were all identical.

The results are depicted in Figure 4 and are broadly in line
with those obtained for images for the Usual and Unusual
groups, with the latter being higher. It can also be observed
that there is a very wide gap between these and the Style
set, which was not observed in the case of images. This
makes sense, as the prompt texts only differed by that one
or two style words, making them semantically quite similar,
while that one word had a large effect on the visual content
of the image, at least according to TIE. This again provides
some early evidence to support our diversity measures as
capturing a quantity of potential interest to the developers
of co-creative systems and other interactive applications of
generative AI.

Figure 4: TCE using K = 20 eigenvalues, for sets of
text prompt generated with three different criteria. All the
between-set differences are statistically significant (p <
0.01).



Discussion and Conclusions
We proposed a method to assess diversity in image datasets
that is agnostic to training data and simple to compute. The
method was compared to its analogous using another net-
work’s latent space, and results show both variants to align
well with expected outcomes. Furthermore, it has been
shown that the different networks assess diversity in differ-
ent senses, meaning that they might serve for different cre-
ative contexts.

Given that we have not yet validated that our method cor-
relates with the subjective perceptions of human subjects,
it’s difficult to conclusively say it might help the design of
future co-creative systems. While that validation is our next
step, our broader hypothesis is that generators with greater
diversity in their responses to typical user requests would be
more effective at augmenting creativity. For example, an AI
sketching system might show a user a set of very different
completions of their partial drawings. Or a text-to-image
system might begin a session by generating highly diverse
responses to aid in iterating on the prompt. Or an AI story-
writing system might suggest wildly different branching fu-
tures for a partially complete story as a way to combat writ-
ers’ block. In each of these examples the creative act is still
in the early “divergent thinking” stages, where to focus on
producing a high-quality solution might mean to converge
prematurely. In the extreme case, improvements in generator
diversity may even be of greater utility than further improve-
ments in generator accuracy, although that claim would also
need to be validated.

Our measures are based on approximations of entropy,
and entropic measures of diversity have faced some criticism
in other fields, such as in biology (Jost 2006). The criticism
is that the actual quantity of interest in diversity is how many
meaningfully active categories (species in biodiversity, “fea-
tures” in an image) in a sample, not the amount of informa-
tion required to identify which category a randomly-selected
sample belongs to. Qualities such as balance, variety and
disparity have been proposed as necessary components of
this kind of categorical measure of diversity (Stirling 2007).
This approach has been applied to evaluating document di-
versity using topic modelling to generate the categorical rep-
resentation (Bache, Newman, and Smyth 2013). In the case
of image generation, this might suggest an alternative for-
mulation in terms of the number of features identified by
some appropriately categorical representation.

While our results are promising, further experiments are
needed to fully assess the proposed methods’ compliance
with expectations in creative computing applications. Par-
ticularly, future work shall deal with the validation of these
metrics in comparison with human perception, and explor-
ing the use of latent spaces of other pre-trained neural net-
works. In fact, the possibility of using average pooling for
computing FID using intermediate InceptionV3 layers has
been proposed, although not properly tested (Seitzer 2020),
and its usage for computing TIE is thus equally plausible.
Using earlier layers in the image encoding network as the
latent space in which diversity is calculated could yield a
more texturally- or visually- biased measure, which may be
useful for some scenarios, although only if some technique

like average pooling can be applied to reduce their dimen-
sionality.

It’s also important to consider the potential limitation of
using an LLM – in our case GPT3.5 – to generate sets of
presumably-diverse prompts. It’s likely that these sets of
prompts are biased in ways that are hard to quantify, poten-
tially harming the generalisability of our conclusions. How-
ever, from manually inspecting the lists of prompts, we can
say that GPT3.5 seems less biased than we the authors would
be if asked to manually construct a list of 45 places where
an object (e.g. a canoe) should or shouldn’t be. Addition-
ally, the experiments described in this paper do not require
the prompts to be an unbiased sample of language, since we
are comparing sets produced by the same generator. Never-
theless, the suitability of this approach should be considered
as we go forward with human evaluations.

Finally, as shown by the preliminary experiments, it is
worth noting that TCE might also be used to assess text di-
versity on account of the CLIP latent space being the same
for either text or images. More experiments are needed to
properly test whether or not this works reliably in practice,
contrasting it with other text diversity assessment methods.
Our current research is exploring both the design of those ex-
periments as well as the design of future generative systems
aimed at producing small sets of diverse-yet-high-quality re-
sponses for use in co-creative systems.
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[Kunaver and Požrl 2017] Kunaver, M., and Požrl, T. 2017.
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