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Abstract

AI research in chess has been primarily focused on pro-
ducing stronger agents that can maximize the proba-
bility of winning. However, there is another aspect to
chess that has largely gone unexamined: its aesthetic
appeal. Specifically, there exists a category of chess
moves called “brilliant” moves. These moves are ap-
preciated and admired by players for their high intel-
lectual aesthetics. We demonstrate the first system for
classifying chess moves as brilliant. The system uses
a neural network, using the output of a chess engine
as well as features that describe the shape of the game
tree. The system achieves an accuracy of 79% (with
50% base-rate), a PPV of 83%, and an NPV of 75%. We
demonstrate that what humans perceive as “brilliant”
moves is not merely the best possible move. We show
that a move is more likely to be predicted as brilliant,
all things being equal, if a weaker engine considers it
lower-quality (for the same rating by a stronger engine).
Our system opens the avenues for computer chess en-
gines to (appear to) display human-like brilliance, and,
hence, creativity.

Introduction
Superhuman chess AI has made significant advances in re-
cent decades. In this paper, we focus on human-like play,
and specifically play that is aesthetically appealing to hu-
mans, in the sense that it’s perceived as brilliant and/or cre-
ative1. Chess can be thought of as an intellectual art, as it
allows for the perception of beauty (Osborne 1964). Moves
termed as “brilliant” are highly regarded by players for a va-
riety of factors relating to the aesthetic appreciation of the
move. The practice of awarding brilliancy prizes at chess
tournaments for the most beautiful moves/games gives cre-
dence to the aesthetic nature of chess and the value placed
on it by chess players (Humble 1993). Aesthetics also ap-
pears outside the context of full games, such as in chess
puzzles, where aesthetics is even more central to the expe-
rience. When annotating games, annotators ordinarily an-
notate brilliant moves using exclamation points. There is a
limited amount of narrow algorithmic methods for labeling

1“Brilliant,” “aesthetically appealing,” and “creative” can philo-
sophically be treated as distinct. However, in the context of chess,
those are closely related.

moves as “brilliant.” For example, a popular online chess
platform, chess.com, classifies “good piece sacrifices” as
brilliant, which not only misses out on many other types of
brilliant moves, but may also be prone to falsely classifying
a move as brilliant (Chess.com 2024).

In this paper, we show that it is possible to use the shape
of the game tree and the output of chess engines to pre-
dict which moves humans would label as brilliant. We col-
lect annotation data from humans from lichess.org, ex-
tract features from the local game tree and the predictions of
chess engines, and learn a neural-network-based classifier to
use the features to predict whether humans would perceive
the move as brilliant. We report that we can obtain an ac-
curacy of 79% (with 50% base-rate), a PPV of 83%, and an
NPV of 75% when classifying moves as perceived as bril-
liant or not. Interestingly, our analysis shows that our neural
network predicts a move to be more brilliant if, holding the
rating by a stronger chess engine constant, the weaker chess
engine predicts the move to be less good, indicating that part
of the perception of brilliance lies in the move not just being
good, but also being non-obvious.

Our main intuition is that the game tree provides insight
into whether the move is brilliant: a game tree where there
are many possibilities for winning indicates that none of the
moves would be considered particularly creative or brilliant,
whereas a game tree where there is only a single and long
path to victory may indicate that finding that path would be
considered creative and/or brilliant.

Literature Review
Artificial Intelligence in Chess
Currently one of the top chess engines is Leela Chess Zero
(lc0) (Leela 2024b). This engine uses a Monte Carlo tree
search (MCTS) to expand the game tree. MCTS is guided
by a neural network, which takes in a game state as input
and outputs a vector of move probabilities and a scalar eval-
uation estimating the probability of winning from the game
state. The body of the neural network is a residual tower
with Squeeze-and-Excitation blocks (Leela 2024c). At the
time of writing this, lc0 has played over 1.6 billion games
against itself, learning through self-play (Leela 2024a).

Despite relatively limited research towards human-level
play, there is one computer chess engine developed for play-



ing similar to humans: Maia (McIlroy-Young et al. 2020).
Maia uses the same architecture as Leela Chess Zero, how-
ever instead of training on self-play, the weights for the neu-
ral network guiding the tree search are instead trained on
human-played games within fixed bins of player skill rat-
ings. The authors found that Maia can predict the move
played by a human more accurately than lc0 and can also
predict when a player may make a blunder based on the
game state (McIlroy-Young et al. 2020).

While Maia does model human behaviour in chess more
accurately than Stockfish (Stockfish 2024) or lc0, none of
these engines explicitly consider the aesthetic appreciation
of chess. Despite the concept of aesthetics seeming vague
and challenging to assign a numerical value to, there has
been work done towards understanding chess aesthetics and
developing a metric correlated to aesthetics.

Chess Aesthetics
Existing research in chess aesthetics shows the existence and
importance of aesthetics in chess (Margulies 1977) (Walls
1997) (Levitt and Friedgood 1995) (Iqbal 2006), mostly fo-
cusing on puzzles. Previous work is either not directly oper-
ationalizable or proposes very simple heuristics. In contrast,
we propose analyzing the shape of the game tree, which is
only made possible through the combination of using a chess
engine and a learned model.

Methods
In this section, we describe our system for classifying moves
as brilliant or not. We collect human-annotated data, ex-
tract features from the games, and learn a model that predicts
move brilliance.

Data Collection
We collect a set of games annotated by users from
lichess.org’s (Lichess 2024) Study feature. The top
624 most popular studies from Lichess were obtained on
November 13, 2023. From these, 8574 total games were ex-
tracted. 820 moves were labelled by users as brilliant (two
exclamation points) across 556 games, which were part of
158 studies. 1637 moves were labelled as “good” (one ex-
clamation point). 4518 moves were labelled as other (an
annotation is that’s not “bad” is present).

Feature Engineering
We compute features from the output of two chess engines.
We consider both the evaluation of the moves by engines
and the game tree that the engines generate. The engines
generate a game tree by exploring mostly promising moves.

We use two engines: lc0 (Leela 2024a), a strong chess
engine trained with self-play (the largest network, T82-
768x15x24h-swa-7464000 (Leela 2024a) is used); and
Maia, an engine trained to output human-like moves, with
an ELO of about 1900 (McIlroy-Young et al. 2020) (Maia
2024) (which is quite modest).

For each move, a total of 10 search trees were generated
from the board before the move (henceforth called the parent
board): once for each of the two weight options (self-play

and Maia), and once for each number of nodes evaluated
(101, 102, 103, 104, and 105).

For each tree generated, the following two features can be
calculated: is the move of interest in the tree, and if so, did
the engine evaluate it as the best move (the move with the
highest win probability from the parent board). These fea-
tures, and specifically the evolution of these features as more
nodes are added, may give insight both into the strength of a
move and the difficulty of finding it. Both of these attributes
reflect on the skill of the player of the move, hence they may
be important features for identifying brilliant moves.

We also calculate features for each subtree. A subtree is
defined as a tree rooted at a node within the original tree.
There are 6 types of subtrees that may be informative for
identifying brilliant moves. First, the tree rooted at the par-
ent board gives information about the player’s situation be-
fore the move, and the possible moves that could have been
made. Second, the tree rooted at the node immediately af-
ter the move of interest gives information about the situa-
tion following the move, which can give insight into how
this move affected the game’s trajectory. The remaining 4
types of subtrees are increasing moves, advantage moves,
decreasing moves and disadvantage moves. These are de-
fined based on either the move’s predicted win percentage
Qmove, and the difference between the subtree’s root pre-
dicted win percentage and the win percentage of the move:
∆Q = Qmove − Qroot. Increasing moves have ∆Q > 0,
advantage moves have Qmove > 0, decreasing moves have
∆Q ≤ 0, and disadvantage moves have Qmove ≤ 0.

Since the set of moves belonging to these four types is
variable, the features are aggregated so the number of fea-
tures per full tree (and hence per move that is being clas-
sified) is constant. To do this, features are calculated for
the subtrees rooted at each increasing, advantage, decreas-
ing and disadvantage move possible from the parent board,
excluding the move of interest. The features for each move
in each type is aggregated using mean, standard deviation,
min and max. This yields 4 × 4 × N features per tree
from these four types, where N is the number of features
per subtree. Combined with the 2 × N features from sub-
trees rooted at the parent board and move of interest, and the
2 binary features calculated per full tree, there are a total of
18×N +2 features per full tree. The N features per subtree
are as follows: Number of increasing, advantage, decreas-
ing, and disadvantage moves searched from the root node
(4 features), predicted win chance at the root node, maxi-
mum predicted win chance across all possible moves from
the root, probability of search and number of times the root
node was searched (2 features), maximum search probability
and number of times node was searched across all possible
moves from the root (2 features), branching factor of sub-
tree, width at layers 1-7 (7 features), mean, standard devia-
tion and max width across all layers (3 features), and height
of the subtree. In total, this gives N = 22 features per sub-
tree, or 398 features per tree. Each parent board/move of
interest pair in the dataset each had 10 trees generated to
cover the 5 node counts (101 to 105), and the 2 weight op-
tions (self-play and Maia). So, each datum has a total of
3980 features. Note, if the tree didn’t contain the move of
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Figure 1: AggReduce architecture. Features for each tree
generated with a specific size and weight are processed in-
dividually in the first hidden layer, then they are aggregated
in tiers.

interest, or if there was no move within one of the move
type subsets, a constant vector for the 22 features was used
instead. The constant vector contained 0 for all features ex-
cept for the win chance and max win chance features, which
used a value of -1 instead.

Classifier Models
A variety of classifier models were trained and tested on
the data. This included: logistic regression, a random for-
est classifier, Gaussian Naı̈ve Bayes, k-nearest neighbors re-
gression, SVM classifier, a fully-connected neural network
(one hidden layer with 50 units) and 4 tiered neural net-
works.

The tiered feedforward neural network architectures op-
erate on the basis that for each input board, a search tree is
generated once per weight and per tree size. As there are
two weight options and five tree size options, there are ten
trees generated per board. Instead of inputting the features
for all ten trees at once, tree features can be processed either
individually, combined across both weight options, or com-
bined across all the tree sizes. Then, subsequent hidden lay-
ers can combine features across the categories that were not
yet considered. Specifically, four tiered architectures were
tested: PerWeight, PerSize, PerWeightPerSize and AggRe-
duce. PerWeight’s first hidden layer takes as input the fea-
tures across all 5 tree sizes for a specific weight. The second
hidden layer takes the first layer outputs for both weights,
followed by a single output node to classify the move. Per-
Size follows a similar structure, but the first hidden layer
instead takes as input the features across both weights for a
specific tree size, then the second hidden layer takes as input
the first layer outputs for all 5 tree sizes. PerWeightPerSize

adds an additional tier, such that the first hidden layer takes
as input the features for a tree generated using a specific
weight and tree size. Then, the second hidden layer takes
as input the first layer outputs across both weights (still for
a specific tree size), and the third hidden layer takes the sec-
ond layer outputs across all 5 tree sizes.

AggReduce applies the tiered principle, while also ad-
dressing the imbalance of the tree features. Recall that
each tree has the following features: 2 binary features (is
the move of interest in the tree, and is it the best move),
and 22 features for each of the 6 types of subtrees: parent,
child, increasing, advantage, decreasing and disadvantage.
The two binary features, along with the features for the par-
ent and child subtrees, directly characterize the game state
before and after the move of interest. The features for the
remaining 4 types of subtrees characterize hypothetical sce-
narios about what may occur if a different move was taken
instead of the move of interest. Since the parent tree al-
ready contains information about these moves to some de-
gree, the information gained from these 4 types of subtrees
may be less informative for classifying the move. However,
since each of the 4 types of subtrees are aggregated using 4
separate techniques (min, max, mean, std), they account for
22× 4× 4 = 352 of the total tree features (x̄agg). The par-
ent and child subtrees are not aggregated so they each only
contribute 22 features, which together with the binary fea-
tures total to 22 × 2 + 2 = 46 key features (x̄key). This
architecture maps the aggregate features to a smaller hidden
layer, allowing the network to extract key information from
the aggregate features while focusing on the key features.

The first hidden layer takes as input all the features for a
tree generated by a specific weight and tree size; both x̄key

and x̄agg . This layer has the capability to learn key informa-
tion from x̄agg , contextualized by x̄key . The second hidden
layer takes the first hidden layers from trees generated across
both weight options (still for a specific tree size), along with
x̄key for these two trees. Finally, the third hidden layer takes
the second hidden layers generated across all 5 tree sizes,
followed by a single output node to classify the move. This
architecture is shown in Figure 1.

For all neural networks, Each linear layer except for the
last applies a 20% dropout to prevent overfitting and ReLU
activation applied after, and the output has a sigmoid acti-
vation applied to constrain the classification between 0 and
1. The networks were trained using Adam optimizer, with a
learning rate of 1e-4, weight decay of 1e-5, and early stop-
ping with a patience of 10 epochs.

The data was split, withholding 10% of randomly sam-
pled data for testing. The training set contained 744 brilliant
moves, 1463 good moves, and 1444 other moves, while the
test set contained 76 brilliant moves, 174 good moves, and
156 other moves. 5-fold cross-validation was used to train
and validate each classifier on the training data; the model
hyperparameter and final selection was done based on the
class-balanced accuracy averaged across each fold. Hyper-
parameters were selected via grid search.

To validate the significance of the tree features, logistic re-
gression models were trained on various subsets of the data.
These subsets are as follows:
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Figure 2: Win chance using self-play weights (top) and Maia weights (bottom) for each move type vs number of nodes searched.

• Self-play/Maia/Both Win Chance: Using only win chance
evaluation before and after the move (and the difference),
evaluated with self-play/Maia/both weights and 105 nodes
searched.

• Self-play/Maia/Both Win Chance per Number of Nodes:
Using the win chance evaluation before and after the
move, evaluated with self-play/Maia/both weights, for
101,102,103,104, and 105 nodes searched.

• Is Best Move: Using only the feature encoding if the move
of interest is the best move evaluated, evaluated for both
weights and all 5 tree sizes (nodes searched).

Results and Discussion
Data Analysis
To verify the utility and information gained by performing
the tree search with different nodes searched, the distribution
of move win percentages across different number of nodes
searched using self-play weights is shown in Fig. 2

These figures show that brilliant moves tend to start off
with lower win chance predictions when only 10 nodes are
searched, then rises as more nodes are searched. Both good
and other moves start off with stronger evaluations with 10
nodes searched, but as more nodes are searched, the bril-
liant moves peak higher than the non-brilliant moves with a
tighter distribution skewed towards a high win chance.

A similar pattern is observed using Maia weights. One
key distinction is that brilliant moves appear to be very neg-
atively evaluated when just 10 nodes are searched, which
is also the case with good moves, though to less of an ef-
fect. Even as more nodes are evaluated, the predicted win
chance for brilliant moves remains much lower than those
using self-play weights. This supports the idea that brilliant
moves are difficult to find, since the human-level chess en-
gine fails to recognize the strength of the move when evalu-
ating a small number of nodes.

Model Evaluation
Table 1 shows the class-balanced accuracies for each model,
averaged across 5 folds.

Using only the win chance from the largest tree, the
class-balanced accuracy of the logistic regression model
only reached 61%, showing that more features are neces-
sary to characterize brilliant moves more accurately. Vary-
ing the number of nodes is informative for classifying bril-
liant moves; even if the only feature is if the move of inter-
est is the best move, by looking at multiple tree sizes and
weights the logistic regression model improved to 64% ac-
curacy. By using the win chance per number of nodes, the
accuracy reaches a maximum of 68%. Using all the features
available, logistic regression reaches an accuracy of 74%,
showing that the full feature set contains additional infor-
mation useful for classification, aside from just win chance.

The fully connected neural network with one hidden layer
of 50 units achieves an average cross validation accuracy
of 76%. Adding a hidden layer using the tiered architec-
ture, both PerWeight and PerSize neural networks achieve
an accuracy of 77%. Adding another hidden layer that first
maps features from each individual tree, PerWeightPerSize
achieves an accuracy of 78%. Finally, the AggReduce ar-
chitecture performed the best, achieving an average cross
validation accuracy of 79% at 21 epochs on average. The
hidden layer sizes are 25, 400, 50 for the first, second and
third hidden layers respectively. This model was evaluated
on the test set to quantify the final accuracy, achieving a test
accuracy of 78.60%.

When classifying moves as brilliant or not, the AggRe-
duce architecture obtains a true positive rate of 71%, true
negative rate of 85%, a positive predictive value of 83% and
a negative predictive value of 75%. In many potential ap-
plications of this model, e.g. in automatic game labelling,
it may be of particular interest to ensure a move labelled as
brilliant is truly brilliant (positive predictive value), and to



ensure a move that is truly non-brilliant is labelled as such
(true negative rate).

Brilliant moves more often elude the weaker engine

Further testing was done to better understand the impact of
Maia trees on the neural network predictions. For each tree
generated with Maia weights, the predicted win chance at
the post-move node was set to -1 and the model output score
was recalculated. On average, this caused an increase of
0.02554 (σ = 0.0471, n = 4057) to the classification score,
with a p-value of <0.001. This supports the notion that one
of the characterising traits of brilliant moves is the difficulty
of understanding why they are strong, since reducing Maia’s
win chance prediction increased the prediction score of the
move being brilliant.

Classifier Accuracy
LR (Self-play Win Chance) 61%
LR (Maia Win Chance) 58%
LR (Both Win Chance) 61%
LR (Self-play Win Chance per # of Nodes) 65%
LR (Maia Win Chance per # of Nodes) 65%
LR (Both Win Chance per # of Nodes) 68%
LR (Is Best Move) 64%
LR (All Features) 74%
Random Forest Classifier 74%
Gaussian Naı̈ve Bayes 65%
K-NN Classifier 66%
SVM Classifier 73%
Fully-connected NN (50) 76%
PerWeight NN (25, 200) 77%
PerSize NN (100, 50) 77%
PerWeightPerSize NN (100, 100, 25) 78%
AggReduce NN (25, 400, 50) 79%

Table 1: 5-fold average class-balanced accuracy for
each classifier, using the best hyperparameters discovered
through cross validation. The best discovered NN hidden
layer sizes are displayed in brackets, in order.

Conclusions and Future Work
In this work, we have shown that it is possible to predict
human perception of the brilliance of moves in chess. We
have shown that game trees provide information about the
perceived brilliance over and above how strong the move is,
and that moves that are rated highly by both a weak and a
strong engine are predicted to be less brilliant.

We have studied perception of brilliance by anonymous
Lichess users. Expert perception of brilliance might differ
from perceptions of Lichess users, and experts and amateurs
both can have different tastes within the groups as well.

One can attempt to generalize our work to the percep-
tion of brilliance in other domains where creativity has tree-
search-like aspects, such as mathematics.
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