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Abstract

The intersection between poetry and music provides
an interesting case for computational creativity, yet re-
mains relatively unexplored. This paper explores the
integration of poetry and music through the lens of beat
patterns, investigating whether a byte-based language
model can generate words that fit specific beat patterns
within the context of poetry. Drawing on earlier stud-
ies, we developed a method to train a byte-based trans-
former model, ByT5, to align poems with beat patterns.
The results demonstrate a high level of beat alignment
while maintaining semantic coherence. Future work
will aim to improve the model’s ability to create com-
plete beat-aligned poems.

Introduction
The integration of poetry and music has a significant impact
on the aesthetic reception of both art forms. This intersec-
tion is evident in the shared terminology, such as “rhythm”,
which plays a vital role in cultural transmission and emo-
tional expression. Despite this similarity, limited compara-
tive studies have explored rhythms in music as opposed to
rhythms in poetry. This scarcity can mainly be attributed
to the complexity of the involvement of experts in both do-
mains (Patel 2010). The patterns and sounds of words are
generally overlooked when studying poetry, whereas studies
tend to concentrate on other language-related aspects (Hirjee
and Brown 2009).

Songs are great examples of creative language meeting
music. They often stick to lyrics that fit well with the mu-
sical tones and beats forming patterns that not only con-
vey figurative meaning but also align smoothly with the
music. Linguistic stress is comparable to musical accents,
indicating points of emphasis. Lerdahl (2001) explored
the relationship between the sounds of English poetry and
music, focusing on how stress patterns and pitch levels in
poetry and music are related. In a later study, Lerdahl
(2013) used the Beatles’ song “Yesterday” as a key ex-
ample to demonstrate these connections. The challenge in
generating lyrics is in balancing coherence with fitting into
a steady musical rhythm. While many studies focus on
rhyme, they often overlook the essential rhythmic compo-
nent of the lyrics (Xue et al. 2021). However, some re-
search has explored generating lyrics of various languages

that align with music from stress and pitch perspective
(Oliveira, Cardoso, and Pereira 2007; Sheng et al. 2021;
Chen and Teufel 2024).

Additionally, beat rhythm is another point of comparison
between language and music, though whether the language
itself is rhythmic has been a subject of debate and research
has led to controversial findings (Rathcke et al. 2021). The
African talking drums provide a fascinating case study of
the convergence of sound and language. These drums are
used to mimic the tonal and rhythmic patterns of spoken
language, acting as acoustic speech surrogates illustrating
the relationship between rhythmic patterns and verbal com-
munication (Ong 1977). Similarly, Arabic poetry has deep
ties to drum music, serving as the foundation for Arabic
prosody. It is said that the rhythmic pounding of hammers
in the street of braziers in al-Bas.rah inspired al-Khalı̄l al-
Farāhı̄dı̄ to establish the rules of Arabic prosody based on
the alignment he found between the clanging patterns and
the speech rhythm in poetry (Ibn al Mu’tazz 1976).

Allen (1972) studied the perceptual beat locations in
words taken from spontaneous English conversations. The
study involved several experiments including having par-
ticipants tap their fingers along with perceived beats in
the words, confirming that rhythmic beats often align with
vowel onsets, i.e. the transitions from consonants to vow-
els, and were more accurately detected in stressed syllables.
Rathcke et al. (2021) recently revisited the topic and stud-
ied the validity of sensorimotor synchronization to perceive
speech rhythms where similar tapping experiments showed
that people tend to identify perceptual beats at vowel on-
sets in English sentences. These studies mainly focus on
English, but a similar concept can be observed in other
languages such as Arabic, where scansion places rhyth-
mic beats on vocalized consonants (those followed by short
vowels), which characterize the meter of the poem (Frolov
2000).

This raises several research questions: Can a large lan-
guage model effectively learn beat patterns perceived from
natural language? How accurately can such a model gener-
ate textual content that conforms to predetermined rhythmic
constraints? And, importantly, does this capability extend
to maintaining semantic coherence while adhering to these
constraints?

Building on these questions, this short paper seeks to de-



Figure 1: The process of converting a four-syllable phrase “I believe in” from its phones to a beat pattern.

termine if a large language model can be trained to select
words that align with a given beat pattern. Our focus is on
generating words in the context of poems, aiming to make
them resemble lyrics used in music. To achieve this, we de-
velop a model that maps graphemes to beat patterns, build-
ing on insights from earlier research. We then utilize a byte-
based transformer model to replace or insert words that align
with a specified beat pattern, all without exposing the model
to phonemes or audio-based data, but instead by interpret-
ing symbolic beat patterns derived from the arrangement of
consonants and vowels. To measure the model’s quality, we
employ automated evaluation metrics.

Methodology
In this study, we selected the ByT5 model (Xue et al. 2022),
a byte-level transformer model derived from the T5 archi-
tecture which is an encoder-decoder transformer developed
by Google (Raffel et al. 2020). Unlike models that break
text into subword-level units, ByT5 operates at the charac-
ter level, providing the precision needed to handle text with
granular control over character-level patterns.

Task Formalization
The task involves inserting a set of words W ′ =
(w′

1, w
′
2, . . . , w

′
i) within a given poetry verse S =

(w1, w2, . . . , wn), i < n, that exhibit a given beat, B(W ′).
The task may also be formalized as replacing a set of words
W ⊂ S with an undesirable beat B(W ) with a set of words
W ′ of desired beat B(W ′). This task requires a poetry
dataset as well as a graphemes-to-beat transformation B(.).

Dataset
The dataset used in this study is derived from the English-
labeled subset of a poetry corpus compiled by Haider
(2021). To ensure the dataset contained only English poems,
we applied additional cleaning using an XLM-RoBERTa-
based language identification model trained on a language
identification dataset1. This step filtered out non-English po-
etry verses, leaving only the relevant poetry verses for our
analysis. We used only the poetry verses from the dataset
ignoring non-relevant information.

1The model is available at: https://huggingface.co/
papluca

Figure 2: Grapheme-to-Beat pattern model.

Grapheme-to-Beat Transformation
To identify the rhythmic beats in English words, we follow
the findings outlined in past studies (Allen 1972; Rathcke
et al. 2021; Hermes 2023). That is, we place the beat at-
tack on the transition from a consonant to a vowel. A syl-
lable comprises an onset, a nucleus, and a coda. The nu-
cleus is typically a vowel- either a short vowel, long vowel,
or diphthong- while the onset and coda can include zero or
more consonants. It is possible for a syllable in English to
have a null onset or coda, but if there is no onset, a glot-
tal stop generally precedes the vowel (Hermes 2023), which
can still be considered a vowel onset. Any other sounds —
such as consonants not followed by a vowel, vowel elonga-
tions, or the second vowel in a diphthong — are treated as
non-beat units (or rests) (Figure 1).

English script is orthographic deep, where there is little
one-to-one correspondence between letters and sounds. To
get the consonant-vowel pattern CV (w) for a given word
w, we first need to extract its phonemes from the English
script. To do this, we used a pre-trained grapheme-to-
phoneme transformer model2. This model transforms text
into phonemes, which we then convert to consonants and
vowels with one-to-one mapping. Long vowels and diph-

2https://github.com/as-ideas/
DeepPhonemizer



Figure 3: An example input/output of the ByT5-B in green and ByT5-CV in orange.

thongs are mapped to double vowels “VV”, while conso-
nants are denoted by “C”. We then convert these CV pat-
terns into beat patterns: a “1” represents a beat where there
is a vowel onset, and a “0” represents a non-beat unit (or
rest) (Figure 2).

Model Training
We fine-tuned the pre-trained ByT5 model on the processed
dataset to generate words that align with a specified rhyth-
mic beat pattern. During training, we used a masking strat-
egy to simulate the task’s objective. For each verse, let
us say S = (l1, l2, ..., ln) where l represents an individ-
ual letter in the verse, we randomly masked a set of words
W = (li, li+1, ..., li+j−1) where i is the position of the first
letter and j is the total letter count in W .

To indicate where the masking occurred in S, we used
special tokens (E0 and E1) so that the masked version of S
looks like this: S′ = (l1, ..., E0, B(W ), E1, ..., ln). B(W )
represents the beat pattern of the original words. We then
appended a special token E2 followed by W to prompt the
model to align the words with their corresponding beats
(Figure 3). For a comparative analysis, we used a simi-
lar strategy to fine-tune a model that focused on consonant-
vowel patterns with CV (W ) replacing B(W ) in S′.

To ensure the model could handle spans of varying
lengths, we applied a span-masking strategy inspired by
SpanBERT (Joshi et al. 2020). This strategy involved sam-
pling span lengths from a geometric distribution with a prob-
ability parameter of 0.2. A maximum threshold was set at
25% of verse words’ count, but the geometric distribution
favours shorter spans.

Experimental Setup
Dataset Split
Our dataset consists of 1, 038, 743 verses obtained after data
preprocessing. We excluded potentially garbled lines, as was
done in the QUATRAIN dataset (Belouadi and Eger 2023).
We then split the dataset into two random subsets: a training
set comprising 1, 033, 549 examples and an evaluation set
with 5, 194 examples.

Training Setup
We fine-tuned two ByT5-base models on the specified
tasks: ByT5-B was trained with a focus on beat patterns,

while ByT5-CV focused on consonant-vowel patterns. We
also fine-tuned two ByT5-base models ByT5-CV-base and
ByT5-B-base where attention masks were set to zero in the
pattern positions, ensuring that the model did not attend to
these patterns, using this configuration as a baseline. All
models were trained for four epochs on an NVIDIA A100
GPU. The learning rate was set to 3e−4 with a cosine sched-
uler and a weight decay of 0.1. The training batch size was
set to 128, and the evaluation batch size was set to 16.

GPT-4 Baseline
To compare our results against the current state-of-the-
art large language models, we used GPT-4 (version:
gpt-4-0613), which is OpenAI’s most capable model at
the time of this research. We randomly selected 1000 ex-
amples from our dataset and masked them as described. We
prompted GPT-4 with a short explanation of the problem
and a few-shot examples to evaluate its performance on re-
constructing beat patterns3. At the time of this research, we
did not have access to any fine-tuning capabilities of GPT-
4. However, the purpose of this comparison was to assess
whether GPT-4, in its current state, could understand and
perform this task effectively, given its proficiency in various
downstream tasks. We acknowledge that fine-tuning is im-
portant for a fairer comparison, and we plan to compare our
model with a fine-tuned version of GPT-4 in the future if
such capabilities become available.

Automated Evaluation Metrics
The task’s primary objective is to generate words that match
a beat pattern while maintaining semantic coherence within
the context of a poetry verse. Using automated evaluation,
we measure Coherence and Beat Alignment (while human-
based evaluations will be sought in future work).

Coherence Score measures how well the predicted words
fit with the surrounding context. To evaluate coherence,
we utilized the original subword-level T5 model (using the
base-size version) to derive a log-perplexity score (through
calculating the cross-entropy loss). We inserted a special

3The source code, the dataset, and GPT-4 prompts used
are available at: https://github.com/melzohbi/
poem-rhythm



token at the location of the masked span in the verse, so
the sequence became S = (w1, . . . , E0, . . . , wn). We then
prompted the model to predict the tokens replacing the spe-
cial E0 token, computing the cross-entropy loss for the pre-
diction. This pre-trained model, serving as an external scor-
ing mechanism, was independent of our dataset. This setup
allows us to verify whether or not our training process im-
pacts the coherence of the model.

Alignment Scores evaluate the alignment of generated
words with the required beat rhythm. We employed two
metrics:

• Exact Alignment Accuracy: This metric checks whether
the generated word precisely aligns with the expected
beat rhythm, resulting in a binary outcome (0 for non-
alignment, 1 for exact alignment).

• Levenshtein distance: This metric assesses alignment by
calculating the normalized Levenshtein distance between
the generated word and the expected beat rhythm. This
measure accounts for cases where the alignment may not
be exact but is reasonably close, providing additional flex-
ibility in evaluation.

Results
This section explores how well the fine-tuned ByT5 models
meet the task’s objectives. We evaluate their performance
in terms of Coherence and Beat Alignment. In the follow-
ing section, we discuss the implications of these results for
further research.

Coherence: The results in Table 1 show that both mod-
els achieved a comparable log perplexity with the baseline
model, with the ByT5-CV version slightly ahead with a log-
perplexity score of 7.48, compared to 7.494 for the ByT5-
B version. The baseline models score between 7.442 and
7.432. These outcomes suggest that the custom fine-tuning
process didn’t significantly impact the model’s semantic co-
herence, indicating that it adapted well to the rhythmic task
without sacrificing fluency. We did not evaluate GPT-4 out-
put for coherence, given that T5 exhibits lower fluency com-
pared to GPT-4.

Alignment Scores: Both of our models showed a high
level of beat alignment accuracy. The ByT5-CV model
achieved an Exact Alignment Accuracy score of 98.88%,
while the ByT5-B variant achieved 98.31%. The Leven-
shtein distance, which allows for some flexibility, indicated
near-perfect scores of 99.83% and 99.63% respectively, sug-
gesting that the models generally aligned with the rhythm,
with only minor deviations. This demonstrates that the mod-
els understand rhythmic patterns even when they do not ex-
actly match. In contrast, the baseline ByT5 models, includ-
ing GPT-4 on the 1000 examples, had much lower scores for
both exact alignment and Levenshtein distance, indicating
that these patterns are challenging to learn without proper
training.

These findings confirm that our fine-tuned ByT5 models
can generate words that align with beat patterns while main-
taining coherence. This sets the stage for further research
into generating entire verses or poems with consistent rhyth-
mic structures.

Model Coherence Accuracy Levenshtein

ByT5-Base-CV 7.442 0.3512 0.7670
ByT5-Base-B 7.432 0.5575 0.8323
GPT-4 - 0.2550 0.6105

ByT5-CV 7.480 0.9888 0.9983
ByT5-B 7.494 0.9831 0.9963

Table 1: Performance comparison between our consonant-
vowel model, beat model and the baselines. For Coherence,
lower is better. For Exact Alignment Accuracy and Leven-
shtein distance, higher is better.

Conclusion and Future Work
In this study, we investigated the capabilities of ByT5, a
byte-level language model, particularly its aptitude for gen-
erating words that conform to specific consonant-vowel pat-
terns and rhythmic beats. Our methodology focused on fine-
tuning multiple ByT5-based models on a conditional mask-
predict objective to reconstruct words with predetermined
consonant-vowel patterns and rhythmic beats. The results
demonstrated that our models were able to generate words
that align with specified patterns while maintaining seman-
tic coherence. Our models showed high rhythmic alignment
accuracy indicating their effectiveness in this task without
adversely sacrificing the models’ fluency.

The models have potential applications in various co-
creative frameworks, including songwriting, rap lyric gen-
eration, and in the process of rhythmic poetry creation. In
future work, we aim to expand the model’s capabilities to
not only insert individual phrases but also generate complete
verses or poems that maintain rhythmic coherence through-
out. We will also explore the impact of unstressed syllables
on beat strength and the precise locations and durations of
beats backed by human evaluation. By advancing these as-
pects, we intend to enhance the model’s utility furthering the
integration between poetry and music.
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