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Abstract

In recent years, generative AI systems for music com-
position have transformed not only music generation
but the field of computational creativity as a whole. In
contrast to the black-boxes of deep learning techniques,
classic algorithms offer a transparent alternative to mu-
sic generation that does not require training data and,
due to the autonomous process, such systems could be
argued to reflect a more genuine creative process. One
such algorithmic system is cellular automata. Designed
as grids of binary nodes, cellular automata use mathe-
matical rules to transition between different states that
can be used to generate music. The initial state and
the particular transition rules allow different patterns
to emerge which can be translated into musical com-
positions. In this paper, we introduce AUTOMATONE,
a semi-interactive music generator based on the cellu-
lar automaton Conway’s Game of Life. To ensure the
quality of the music output, AUTOMATONE is based on
pentatonic scales and uses four different state-transition
systems to generate beats of different tempos.

Introduction
Music generation systems based on deep learning (DL)
techniques (e.g. see Briot, Hadjeres, and Pachet (2020);
Carnovalini and Rodà (2020) for overviews) have become
an increasing sight not only in scientific communities like
that of computational creativity (CC) but also in commer-
cial settings (e.g. OpenAI’s Jukebox (Dhariwal et al., 2020)
and Google’s MusicML (Agostinelli et al., 2023)). Today,
auto-generated music systems can create interesting and aes-
thetically pleasing music with little to no inference from hu-
man users. Neural networks are trained on different musical
styles and genres, and as a result, they can produce seem-
ingly innovative compositions that replicate the characteris-
tics of particular styles. Despite some remaining challenges
with semantic content like lyrics or sophisticated rhythmic
patterns, it is hard to diminish the artistic quality of musical
products from generative AI. Thus, these systems fulfil Bo-
den (1992)’s creativity criteria of being novel and valuable.
However, such DL models are trained on a large dataset of
human-made music that guides the creation of new compo-
sitions. Arguably, these compositions perform style repro-
duction of existing music and the ‘creative’ process exists as
black-boxes without intentionality and explainability. This

means, that even if such processes in some aspects could be
considered creative, it is by no means possible to evaluate
this using some classic methodology (e.g. Rhodes (1961)).

In contrast, traditional methods for music generation fo-
cus on designing algorithms that create music based on a
set of generation and combination rules. While subject to
less broad and ‘generalisable results,’ such methodologies
are transparent and explainable.

One prototypical method to design musical rules with
enough variability to be considered ‘self-creative’ while si-
multaneously relying on transparent and easy-to-understand
rule systems, is cellular automata (CA) (Von Neumann,
2017). Originally introduced to model self-replicating sys-
tems, CA are state-transition systems in the format of grids
(typically 2 dimensional) of binary cells. Following prede-
fined rules, the cells in the grid transform into new state con-
stellations based on the states of the neighbouring cells. One
such rule system is Conway’s Game of Life (GOL) which,
simplified, simulate evolutionary reproduction.

In this paper, we introduce the music-generating system
AUTOMATONE based on GOL and discuss its creative char-
acter within the setting of autonomous creativity.

Theoretical and Technical Foundation
Creative Products and Creative Processes
Classical definitions of creativity tend to focus on the out-
put to be both novel and valuable (Boden, 1992). While this
makes CC a straightforward endeavour, it has had the con-
sequence that many systems that simulate creativity can fo-
cus exclusively on the product and ignore that the process of
generating the products also influences the creative character
of the system. For music generation systems it becomes of
particular importance that the process generating the output
also displays some level of creativity as music is experienced
over time and not as a finished product. The importance of
also considering the creative process has been highlighted by
several researchers (e.g. Csikszentmihalyi, Abuhamdeh, and
Nakamura (2005); Rhodes (1961) but it is not clear how the
process of music generation could be evaluated in relation
to ‘good-old-fashioned’ CC systems as well as generative
AI systems respectively.

Despite the complexity, a few different models to inves-
tigate the creative process of the system have been pro-



posed. Referred to as ‘computational creativity desiderata’
by Brown and Jordanous (2022)’ such evaluation methods
include: (Colton, 2008)’s tripod model, in which the sys-
tem needs to display skill, appreciation and imagination;
and (Jordanous, 2012)’s SPECS step-evaluation method that
highlights the importance of defining creativity and using
standardised tests.

Algorithmic Music Composition and Cellular
Automata
Fundamental to human expression, music has been of par-
ticular interest to formally simulate. Due to the systematic
patterns that are identifiable in (most) music genres, algo-
rithmic composition traditionally focused on mathematical
models, knowledge base systems, grammars and evolution-
ary algorithms (see Papadopoulos and Wiggins (1999) for a
historic overview).

Here the prototypical stochastic method for music com-
position is to use Markov chains (e.g. Scirea et al. (2015);
Shapiro and Huber (2021)). Based on probabilities from
learned data, the music generation is based on a state-
transition system in which the upcoming node depends on
the previous one. Markov chains are particularly suitable for
learning rhythms as they easily capture repetitive patterns.
Naturally, as with DL models, Markov chains are trained
on existing musical data. But in comparison, they limit the
probabilities for the node generation to the previous states
rather than the whole model.

From the perspective of evolutionary algorithms, cellular
automata (CA) is a commonly used methodology for mu-
sic generation (see examples in (Burraston and Edmonds,
2005; Miranda, 2001)). CA are discrete dynamical systems
that act as state transitions over time intervals. In contrast
to Markov chains, CA do not rely on probabilities or train-
ing data, but the state transitions are exclusively based on
the current state. Created to simulate cellular evolution, CA
typically consist of 2-dimensional grids where the cells can
either be ‘alive’ or ‘dead’. For 2D CA, there is a possible
256 different transition rules. Regardless of the chosen rule,
each CA is given an initial state that due to the lack of imple-
mented global trends, develops emergent behaviours. This
means that music generation based on CA independently de-
velops its own patterns that when translated into tones and
chords create unique melodies.

The problem with these algorithms is that the degree of
freedom and randomness of the system tends to be quite
high. Consequently, the quality of the translated musical
composition tends to be quite low. For this, it is important
that the translation from CA cell grids into musical notes
makes sense from the perspective of music theory.

AUTOMATONE: System Description
AUTOMATONE was built as an object-oriented program
made in JavaScript with p5.js1, and Tone.js2 as the main

1https://p5js.org/
2https://tonejs.github.io

coding frameworks. The latest version of the system is avail-
able via GitHub Pages3 and the source code to the program
is available on the corresponding GitHub Repository4.

The System’s Backbone: Conway’s Game of Life
The baseline in AUTOMATONE is the auto-generated pat-
terns extracted from CA, in particular, GOL that was intro-
duced by John Horton Conway in 1970. The underlying idea
of GOL was to create a complex ‘organic’ system follow-
ing simple mathematical rules. The rules state that in a 2D
grid, each pixel - a ‘cell’, can only have two states; ‘dead’ or
‘alive’. Simplified, the rules state that 1) a cell ‘dies’ when
it has fewer than two living neighbours or more than three
living neighbours, and 2) is ‘born’ when it has exactly three
living neighbours. And 3) for any setting between rules 1)
and 2), the cell stays ‘alive.’ The initial state of the system
can be random or fixed.

As a CA, GOL has some particularly interesting emergent
features. Based on the format of the initial state, the transfor-
mation patterns can result in three different end states. First,
they can fade away completely, either by overcrowding the
boards or becoming too sparse. Second, the patterns can set-
tle into a stable configuration without any further changes.
Finally, it can enter into an oscillating phase in which the
pattern repeats in an infinite loop.

There are known initial states that will produce a specific
output, either still or oscillating that are of particular interest
as they are known to develop particular patterns and emer-
gent properties as the game develops. In AUTOMATONE, we
ignore these pre-defined initial states for enhancing the cre-
ative process and for each initiation of music generation, the
boards are given a randomised initial state.

AUTOMATONE consists of four different grid boards (see
the different rows in Figure 1) that compose the basis of the
music generation system. Each grid spans 8x8 cells that ad-
here to the logical rules of the GOL algorithm. As a human
user, it is possible to manipulate the grids in real time to
‘kill’ or ‘awaken’ some of the cells in the different grids.
That way, it is possible to alter the course of the generation
process into new and unexpected patterns even if the system
had ended up in one of the GOL end states.

Cells to Notes: Making Music with Pentatonic
Scales
One of the most challenging aspects of making music from
a cellular grid is to ensure that the binary cells correspond
to something musically meaningful. Randomly assigning
notes to the cells results in a cacophony of noise that hardly
could be considered music and would fail on the creativity
criterion of being perceived as ‘valuable’.

In AUTOMATONE, we deal with the translation of grids
into music in two ways. The first is to add a level of rhythmic
complexity and the second is to ensure a harmonic output.

Rhythmic complexity: Each of the four grids has a
counter, (see the small turquoise dot at the bottom in Figure

3https://pixelkind.github.io/automatone/
4https://github.com/pixelkind/automatone/



1) that dictates the beat of the particular grid by transitioning
through the vertical lines in a step-wise fashion. From left to
right, the speed increases. The slowest grid plays a note for
4 seconds, the second grid plays 4 notes at the same time,
the third plays 8 notes at the same time, and the fourth plays
24 notes at the same time. This melodic beat provides depth
to the generated music.

This is motivated by how in Western music, the typical
beat is a 4/4 rhythm Powell (2010). Following musical con-
vention, the first board is the dominant component of the
melody, followed by the second, third and fourth boards rep-
resenting weaker beats. Each board’s time is aligned to en-
sure that the beats enhance each other and do not cause any
distortions in the melodies.

Harmonic tones: To deal with the ‘quality’ of the musi-
cal output it is possible to rely on musical scales to ensure
that the generated combinations are within ‘reasonable’ cre-
ative limits. For this purpose, Pentatonic scales are particu-
larly useful. Referred to as “the mother of all scales” Powell
(2010) and commonly used in many types of music, penta-
tonic scales are musical compositions limited to five notes
per octave ordered based on musical keys (eg. C, D, E, G
and A).

The most useful thing about the pentatonic scales in re-
lation to auto-generated music is that their members have a
basic mathematical relationship to one another. This means
that they form an excellent self-sufficient group that can
either be played simultaneously to provide harmony or be
played in a melodic sequence to generate a melody. For AU-
TOMATONE, this means that the pentatonic scales are used
both as a melodic component as part of the sequential steps
that each of the boards goes through (cf. the turquoise dot),
as well as a harmonic component in the way that they are
played simultaneously as the cells are activated in the indi-
vidual boards as well as over the four boards.

Practically, this means that each board is a tone matrix
(TM) with a pentatonic scale, its own synthesizer connected
with it and its individual speed. In the boards, the pentatonic
scale goes from top to bottom with a play head that plays
one column at a time.

Since we are using a 8x8 TM and have only five notes per
octave in a pentatonic scale, we combine different octaves
for each TM to fill it up (eg. C3, D3, E3, G3, A3, C4, D4,
E4).

AUTOMATONE: The Complete Picture
AUTOMATONE starts with four different GOL systems. Ev-
ery system has its own board that consists of an 8x8 grid of
cells that represents a single instance of a GOL simulation.
Vertically the rows are assigned to a specific ‘note’, while
horizontally, the columns define the time dimension. During
setup, every cell gets randomly assigned a state, either dead
or alive. Before the system starts, the user has the opportu-
nity to manipulate the initial input for every board. Every
board has its individual speed, tone scale, and synthesizer.
In the initial setup, the ‘slowest’ board, plays the deepest
notes, while the ‘fastest’ board plays the highest notes.

Figure 1: AUTOMATONE generating music over 5 seconds.
Each row represent a new second for each of the boards.

A board consists of a two-dimensional array of cells and a
reference to a synthesizer. In the current system implemen-
tation, one synthesizer is used for the first board, while the
other three boards share another synthesizer.

Technically, every cell is treated as an individual ob-
ject with the ability to: 1) know its state, 2) alter its state
(alive/dead), 3) play the tone that is connected to its position
in the grid, 4) assess if it has been manipulated by a user and
transform accordingly.

System Demonstration
The interface of AUTOMATONE can be accessed through a
web browser on a desktop computer with the mouse as an
input device for optional manipulation of the cells (you can
run it on Github5). The rows in the four grids are labelled
according to the note and the octave with respect to the pen-
tatonic scale. The columns represent the time dimension and
a turquoise square at the bottom shows which of the columns
are currently played.

In Figure 1, the music generation over 5 seconds is
demonstrated.

5https://github.com/pixelkind/automatone/



Discussion and the Bigger Picture
Positioning AUTOMATONE in Music Generation
Despite being a unique application, the foundation of AU-
TOMATONE is not a novel approach as CA has been used
for music generation for decades. One of the most famous
usages is perhaps avant-garde composer Iannis Xenakis, fa-
mous for using cellular automata in part of his compositions
Solomos (2005). While the elementary algorithms for CA
are of a finite set, there is a wide variety in which the method
can be used to translate into music.

Developed in stages over several decades, the work by
Miranda (e.g. Miranda (2001)) is perhaps one of the most
long-lived and scientifically impactful projects on using CA
for music generation in different ways. Building on Con-
way’s GOL, the music generator CAMUS translates the
grids into music based on a coordinate system of three notes.
Similarly, Morris and Wainer (2012) also uses Conway’s
GOL to generate music, but here the translation from cells
to music is done by mapping a Chord Progression Model
directly onto the cell spaces.

While it is impossible to compare the quality of the mu-
sical output, the main difference between our method and
these two examples is that our method simultaneously uses
four TM grids of different tempos to create a beat of some
sort. This multidimensional component enriches the music’s
complexity in a way that easily can be transposed to repre-
sent different musical instruments. Simultaneously, our har-
monics are based on pentatonic scales which ensures that the
nodes played are compatible with one another.

Another noteworthy thing is that due to the simplicity and
transparency of the logical rules underlying the methodol-
ogy, it is not only possible to combine CA with a range
of musical translation methods. It is also possible to com-
bine CA music generation with a plethora of other compu-
tational methodologies - further improving the output and
the complexity. For instance, in Delarosa and Soros (2020),
a neural network was trained on the 256 elementary CA
rules and MIDI files to be able to generate music. Like-
wise, in Lo (2012), machine learning fitness models were
used to guide the CA music generation. In Arshi and Davis
(2017), the authors combine CA with the stochastic neural
networks Boltzmann machines for generating Persian music.
Further, in Phon-Amnuaisuk (2010) heterogeneous cellular
automata (hetCA) were used in combination with time-delay
neural networks to generate chorale melodies in the style of
Bach. Finally, Miranda and Miller-Bakewell (2022) inves-
tigated the compatibility of using CA with quantum com-
puting. Each of these studies demonstrates the complexity
and scientifically interesting application area of using CA
for music generation.

How Creative is AUTOMATONE?
One of our main claims is that due to the transparency of
the process behind the music generation of AUTOMATONE,
it is worthy to be considered a creative system in its own
right. From the perspective of Colton (2008), a creative sys-
tem is required to display skill, appreciation and imagina-
tion. While it is possible to (in a liberal sense) argue for both

skill and imagination, we have not provided the system with
any level of self-assessment worthy of the epithet of ‘appre-
ciation’. Following Jordanous (2012)’s SPECS evaluation,
we have defined creativity as being of equal parts a novel
and valuable product and displaying a creative process. This
means that the system must be considered creative. How-
ever, we have yet to conduct empirical investigations as to
whether this impression of the perceived creative ability ex-
tends to other than us designers of the system.

Diverging from creativity assessments in the CC domain,
we look to Rhodes’ Rhodes (1961) classic four-component
analysis of creativity: Product, Person, Process and Press.

As for the product, the music is novel and (we think) quite
pleasant to listen to, fulfilling Boden (1992) requirement. As
for the person, while the system lacks an embodied ‘self’
highlighted to be of importance for creative ability Merlini
and Nicoletti (2020), the system can together with the hu-
man user autonomously produce an infinite number of musi-
cal compositions without any requirement for training data.
As for the process, the transformation rules of GOL might
seem deceptively simple but combined with the method by
which the cells are turning into musical tones, it resembles
the generation of electronic music. Arguments we think are
in support of the creative character of AUTOMATONE. The
final component press, requires a reception of an audience
and we leave it to future work to evaluate this component
(see below).

Conclusion and Future Work
In this paper, we introduced AUTOMATONE, a genera-
tive music system based on CA theory that acts as a par-
tially interactive music generation system. Based on Con-
way’s game of life, AUTOMATONE’s algorithms can gener-
ate an infinite number of musical melodies comparable to
the melodies generated by generative AI’s methods. In com-
parison, AUTOMATONE is entirely transparent and explain-
able, and there is no ‘artistic theft’ involved in the training
as the quality of the melodies is based on music theory, in
particular, pentatonic scales. Further, due to the composi-
tional design of the system, AUTOMATONE generates four
different melodies at different beats to provide depth and so-
phistication to the generated music.

AUTOMATONE is still in an early stage of development in
which we have several planned directions for improvement,
among others technical and evaluative.

As for technical improvements, due to the compositional
design of the system, it is possible to alter AUTOMATONE
to simulate multiple different instruments. By utilising and
expanding on the existing TM boards and assigning them
the sounds of different musical instruments, AUTOMATONE
would be able to create increasingly complex and sophisti-
cated music pieces by simulating bands and orchestras.

As for evaluative assessments of the system’s usefulness,
aesthetic value and creative character, our initial plan is to
conduct an on-site study at ICCC. As AUTOMATONE is a
music generator with an emphasis on a transparent process,
any such study is required to have a live audience.
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