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Abstract

Conventional stories for children are static, independent of
the medium (text, video, audio). We aim to make stories in-
teractive by giving the user control over characters, objects,
scenes, and timing in known story worlds. This leads to the
construction of unique and personalized stories situated in
familiar environments. We limit the scope to domains con-
sisting of a coherent body of works, such as the children’s
book series “Peter Rabbit”. We build a knowledge represen-
tation for the domain in the form of a character-centric on-
tology (the symbolic part), and learn that representation auto-
matically. Then, aided by instruction-tuned Large Language
Models, we infer a novel storyline over that representation
with active user interaction (the neural part). Automated ex-
periments and a human evaluation show that the narratives
generated are coherent, enjoyable, and of good quality.

Introduction
Stories are popular among people of all ages, and humans
are exceptionally talented at creating them. They are used
for entertainment, sharing experiences with others, convey-
ing one’s feelings, and strengthening relationships. Al-
though a very challenging topic, Automatic Story Genera-
tion is therefore considered to be a highly rewarding Natural
Language Processing task.

We are still far from having story generators which can
compete with trained writers. Our motivation for this paper
is to work on storytelling that does not overlap with classi-
cal writing. Interactive story generation started in the early
1970s with the program TaleSpin (Meehan 1977). Herein
the story’s events are generated dynamically, according to
the user’s input and guided by the context of the story uni-
verse, past events, and a logical final goal. This makes every
story generated unique and creates a new form of entertain-
ment while reading since the reader actively participates to
different degrees in the story-making process.

This ensures that the events of the story generated are hap-
pening in a partially familiar environment for the child, in-
cluding heroes that the child knows and likes. The work
in (Bamman, O’Connor, and Smith 2013), Bamman et al.
focuses on the importance of characters in stories. They ar-
gued that actions in the plot are propelled by the underlying
nature of personas. Therefore, they proposed a method to
learn personas through the stereotypical actions the charac-

ters engage in, the actions done to them, and the words used
to describe them. While we follow similar goals as TaleSpin
(Meehan 1977), our method explicitly considers character
attributes to constrain the story generation.

In this paper, we first build a character-centric ontol-
ogy from a coherent body of works such as the popular
children’s book series “Peter Rabbit”. We then leverage
instruction-based Large Language Models (LLMs) to
generate novel stories that align with this representation and
user inputs. Through our story generation system, users
can control plot elements and create short children’s stories
featuring familiar characters. Automated experiments and a
human evaluation survey show that the narratives generated
are coherent, enjoyable, and of good quality. We call the
proposed system ”StoReys”, hinting at the step-by-step
construction of a story on top of previous paragraphs.

Related Work
Neural methods produce original and interesting stories that
are well-liked by humans. They require less manual effort
than past approaches since they do not rely on predefining
the domain knowledge by hand. However, since Language
Models such as Recurrent Neural Networks generate text
based only on already-seen text tokens, the stories generated
are not guaranteed to be coherent or to have a clear ending.
To tackle this shortcoming, story generation is split into two
main parts in (Martin et al. 2018). They convert sentences
in the corpus into more generalized events, represented in
a specific format, by replacing words and verbs with their
semantic classes. Then, they train an event-to-event predic-
tor to sample an event based on the previous one. Finally,
they reconvert this event back to natural language using a
Language Model (LM).

The work in (Tambwekar et al. 2019) relies on reinforce-
ment learning to guide the model toward a predefined goal,
using a reward-shaping approach. This approach uses the
verbs of the generated sentences to indicate how far we are
from the goal, and then rewards or punishes the model ac-
cordingly through the loss function.

Other works split the generation into separate steps, where
they guide the LM through the plot points of the story. A hi-
erarchical generation system is introduced in (Fan, Lewis,
and Dauphin 2018), wherein the model first generated a
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Figure 1: Character representation learning pipeline.

premise sentence of the story and then expands it into a
paragraph. The Plan-And-Write system from (Yao et al.
2019) takes the title of the story as input and generates key-
words that represent a coherent succession of events. It
then writes a story following these keywords. The PlotMa-
chines program in (Rashkin et al. 2020) proposes an outline-
conditioned story generation, in which the user provides sen-
tences that describe key events and characters. The system
then automatically orders these plot points and generates a
story based on them.

Another way to condition the LM is by providing a begin-
ning and an end to the story. The model then tries to fill in
the missing parts based on these two. Narrative interpolation
is used in (Wang, Durrett, and Erk 2020), where the model
incrementally generates steps based on the previous and the
next sentence. Similar to the Plan-And-Write system, a hier-
archical story-infilling system is proposed in (Ippolito et al.
2019), that generates keywords based on the beginning and
end. In a second step, these words are used to condition the
LM and then generate the middle part of the story.

Unlike previous studies that primarily focus on text gen-
eration using sequence-to-sequence or smaller transformer
models, our work investigates instruction-tuned Large Lan-
guage Models (LLMs) to control plot progression. Since
such models can also capture the logical dependencies in
the story, an event validation framework is redundant. So
we focus instead on building a knowledge representation of
the story world that revolves entirely around characters.

To filter out illogical events, the character-centric CAST
system relies on a commonsense framework; COMET, an
automatic knowledge inference model that can generate
a commonsense description for a given unstructured text
(Bosselut et al. 2019). For every generated sentence can-
didate, this system chooses a main character, infers its in-
tention, and then checks if it matches the previous charac-
ter’s motives. If so, the candidate is deemed to be valid
(Peng et al. 2022). In our approach, we rank two candi-
date paragraphs by comparing them based on the established
character-centric knowledge representation, and not on the
previous text. This paragraph-based selection generates a
story continuation that is more consistent with the charac-
ters’ personalities.

In (Liu et al. 2020), a character representation is learned
first using the embeddings of verbs and adjectives related to
each character. They then use this representation to condi-
tion an action predictor that decides the character’s reaction
to the current environment. A story continuation is gener-
ated next based on that decision. Similar to this work, our
representation is based on verbs and adjectives mentioned
for each persona. However, instead of using the words’ em-
beddings, we rely on a commonsense inference method to

extract the characters’ attributes from unstructured text. This
ensures that we capture underlying characteristics that are
otherwise not detectable.

Method
We first build a Natural Language Processing pipeline
that automatically extracts a character-centric representa-
tion from a coherent corpus of stories. We then lever-
age instruction-based LLMs to iteratively write the story
paragraph-by-paragraph. We also incorporate constraints
during the sampling phase in order to generate narratives
that fulfill the objectives below.

• Character Faithfulness: The generated stories should
present characters that are similar in personality, actions,
and story role, to the character representations extracted
from the corpus.

• Interactivity: It should be possible to control different
elements of the story, with a focus on character-character
and character-object interactions.

• Coherence: The stories generated should be complete
and coherent across their length.

A formal definition of the inputs and output of our method
is as follows:

• Inputs: Character representations R = {r1, r2, ..., rm}
are learned from a corpus. Here, ri is the representation
of the i-th character and m is the number of the characters.
The user instructions U = {u1, u2, ..., un−1} are given
to our pipeline to guide the writing. Here, ui is the user
input that constrains the i-th paragraph of the story and
n is the total number of paragraphs. We omit the user
command un since the ending of the story is generated
automatically.

• Output: A story P = {p0, p1, ..., pn} is generated as a
result, where pi is the i-th paragraph of the story.

Character Representation Learning
The sequence of components in the pipeline for learning
character representations is shown in Figure 1. First, we
retrieve the preprocessed sentences from the stories dataset
and cluster them by character. This clustering leverages
the Named Entity Recognition (NER) algorithm by spaCy
(Honnibal et al. 2020), which relies on a word embed-
ding strategy based on sub-word features and a neural net-
work to detect named entities. The next step is to simplify
each sentence into clauses to facilitate the attribute infer-
ence. We rely on the algorithm Sentence-to-Clause1, which

1https://github.com/rahulkg31/sentence-to-clauses



is a lightweight approach that extracts clauses from complex
sentences based on dependency trees. This is often prone to
errors because phrase constructions are diverse and hard to
delimit by simple rules. For this reason, we employ Lan-
guageTool2, to minimize error in the extracted clauses.

From each clause, we then generate a possible charac-
ter attribute using commonsense inference. In this context,
“commonsense” refers to the shared human knowledge of
how the world works. It captures information about well-
known facts or relationships that a human may infer from
natural text. Generally, models are trained on Commonsense
Knowledge Graphs (CKGs) and then used to infer common-
sense from unseen natural text.

We explore ATOMIC (Hwang et al. 2021), a causal
knowledge representation where textual descriptions of nine
different types of if-then relations are provided. One of these
relationships is xAttr, which is used for predicting the at-
tribute that describes the subject of a sentence. An example:
“PersonX accepts PersonY’s apology.” One xAttr entry in the
dataset, in this case, would be the adjective “forgiving”. We
rely on a pretrained model released together with the dataset.
These models are capable of generating accurate common-
sense inferences for unseen events. In our work, we adopt
the BART-based transformer model (Lewis et al. 2020).

Once the attributes are extracted, the next step is to trans-
form the frequency of each attribute within each character
cluster into a more suitable metric.

Metric The representation above is learned by extracting
character attributes from all sentences. This extracts multi-
ple personality traits that are not unique to a specific char-
acter. Such attributes are too common and should there-
fore have a lower weight. For this, we propose to use
Term Frequency-Inverse Document Frequency (TF-IDF), a
numerical statistic commonly used in information retrieval
to evaluate how relevant a term is to a specific document in
a corpus (Leskovec, Rajaraman, and Ullman 2014). The TF-
IDF value increases proportionally to the number of times a
term t appears in the document d. But it is also offset by the
number of documents in the corpus D that contain the term
t, which helps to adjust for the fact that some terms appear
more frequently in general.

We adapt the TF-IDF nomenclature for our purpose. In
this context, we substitute term t, document d, and corpus D
in TF-IDF with attribute a, character c, and set of characters
C. The TF-IDF is calculated as:

tf idf(a, c, C) = tf(a, c) · idf(a,C), (1)
with

tf(a, c) =
na,c∑

a′∈c na′,c
, (2)

where na,c is the number of occurrences of the attribute a
for the character c, the denominator is the total number of
attributes extracted for character c, by counting each occur-
rence of the attribute a′ separately,

and with

idf(a,C) = log
1 + |C|

1 + |{c ∈ C : a ∈ c}|
+ 1, (3)

2www.languagetool.org

Table 1: Comparison table of user interaction and the cor-
responding real-world motions commonly occuring in chil-
dren’s play with toys.

Web-based UI Interaction simulated

User introduces a new
unseen character.

Child brings a new
character figurine into
the scene.

User introduces a new
unseen object.

Child brings a new ob-
ject into the scene.

User changes the loca-
tion.

Child changes a loca-
tion placeholder (such
as a card).

User introduces a char-
acter movement.

Child moves the fig-
urine of a character.

User introduces a
character-character
or a character-object
interaction.

Child makes two fig-
urines of a character
and a character/object
interact.

where the numerator is the total number of characters con-
sidered. The denominator is the smoothed total number of
characters that have the attribute a.

Story generation
We want the generation of the story to be user-interactive.
In the future, we want to drive the story with inputs from
a camera that tracks the motion of a child playing with
figurines. This would allow the child to control the story
by moving the figurines around. For now, we simulate
inputs through a web-based user interface. The side-by-side
comparison in the Table 1 illustrates this idea.

Adding Story Elements Users can add characters to the
story, and thus introduce roles (main characters, support
characters or villain characters) into the narrative. This al-
lows for the development of engaging character dynamics
and the progression of the plot. Users can also incorporate
objects, which serve as plot devices. Moreover, users can
change the location within the story, which provides a shift
in the story environment.

Adding Actions Here, users can introduce an interaction
between characters or between a character and an object.
This enables the creation of meaningful relationships, con-
flicts, or collaborations within the story. Additionally, users
can specify attributes such as speed (fast or slow) and direc-
tion (towards, away, or with contact). These attributes add
depth to the interactions and describe the motion of the child
while playing. Similarly, users can specify movement for a
character and define an orientation change (upwards, down-
wards) or speed (fast or slow) of this motion.



Instruction

Top Candidate

 User changes
location

 to a forest

Prompt

Context

 Tom Kitten arrived

in a forest

Candidate 1

Candidate 2

 Tom Kitten wandered into a dense forest full of tall
 trees and chirping birds. He was fascinated by the new
 surroundings and started exploring.

Ranker

Large Language
Model #1

Large Language
Model #2

Prompt
constructor

Character
Representation

Figure 2: Overview of the story generation pipeline. The user instruction ui+1 is translated into a suitable prompt. The story
history {p0, p1, ..., pi} and the created prompt condition the LLMs. The two LLMs each generate a candidate continuation. A
Ranker module compares the candidates and chooses the best one as the story continuation pi+1. The above steps are repeated
until a full story P = {p0, p1, ..., pn} is generated.

An overview of the story generation pipeline is shown
in Figure 2. Two components of the pipeline that we con-
tribute, the Prompt Construction and the Ranking-based Text
Generation, are described next.

Prompt Construction Prompt construction represents a
crucial step since it is used for guiding the LLMs, and ensur-
ing that users’ intentions as represented by their inputs are
fulfilled. Based on user interaction, we automatically gener-
ate a suitable prompt that consists of two main parts: a base
prompt and an instruction prompt. The base prompt is con-
stant, and it controls the writing style of the story by ensur-
ing a narrative style that is more focused on action and that
avoids dialogue. The instruction prompt controls the direc-
tion of the story. It specifies if a beginning, a continuation,
or an ending is generated. It guarantees that the beginning
is randomized and that the story ends on a positive note, or
with a moral lesson. It also ensures the motion-based inter-
activity aspect.

The simulated motion of a child playing with figurines
should be transformed into a concrete action that fits both
the characteristics of the movement and the role of the char-
acters involved. As an example, if hypothetically a child
slowly moves a villain’s figurine towards the hero’s figurine,
it can be interpreted as the villain following the hero or
sneaking up on him. To simulate this on the web-based UI,
the user would make the following selection: {active charac-
ter: villain, passive character: hero, action type: movement,
direction: towards, modifier: slow}.

We collected a dataset of action verbs for the purpose
of sampling an appropriate action for a specific motion.
We rely on the language database FrameNet to ensure ac-
curate verb semantics (Baker, Fillmore, and Lowe 1998).
FrameNet is a lexical database of English verbs and nouns,
where each word is classified under a semantic frame. As
an example, the verb to help and the noun aid are found
under the frame Assistance. We manually annotated the se-

lected verbs with a set of selected features. First, each verb
specifies the action type it represents. This could include in-
teractions between characters and characters, characters and
objects, or character movements. We include possible char-
acter roles as an active agent (performing the action) or a
passive agent (affected by the action). These roles include
main, villain, and support characters. Finally, we added
other modifiers such as direction of the movement, speed
of the verb motion or changes in orientation.

This results in 120 fully annotated verbs with 53 different
semantic frames. These frames cover a considerable spec-
trum of events. For instance, typical frames for verbs with a
villain as an active agent are Attack, Hostile encounter, In-
hibit movement, among others. Around 67% of the verbs’
action type is an interaction, and the remaining 33% repre-
sents a movement. During the text generation, based on the
action selected and its characteristics and agents, we select
a list of appropriate verbs from the dataset. We then extract
all unique semantic frames, and randomly choose one. The
next step is to then sample one of the verbs that are con-
tained in this frame from the candidate list. Once the verb is
selected, the last step is to build a natural language sentence
with this verb, which represents the instruction prompt.

Ranking-based Text Generation The text generation
pipeline is composed of two main phases: a writing phase
and a ranking phase. During the writing phase, as shown
in Figure 2, the previously created prompt, coupled with the
story history, are fed to multiple LLMs. Based on that, the
pretrained models generate two different text candidates as
a story continuation. This ensures story diversity, more cre-
ative writing and avoids repetition.

The ranking phase is presented in Figure 3. We calcu-
late multiple metrics for each candidate. First, the character
score reflects how faithful the candidate is to our character-
centric representation. We find and resolve coreferences of
the same entities found in the text, using a modified ap-
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Figure 3: Overview of the candidate ranking pipeline.

proach developed by NeuroSYS3 and based on a corefer-
ence resolution model provided by the AllenNLP library. We
then use the character representation learning pipeline (Fig-
ure 1) to extract attributes from the text candidate. These
extracted features are matched against the character repre-
sentation from the entire corpus to calculate a final character
score.

Furthermore, we calculate a local context score, which
reflects the similarity of the text candidate to the previous
paragraph in the story. This ensures that the story appears to
be a continuation of the previous events. We transform the
candidate and the previous paragraph to a fixed-length vec-
tor by leveraging a sentence transformer model called all-
MiniLM-L6-v24. We then calculate the score based on the
cosine similarity between these two vectors.

We create the final score by combining the character
score (70%) and the local context score (30%) together
using a weighted average. A penalty is additionally ap-
plied to this score based on a combination of readability
metrics (flesch reading-ease score (Flesch 1979), SMOG
score (Laughlin 1969) and Dale Chall score (Dale and Chall
1948)). We reduce the score of a text that is rated higher
than a 4th-grade level.

Finally, of the two generated text candidates, the one with
the higher score is shown to the user, and added to the mem-
ory of the current story paragraphs.

Experiments
Dataset
We select the book series Peter Rabbit by Beatrix Potter
since it contains multiple stories, presents a closed world
with recurrent characters, and addresses children between
four and eight years old. The books are classic bedtime sto-
ries that revolve around animal characters in the countryside,
and are freely available online in the digital library Project

3https://github.com/NeuroSYS-pl/coreference-resolution
4https://huggingface.co/sentence-transformers/all-MiniLM-

L6-v2

Gutenberg5. We only selected the books relevant to eight
recurrent characters and removed all dialogue and related
sentences that contain speech verbs. We also deleted special
punctuation, applied case normalization, and split the text
into separate sentences. For that, we use the Sentence Tok-
enizer from the natural language toolkit NLTK6. This results
in a dataset containing 745 sentences with an average length
of around 15 words per sentence.

Experiment Setup
We evaluate our approach using two LLMs. Here, the spe-
cific choice of LLMs is of no consequence, as our con-
tributions are built around the LLMs and not inside them.
The first one is the assistant-style transformer model GPT-
3.5-turbo, released by OpenAI. It was trained on more than
570 GB of text data, coupled with advanced deep learning
techniques, such as unsupervised pretraining and reinforce-
ment learning from human feedback. We used the version
gpt-3.5-turbo-0613 through the chat completion API with
a temperature of 0.75. The second model is MPT-7B-Chat
(MosaicML-NLP-Team 2023), an open-source chatbot-like
model for dialogue generation. It was built by finetuning
MPT-7B, a decoder-style transformer, using performance-
optimized layers and an Attention with Linear Biases (AL-
iBi) training (Press, Smith, and Lewis 2022). We run a ggml
format of this model through the gpt4all framework. This
format makes use of quantization, which allows for large
models to run on consumer hardware (Frantar et al. 2022).

Evaluation
Automatic Evaluation We present the following auto-
mated metrics used for analyzing the generated stories.

BLEU Score BLEU refers to BiLingual Evaluation Un-
derstudy and is a metric used to evaluate the quality of
machine-generated text (Papineni et al. 2002). As the name

5https://www.gutenberg.org/ebooks/14838
6https://www.nltk.org/



suggests, this metric is used to evaluate the similarity be-
tween a generated text and a ground-truth text by compar-
ing their n-grams, usually for machine translation tasks. It
ranges from zero to one, with one indicating that the text
overlaps entirely with the ground-truth, and zero meaning
that there is no similarity between the two. We compare
the generated corpus with the Peter Rabbit books as ground
truth.

Self-BLEU Score Self-BLEU uses the BLEU score and
was first proposed by Zhu et al. (Zhu et al. 2018). Instead
of comparing the generated text to the ground-truth text, it
compares different parts of the generated text against each
other. Similarly, Self-BLEU ranges from zero to one with
a lower score indicating a more diverse text. On the other
hand, a higher score suggests a repetitive output. This helps
assess the variation in a model’s generated outputs.

Human Evaluation The previously mentioned metrics do
not evaluate the quality of the stories, their coherence, or
their novelties. They only evaluate the ability of the model
to reproduce a given corpus, which can be useful in some
cases but not for story generation. Therefore, the consensus
is that human evaluation is currently the only valid method
to evaluate text quality in story generation (See et al. 2019).
Purdy et al. define a list of survey statements in (Purdy et
al. 2018), specifically designed to evaluate generated sto-
ries that have been validated against human judgments. We
extend this framework by adding additional statements to
create a more adequate survey for this work.

We then enlisted 21 subjects to take the survey. To qual-
ify, participants had to read the first book of the Peter Rabbit
series and a small overview of the recurrent characters. This
was provided to the participants in the form of a survey pro-
tocol. Participants were then asked to generate two to three
short stories through the web-based user interface. In total,
55 stories were generated and evaluated during this survey.
To ensure a fixed length of the story, the user was limited
to five interactions per story. For each story generation, the
participant was asked to truthfully respond to 20 statements
using a five-point Likert scale, ranging from one for Strongly
Disagree to five for Strongly Agree.
These statements consist of:

Paragraph-related statements First, for every generated
paragraph, we ask the two following questions:

1. (Interactivity) This paragraph’s events reflect the charac-
ter/object’s movement in the scene as specified by the
user.

2. (Coherence) This paragraph’s events make sense given
the events before them.

The first question captures the ability of the user to control
the various elements of the story. The second question fo-
cuses on the coherence of the generated text. This demon-
strates if the LLM can generate events that are logical and
coherent with the previous events of the story.

Table 2: BLEU n-gram (BLEU-n) scores between 700 gen-
erated story sentences of each model and the Peter Rabbit
dataset. A higher BLEU score indicates more similarity to
the books, and we highlight the highest model score in each
column.

BLEU-2 BLEU-3 BLEU-4 BLEU-5
MPT 0.504 0.222 0.116 0.070

GPT3.5 0.379 0.151 0.078 0.050
Average 0.442 0.187 0.097 0.060

Story-related statements The statements in this section
are about the story as a whole:

1. This story’s events occur in a plausible order.
2. This story avoids repetition.
3. This story uses interesting language.
4. This story is enjoyable.
5. This story reminds me of a Peter Rabbit story.
6. The characters appeared to be consistent across this story.
7. The characters in this story have personalities similar to

the Peter Rabbit characters.
Questions (1. - 4.) were taken from the list of survey state-
ments designed in (Purdy et al. 2018). Further two ques-
tions (5. and 7.) assess the similarity of the story generated
and the characters’ traits to the Peter Rabbit world. An ad-
ditional question (6.) was included to explore whether the
characters’ roles and personalities were conserved during
the story generation.

AI-related statements Finally, we also include statements
about the cooperation between the participant and the AI
used in this system. These are listed below:

1. I can count on the story generation system to write a reli-
able story.

2. I felt engaged in the story writing.
3. The story generation system leaves enough room for my

creativity.
4. Overall, I am satisfied with the story generation system in

this scenario.
The first question was added to investigate if the user trusts
the system to write a good story. With the second and third
statements, we investigate the user’s engagement and cre-
ativity during the generation process. The last statement
is concerned with the overall satisfaction of the participant
with the AI-system.

Results and Discussion
Automatic Evaluation
Similarity For the BLEU score, the results are shown in
Table 2. We first interpret the average results of both story
writers together. Nearly 44% of the bigrams in the generated
text are found in the books. This shows a moderate similar-
ity between the generated and reference text for bigrams. As



Table 3: Self-BLEU n-gram (Self-BLEU-n) scores of 700
generated story sentences of each model and the ground
truth dataset sentences (Peter Rabbit books). A lower self-
BLEU (denoted as S-B in the table below) score indicates
more diversity. We highlight the lowest model score in each
column (other than the Ground Truth Dataset).

S-B-2 S-B-3 S-B-4 S-B-5
Ground truth Dataset 0.637 0.364 0.199 0.124

MPT 0.811 0.658 0.537 0.454
GPT3.5 0.718 0.512 0.366 0.274

for the BLEU-3 score, the generated text has fewer trigrams
(ca. 18%) in common with the books. As for 4-grams and
5-grams, the scores suggest even less overlap (ca. 9% of
4-grams and ca. 6% of 5-grams). This could indicate a con-
siderable difference between the generated stories and the
Peter Rabbit stories. However, this is only a weak claim as
BLEU-n score is expected to generally decrease as n grows.

From Figures 4 and 5, we observe that the high bi-
gram score reflects mostly characters’ names and common
character-verb combinations. The low BLEU scores also
highlight that the story writer does not aim to replicate the
Peter Rabbit books. We also observe that the MPT model
generates text that is more similar to the Peter Rabbit books
than the GPT3.5 model.

Diversity Table 3 presents the self-BLEU scores for both
the generated stories for each model and the relevant books
(ground truth dataset). To calculate this score, we treat one
sentence as the hypothesis and the others as references. This
process is repeated for every sentence of a corpus of 700
generated sentences, and the average BLEU score is consid-
ered the self-BLEU score.

The story writer based on GPT3.5 model performed well
in the diversity score, with self-BLEU scores slightly higher
but extremely similar to the original stories. This indicates
that the language diversity of the model aligns with human-
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Figure 4: Bigrams in the original Peter Rabbit books.

written text and avoids repetition. As for the MPT model,
higher self-BLEU scores show that the generations are more
repetitive and less diverse.

Human Evaluation
The overall results of the survey are shown in Figure 6,
where we detail the percentages of the Likert scores for each
dimension in the questionnaire. Generally, participants re-
sponded positively to our story generation system. Across
all dimensions, positive Likert scores range from 60% to
95%, while negative scores are between 5% and 40%.

Before discussing the results, we first validate the con-
ducted evaluation using the metric Cronbach’s Alpha α,
which is used to assess the internal consistency of a survey.
This statistic measures how well the survey items are cor-
related and consistently target the same underlying concept.
It ranges between zero and one, with higher values indicat-
ing stronger internal reliability, while a lower value suggests
poorer consistency. For our survey, α = 0.877, signifying a
very good internal consistency.

Paragraph-related Results We observe that the story
writer produces continuations that are coherent and faith-
ful to the user’s input. In the context of interactivity, the
writer is good at following instructions, especially for the
first paragraph, where the context is just a short beginning.
Therefore, it is easier for the LLM to generate a quality con-
tinuation. For the following story parts and as the context
increases in size, the interactivity rating drops slightly.

With the progression of the story, the writer is able to pro-
duce contextually relevant text, that aligns well with past
story elements. It could remember past interactions and
objects that appeared before, even when the story context
spanned over multiple paragraphs. However, we noted a
slight decline in the coherence of these paragraphs, as the
story events exhibit on occasion an increase in randomness.
An example would be that the writer sometimes forgets one
of the characters that appeared at the very start of the story,
or that the writer fails to develop an important plot point and
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Figure 5: Bigrams in the generated Peter Rabbit stories.
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Figure 6: Distribution of the Likert score results in percentages per survey statement. “Par.i” stands for paragraph-related results
for paragaph i, “Sty.” for story-related results, and “AI.” for AI-related results.

rushes through it.
Generally, the writer succeeded in generating text that in-

corporates new elements into the story. Whether it is chang-
ing the story setting to another location or adding a villain,
the system allows the participants to control the plot direc-
tion, while still producing coherent stories.

While user feedback for both interactivity and coherence
is generally positive, we observed a small drop across both
metrics when adding an action. This can be explained by the
fact that the verb sampled from the verbs dataset can occa-
sionally effect an abrupt change in the course of the story.
This, at times, leads to the generation of events that lack co-
herence.

Story-related Results Our system generates events in a
logical order. It also uses interesting language and avoids
repetition, which makes the stories more enjoyable for the
participants. Additionally, the characters in the stories ap-
pear consistent, i. e., the characters’ personality traits and
roles do not change drastically throughout the story. Next,
we studied the resemblance to the original books. We ob-
served that the participants were neutral about this statement
since the writing style of the original books uses an older
style of English writing, which set them apart from the gen-
erated stories.

On the other hand, the feedback for character resemblance
to the original books is more positive. The character-based
ranking, coupled with prompting and the capabilities of the
LLM, made it possible to produce characters that are similar
to the characters of the Peter Rabbit world. We observed that
the stories included characteristic actions, such as the char-
acter Jemima Puddle-duck wanting to lay her eggs, which
was the main plot point of one of the original books.

AI-related Results We then study the features related to
human-AI cooperation. We note that the feedback across
the four statements is generally positive, with an average of

around four. The participants were found to trust the system
to generate the stories, and are satisfied with the end result.
The participants were engaged in the generation process due
to the interactivity aspect, and the writer produced text that
promotes the user’s creativity.

Conclusion
We proposed a story generator that automatically extracts
character attributes from an unstructured story corpus.
These attributes are then clustered and transformed into a
suitable metric. During story generation, text prompts align-
ing with user input are constructed using an annotated verbs
list. Two instruction-tuned LLMs were used to produce text
candidates. These candidates were then evaluated with a
ranking module that relies on the knowledge representation
and additional metrics to ensure a good quality of story con-
tinuation. This results in novel action-oriented narratives.
Users of the system were able to control plot elements and
to generate short children’s stories that include characters
similar to the original personas. Based on a set of automated
experiments and a human survey, we conclude that the sto-
ries generated are coherent, enjoyable, and of good quality.
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Appendix
Example generated story
In the heart of a dense forest, Benjamin Bunny, a curious
rabbit with soft brown fur, hopped through the vibrant un-
dergrowth. Sunlight danced through the treetops, casting
playful shadows on the forest floor. As Benjamin explored,
he stumbled upon an ancient oak tree, its gnarled branches
reaching toward the heavens.

(Add character [Mr. Tod]) As Benjamin ventured closer
to the ancient oak, a shadowy figure emerged from the
depths of the forest. It was Mr. Tod, a cunning and sly fox
known for his mischief. With a wicked grin, Mr. Tod locked
eyes with Benjamin, his sharp teeth glinting in the dappled
light. The rabbit’s heart raced as he realized he had stumbled
into the clutches of a notorious villain.

(Move [Mr. Tod] fast towards [Peter Rabbit]) Mr. Tod
lunged forward, his jaws snapping inches away from Ben-
jamin’s fluffy tail. The nimble rabbit, quick on his paws,
darted away, zigzagging through the forest. Branches
swiped at his fur as he led Mr. Tod on a wild chase. Ben-
jamin’s heart pounded in his chest, but determination fueled
his tiny legs. He had to outsmart the cunning fox and find a
way to escape his clutches.

(Change location to a [Cave]) With Mr. Tod hot on his
heels, Benjamin spotted a hidden cave nestled amidst the
ancient trees. Without hesitation, he darted inside, the dark-
ness enveloping him. The cave offered a temporary refuge,
but Benjamin knew he couldn’t stay for long. As his eyes
adjusted, he noticed a narrow tunnel leading deeper into the
unknown.

(Move [Mr. Tod] slowly towards [Peter Rabbit]) The nar-
row tunnel led Benjamin Bunny to a hidden exit, revealing a
vast farm sprawling before him. As he cautiously explored,
the scent of crops filled the air. But to his dismay, he real-
ized Mr. Tod had followed him. Benjamin hopped across the
fields, seeking shelter amidst the haystacks and barns, deter-
mined to outwit the fox once and for all in this unfamiliar
territory.

As Benjamin hid behind a haystack, he heard a commo-
tion. Curiosity compelled him to peek out and his eyes
widened in amazement. Farmer Brown had arrived, scaring
Mr. Tod away. Grateful, Benjamin hopped towards Farmer
Brown, who smiled kindly. From that day on, Benjamin dis-
covered the joy of friendship and learned that sometimes,
unexpected allies can come to the rescue. And so, in the
farm’s safety, Benjamin Bunny found a new home and a for-
ever friend.
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