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Abstract

We explore creativity and search, particularly fo-
cusing on discovering novel, valuable artifacts.
Using a density-based argument, we show it is gen-
erally infeasible for base-level search mechanisms
to discover such artifacts in any but simplistic do-
mains, As such, creativity cannot be implemented
(directly) as search. We then appeal to algorith-
mic information theory to argue that one solution
to this conundrum is to instead consider creativ-
ity as a search for programs that produce novel,
valuable artifacts that have short descriptions but
require long run times.

Introduction
Search is “the” metaphorical abstraction of compu-
tational creativity. Boden’s early work introduced
the high-level idea (1991), and Wiggins’ seminal work
(2006) on his creative systems framework (CSF) so-
lidified the metaphor as a foundational component of
the field. Since then, creativity-as-search has proven
its value by shaping research and providing a com-
mon framework for research on disparate application
domains. Wiggins’ work is formal and precise. How-
ever, the account is abstract; it does not operationalize
the idea, nor has any subsequent. We explore a diffi-
culty with creativity-as-search and offer some ways to
avoid this difficulty, perhaps shedding further light on
the search ideaand how it should be applied to compu-
tational creativity.

In particular, we suggest that the CSF applied to
base-level artifacts is perhaps doing a disservice as a
metaphor for creativity in the same way that the trope
of the room full of typewriting monkeys suggests that
Shakespeare was just lucky. We explore simple domain
examples that seem to validate the idea of creativity-
as-search. We then scale up our examples to more real-
world creative tasks, to expose the difficulty of applying
the search metaphor: due to search space size, base-level
search over objects cannot be the creative process. We
describe creativity as a “hack” for navigating compu-
tational spaces too large for efficient search. Another
way to think about this is that if search plays a part
in creativity, it must be augmented to make the space

manageable. We suggest combining creativity-as-search
with algorithmic information theory concepts. Per-
haps the monkeys are not themselves typing randomly
but are executing a creative program. Some programs
themselves can search efficiently for valuable outputs.
We make the case that creativity isn’t a direct search
for artifacts, but it is instead a search for small pro-
grams that produce them. Searching for small programs
has the benefit of both making the search space man-
ageable and producing programs that exhibit properties
associated with creativity (Mondol and Brown 2021a).

The Trouble with Creativity as Search

Let B be all possible artifacts in a domain of interest
and G ⊂ B be a set of goal artifacts. The creative
process can be thought of as the iterative application
(starting from the empty set) of a traversal function
T : {2B → B} until the traversal produces an artifact
g ∈ G. T defines a search strategy, and we are interested
in strategies that find at least one g ∈ G.

We might characterize the likelihood of finding such
a g, over the set T of all possible search strategies, as

the density d = |G|
|B| . If d ≫ 0, there are many good

“solutions” to the search, and many search strategies
will quickly succeed in discovering one of them. Under
such conditions creative search is not necessary. When
d ≪ 1, most search strategies will not identify any el-
ement of G in a reasonable amount of time—creativity
becomes critical (or, put another way, any successful
strategy appears creative). As we proceed, we will make
use of this density argument as we analyze several ex-
ample domains. This abstraction is not much differ-
ent from optimization, where “uncreative” objects have
score zero and “creative” objects have score 1. Opti-
mizing the score function is here exactly equivalent to
searching for creative objects. In this formulation, aes-
thetics in optimization algorithms would directly map
onto creativity search algorithms (and vice versa).

Can creativity be thought of as a “hack” for effec-
tively searching very large spaces? What is the rela-
tionship between heuristics and creativity, and between
brute-force search and non-creativity? We begin by
considering some position-strategy games, where we as-



sign value to game statuses in which a particular player
is the winner.

First, consider tic-tac-toe. The game has an upper
bound of 39 = 19683 board states (B); this number can
be lowered to just 765 due to various symmetries, con-
straints and redundancies. Of those, 138 are terminal
states: 91 a win for the starting player; 44 a win for the
other player; and 3 a draw. Assuming the goal is not
losing, d = G

B = 94
765 ≈ 0.12 for the starting player and

d = G
B = 47

765 ≈ 0.06 for the other player. Placing marks
randomly gives the starting player a 12% chance of a
draw or better, regardless of the strategy being employed
by the other player. Of course, a space of 765 artifacts is
trivial for computational brute force search, so a search
algorithm makes sense here: for each board state, one
can identify a play that will push the game toward the
player’s best outcome. However, what makes the game
solved, and eliminates any possibility/need for creativ-
ity is that those 765 states have been abstracted into
a set of eight ordered rules guaranteeing no worse than
a draw. At best, creativity in tic-tac-toe would be a
strategy that aims at a surprising outcom.

A game like checkers is still simple, but it’s much
more complex than tic-tac-toe, with a naive upper
bound |B| ≤ 532 (for the traditional 8× 8 board, where
each position can be either empty, held by a regular
piece, or held by a kinged piece), which again can
be tightened by application of symmetry, constraint
and redundancy arguments to around 5 × 1020 posi-
tions. Like, tic-tac-toe, the game of checkers has been
(weakly) solved by the Chinook algorithm (Schaeffer
et al. 2007), and like tic-tac-toe, perfect play from
both players will always result in a draw. However,
unlike tic-tac-toe, this solution is beyond the abilities
of human players, so the game lives in the interesting
limbo of disallowing computational creativity (because
searching for a good outcome g ∈ G is “trivial” com-
putationally by using the Chinook algorithm) while po-
tentially still admitting human creativity (because that
computational solution is incomprehensible to human
players). Again, we could imagine a pattern in which a
human player either did not play optimally, or in which
the human player (perhaps incorrectly) attempted to
abstract away patterns from watching Chinook’s play
in actual (or contrived) examples; such a search algo-
rithm might be faster or shorter than the one built into
Chinook, but still have an aesthetic value to it, by de-
lighting observers with its cleverness. Still, the entire
Chinook algorithm could be represented as a lookup
table to identify for each position what the next step
should be, much as with tic-tac-toe; while this would
be quite large, smaller versions than 8x8 checkers could
easily be stored in full on a single computer.

The game of Go is yet far more complex, and cannot
be brute forced by a computer; indeed, when AlphaGo
played Lee Sedol in 2016, Sedol attributed creativity
to the system because he was surprised by novel and
useful choices that the algorithm made.

Spendlove and Brown propose a continuous spec-

trum from games to non-games as creative tasks (2023),
and this density argument applies naturally across that
spectrum. As a first example of a non-game “creative”
task, consider identifying 3-letter English words. An
upper bound on the number of such words is |B| =
263 = 17576. Because a search strategy T for the space
B induces an ordering on B, there exist 17576! unique
strategies for searching for a valid word. For exam-
ple, one strategy simply moves to the lexicographically
next three-letter string, starting with “aaa”; this pro-
cess will terminate with the word “aah” in eight steps.
However, according to the Scrabble dictionary, there
are |G| = 1340 3-letter words in the English language.
Calculating the density, d = 1340

17576 ≈ 0.076 reveals that
choosing three letters randomly will produce a valid En-
glish word 7.6% of the time. Also, a randomly chosen
search strategy has a 7.6% chance of returning a valid
English word as its first output.

Assuming some practical horizon h of generated arti-
facts, the probability of this random search process fail-
ing to produce a valid English word within that horizon
is only 0.924h. In other words, the proverbial monkeys
with their typewriters will have no problem producing
valid 3-letter English words.

Searching for good words

We can consider this word-search algorithm in a vari-
ety of fashions, which elucidate ways in which the CSF
might or might not identify creative discovery methods.

One way to think of this search problem is as over
a 3-dimensional space where each axis is a number line
with 26 non-ordinal, discrete values. Then there are
(26!)3 different ways to order the axis labels that char-
acterize the space. Do any of these orderings cluster all
(or many of) the valid words together? And, if so, how
can those orderings be discovered? Of course, in the
case of this simple example, it has, like tic-tac-toe, al-
ready been completely solved, and can be conveniently
represented as a dictionary tree that efficiently repre-
sents a (pruned) brute force search of the space: the
tree has height 3 and branching factor 26, with pruned
branches for illegal combinations and 1340 leaf nodes.

Another way to think about representing this space
is as a joint probability distribution over 3-letter words
w = s1s2s3. This distribution can be factored as
p(w) = p(s1)p(s2|s1)p(s3|s1, s2), and, given enough
data, these distributions can be modeled so that sam-
pling the joint produces a valid word—in other words
we can build a model that accurately models within-
distribution words, which in this case means all valid
3-letter words. Again, with this simple example, the
creativity-as-search mechanism seems justifiable, but
we’re working in a very small space.

We now increase the scale and complexity signifi-
cantly by examining the Library of Babel, the subject
of an influential short story by Luis Borges (1944). In
that library exist all books that are exactly 410 pages
long, with 40 lines per page and 80 characters per line.
Defined this way, the domain of books B is finite, with a



size of |B| = 29410×40×80 = 291312000 (including spaces,
commas and periods in addition to letters). The set G
of novel and valuable books is a tiny subset of B. As a
very conservative approximation, let us consider G to
contain all books that contain only valid English words
(not necessarily in an any grammatically correct order,
never mind in any kind of interesting/creative/good or-
der). The average word length in English is 4.7 charac-
ters. There are 12972 five-letter words in English. An
average effective sentence is typically not longer than 20
words in length, so roughly 120 characters. That means
on average a book in the library would have 10933 sen-
tences. 5-letter word density can be estimated as dw =
|Gw|
|Bw| = 12972

265 = 12972
11881376 ≈ 0.001. Then sentence den-

sity can be estimated as ds ≈ 0.00120 = 10−60, and then
finally book density as db ≈ (10−60)10933 = 10−655980,
which is an astoundingly small number, effectively 0.
So, given any practical (or even any impractical) hori-
zon h, the chance of a random search process failing
to produce such a coherent book (never mind an in-
teresting one) is effectively 100%. In other words, the
proverbial monkeys may have been given way too much
credit in the general scheme of things; further, having
been given one book, there is no help given in identify-
ing the next one.

This is akin to indexing or cataloguing the library—if
a search strategy doesn’t repeat books, it is a permuta-
tion of the library, which we explore in order until we
get to a good book. This approach again shows the odd
challenge of the search approach—how do we identify
the next book to consider, as a function of the failures
we’ve already detected? Because there are |B|! unique
orderings, there are then also |B|! unique search strate-
gies. Some find all of the elements in G before finding
any in B − G. Another set will find any element in G
only after finding every element not in G.
If, instead, we think about building books using valid

English words as our atomic symbols, we eliminate
a huge number of nonsense books. This reduces the
dimensionality of the space significantly, though it is
still huge. Building a “dictionary” tree for all possible
books, requires a brute-force enumeration of all possi-
ble books, whether using letters or words as our symbol
basis, which is still completely infeasible.

Finally we can consider the statistical mod-
eling approach, and both letter-based p(b) =
p(s1)p(s2|s1) . . . p(sn|s1, . . . , sn−1) and word-based
models p(b) = p(w1)p(w2|w1) . . . p(wm|w1, . . . , wm−1)
have been built and are surprisingly good at producing
coherent English language (or any other language,
including mathematical and programming languages),
given enough training data. Modern transformer-
based models use this approach, though typically
compromising between the simpler letter-based and
more complex word-based by employing instead a
symbol vocabulary of ∼ 50, 000 subword tokens
p(b) = p(t1)p(t2|t1) . . . p(tk|t1, . . . , tk−1). This ap-
proach models patterns in the training data, and LLMs

are admittedly impressive on some level. However,
by the very nature of the data and the modeling
process, they are not modeling creative output but
instead learning exactly the opposite—to model the
distribution of the training data. Indeed, it seems
likely that we can make the argument that it is actually
not possible to model creativity in this way because
a) any and all training data fed to such models is not
creative by definition—it is Ritchie’s inspiring set I
(2007) and b) the training objective of such models
is to produce a smooth (latent) manifold such that
interpolating between points produces some (linear)
combination of those points. As a result, it is likely
that language modeling is a creative dead-end that will
itself never produce creative output.

On Searching for Programs, not Objects
One approach to bring us to a better place is to focus
on the algorithm itself, rather than the items it finds, as
the focus of creativity. This approach situates creativ-
ity at the Producer/Process levels in the 4 P’s frame-
work (Rhodes 1961; Jordanous 2016), rather than at
the Products. But there is still a challenge: the set of
valid search programs itself has good and bad elements,
and we will still have to consider searching over those
as well; the challenge of computational metacreativity
is never far away.

Nonetheless, we consider this task of finding search
algorithms. Consider the set M of all valid Turing ma-
chines that halt on all inputs and, when given a digital
representation of a sequence or set of members of the
set B as input, return a member of B as output. Each
describes a search process. The sequence or set of mem-
bers of B is the prior search items, or an inspiring set.

Some are useless and trivial (for example, a machine
M which immediately returns the first object of B in
its input (except to supply some trivial member of B
on empty input), represents a version of the identity
function, and never finds anything new. Some might
well appear complex, but can still be trivial, since it is
undecidable whether a given Turing machine M com-
putes the identity function. Still others will perform
the search strategies described in the previous sections.

Many never explore all members of B, even approxi-
mately. If B is uncountably infinite, then any algorithm
M will only explore a countable set of its members, but
even for finite domains, the algorithm might loop back
to an earlier example. As such, one restriction on valid
members of M might be that for every sequence or set
s, M(s) outputs a member of B that is not found in
s. Here, for any finite set B, the entire set B will be
enumerated in some order by M , including when the
algorithm is initialized with the empty sequence. For
finite sets B, algorithms of this sort compute a permu-
tation of B. Regardless, the set of valid functions being
computed by members of M is finite.1

1If B is infinite, then the set of valid functions is count-
ably infinite, since each is computed by a Turing machine,



We can compare two different Turing machines that
are equivalent to each other that come from this ab-
straction. For finite sets B, the restriction that we’ve
made that the machines halt on all valid inputs means
that many uncomputability issues for arbitrary ma-
chines don’t apply (they all terminate in finite time hav-
ing enumerated all of B). But we can still consider the
number of iterations of the algorithm that are needed,
starting with the empty history, before the algorithm
discovers a good object. Or we can consider the total
runtime (in the sense of steps of Turing machine calcu-
lation) by all iterations of the algorithm before it dis-
covers a good object. Or we could consider the length of
an encoding of the Turing machine program M that is
used; in particular, if we view the machine M as a pro-
gram written in a modern programming language, then
the shortest program that computes the same function
as M will have length KM(M), where the function K
is the Kolmogorov complexity function and the M sub-
script indicates the restriction to machines that halt on
all inputs and otherwise satisfy our restrictions.

In a recent sequence of papers, Mondol and Brown
explore computational aesthetics based on algorithmic
information theory that starts from this set of com-
parisons (2021b; 2021a; 2021). They claim that cre-
ativity (or, at least, value) is witnessed primarily in
short-length algorithms that take a long while to com-
pute objects that are not (also) computable by short-
running, short-length algorithms. That is, if an object
is computable by a short, fast algorithm, it is trivial;
if it is computable only by a long, fast algorithm, it is
random. Objects whose only short-length algorithms
are slow are interesting, as each bit of them requires
substantial work to discover.

We can imagine two points in the CSF where the
AIT framework comes to mind: the first is the actual
process of choosing new objects, and the second is the
choosing of the search algorithm in the first place. If
the algorithm for choosing next attempts is a good one,
then instead of searching aimlessly through the concep-
tual space, or requiring a giant look-up table to enable
the search process, it will instead focus the search on
cleverly moving towards a good outcome. In this sense,
a high-quality creative search algorithm (perhaps un-
surprisingly) focuses on compressible properties about
the items already seen, and uses them to identify “next
choices” from the set B of possible items.
The second place where the AIT frame comes to mind

is in identifying such algorithms in the first place—in
particular, a good search algorithm ought, itself, to be
a short algorithm that, nonetheless, finds items that re-
quire substantial discovery time. One example of such
an algorithm might be an enumerator that then applies
a substantially complex-to-run evaluator to the enumer-

and there are countably many Turing machines; we note
that the number of orderings of entries of B is uncountably
infinite, so the space of valid orderings computed by Turing
machines is a vanishingly small fraction.

ated objects, and which takes a while to make the de-
cision of what to enumerate next. But we can imagine
the metacreative task of enumerating over creative al-
gorithms to find a good one to itself be a creative task,
where the CSF is being applied to a set of artifacts that
are themselves creative search algorithms—one needs
a short, yet potentially slow, procedure to enable this
search over algorithms. Which suggests a need for (at
least) two levels of evaluation: Eb for base-level arti-
facts (may be considered part of a search algorithm)
and Ea for search algorithms. Finding an Ea that suc-
cessfully identifies short, slow algorithms is key to the
meta-level search and may prove challenging. In ad-
dition, Ventura suggests that base-level evaluation is
unlikely to be computable (Mondol and Brown’s sug-
gestions are all undecidable) and based on this premise
gives a high-level proof sketch (reducing from the Halt-
ing Problem) for why computational creativity is not
computable in the strong sense, independent of any dif-
ficulties (or lack thereof) due to meta-level recursion or
issues with the size of the search space (2014).

Discovering one high-quality object x enables dis-
covery of a huge set (all those objects y ∈ B whose
conditional Kolmogorov complexity K(y|x) is small) of
other high-quality objects. Since x has no short, fast-
running programs, neither do any of these choices of y.
Mondol and Brown do give a definition of novelty using
AIT, which looks at K(y|B), where B is the previous
members of B that have been produced; this measures
how much a newly-found object differs from the ones al-
ready identified. A creative search algorithm can’t just
milk a high-quality discovery for all it’s worth: it also
keeps exploring, as once a creative x is found, all sim-
ilar objects y are not novel. This finding links back to
our claim that probabilistic language modeling is a cre-
ative dead end: re-shuffling training distributions can-
not yield novel, valuable results.

In this sense, then, the creative search framework
misses the creativity that sits in the actual creative
search algorithm itself—how do we discover such an al-
gorithm, and is this the real locus of creativity?

Conclusion
While creativity-as-search has been helpful to the CC
community as an abstraction that facilitates discourse
on core creativity ideas that are (hopefully) common
across many application domains, it may also be some-
what misleading if taken literally. Our density-based
analysis shows the general infeasibility of searching even
moderately sized domains for novel, useful base-level ar-
tifacts. Instead, the search should be for short programs
that produce the base-level artifacts of interest. In addi-
tion to still leveraging all the benefits of the creativity-
as-search framework, this idea has at least two addi-
tional benefits: the search space may be small enough
to make a search feasible, and searching for programs
rather than base-level artifacts further emphasizes the
common basis for creativity across domains, which are
differentiated by what those programs do.
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