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Abstract

Music and sound generation are among the many ar-
eas being disrupted by neural network (NN) technology
which often play a creative partner role with humans.
One of the architectural features of such neural net-
works that has been attracting the attention of creative
audio practitioners is the latent space. In this paper, we
provide a provocative review and discussion of Genera-
tive Adversarial Network (GAN) latent spaces as a plat-
form for active divergence and focus on understanding
the relationship between GAN latent spaces and vari-
ous constructs in established musical theory and histor-
ical practices. We also discuss new musical affordances
provided by latent space and its connections to compu-
tational creativity and co-creative systems. We argue
that the GANS’ relationship to certain musical practices
is problematic for exploitation in real-time performance
contexts. We discuss two alternative ways in which
these challenges have been addressed in support of mu-
sic making, and finally how some contemporary musi-
cians are using latent spaces in generative systems in
their own creative practices.

Introduction

The concept of a latent space is fundamental to many of the
neural networks (NNs) architectures in generative modeling,
where it enables the generation of new data that shares fea-
tures with the training data set. This is particularly evident
in generative models like Variational Autoencoders (VAEs)
and Generative Adversarial Networks (GANs). Latent space
can offer insights into the inner workings of neural networks.
Creative practitioners can explore the learned representa-
tions in the latent space to gain a better understanding of
what features or factors the model considers important for
its generation and predictions. In this paper, we explore
GAN latent spaces and their transformative potential in the
practice of music. We seek to understand and unravel the
relationship between the latent space and the concept of tra-
jectories in musical contexts. Specifically, we investigate
how the latent space can be viewed in terms of active diver-
gence (Berns and Colton (2020), Broad et al. (2021)), mak-
ing connections to historical musical representation, impro-
visation, and the exploration of novelty as well as reflecting
on its potential as support for computational creativity and
co-creative systems.
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In this context, current large Language models in text-to-
music systems (Yang et al. (2023); Kreuk et al. (2022); Liu et
al. (2023a); Huang et al. (2023b,a); Agostinelli et al. (2023);
Dong et al. (2023); Yuan et al. (2023); Liu et al. (2023b))
often work by mapping text and audio into a common la-
tent space (e.g. the CLAP model, Elizalde et al. (2023)).
While leveraging latent spaces in this way provides for a
novel means of creating music through text, it bears little re-
semblance to historical music creation, nor is it useful in a
real-time performance context. As the adage goes, “talking
about music is like dancing about architecture.” The focus
of this paper is on other approaches to latent spaces which
offer far more nuanced control over instrument-like sound
generation (timbre and pitch) and instrument-like real-time
interaction and have a closer connection to historical music
practices.

Latent Space

The term “latent” in “latent space” refers to the hidden or un-
derlying structure present in the data - the hidden factors that
explain or determine the observable data. “Space” refers to
the typical way the factors are represented as a set of numer-
ical values, each interpreted as a coordinate in a different di-
mension. The music theoretician Leonard Meyer makes the
connection between traditional music and navigable spaces
noting that “cultures all over the world tend to characterize
pitches in spatial terms” (Meyer (1967)). Other musical di-
mensions can be similarly understood. If we are interested
in a set of sounds, for example saxophone notes, that can
all be expressed as a combination of pitch and volume, then
each point in the 2D space provides the information neces-
sary to generate a different sound, and a sequence of points
in the space would represent an expressive musical melody.

When we train GANSs for generative audio, the space of
sounds that will be available for navigation is largely de-
termined by the data set and learning objective that we use
for training. Typically, most sounds in the training data set
can be approximately generated by some particular point
in the latent space, and generated sounds that are percep-
tually close are close to each other in the latent space. How-
ever, a data set is finite and countable, but the latent space is
made of either continuous dimensions or quantized to a set
of points that can represent many more sounds than are con-
tained in the training set. This suggests that the points be-
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Figure 1: During training, the input to a GAN is a random
vector (z) (and optionally conditioning parameters) which
comprise the latent space that the generator G learns to map
to chunks of audio using feedback from the discriminator D.

tween and among those that generate approximations to data
set examples are “novel” in some sense sounding like they
are between examples in the training data set. The learned
structure in latent spaces together with the access to nov-
elty has profound creative musical implications that will be
developed and discussed throughout the paper.

Mechanisms of Latent Space

The co-creative design process starts with the choice of
training data. GANs (Figure 1) learn to organize the space of
the input vectors so that they represent the "hidden factors”
that produce outputs that model the distribution of the col-
lection of sounds comprising the data set. A more extensive
variety of sounds in the audio data set leads to the clustering
of similar timbre characteristics together with fast-changing
boundaries between them. In contrast, if the data set is built
on audio samples with similar timbre characteristics, the re-
sulting latent space we be organized more smoothly with
uniform or slowly changing timbral features.

The objective functions define the goals and criteria that
drive weight adjustment, or “learning”, during the training
of neural networks. GANs often use the Wasserstein met-
ric (Arjovsky, Chintala, and Bottou (2017)), a kind of “earth
mover” comparison of distributions of training and gener-
ated data to achieve the smooth structure in the mapping
from latent to output features and (at least locally) the preser-
vation of the association of latent space direction with mean-
ingful transformations.

A typical latent space learned by a GAN, in this case the
input layer, might have 128 dimension. While 128 might be
“small” compared to the “space” of the media, it is still a
lot of parameters for audio generation, certainly more than
an instrumentalist typically controls in real-time. How then
can we know what points to choose in order to generate
sounds with specific characteristics we desire for our mu-
sical purposes, or what directions to move to change sound
in a particular way? Every data set will create a different la-
tent space map, and even different training runs on the same
set can create radically different spaces due to random ini-
tial conditions. Data sets can consist of any sounds, so there
is no way to know ahead of time what perceptual qualities
will change with the location and direction of movement in
latent space (Tahiroglu, Kastemaa, and Koli (2020)).

Novelty

Novelty is fundamental to theories of creativity (Boden
(2004)), and became a driving aesthetic in art and music in
the 20th century (Martindale (1990)), and in new musical
instrument design in particular (Jorda (2004)). In one sense,
all sounds generated from a GAN are novel because the data
set is modeled (not indexed or memorized). More interest-
ingly, trained models “generalize” so that the space of the
data set is "filled in” with novel interpolated sounds. This
fosters creative exploration as a search for music trajectories
creating entirely new sonic experiences. The expansive la-
tent spaces can be computationally searched or learned by
other networks (e.g. Kamath et al. (2024)), or musicians
can “manually” explore regions of the space that correspond
to unique musical textures, creating variations on existing
themes, or experimenting with new musical concepts.

Related Work

The notion of a low dimensional space where instrument
timbres can be located while preserving the subjective per-
ception of distance between pairs of instruments was formal-
ized by Grey (1977). Wessel (1979) used the low dimen-
sional space where instruments were located for synthesis
by mapping the spatial dimensions to an additive sinusoidal
synthesis model, interpolating synthesis parameters if coor-
dinates were chosen between instrument locations.

The Latent Timbre System (Tatar, Bisig, and Pasquier
(2021)) used a VAE to learn timbral frames of audio. Es-
ling and colleagues (2018) used a VAE that learns a low-
dimensional representation of timbres. The RAVE system
(Caillon and Esling (2021)) incorporated those ideas in to
a real-time system which Vigliensoni (2023) navigates with
mapped physical interfaces. Yee-King (2022) summarizes
how latent spaces can be navigated musically. Real-time
navigation through VAE latent space is made possible by
restricting the output for each latent point to be a very short
(e.g. 25ms) sample of sound.

Engel (2017) and members of the Google Magenta team
showed how a large data set (called “nsynth”) of musical in-
strument tones could be represented as a sequence of latent
vectors learned by training a neural network. Since each
sound is modeled as a sequence of latent vectors, it com-
plicates the use of the latent space for interactive control.
GanSynth (Engel et al. (2019)) uses a Generative Adversar-
ial Network (GAN) trained on the nsynth data set, but with
this model, the entire note duration (4 seconds) including
the attack, sustain, and decay portions of the note, is gener-
ated by a single latent vector (augmented with information
specifying the pitch). The long output durations limit the
real-time latent parameter update rate.

The Freedom of real-time systems

To exploit the GAN’s ability to generate complexity and
novelty, but to manage the real-time limitations the come
from extended output sample durations, several systems
have been proposed. Tahiroglu et al. (2021) developed
Al-terity, a physical interface for navigating a GAN space.
Physical configurations measured with sensors are mapped



Figure 2: Blue lines are showing the principle components
and red points are the vector points in the reduced dimen-
sional space. Each vector point generates 4 second of audio
samples feed into a custom granular synthesis module, as
shown with audio waves and time windows.

to latent vectors, but generate audio for several latent vec-
tors in a neighborhood of the index from which grains (short
windows of samples) are chosen and overlapped and added
using granular synthesis techniques. While Al-terity serves
as the physical interface for exploiting the latent space, Prin-
cipal Component Analysis (PCA) has been used to find la-
tent directions as it is shown in Figure 2. PCA is applied to
the GANSpaceSynth’s activation space. These directions are
utilised for a more deliberate sampling of the latent space. In
order to navigate to a specific point in the activation space
suitable for synthesis, linear combination of the PCA di-
rections is calculated. In this structure, adjustable coeffi-
cients determine the distance to traverse along each direc-
tion, originating from a specified starting point (Tahiroglu,
Kastemaa, and Koli (2021)). Multiple samples are gener-
ated within a small neighborhood in latent space, and short
windows (”grains”) of samples are extracted from the output
segments. Overlap and adding of grains comprises the fi-
nal synthesis output. The precomputation of audio segments
combined with granular synthesis enable real-time continu-
ous transformation through Al-terity instrument. This trans-
formation occurs when the musician discovers a new point
in the instrument’s sound space, initiating a shift in the per-
formance and leading to another transition. This continuous
process is how the music consistently changes, shifts, and
transforms.

A different approach was pursued by Wyse et al. (2022) to
take advantage of the GAN’s ability to organize sounds spa-
tially and produce novelty, but to overcome the GAN’s in-
herent obstacle to real-time control. They explore the trained
GAN through random latent point generation and naviga-
tion. Four points are then chosen for their musical poten-
tial that then serve as the four corners of a two-dimensional
submanifold embedded in the high-dimensional latent space
spanning other musically interesting sounds (Figure 3). The
low-dimensional coordinates of the embedded submanifold
are then grid-sampled and paired with the GAN-generated
sounds to create a synthetic data set to conditionally train
a Recurrent Neural Networks (RNN) which generates sam-
ples sequentially so that during inference it responds im-
mediately and continuously to changes in the conditioned
parameters. The sounds are statistically similar to the corre-
sponding GAN sounds, but don’t have the fixed temporal du-
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Figure 3: From the high dimensional GAN latent space (’a’),
we can take lower dimensional surfaces (’b’), and then use
indexes in the low-dimensional space as parameters for their
associated sounds, to train a new synthesizer,

ration and structure, and can respond to parameter changes
at the audio sample rate.

Humans in the Co-creative Trajectory Loop

Sound artists imagine, explore, create, and perform rela-
tionships between sounds. The process of designing spaces
that embody relationships between sounds is as old as in-
strument building and composition, and as new as DJ rigs
and live coding. Smooth transformations between timbres
and textures also have a history that extends back over 100
years. Morphing becomes an important concept in 20th
century music with “tape techniques” (e.g. Pierre Schaef-
fer (1948) Etude aux chemins de fer) and synthesis (e.g.
Karlheinz Stockhausen, Gesang der Junglinge) which used
carefully constructed transformations between bell-like syn-
thetic tones and the timbre of children’s voices. Trevor
Wishart’s music heavily draws on morph-like transforma-
tions (e.g. 1973, Redbird: A Political Prisoner’s Dream
). Other examples from 20th century electroacoustic com-
posers that organize sounds into navigable spaces include
Michael McNabb (1978) Dreamsong and Jonathan Harvey’s
(1980) Mortuos Plango, Vivos Voco. The transformations
we hear in these works as paths through neighboring sounds
were created with almost unfathomable manual labor.

In order to better understand how today’s musicians inter-
pret, understand and apply sound - space - creativity - trans-
formation relationships to their own music creation process
using latent space, we contacted practicing musicians mak-
ing significant contributions to music with AI methods and
technologies. We asked them three main questions: a) what
are the most important feature of latent spaces and Al mod-
els they use that stand out from other musical instruments,
b) what DAWs or interfaces they use to navigate latent space
and how they influence their approach to creating or per-
forming music, and ¢) what do latent space and Al models
inspire them to do differently in music that was difficult or
not possible before? Below we elaborate the answers we re-
ceived from Farzaneh Nouri'; musician, researcher & sound
artist, Sam Pluta®; composer, laptop improviser, electron-

'Farzaneh Nouri https://farzanehnouri.com
2Sam Pluta http://www.sampluta.com



ics performer & sound artist, Erik Nystrb’m3; composer of
electroacoustic works, live computer music & sound instal-
lations, and Mat Dryhurst4; artist, musician, & technological
researcher. Their responses clustered around three themes:

* Real-time Interaction and Instrumentation: Nouri in-
tegrates Al models into live music improvisation scenar-
ios where latent spaces are the foundation for artificial
improvisers. These spaces listen to other performers and
respond in real-time, contributing to the development of
compositions. Similarly Pluta’s music-making practice
is centered around creating a varied latent space for live
electronic performance. Pluta has developed a large soft-
ware instrument for live electronic performance over the
past 15 years. The goal is to create an environment where
a latent space is available to the performer. Nystrom’s
approach as well involves using latent space for explo-
ration and improvisation. Nystrom uses UMAP dimen-
sion reduction to map a corpus of samples in 2D space,
providing an intuitive and improvisation-friendly sound
interface. This enables exploration during performances
using an x/y MIDI controller. Dryhurst has created music
using vocal timbre transfer (Holly+), tone transfer (voice
to instrument, such as the DDSP plugin they worked on
with Google Magenta), vocal generation, and more re-
cently toyed with IRCAM rave models and stable audio
for music generation from custom data sets.

* Accessibility and Recall: Nouri’s recent models use
Self-Organizing Maps for dimensionality reduction and
Neural Networks for generating output values based on
incoming sounds. The AI agent’s outputs influence sound
synthesis through various methods, including digital and
hybrid sound synthesis. The crucial aspect for Pluta is
making each sonic identity within the latent space acces-
sible quickly and musically. Al models make it easier to
recall musically meaningful settings in high dimensional
spaces. Alternatively, Nystrom employs regression to re-
duce a large number of synth parameters to a 3D space,
offering a rich territory of possible sonic textures and tim-
bres that wouldn’t be easily discovered through manual
adjustments. Dryhurst emphasises the ability to customise
a sonic playspace for exploration and finding unique cor-
ners. Additionally, the capability to share models enables
“Identity play,” allowing performers to embody the sonic
characteristics of others, as shown in the Holly+ project.

* Humans in the Loop: Nouri mentions that the use of
latent space allows for alternative approaches to human-
computer interaction, exploring machine behaviors, and
studying the possibility of liberation from control pro-
cesses in improvisational settings. Latent spaces and Al
models allow Pluta to explore complex and chaotic timbre
spaces, such as feedback systems. He can harness these
systems for musical expression, finding settings that work
and storing them for later recall. Nystrom frequently uses
timbre classification within generative works. An MLP
classifier algorithm is trained to classify certain aspects

3Erik Nystrom https://www.eriknystrom.com
*Mat Dryhurst https: //herndondryhurst . studio

of the complex system’s output, generating new sounds
that are subjected to the same listening and classification.
The evolving landscape, as highlighted by Dryhurst, in-
troduces transformative possibilities. The ability to create
and share a model for others to navigate or use in per-
formance is fundamentally new. The feature space of a
model presents a different terrain to navigate than a syn-
thesizer or sample pack. Additionally, the ability to trans-
form one’s voice to feature another, or an instrument, is
a unique opportunity that deep learning models now pro-
vide. Timbre transfer techniques, while previously em-
ployed, now offer exciting possibilities for mutating input
sounds. As prompted models improve and grow in com-
plexity, new sound become achievable and push the evo-
lution of interfaces for invoking sounds semantically or
developing new subjective vocabularies.

In the musicians’ responses, we can observe how they em-
phasise the fundamental building blocks of the latent space
as being a configurable and divergence exploratory space
that enables new modes of human-machine creativity and
sonic possibilities that go beyond traditional approaches in
music-making. The transformative potential of the latent
space mechanisms is also acknowledged by the musicians
as they configure and explore trajectories of possible sonic
timbres that would not have been be possible to discover oth-
erwise. This highlights the configurability of the latent space
as a creative space that is tailored to the musician’s needs and
compositional visions. Their utilisation of the latent spaces
for exploring complex timbre spaces, designing and probing
for out-of-domain novelty, and reconfiguring architectures
for real time exploration, supports alternative approaches to
explore machine behaviours in musician-Al interaction, re-
flecting a symbiotic relationship between human creativity
and Al models in shaping new musical expression.

Conclusions

In this paper we have presented an approach to understand-
ing latent spaces as a platform for exploring new sound
spaces and their intricate relationship with established music
theory and historical practices. We believe that latent spaces
should be considered as co-creative platforms as these neural
networks permit us to create explicit spatial embodiments of
sonic relationships with our creative practices. Interestingly,
this perspective aligns closely with historical practices and
with the experiences shared by contemporary musicians.

As we have shown in this paper, latent space can be con-
sidered as a co-creative space with rich musical potential
in the work of the practicioners we have discussed. With
that in mind, future work includes making training neu-
ral networks more accessible and available across diverse
economic, social, and geographic circumstances, increas-
ing computational efficiency in the interest of both real-time
musical performance and the environment, and discovering
new musical possibilities (instruments, compositions, gen-
res) that must exist given capabilities of new emerging com-
putational tools.
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