
Stonkinator: An Automatic Generator of Memetic Images

José P. Lopes, João M. Cunha and Pedro Martins
University of Coimbra,

Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering
{joselopes,jmacunha,pjmm}@dei.uc.pt

Abstract

In an increasingly active and global society, memes
came to be seen as a means of communication and enter-
tainment in digital culture. Throughout the years, many
image-based memes have been produced to be used in
computer-mediated communication. In these images,
semiotics play an important role, often involving pro-
cesses of citation, parody, remix, among others. In this
paper, we present a system that generates memes in the
Stonks format, using a sentence introduced by the user
as input. With this system, which we called Stonkina-
tor, we aim to help users create their own memes. To
achieve this, the system generates memes with a single
input, using techniques of image analysis and blending.
The Stonkinator system was tested by 23 participants
and the results show that the system is able to produce
a wide variety of memes, which, according to partici-
pants, can be used on social networks and in informal
text conversations.

Introduction
Dawkins (1976) coined the term meme (from the Greek
word mimema) to describe a transmission unit that holds an
idea or behaviour between human beings, crossing gener-
ational and cultural barriers. Nowadays, the term is often
associated with images and videos from the internet, usually
containing humorous content, whose objective is to transmit
an idea or message with the ability to cross language and
cultural barriers (Shifman 2013). These image-based memes
are greatly used in computer-mediated communication, be-
ing rapidly created and spread, and ultimately playing an
important role in digital culture (Wiggins 2019).

The growing use of memes (Kostadinovska-Stojchevska
and Shalevska 2018) has led to the development of multiple
tools that help to create memes, e.g. Imgflip’s MemeGen-
erator. Existing meme-generation systems usually allow the
user to produce multiple types of output, making it difficult
to determine the genre to which the meme belongs and un-
derstand how it should be used. In addition, different meme
templates exist and not all have the same degree of complex-
ity: some are based on a structure that has always the same
background image and only the text is changed; others have
a structure in which both the imagery and text are changed.
In the field of Computational Creativity, there are already

Figure 1: Meme generated by Stonkinator with the input
“When the school doctor applies a cup of tea to my wound”.

systems that explore meme generation related to the former
kind, e.g. Oliveira, Costa, and Pinto (2016) generate memes
by finding the most suitable meme template for a given news
headline. The latter kind involves multimodal exploration,
requiring both text and image to be changed. We consider
that computational creativity techniques can be especially
useful for this kind of meme generation, for example by us-
ing conceptual extension and visual blending (Cunha 2022;
Cunha, Martins, and Machado 2020).

In this paper, we focus on Stonks memes, which are often
used as reaction images, meant to portray a specific emotion
in response to something that has been said, and represent
an excessive proud feeling over the completion of a simple
task (“Adam” and “Don” 2020). Our goal is to facilitate the
creation of Stonks memes (Fig. 1) to be used in social media
and instant message conversations. We present Stonkina-
tor, a tool that takes a sentence or expression as input and
uses it to generate memes in the Stonks format (Fig. 2). The
Stonkinator system is divided into four modules: (i) the text
handler; (ii) the image obtainer; (iii) the image analyser; and
(iv) the image blender. The first module analyses the input
sentence given by the user and extracts a theme or subject,
which is sent to the second module. The second module ob-
tains a set of images related to the theme identified by the
first module. The third module analyses the images and se-
lects one containing a person and another one to be used
as the background. It also resizes the images and creates a
mask image to be used in the blending process. Lastly, the



fourth module receives the image containing the person, the
background and the mask and performs the blending. It also
writes the sentence used as input, the retrieved word related
to the action, and places the Stonks character’s head in the
place of the person’s head.

For the implementation of Stonkinator, we used differ-
ent types of blending. In order to assess the preferred type
of blending and if the users would have an interest in shar-
ing the output obtained, we conducted a user study with 23
participants. The results show a preference for images cre-
ated using a simple pasting method and positive feedback in
terms of usage in private conversations and sharing on social
networks. For testing purposes, Stonkinator was adapted to
be used as a website, which we plan to make available in the
future.

Overall, we consider that the presented project has the fol-
lowing positive aspects:
• efficiency: there’s no need to manually analyse, select and

segment image elements.
• diversity: by scraping multiple images related to the input,

the system is able to return different results each time it
runs, whether it’s a different retrieved word, background
or person in the output;
The remainder of this paper is organised as follows: the

second section presents related work to memes and visual
blending, the third section describes the Stonkinator frame-
work, the fourth section describes an experiment and anal-
yses the results obtained and the fifth section shows the im-
proved work done to the tested version. Lastly, the sixth
section presents the final conclusions and future directions.

Related Work
In this section, we introduce projects that have been a source
of inspiration for the development of our work and explain
how they relate to the Stonkinator system. We first describe
systems related to meme generation then existing work on
visual blending.

Memes
Due to the growing use of memes (Kostadinovska-
Stojchevska and Shalevska 2018), multiple tools have
been developed to help to create these images. Imgflip’s
MemeGenerator1 provides a wide array of commonly used
images to choose from and lets the user write their own cap-
tions with different settings, such as font family, font size,
position, and more.

Another example is Imgflip’s AI Memes,2 which lets the
user choose an image and generates a caption using a deep
artificial neural network. A different approach is used by
AI-Memes,3 in which the user inputs a search query and is
presented with 10 meme image choices that match the search
criteria, from which the user selects one. Then, the AI sys-
tem generates another 10 potential captions for the selected

1https://imgflip.com/memegenerator
2https://imgflip.com/ai-meme
3https://colab.research.google.com/github/robgon-art/ai-

memer/blob/main/AI Memer.ipynb

Figure 2: Stonks meme

image, and the user chooses their preferred caption for the
meme.

Different meme templates exist (Nissenbaum and Shifman
2018), e.g. the Crying Peter Parker, and these can also be di-
vided into different meme genres, which are used in different
situations (Shifman 2013). For example, one of the meme
genres used in online forums and chats is called reaction
shots, which are used to transmit an emotion or reaction to
the addressee of the meme (Milner 2012). Existing meme-
generation systems usually allow the user to produce multi-
ple types of output, making it difficult to determine the genre
to which the meme belongs and understand how it should be
used.

Moreover, not all meme templates have the same degree
of complexity: some always use the same background image
and only the text is changed; others have a structure in which
both the imagery and text are changed. In the field of Com-
putational Creativity, there are already systems that explore
meme generation in both formats. Oliveira, Costa, and Pinto
(2016) focus on the automatic generation of internet memes,
based on macro-images, that is, potential combinations be-
tween an image and a text, in order to be spread on social
networks. Memes are produced from news headlines, to
which, according to linguistic characteristics, certain macro-
images are associated and the text is adapted according to
the meme template. Another example is the work by Sadasi-
vam et al. (2020), which also takes advantage of these tem-
plates. The authors present an automatic meme generator
that creates memes based on a textual input and the system
combines macro-images with text caption, using an encoder-
decoder model to produce the final image. Other meme gen-
erators include the work by Lin et al. (2021), which ad-
dresses the problem of meme generation as an image cap-
tioning task by using an encoder–decoder architecture to
generate Chinese meme texts that match image content. Mil-
iani et al. (2020) propose a shared task for automatic clas-
sification of internet memes which includes meme detec-
tion, hate speech identification and event clustering. Besides
these works, scholars have studied the subject of memes, in-
cluding the development of other systems and models that
classify (Afridi et al. 2021; Pranesh and Shekhar 2020;
Singh et al. 2022; Wang et al. 2019; Yang et al. 2022)
and generate (Chen et al. 2019; Peirson and Tolunay 2018;
Shimomoto et al. 2019; Vyalla and Udandarao 2020; Wang
and Wen 2015; Wen et al. 2015) memes. On the other hand,
other meme structures involve multimodal exploration, re-



quiring both text and image to be changed. We consider
that computational creativity techniques can be especially
useful for this kind of meme generation, for example by us-
ing conceptual extension and visual blending (Cunha 2022;
Cunha, Martins, and Machado 2020).

Visual Blending
Considering that we focus on the generation of Stonks
memes, which involves both image and text generation, it
is important to describe existing work on visual blending.

Steinbrück (2013) developed a framework that formalises
the process of conceptual blending and applies it to the vi-
sual domain. For that, the author divides the architecture of
the project into five modules. The first two modules are ded-
icated to the acquisition of knowledge and allow a dynamic
build of the base knowledge. The first module analyses the
visual characteristics of the image through different com-
puter vision algorithms and the second one gathers semantic
knowledge about the concept presented in the image. The
other modules deal with image composition. The third mod-
ule implements the rules for the image selection, the fourth
module selects the parts of each image to be involved in the
image blending and, lastly, the fifth module executes the pro-
cess of image blending and creates the final output.

Vismantic (Xiao and Linkola 2015) is a semi-automatic
system that generates proposing images that express the
meaning of an expression or sentence. It takes advantage
of conceptual knowledge to find different visual represen-
tations of abstract concepts, with the ability to blend two
images in three ways: juxtaposition, fusion and substitution.
The system receives a sentence or expression as input and
identifies the “subject” and the “message”. The system itself
is divided into three modules: the first one finds and filters
images for the “subject” and “message”, the second module
analyses the images to filter them more thoroughly by pre-
dicting which set of images will create an unwanted output,
the third module creates the blending between the “subject”
and the “message” applying one of the three methods pre-
sented before.

Overall, our system has some similarities with the de-
scribed projects but also many differences. Our system is
divided into four distinct modules, similar to the framework
put forth by Steinbrück, and, as such, the framework also
analyses the image and isolates its constituent elements for
subsequent blending. To obtain the images, an identical ap-
proach to Vismantic was used, employing the FlickrAPI li-
brary to access images from the Flickr repository, with the
output being downloaded from a given input sentence. The
text processing module leverages natural language process-
ing tools to extract relevant words or expressions from the
input sentence, much like the methodology described by
Oliveira, Costa, and Pinto (2016).

The Stonkinator
The Stonkinator is a system that generates memes based on
text input by the user. The resulting memes are restricted
to a single format, called Stonks. The memes in this format
are reaction images with a person and a background related

Figure 3: Example of memes in Stonks format

to an action described on the top of the image, in which the
character is depicted as being unjustifiably proud of the ac-
tion described (Fig. 2) (“Adam” and “Don” 2020).

These memes (Fig. 3) have a specific structure, being
composed of four elements: (i) a character with the Meme-
man head; (ii) a background; (iii) a sentence describing an
action; and (iv) a related word or small expression. Except
for the action description, which must be at the top of the im-
age, there are no rules on the positioning of these elements,
leaving this choice to the creator of the image. The Meme-
man character head is present on every Stonks meme, being
combined with different bodies, related to the subject of the
meme. In addition, all the other elements must also have a
connection with the action description subject.

This specific structure, which can be translated into a set
of rules, allows us to implement a system that generates
memes in this specific format. This section describes the
Stonkinator system, which is divided into four modules (as
seen in Fig. 4): (i) the text handler; (ii) the image obtainer;
(iii) the image analyser; and (iv) the image blender.

Figure 4: Stonkinator framework
In this section it is presented the system workflow through

the different modules, which were implemented in Python
and use several libraries for handling text and obtaining,
analysing and blending images. Firstly, it will be explained
how the text is handled by the first module. After that,
the second and third modules are described, explaining how



they work and the tools used to obtain and analyse the im-
ages. Lastly, we present the process behind the last mod-
ule, responsible for the blending and composition of the final
output.

Text Handling
The first module gets a sentence as input from the user and
focuses on obtaining a word related to that sentence sub-
ject. The system starts by using the library RAKE (Aneesha
2015) to obtain keywords and key expressions with a rank-
ing, as seen in Tables 1 and 2. It also tokenises the input with
NLTK’s (Bird, Loper, and Klein 2009) aid, a Python open-
source library for Natural Language Processing, along with
Wordnet (Princeton University 2010), a lexical database for
the English language. Then, it selects the word or expres-
sion with the highest ranking and, in case there are multi-
ple words, the system prioritises the selection of nouns, ad-
jectives, adverbs, and verbs, in this order. With the word
extracted, the algorithm runs different NLTK functions to
search for the word’s hypernyms (or hyperonyms) and syn-
onyms. Lastly, the similarity of meanings between the cho-
sen word and the hyperonyms and synonyms is compared,
and an array is created with the words obtained ordered in
descending order according to the similarity level.

Table 1: Rake keywords and ranking for the sentence “When
I put a soaked mobile phone into a bowl of uncooked rice”

Keyword Ranking

put 1.0
bowl 1.0
uncooked rice 4.0
soaked mobile phone 9.0

Table 2: Rake keywords and ranking for the sentence “When
you put oregano on a microwaved frozen pizza”

Keyword Ranking

put oregano 4.0
microwaved frozen pizza 9.0

Figure 5: Words obtained from ‘pizza’

Image Retrieval and Analysis
Using the first word from the array created before as a search
query, the second module downloads one hundred images
from the Flickr database into a temporary folder. Then the
first part of the third module analyses those saved images
and identifies faces and human figures, using OpenCV and

(a) Human figure detection
using ImageAI

(b) Mask created using
OpenCV and Mask R-CNN

(c) Overlay of the mask and image
Figure 6: Outputs of different libraries for the image selec-
tion and segmentation

Dlib. First, it searches for faces using Dlib’s HoG Detec-
tor and separates the images with or without a face detected
into two different folders (“backgrounds” and “faces”). Af-
ter that it searches for human figures, in the faces folder, us-
ing a pre-trained model trained on the COCO dataset and a
library called ImageAI,4 returning a rectangle’s position that
contains the human figure and a percentage of the prediction
(Fig. 6a), meaning that the highest the percentage, the high-
est the probability of the detection is an actual person. To
be easier to analyse and segment the image elements, the
system uses the returned rectangles, previously mentioned,
and extracts each one into a new image. Lastly, the system
uses MediaPipe’s tools face mesh and pose to detect the ori-
entation of the person’s face and whether it was a full-body
picture, a close-up or a medium-range shot. This allows the
system to execute an early filter and remove images not suit-
able to use, such as images without human figures or with a
head orientation not suitable to place the Mememan’s head.

Although this process uses many techniques to select the
final images, it also boosts its efficiency and reduces the er-
ror margin, by doing a wide filter first, using a fast algorithm
but more probable to return false positives, and a more thor-
ough one later, with a more complex model that can give ac-
curate results on a smaller set of images. Also, by deleting
the images that don’t satisfy the requirements for the final
blend during this process, it allows the system to be faster
when creating another image with the same input, since the
images have already been filtered and checked, and that pro-
cess won’t be repeated to every image when creating a new
output.

After separating and filtering the images, if the back-
ground or faces folders are empty, the system downloads
another set of one hundred images for the next word in the
array returned by the first module and runs the first part of
the third module again. This loop continues until both fold-

4https://github.com/OlafenwaMoses/ImageAI



(a) Paste method

(b) Laplacian method (c) Poisson seamless
cloning method

Figure 7: Outputs of different blending methods

ers contain usable images. For the image selection, in the
first run of a determined input, the system selects a random
background and the image with a higher probability of con-
taining a human figure, and on the following runs of the
same input, the system selects a random image from both
folders to return a different result.

Image Blending
With the chosen images, the third module creates a mask
(Fig. 6b and 6c) for the human figure, using OpenCV and
Mask R-CNN architecture (He et al. 2017), and resizes the
mask and human images to match the background size, us-
ing Python Image Library and OpenCV. Then it sends the
background, person and mask images, along with the in-
put and the first word of the array from the first module,
to the fourth and last module. Firstly, this module pastes the
person segment into the background image, using the mask
from the previous module. For the purpose of testing, at
this stage of the process, there are three different blending
algorithms implemented. The first and the simplest is just
pasting the human figure in the background (Fig. 7a). The
second one is the Laplacian Blending (or Pyramid Blend-
ing) using five levels (Fig. 7b). The third algorithm used is
the Poisson Blending,5 using the seamless cloning method
(Fig. 7c). After that, the system uses the same techniques to
detect the position of the face and human figure and paste the
Mememan’s head in the position of the human head, being
the direction of the head determined with MediaPipe’s face
mesh function. Detecting both the face and human positions,
instead of getting only the face location, before pasting the
Mememan’s head, helps prevent the blending on inexisting
faces detected by the algorithm.

Lastly, the final image composition is created by adding
the action description at the top of the image and pasting the
returned word on the final output (as seen in Fig. 7) with the
help of an MSER detector (Matas et al. 2004), which returns
regions of the image to place the word. During the testing

5https://github.com/rinsa318/poisson-image-editing

Figure 8: Meme generated with the input “When you get
early so you don’t miss the bus”.

Figure 9: Meme generated with the input “When you get
early so you don’t miss the bus”.

phase, the font type was the default and the font size was
fixed for both the description and the returned word (Fig-
ures 8, 9, 10, 11). For the current state of the system, the
output comes with its caption and text written in different
fonts and sizes, being this process specified in the Improved
Work section.

Web interface
In order to test Stonkinator, we developed a web interface
using Python’s Flask. The Flask app has an input bar on
the homepage that allows the user to write an expression or
sentence. Then, that input is sent to the Python script and
the process described above is started. While waiting, the
user can check all the saved memes created by the system in
a slideshow format.

At the end of the process, the system gives feedback noise,
indicating that the output was delivered, and the user is pre-
sented with three memes, one for each blending method, us-
ing the same images selected by the third module. On this
webpage, there are also three buttons. The first one simply
returns the user to the homepage. The second button allows
the user to generate another image with the same input. This
process is faster than generating a new meme with a differ-
ent input since the images were already filtered and can all
be used in the new image generation process. The last but-
ton saves the images obtained into the system, so they can
be seen by anyone in the gallery or the homepage slideshow.
Although the Stonkinator webpage was only available for
access during the testing period, our goal is to make it avail-
able in the future.



Figure 10: Meme generated by a participant with the input
“I like to eat marmalade with cheese”.

Experimentation
This section presents and discusses the experimental results.
We begin by describing a user study and its results. Then,
we provide a general analysis of the system and its output.

We conducted a user study to assess the quality of the sys-
tem in terms of its technical results,6 preferences for blend-
ing methods, predictability, usability, and utility. The main
goal was to understand if the output of the system was con-
sidered a meme from the perspective of the users, if the re-
sulting meme was a predictable output in the sense that the
output transmits the message the user wants to convey, how
easy it was to use the presented system, if the users would
use the output in social media and instant messages, which
blending method is preferred by the users and what is their
feedback regarding the meme generated.

Experimental Setup
To obtain this data, the participants were presented with a
couple of tasks and were asked to answer a series of ques-
tions related to the tasks they performed and the results ob-
tained. The testing process started by providing users with
access to the website and asking them to create a meme by
introducing a sentence as input, created by the participants
(e.g.: “I like to eat marmalade with cheese”, Fig. 10). After
that, they were presented with a set of three images, each
image blended with a different method, and next, the sec-
ond task was to save the set into the system if they found the
meme interesting, to be displayed in the website’s gallery.
With this step completed, the third task asked the partici-
pants to generate another meme using the same input, and
once again, the next task was to save the generated set if
they wanted to. In the end, they were given the option of
answering a questionnaire or continuing to use the system
freely and answering later. Before answering any questions,
the participants were asked to choose a set of images that
they created and open it in a new window to use later in
the questionnaire. The questionnaire was designed using
Google Forms with the goal of studying the topics already
mentioned. Users were guided through the tasks and any

6Image analysis, image segmentation, image blending and word
obtained

Figure 11: Meme generated by a participant with the input
“Me after checking 2 + 2 on the calculator”.

doubts and questions were clarified to avoid misunderstand-
ings. The questionnaire was composed of 11 tasks:

• T1: Evaluate the technical results of the output between 1
(bad quality) and 10 (good quality)

• T2: Evaluate the predictability of the output between 1
(unpredictable) and 10 (predictable)

• T3: Evaluate the usability of the system between 1 (con-
fusing) and 10 (intuitive)

• T4: Describe the generated meme (this was an open-
ended question, even though some examples were given
to the user, e.g.: funny, boring, non-sense, ...)

• T5: Would you share the meme among friends/on social
networks

• T6: Would you share the meme during an informal text
conversation

For the last four questions, the participants had to anal-
yse different sets of images, three created purposely for the
questionnaire and one created by them, and identify the pre-
ferred blending type. For this, we chose three generated
memes (each being a set of images produced using the three
types of blending) and asked the participant to conduct the
following task for each meme (T7-9): Choose the preferred
blending method among the set of images presented.

Then, the same task was asked for the chosen set of im-
ages selected by the participant during the system testing
(T10). The last task (T11) concerned an optional open-
ended question asking for comments and feedback about the
test and the system.

Results
In total, Stonkinator was tested by 23 participants (aged be-
tween 17 and 25). To better show the results, in Table 3a, we
divided the answers into three groups: “bad” (answer of less
than 6 out of 10); “ok” (answer of 6 or 7 out of 10); “good”
(answer of more than 7 out of 10).

Overall, the analysis of the experimental results indicates
that although the average value of the evaluations regard-
ing the technical quality of the images obtained is generally
good, the same cannot be said about how predictable the
generated meme is, according to Table 3a. However, the



Table 3: Results of testing
(a) Results of evaluating different parameters

Evaluation bad ok good

Technical Quality 4.35% 30.43% 65.22%
Predictability 68.57% 21.74% 8.69%
Usability 0% 34.78% 65.22%

(b) Uses cases for the output

Evaluation yes no

Share in social media 91.3% 8.7%
Use in private conversation 100% 0%

(c) Preference on the blend-
ing method

Method Percentage

Paste 69.56%
Laplacian 13.04%
Poisson 17.4%

participants related that these low values in terms of pre-
dictability did not impact the transmitted message. As for
usability, the result is generally good, with only two people
dissatisfied with the feedback obtained when saving images.
Only two users reported that they would not share the re-
sult obtained on social networks, but one hundred percent of
respondents would use the meme obtained in informal text
conversations. Finally, regarding the blending methods, ac-
cording to Table 3c, we can see that the method with the
most appealing results for users is simple pasting.

General Discussion
One of the biggest criticisms regarding the technical quality
of the generated memes was the image segmentation part,
where it failed to detect accurately the borders of human fig-
ures in the image, being, therefore, a starting point to im-
prove the system. A fact that may be in favour of these flaws
is related to the existence of memes whose objective is to
have these same flaws intentionally displayed on the image,7
although it’s not the purpose of the system. This fact may
also explain why users tend to prefer simpler pasting blend-
ing methods, rather than more complex ones, according to
Table 3c, since several memes were made by simply pasting
elements on an image. In Table 3a we can check that the pre-
dictability of the image obtained is very low. Since the pur-
pose of the system is to create an image capable of convey-
ing an idea or showing a reaction close to the one intended
by the user, but also create different images each time the
system produces an output, we can observe that the system
often produces images with a high level of unpredictability.
Users reported that the generated output conveyed the mes-
sage they wanted to transmit. Taking this into consideration,
we interpret that the high level of unpredictability may be re-

7https://knowyourmeme.com/memes/dank-memes/

Figure 12: Meme generated with the input “When you put
oregano on a microwaved frozen pizza”.

Figure 13: Meme generated with the input “When you put
oregano on a microwaved frozen pizza”.

lated to the wide variety of results for the same input, which
may indicate some degree of creativity. We also consider
that the high level of unpredictability is not an issue since,
as seen in Table 3b, the participants stated that they would
use the produced memes in a social media post or an infor-
mal text conversation. Lastly, according to user feedback,
another important element to be improved was the typog-
raphy. Both sentences were sometimes hard to read on a
smartphone and sometimes even on a computer, as such, it’s
a detail that needed to be addressed.

Despite the issues pointed out by users, we found that
most of them managed to use the system without much dif-
ficulty, achieving the goal of being a simple “one input” sys-
tem, and that more than ninety percent of the users would
share the meme produced on a social network, being that
one hundred percent would use it in an informal text conver-
sation. This shows that, even if the final output has minor is-
sues, the system can be used to achieve the results for which
it was proposed. Throughout this paper we show memes
produced by our system. We can see two different images
generated with the same input, in Figures 8 and 9, using the
default font, and in Figures 12 and 13. Other images cre-
ated with different inputs are shown in Figures 10 and 11.
Some of these memes (Fig. 10 and 11) were produced by
our participants during the testing period.

Improved Work
After testing, by taking advantage of the participants’ feed-
back, the Stonkinator was improved, more specifically its
typography and the way it handles the written word. In ad-
dition, by analysing both other Stonks memes and memes



Figure 14: Meme generated with the input “When the school
doctor applies a cup of tea to my wound”.

Figure 15: Meme generated with the input “When you
restart the router at your parents house”.

in different formats, it was observed that some key features
could be added to make the output more appealing. The im-
proved work was made iteratively and its evolution can be
seen in Figures 9, 12 and 16, corresponding to the first, sec-
ond and third iteration of Stonkinator, respectively.

Typography

One of the problems related to the output was related to the
way it wrote text in the image. Using a fixed font size for the
caption and the retrieved word meant that sometimes the text
could be hard to read, being perceived as a lot smaller than
it was intended. This coupled with the default font having a
low weight (e.g. Fig. 10) made us search for another way to
display the meme caption and the selected word. Firstly we
tackled the retrieved word, by changing its font to one easier
to read and changing its size. The chosen font was Ubuntu-
Regular for being similar to the example memes (Fig. 3)
while being slightly different, to serve as a signature of the
Stonkinator. The word size is changed to be proportional
to the area returned by the MSER detector. In the first iter-
ation, we also changed the caption font to Ubuntu-Regular
but we thought that it could still be improved. By searching
and analysing other types of memes, we found that a good
alternative would be to use the Impact font that is present
in most of the memes (Milner 2012). With this change in
mind, we also found that the system would benefit from a
variable font size for the caption, which was implemented to
be proportionate to the size of the image.

Figure 16: Meme generated with the input “When you
restart the router at your parents house”.

Stonks Deliberate Mistake
Lastly, a key characteristic of the Stonks meme is a delib-
erate mistake in the written word. For the original meme,
the word stocks is changed to stonks, and in the examples
is: chef to shef, health to helth, and tech to tehc. We also
wanted to include this deliberate error and came up with a
solution using phonemes. To achieve this objective, we used
a Python library called Pronouncingpy8 that returned an ar-
ray containing the word phonemes. Then, unnecessary in-
formation from the array was removed and it was converted
into a string that represented the word in phonemes only.
For the second part, the selected word for the meme and the
phoneme string were divided into syllables, using FinnSyll.9
From here, the returned arrays were compared and a syllable
from the word is changed to its respective phoneme, creat-
ing a slight mistake in the written word that keeps enough
information to be understood (Figures 1,14, 15 and 16).

The results show that this approach can produce results
similar to the examples above, by changing a letter or by
adding or subtracting letters. Some of these changes can
produce better results, like worker to werker, while oth-
ers may not work as well, like learning to lerarning. This
approach also introduced new ways of incorporating typos
without undermining the meaning of the word by adding
or changing letters to maintain how the word sounds, for
example, device to dihvice and education to ehjducation.
Nonetheless, although the results seem promising, further
testing with users is still needed.

Conclusion
In this paper, we present a new system, Stonkinator, capable
of creating memes in a specific format with a single input.
A system was developed using multiple Python libraries,
including methods and algorithms for text analysis, image
analysis, image segmentation, and image blending. The sys-
tem was deployed into a website that presented the output
using three different blending methods. We conducted a user
study with the goal of understanding the audience’s blend-
ing methods preferences and the viability of the system. The
results show that our system is able to create satisfactory im-
ages, being the most visually appealing the ones with a sim-
ple pasting blending method, and that users would share the

8https://github.com/aparrish/pronouncingpy
9https://github.com/tsnaomi/finnsyll



generated memes on their social networks and in the con-
text of a private text conversation. The system was also later
improved, changing its typography and adding a small typo,
characteristic of the Stonks memes. Having room for im-
provement, in the future we would like to improve the de-
scribed approach by implementing a better image segmen-
tation algorithm, as well as creating a better image selection
system, so the output of the machine can better meet the ex-
pected ideas the user wants to convey.

Acknowledgements
This work is funded by the FCT - Foundation for Sci-
ence and Technology, I.P./MCTES through national funds
(PIDDAC), within the scope of CISUC R&D Unit -
UIDB/00326/2020 or project code UIDP/00326/2020

References
“Adam”, and “Don”. 2020. Meme man wurds / stonks ed-
its. https://knowyourmeme.com/memes/meme-man-wurds-
stonks-edits.
Afridi, T. H.; Alam, A.; Khan, M. N.; Khan, J.; and Lee,
Y. K. 2021. A multimodal memes classification: A survey
and open research issues. Lecture Notes in Networks and
Systems 183:1451–1466.
Aneesha. 2015. Rake. https://github.com/aneesha/rake.
Bird, S.; Loper, E.; and Klein, E. 2009. Natural Language
Processing with Python. O’Reilly Media Inc.
Chen, Y.; Wang, Z.; Wu, B.; Li, M.; Zhang, H.; Ma, L.; Liu,
F.; Feng, Q.; and Wang, B. 2019. Memefacegenerator: Ad-
versarial synthesis of chinese meme-face from natural sen-
tences. arXiv:1908.05138.
Cunha, J. M.; Martins, P.; and Machado, P. 2020. Let’s
figure this out: A roadmap for visual conceptual blending.
In Proceedings of the Eleventh International Conference on
Computational Creativity.
Cunha, J. M. 2022. Generation of Concept Representative
Symbols: Towards Visual Conceptual Blending. Ph.D. Dis-
sertation, University of Coimbra.
Dawkins, R. 1976. The Selfish Gene. Oxford University
Press.
He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017.
Mask r-cnn. In 2017 IEEE International Conference on
Computer Vision (ICCV), 2980–2988.
Kostadinovska-Stojchevska, B., and Shalevska, E. 2018.
Internet memes and their socio-linguistic features. Euro-
pean Journal of Literature, Language and Linguistics Stud-
ies 2(4).
Lin, W.; Qimeng, Z.; Kim, Y.; Wu, R.; Jin, H.; Deng, H.;
Luo, P.; and Kim, C. H. 2021. Automatic chinese meme gen-
eration using deep neural networks. IEEE Access 9:152657–
152667.
Matas, J.; Chum, O.; Urban, M.; and Pajdla, T. 2004. Ro-
bust wide-baseline stereo from maximally stable extremal
regions. Image and vision computing 22(10):761–767.

Miliani, M.; Giorgi, G.; Rama, I.; Anselmi, G.; and Lebani,
G. E. 2020. Dankmemes @ evalita 2020: The memeing of
life: Memes, multimodality and politics. In CEUR Work-
shop Proceedings, volume 2765. CEUR-WS.
Milner, R. M. 2012. The world made meme: Discourse and
identity in participatory media. Ph.D. Dissertation, Univer-
sity of Kansas.
Nissenbaum, A., and Shifman, L. 2018. Meme templates
as expressive repertoires in a globalizing world: A cross-
linguistic study. Journal of Computer-Mediated Communi-
cation 23(5):294–310.
Oliveira, H. G.; Costa, D.; and Pinto, A. M. 2016. One does
not simply produce funny memes!–explorations on the au-
tomatic generation of internet humor. In Proceedings of the
Seventh International Conference on Computational Cre-
ativity (ICCC 2016). Paris, France.
Peirson, A. L., and Tolunay, E. M. 2018. Dank
learning: Generating memes using deep neural networks.
arXiv:1806.04510.
Pranesh, R. R., and Shekhar, A. 2020. Memesem:a multi-
modal framework for sentimental analysis of meme via
transfer learning. In 4th Lifelong Machine Learning Work-
shop at ICML 2020.
Princeton University. 2010. “About WordNet”. WordNet.
https://wordnet.princeton.edu/.
Sadasivam, A.; Gunasekar, K.; Davulcu, H.; and Yang, Y.
2020. memebot: Towards automatic image meme genera-
tion. arXiv:2004.14571.
Shifman, L. 2013. Memes in Digital Culture. The MIT
Press.
Shimomoto, E. K.; Souza, L. S.; Gatto, B. B.; and Fukui,
K. 2019. News2meme: An automatic content generator
from news based on word subspaces from text and image.
In 2019 16th International Conference on Machine Vision
Applications (MVA), 1–6. IEEE.
Singh, B.; Upadhyay, N.; Verma, S.; and Bhandari, S. 2022.
Classification of hateful memes using multimodal models.
Data Intelligence and Cognitive Informatics 181–192.
Steinbrück, A. 2013. Conceptual blending for the visual
domain. Ph. D. dissertation, Masters thesis.
Vyalla, S. R., and Udandarao, V. 2020. Memeify: A large-
scale meme generation system. In ACM International Con-
ference Proceeding Series, 307–311. Association for Com-
puting Machinery.
Wang, W. Y., and Wen, M. 2015. I can has cheezburger?
a nonparanormal approach to combining textual and visual
information for predicting and generating popular meme de-
scriptions. In Proceedings of the 2015 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, 355–
365. Association for Computational Linguistics.
Wang, L. Z.; Zhao, Z. D.; Jiang, J.; Guo, B. H.; Wang, X.;
Huang, Z. G.; and Lai, Y. C. 2019. A model for meme
popularity growth in social networking systems based on bi-
ological principle and human interest dynamics. Chaos 29.



Wen, M.; Baym, N.; Tamuz, O.; Teevan, J.; Dumais, S.; and
Kalai, A. 2015. Omg ur funny! computer-aided humor with
an application to chat. In Proceedings of the Sixth Interna-
tional Conference on Computational Creativity.
Wiggins, B. E. 2019. The discursive power of memes in dig-
ital culture: Ideology, semiotics, and intertextuality. Rout-
ledge.
Xiao, P., and Linkola, S. M. 2015. Vismantic: Meaning-
making with images. In Proceedings of the Sixth Interna-
tional Conference on Computational Creativity. Brigham
Young University.
Yang, F.; Qiao, Y.; Qi, Y.; Bo, J.; and Wang, X. 2022. Bmp:
A blockchain assisted meme prediction method through ex-
ploring contextual factors from social networks. Information
Sciences 603:262–288.


