
Neuro-Symbolic Composition of Music with Talking Points

Simon Colton,1,2 Berker Banar1 and Sara Cardinale1
1School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

2SensiLab, Faculty of Information Technology, Monash University, Australia
s.colton@qmul.ac.uk

Abstract

We describe the Parley system, which generates musical com-
positions with the process foregrounded via talking points that
help users engage. Parley employs a neuro-symbolic approach
combining rule-based modules and pre-trained neural models
to produce music in a communicable way, akin to standard
composition approaches involving designing, writing, listen-
ing to, editing and analysing music. We highlight the potential
of the system in a case study where users employ Parley’s
modules in a Colab notebook. To investigate the interplay of
the rule-based and neural processes, we describe some experi-
mental results comparing generated music before and after an
editing process which employs a neural listening model.

Introduction and Motivation

There are many reasons why people compose music, only
one of which is to have more music of high quality. We take
inspiration from the YouTube broadcasts of well-known clas-
sical music composer David Bruce (youtube.com/@DBruce),
where composition techniques are explained for educational
and entertainment purposes, via the practice of composing
new pieces of music, or explaining the processes leading
to existing ones. In one episode, for example, he helps a
novice composer to improve their first composition, offering
numerous pieces of advice while composing an enhanced ver-
sion, for the educational/entertainment benefit of the novice
and the viewers on YouTube. In general, such advice on
composition often falls into one of three categories:
• Following rules and heuristics of music theory and practice.
Advice of this nature appeals to established rules based on
agreed upon concepts, often phrased in terms of constraints,
requirements and best practice.
• Making choices based on listening to the emerging com-
position. Choices don’t have to be rule-driven, but rather
composers are advised to try some alternatives and choose
which sounds the best to them, in terms of the rest of the com-
position, or a particular genre or style, or general musicality.
• Striving for global properties of the composition. Strictly
following rules can lead to tedious and repetitive music, so
suggestions for introducing novelty and variety are often
given. In contrast, composed music can sometimes lack
coherence and structure, so advice on how to achieve consis-
tency and regularity is also given.

We are building the Parley generative music system to
compose music with a relatively transparent process which
enables users to understand its process in a way that could po-
tentially be entertaining or educational or both. We introduce
the notion of a talking point as some piece of information
that Parley can communicate in terms of rules employed, aes-
thetic preferences determined through listening or striving for
a global property of the music it is generating. The purpose
of a talking point is to communicate a decision made during a
composition process or an opinion about an excerpt of music
which provokes the user to engage with the music/process by
possibly agreeing or disagreeing with Parley’s opinion.

We have argued in (Colton and Banar 2023) that, while
generative deep learning is the dominant force currently and
undoubtedly produces highly impressive music (for instance
see (Agostinelli et al. 2023)), it is not necessarily the best
option if there are other reasons – such as education and
entertainment – for the composing of music. This is, in
part, because the black-box nature of deep learning makes
it difficult to foreground decisions which have been made in
the generative process. We suggest instead a neuro-symbolic
(Hitzler et al. 2022) approach which employs rule-based and
logical AI techniques in tandem with neural models to have
both generative power and communicable decision making.
With particular application to composition of music with
talking points in mind, Parley employs rule-based approaches
to generate initial compositions and neural listening models
to estimate listener expectations and to tag excerpts in order to
edit an evolving composition, as well as to design the overall
form of the composition and analyse the music produced.

In future work, we will compare Parley with relevant prior
work in computer assisted composition, including the Patch-
Work and OpenMusic projects (Assayag et al. 1999). We
concentrate here on describing how Parley operates. In the
next two sections, we describe the listening models employed,
and the neuro-symbolic process in terms of a modular ap-
proach where users can employ multiple designer, generator,
editor and analyser modules. We follow this with a case
study, where a user co-creates compositions with Parley in
the ‘Flaneur’ series, via multiple stages in a Colab notebook
employing Parley’s modules. We then describe some exper-
iments which investigate the nature of the music produced
with and without editing enabled by a listening model. We
end by describing the general potential for neuro-symbolic
approaches in computational creativity projects, and high-
lighting some future directions for the Parley project.



Figure 1: Example excerpt for the mood tagging experiment.

Neural Editing and Listening Models

Parley uses pre-trained neural models from two different
projects, to perform functions comparable with human com-
posers listening to their composition, as described below.

A Melody Pitch Class Prediction Model

It is standard to ascribe the pitch class of the note middle
C – and any note which differs by this by a multiple of 12
semitones (an octave) – to be 0, with C# ascribed 1, D as-
cribed 2, and so on up the semitone scale. As described in
(Banar and Colton 2022), an LSTM neural model (Hochreiter
and Schmidhuber 1997) was trained to be able to predict the
interestingness of each note’s pitch class in a given piece of
music. That is, the LSTM ascribes a score for each of 11
pitch classes, based on a window of notes preceding it. The
more unlikely an observed pitch class is, according to the
activations of the model in the output layer, the more interest-
ing it is, and this process was used to help identify decision
points in composed music. Two models were trained, on
melodies written in the 18th and 20th Centuries respectively.

We repurposed the former of these models for Parley to
use to edit the pitches in a melody to better fit the training
set distribution of this pre-trained model better (i.e., with
higher likelihood, lower interestingness). This could help
produce melodies that adhere to traditional classical music
expectations rather than more avant garde norms. In addition,
as described below, choices Parley makes using this listening
model can become the basis for talking points. Moreover, we
describe below some experiments comparing the music gen-
erated before and after editing using this pre-trained model.

A Mood Tagging Model

Parley also employs the Jamendo MoodTheme neural model
provided in the Essentia package (Correya et al. 2021), pro-
duced using TensorFlow (Abadi et al. 2015). Given an
input audio file, this model has been trained on the MTG-
Jamendo dataset (Bogdanov et al. 2019) to output a sequence
of vectors, each containing 50 activations (as floats). Each
activation refers to a different mood/theme tag and estimates
the level of that mood expressed in the audio file. The mood
tags include general emotional words such as ‘happy’, ‘sad’,
‘dark’ and ‘dramatic’; some associated with musical style or
genre, such as ‘groovy’, ‘ballad’ or ‘christmas’; some asso-
ciated with settings, such as ‘summer’ or ‘space’, and some
associated with use-cases for the music, such as ‘commercial’
or ‘trailer’. Sampling an audio file at 32khz, each sample is
first passed through a pre-processing model, which encodes
it into a latent space, with the resulting latent encoding input
to the MoodTheme model. To produce an overall activation

threshold 0.5 1.0 1.5 2.0 2.5 3.0
average tags 8.5 4.8 2.7 1.5 0.8 0.5
zero tags % 4.4 15.9 35.7 54.8 70.5 81.3
ten+ tags % 32.1 12.7 4.5 1.8 0.6 0.2
most used % 28.9 16.0 8.7 5.4 3.1 1.9

tag ‘dark’ ‘space’ ‘trailer’
least used % 19.5 10.0 5.4 3.0 1.2 0.5

tag ‘deep’ ‘emotional’

Table 1: For thresholds 0.5 to 3.0, average number of tags per
excerpt; % excerpts with no activations for any tag over the
threshold and more than ten tags over the threshold; highest
and lowest % of excerpts a single tag is assigned to.

vector for an audio file resulting from a passage of music, the
activations for each sample can be averaged.

To leverage the power of the Jamendo MoodTheme model,
we used an early version of Parley to generate 5,000 four-bar
excerpts of music recorded in WAV files, then passed each
through the model and recorded the average activation vectors
produced. Each excerpt comprised a polyphonic melody part
and a chord part with three notes which accompanies the
melody, as per figure 1. We generated the specifications
for Parley randomly, to produce diversity in the generated
excerpts, by varying the following:

• The two instruments used for the melody line and chord ac-
companiment, with each ranging over all 110 non-percussion
instruments in the FluidSynth soundfont (see below).
• The volumes (dynamics) of each instrument, ranging over
midi volumes 60 to 127.
• The nature of the melody in terms of backbone and pass-
ing notes (see below), which changes the number of notes,
rhythms and pitch ranges of the notes.
• The tempo of the excerpt, ranging from 1.5 seconds per
bar to 3 seconds per bar.

The mean and standard deviations of the activations for
the 50 mood tags over the 5,000 excerpts were recorded for
use by Parley to produce talking points. In particular, we
wanted it to be able to tell when a particular passage of music
was exceptionally exhibiting a particular mood. To do this,
we looked at the distribution of the model’s activations over
the 5,000 excerpts, and assigned a mood tag to an excerpt
only if the activation it achieved for that tag was T times the
standard deviation (for that tag) more than the mean (for the
tag), for different thresholds T . The results for thresholds
ranging from 0.5 to 3.0 are given in table 1. We see that,
if the threshold is set to 0.5 standard deviations above the
mean, then excerpts gain 8.5 tags on average, with this de-
creasing to 0.5 tags for a threshold of 3.0. Moreover, when a
threshold of 2.0 is used, more than half the the excerpts are
assigned no tag, and the most popular tag (namely ‘space’)
is assigned to only 5.4% of the excerpts, hence no single
tag is particularly over-used. Based on these findings, we
have implemented in Parley the ability to tell whether a mu-
sical passage is somewhat, quite or exceptionally exhibiting
a mood if the passage’s activation for that mood is 0.5, 1.0
or 2.0 standard deviations above the mean respectively. This
means that, referring to table 1, if a passage of music is simi-



lar to the 5,000 used here, at most 5.4% will be deemed to be
exceptionally moody, 16.0% will be quite moody and 28.9%
will be somewhat moody, which seems appropriate.

While talking points needn’t be perfectly accurate, and
users may choose to disagree with them, they must be suitably
sensible. Hence we investigated the soundness of the tagging
process over the kind of music that Parley can currently
generate. To do this, we calculated correlations of activations
over the 5,000 excerpts for pairs of tags and inspected the
results. We found these pairs to be most negatively correlated,
with correlation coefficients less than -0.5:

calm & epic; action & calm; action & relaxing; dark &
romantic; epic & soft; calm & trailer; action & meditative

and we found these pairs to be the most positively correlated,
with correlation coefficients above 0.9:

dramatic & trailer; epic & trailer; party & sexy; funny &
upbeat; groovy & upbeat; melancholic & sad; energetic &
fast; action & trailer; dramatic & epic

As can be observed, most of the pairs here are reasonable and
expected. We did find some unusual results, such as ‘sad’ and
‘happy’ having a positive correlation of 0.50 and ‘fast’ and
‘slow’ with 0.35. However, in general we found the results
sensible and reliable enough for use in Parley.

Neuro-Symbolic Composition
Parley is a modular system with which users can construct a
workflow of modules which design, generate, edit and anal-
yse musical compositions, output as both audio files (MP3
and WAV) and as PDF scores which could be played by mu-
sicians. Some modules can foreground decisions they make,
and analysis modules examine the music and communicate
talking points through both text and colour changes to the
composition’s score. The system is implemented in Python
and can be embedded in Colab notebooks (Bisong 2019).
This affords a programmatic and a limited GUI interface to
Parley, and different notebooks can be used to produce dif-
ferent workflows and hence different compositions. Each
notebook first downloads the Parley code repository before
using the modules from it.

Cells in a notebook can expose parameters that guide
various modules, and then can be used to run those mod-
ules, outputting talking point texts, images of the evolving
composition’s score, midi and audio files. Parley has an
internal representation of notes, bars, chords, volume and
tempo settings, etc., which can be translated into various
formats, including Midi for use in third party music play-
ing apps. It uses the mido Midi-handling python package
(github.com/mido) and the Fluidsynth (fluidsynth.org) synthe-
sizer to generate WAV files and ffmpeg (ffmpeg.org) to turn
these into MP3 files. Parley can also output compositions rep-
resented as MusicXML (musicxml.com) files, and then em-
ploy the music21 python package (web.mit.edu/music21)
and a command-line version of MuseScore (musescore.org)
to generate score PDFs. It further uses the pdf2image
package (pypi.org/project/pdf2image) to turn PDF files into
images to display in the Colab notebooks.

Music generated by Parley is episodic, to increase variety,
and to enable changes at precise times to accompany other
media, e.g,. as a soundtrack to a given video (Colton and
Cardinale 2023). The designer, generator and editor mod-
ules produce (or change) the represented music for a given
episode, with designers producing a skeletal form rather than
playable music. Analyser modules produce text describing
an episode, communicated in the notebook as talking points.
Each module requires a user-supplied specification object de-
scribing how it should make choices in its processing. There
are functions in Parley’s codebase to copy and transform spec-
ification objects and to copy all specifications for an episode,
so that longer compositions can be defined fairly easily.

Each specification object comprises a series of param-
eters which can be set to specify a module’s processing.
Users can introduce variety and control via the syntax used
to represent a parameter. The most straightforward way is
to just define the value of a parameter as an integer, float
or string. However, parameters can also be defined proba-
bilistically, with a set of values to choose from, each given
with a percent probability. For instance, instead of specifying
the integer 4 for a parameter, p, the user can specify instead:
‘3(pc=20) 4(pc=60) 5(pc=20)’ for p, indicating that whenever
it needs a value for p, it should choose one from {3, 4, 5}
with probabilities {0.2, 0.6, 0.2} respectively. In conjunction
with this, users can specify special exceptions, for example
in the first (or last) bar of an episode or composition. For in-
stance, p could be specified as ‘3(pc=20) 4(pc=60) 5(pc=20)
1(cb=1,cb=-1)’ with cb standing for (c)omposition (b)ar and
following the python standard of -1 indicating the last index
of a list. This therefore specifies that p should be set to 1 for
the first and last bar of the composition.

Users can also specify cycles for a parameter, for instance
‘3(ebc=1) 4(ebc=2) 5(ebc=3)’ dictates that the value should
be 3 in bar one, 4 in bar two and 5 in bar three of every three-
(b)ar (c)ycle in the (e)pisode. Finally, users can specify that a
parameter should range from one value to another smoothly
during an episode. For instance ‘3(ebp=0.0) 4(ebp=0.8)
5(ebp=1.0)’ specifies that the parameter should start when
(e)pisode (b)ar (p)roportion is 0.0, rise to 4 when the episode
is 0.8 complete, then to 5 when the episode ends.

In the following subsections, each of Parley’s modules
is detailed with (i) an overview of its purpose (ii) which
parameters can be specified and how they affect the process,
and (iii) how certain decisions (if any) are foregrounded.

Designers

Parley’s designer modules enable users to plan the nature of
their composition in advance of generating music for it. In
particular, the designers afford description of the structure
of episodes (form), the timing of the start and end of bars
(tempo) the midi instruments to be used (orchestration) and
the chord sequence which will underpin the music.
• The Form Designer module takes a string parameter spec-
ifying the number of different episodes a composition will
have, and the order in which they will play. For instance,
the value ABA specifies that the overall composition will
comprise two episodes, A and B, with B sandwiched be-



tween two A episodes. The two A episodes will not contain
exactly the same music, but will be generated by the same
modules with the same specifications, thus subject to random
variation. After bar timings for each of the episodes have
been generated, the form designer constructs episode objects
to contain bars, and a form object to contain the episodes.
• The Bar Timing Designer is parameterised with details
of (a) the required overall duration (in milliseconds) of the
composition (b) the number of episodes required, and (c) the
desired duration (in ms) of the bars at the start and the end
of each episode. Given these, it calculates the number of
bars per episode, and the start and end timings of each bar.
It also translates this into ticks for the midi generation (with
960 ticks per second). Details of the calculations for this are
given in (Colton and Cardinale 2023). Users must specify the
timings (in fractions of bar durations) that chords will change
during a bar, using the rhythm format described below.
• The NRT Chord Sequence Designer can construct a se-
quence of trichords (i.e., with three distinct notes in) by
employing operators inspired by the music analysis tech-
niques which comprise Neo-Riemannian Theory (NRT)
(Cohn 1998). The operators are themselves compounded
from smaller units, and this module can be parameterised by
the minimum and maximum length of the compounds. Gen-
eration of the chord sequences is done by randomly choosing
an operator within certain constraints. In particular, the user
can specify a fixed key signature constraint, so that an op-
erator is only used if it outputs a trichord with all notes in
a particular key. Another parameter specifies a focal pitch
which produces an inversion of the chord such that all the
note pitches are as close to this focal point as possible. This
module generates a chord sequence to fit the chord change
structure specified by the Bar Timing Designer. More details
of NRT-based chord sequence generation are given in (Cardi-
nale and Colton 2022) and (Colton and Cardinale 2023).
• The Orchestration Designer module is able to take a
user-given specification of a mood, such as happy or dra-
matic, and produce the details of a pair of midi instruments
which increases the likelihood of the generated music evok-
ing that mood. To do this, it uses the specification of the
instruments in the file containing 5,000 generative specifi-
cations described above. That is, for a given mood tag, T ,
and a user-specified range, R, this module finds the genera-
tive specifications which achieve the top R activations for T ,
chooses one randomly, and extracts the Fluidsynth soundfont
midi instrument number for the melody and chord parts.

Generators
The generator modules in Parley are employed after instru-
ments, episodes, bars and a chord sequence have been de-
signed as above, and adds notes to the bars, sometimes on
top of existing notes in a bar. The notes are represented in-
ternally with a multitude of properties including pitch, start
tick, duration, volume and annotations for the written score,
e.g., an indication that a note should be played staccato.
• The Rhythm Note Sequence Generator adds a sequence
of notes to bars based on a specification which includes

details of a rhythm. Such rhythms are described in terms of
fractions of a beat for both the start of notes and their duration.
They also specify which tone in the relevant chord underlying
a bar should be used for the pitch. For instance, the parameter
1 : 1/4 : 1/4, 1 : 3/4 : 1/4 specifies that in each bar, two
notes should play, and each should be the first tone of the
chord in the chord sequence at the moment the note plays.
The first note starts on the first of four beats in the bar and
has duration one quarter of the bar’s duration. The second
note starts on the third of four beats and also has duration one
quarter that of the bar. Users can also specify whether notes
should differ from the underlying chord tones by a multiple of
12 semitones (an octave). Normally, multiple note sequence
generators are employed to produce chord accompaniments
to a melody, as per the case study below.

• The Voice Leading Melody Generator adds notes to a bar
in three stages. Firstly, guided by the pre-generated chord
sequence, it adds chord tones to every bar as the backbone of
the eventual melody in that bar. The user specifies how many
backbone notes per bar, and the sequence is calculated so that
no note repeats the one preceding it, if both are mirroring
the same chord. When moving to a new chord, repetition is
allowed, but the user can specify a repetition policy which
can disallow/allow this and either (a) simply repeat the note
(b) make both notes staccato to introduce a novel rhythm (c)
tie the notes into one long one or (d) change the second note
to a rest, again to vary the rhythm. This module creates voice
leading melodies (i.e., which can be relatively easily sung
(Aldwell and Schachter 2010)) by generating only intervals
of a tone or a semitone. To minimise the number of pitches
between two backbone notes, while adhering to the repetition
policy, the backbone sequence is generated to minimise the
average difference between the pitches of the notes. In the
second stage, passing notes are added between the backbone
notes, guided by a user-given passing notes policy. This can
specify that all or no notes between two backbone notes are
added, or only the one note with pitch closest to the midpoint
between the backbone pitches is added. The user can specify
that the passing notes must all be in a fixed key signature, but
if they do not, then the sequence of passing notes changing
by a semitone is used to bridge every pair of backbone notes.

In the third stage, the duration of each note is determined
using a quantization process. Here, each note is initially given
an equal duration of the fraction 1

2n of the bar’s duration for
n as small as possible. This leaves a shortfall of duration to
make up, and the module does this by randomly choosing a
backbone note to extend the duration of by another 1

2n until
the total duration of the notes adds up to the duration of the
bar. For instance, if the backbone and passing notes in a bar
comprise 10 notes, then each note is originally given dura-
tion 1

16 th of the bar’s duration, as this is the largest possible
without running over the bar’s duration. This produces total
note duration of 10

16 of the bar’s duration, so a sequence of
6 backbone notes are randomly chosen (with multiplicity)
and extended by 1

16 to make up the shortfall. Recall that, to
increase variety in the music, the specification of these poli-
cies can include multiple different choices chosen randomly
and/or according to cycles or special cases for particular bars.



• The Melody Harmonisation Generator takes a given
sequence of notes, usually a melody line, and to each note,
n, adds another note with the same starting point in time and
the same duration. The pitch of the added note differs to
that of n by an interval which is chosen from a user-supplied
set of options. The user can specify that the new note pitch
must be in a particular key signature, and if so, when none
of the intervals achieves this, whether to avoid adding a note
or to choose the nearest in-key pitch available. The user can
further specify a range of pitches that the new note must be
within, and which types of notes to add new notes to, either
all notes, passing notes or backbone notes.

Editors

Parley’s editor modules take existing compositions and make
alterations in the hope of offering improvements.
• The Note Likelihood Editor uses the LSTM neural model
described above to make predictions about note pitch classes.
When it is possible to improve a note’s pitch class accord-
ing to the model, i.e., to be more likely with respect to the
training distribution of 18th Century melodies, this is under-
taken. Running through all the notes, n, in a user-chosen
melody line, the neural model takes as input a sequence of
pitch classes from the notes preceding n, and produces a
likelihood for the 11 pitch classes available for n. Working at
the episode level, the user can specify how many preceding
note pitch classes are in the sequence input to the model, with
a default of 50 working well. With notes at the start of an
episode that do not have 50 preceding notes, the notes at the
end of the episode are wrapped around to provide these.

When a pitch class for note n is edited to a new one, the
actual pitch must be chosen, and the user can specify how
the module should do this. One method involves choosing
the appropriate pitch closest to the existing one, while an-
other method chooses the pitch closest to the pitch half way
between the preceding and following note pitches (which
produces smaller intervals). If a note is given a new pitch
class which is more likely than it’s existing one, it is marked
in green on the score, or blue if the edited pitch class is the
same. The user can parameterize this editor with a repetition
policy similar to that for the Voice Leading Melody generator,
which determines whether an edited note which repeats the
pitch of the preceding one, is allowed or disallowed, and if
allowed, whether it should be tied, repeated, turned into a
rest or made staccato. In practice, when repetitions are not
allowed, this means that some notes need to be edited to have
a pitch with a lower likelihood than the existing one, in which
case they are marked in red on the score.
• The Orchestration Editor can take an existing compo-
sition and change the midi instruments for individual parts,
applied to specific episodes or the composition as a whole,
as specified by the user. Alternatively, the user can choose
one of the Jamendo MoodTheme tags, and, as per the Orches-
tration Designer, the module will find pairs of instruments
which increase the likelihood that the composition reflects
the tag’s mood, with the instruments assigned to the parts in
the composition, again specified by the user.

Analysers

The analyser modules in Parley serve the purpose of produc-
ing talking points that help the user to engage with the music
as it is evolving and the processes which are being employed
to design, generate and edit the music. Our conception of
talking points is evolving along with the development of Par-
ley, and currently includes (a) questions about whether the
nature of a passage of music is good enough for the user,
which may prompt them to change some aspect of the speci-
fications and re-run a module (b) information about how the
process of a module works (c) the identification of certain
passages and foregrounding of them by text descriptions and
on-score colour changes.

• The Chord Repetition Analyser can determine places in
a chord sequence where the same chord is repeated, possibly
too often. This is subject to a user given window (number of
bars) in which to check for repetition, which moves from bar
to bar. The module uses the entropy of the chord sequence
in a window, and reports the windows with lowest entropy.
It combines any overlapping windows into longer ones to
report, and marks a user-specified number in red on the score.

• The Discordancy Analyser reports any combination of
notes in the the composition which are playing at the same
time and could be seen as being discordant (which the user
may want to avoid for some compositions). The user specifies
how long the overlapping notes should play for, in millisec-
onds, and what intervals should be marked as discordant. The
interval of a semitone, i.e., an interval of 1 midi pitch between
two notes is usually most noticeable, but an interval of 11
pitches can also be jarring. The user specifies a score for
each interval and a total score that must be achieved before a
discordancy is reported. The module highlights discordant
moments by marking the notes in red.

• The Likelihood Improvement Analyser works on com-
positions, or episodes thereof, on which the LSTM Note
Likelihood Editor has been used. It finds those bars where
the cumulative improvement (according to the model) is the
highest, subject to a user-given threshold of number of edited
notes in the bar. Improvement is in terms of total ranking
increase from the original pitch class to the edited one, as
ranked by the likelihoods returned by the LSTM. This mod-
ule highlights the chosen bars with purple notes, to contrast
the red, green and blue added by the editor.

• The Mood Highlight Analyser employs the Jamendo
MoodTheme model described above to process the audio
from an episode and determine which mood tag is most ap-
plicable for it. If the activation of the tag is greater than 0.5
standard deviations (stds) above the mean (over the 5,000
excerpt database), it is reported. The module uses the words
somewhat, quite and exceptionally for emphasis if the acti-
vation is greater than 0.5, 1.0 or 2.0 stds respectively. The
module also finds the passages of b bars in an episode, where
the episode’s mood tag is most expressed, and reports the k
most expressive, with b and k specified by the user.



Case Study: ‘Flaneur’ Compositions

The Parley system currently exists as a codebase which can be
downloaded from a repository into a Colab notebook. Each
cell in the notebook can set parameters for one or more of
Parley’s modules, which can then be run. In practice, a user
exposes those parameters of the generative specifications
which can fruitfully be experimented with in textbox/slid-
er/checkbox GUI elements, and uses the modules to generate
a piece of music in stages, showing audio and score repre-
sentations of the evolving music at each stage. The same (or
other) users can then later vary the parameters and use the
notebook to produce novel music.

We used this approach to produce compositions in a se-
ries called Flaneurs, meaning “connoisseur of the street – a
highly observant urban wanderer who takes in everything
they see as they seek experiences that fuel their creative
minds” (flaneurlife.com/flaneur-meaning). The idea was to
juxtapose slower, more melancholy episodes, A, with faster,
more upbeat episodes, B, with the music always ambling in
nature, constantly in motion. The notebook is available at
https://tinyurl.com/3yjyjtrt. Sample text and
score outputs from the six cells of the notebook are given in
fig. 2. The case study can be reproduced and experimented
with, using seed 48163 in the Colab notebook.

In cell 1 of the notebook, a lead sheet is generated which
comprises details of the design of the composition, namely
the episode and bar structure and timings, and the chord
sequence. The user can specify details for this, with exposed
parameters including the overall episodic form, with default
ABA given, as well as the composition title, duration in
seconds and random seed, if the user wants to recreate a
previous session. The parameters for the bar tempos at the
start and end of episodes A and B are available to change.
Likewise, the chord sequence generation specifications for
A and B episodes are also exposed, with default settings for
both episode types fixing chords to all be in the key of C
major, but with A episodes requiring minor chords (hence
fixing chords to Amin, Emin and Dmin) and B episodes
requiring major chords (C, F and G), as per the overall idea
for the compositions.

In figure 2, we see the cell output showing the episode
start times and bars marked, and the chord sequence given.
While only the design of the composition, it can still be
played audibly, with a piano providing all the parts. Parley
has provided one talking point by using the Chord Repetition
Analyser to question whether the sequence of four bars of E
minor chords is too long. This may prompt the user to change
the specifications and re-generate the lead sheet. Note that
episode 2 never has two repeating chords in a row, as the
max repetitions parameter was set to 1 for the NRT
Chord Sequence Generator module of episode 2.

In cell 2, the user specifies the way in which the chords are
to be played and the way in which the melody will be initially
generated. For the chords, default specifications for usage
of Parley’s Rhythm Note Sequence Generator are provided,
for example the tonic of the chord is specified to be played
with this rhythm: ‘1:3/8:2/8,7/8:2/8(cbc=0,cbc=1,cbc=2)
1:3/8:2/8,5/8:2/8,7/8:2/8(cbc=3) 1:3/8:2/8(cb=-1)’.

Cell 1

Cell 2

Cell 3

Cell 4

Cell 5

Cell 6

Figure 2: Text and score outputs from the six cells of the
Flaneurs Colab notebook for composition with seed 48163.
Bars 16, 17 and 18 can be compared as the complexity of the
composition evolves.



This states that it should be played on the third and seventh
of eight beats for bars 1, 2 and 3 of a 4-bar cycle, but on
the third, fifth and seventh of eight beats for bar 4 of the
cycle. A special case with (cb=-1) states that for the last
bar of the composition, it should play only on the third beat.
In every case, the duration is two eighths (one quarter) of
the bar duration. Similar specifications for the other chord
notes and a bass note are given as defaults in cell 2. The
passing notes policy for A episodes is given by default as:
‘all(pc=60) mid(pc=30) none(pc=10)’, while for B episodes
it is: ‘mid(pc=50) none(pc=50)’. This ensures a different
feel to the two episodes, with larger intervals in B episodes.
Parameters for volume changes over the two episode types
is also exposed in this cell. The output from cell 2 is shown
in figure 2, and we see that the score has green and orange
notes highlighted to help the user understand the difference
between backbone and passing notes, and Parley points the
viewer to bars 16 and 18, where there are no passing notes,
as talking points, or at least points of interest.

In cell 3, the user is able to choose instruments instead
of the default piano, for all five parts currently in the com-
position. The generated music is analysed by the Mood
Highlighter module and descriptions of the music in terms of
mood are provided. As shown in figure 2, the user chose a
pan-flute for the melody, keeping the piano accompaniment,
and the mood for episodes 1, 2 and 3 were described by
Parley as melancholic, dramatic and sad respectively. Note
that instead of repeating the most activated tag for multiple
episodes, it chooses the second or third as needed.

In cell 4, the Likelihood Improvement editor is used to
change the melody line to be more expected in terms of
the LSTM’s 18th Century music model. The user speci-
fied that all notes (backbone and passing) should be edited,
and used the repetition policy: ‘tie(pc=60) staccato(pc=20)
legato(pc=10) disallow(pc=10)’, to use when the edited note
pitch is the same as the note preceding it. The notes which
are changed to having a more likely pitch class (as per the
model) are coloured green, while those which stay the same
are coloured blue. For instance, we see in figure 2 that in
bars 16 and 17, all but one note has been changed. In this
cell the Mood Highlight Analyser module is further used to
highlight in purple the three 1-bar passages where likelihood
improvement is highest, with one such given in fig. 2.

In cell 5, the Melody Harmonisation Generator module is
parameterised and employed to add a harmony line to the
melody. The default pitch range for the harmony line is given
as 60 to 90, so the pitch stays above middle C, the intervals
allowed are largely above the melody line (4, 7, 9) with one
below (-3), it is told that notes must be in C major, but not to
map notes to a key signature, which means that some melody
notes are not harmonised. The oboe instrument is used, as
its reedy sound compliments the pan-flute. The harmonised
notes are highlighted in blue on the score, and the Discor-
dancy Analyser is used to highlight two points where notes
differing by 11 semitones are played, as highlighted in figure
2. In the final cell, the user can once again change the instru-
ments used and the volumes for each instrument, in order to
produce a final composition. Alternatively, they can choose
one of the 50 tags in the Jamendo MoodTheme model, and

employ Parley’s Orchestration Designer to choose a pair of
instruments, one for the melody/harmony and one for the
bass/chord. In the case study, the user chose the tag ‘deep’,
and the module chose the instruments Kalimba and Polysynth.
The resulting episodes are tagged with talking points ‘excep-
tionally relaxing’, ‘quite calm’ and ‘exceptionally deep’, with
relevant passages highlighted in each episode.

Overall, careful choice of the parameterisations of the
generative specifications to produce Flaneur pieces leads to
music which is, subjectively, consistent due to the repetitive
nature of the bass and chords, varied (due to the episodic
nature, passing note and repetition policy), surprising (due
to the likelihood editing), rich (due to the harmonisation)
and evocative (due to the mood-based orchestration). Two
10-minute Flaneur compositions were performed in public
in February 2023, as part of a public engagement event at
Queen Mary University of London.

Experiments with the Note Likelihood Editor

To investigate the way the likelihood editor changes melodies,
we used 100 random seeds to each produce 16 Flaneur com-
positions via variations on the default generative specifi-
cations, and without the harmonisation or instrumentation
changes. The melody generation was varied with the passing
note policy ranging over ‘all’, ‘mid’, ‘none’ and ‘all(pc=33)
mid(pc=33) none(pc=34)’ which we called ‘mixed’. For each
policy, we produced four pieces: (i) a voice-leading (VL) ver-
sion without editing (ii) an edited version (L+) where the
process is also constrained to maintain the backbone quality
of backbone notes (iii) an edited version (L-) without this
constraint, and (iv) a version where a note’s pitch class is
chosen (R)andomly, but must be in C major. For the L+ and
L- versions, pitch classes were also constrained to C major.

We then measured numerous qualities of the generated
melodies, in particular certain entropies, with the results
given in table 2. The first measurement was the average
improvement in the ranking of edited pitch classes over the
original, as per the model’s calculated likelihood. We see
that, for all the L+ and L- versions, the ranking improves
by around 5.5, which is half the maximum it could be, of
11. Hence, even with the backbone and C major constraints,
the editing is still effective. We next see that the entropy
over the pitch classes is high (above 0.9) for all the setups,
hence predicting a next note’s pitch class is difficult. The
same is true for the interval between notes, with the exception
of the (unedited) voice-leading compositions with passing
notes, where the entropy is around 0.6 to 0.7. Subjectively,
these pieces are somewhat dull, as the voice-leading melodies
are rather predictable. When edited, the average interval
entropies in these compositions rises to 0.9 and above, and –
again subjectively – are more varied and surprising. However,
the interval entropy for edited melodies is consistently lower
than that for the randomly edited melodies, and we have
subjectively noted that, while more surprising than pure voice
leading, the edited melodies do not seem random.

We also measured the average and maximum run length
in a composition’s melody, with a run defined as a sequence



All Passing Notes No Passing Notes Mid Passing Notes Mixed Passing Notes
Measurement VL L+ L- R VL L+ L- R VL L+ L- R VL L+ L- R

Edit Improvement Av. - 5.861 5.842 - - 5.356 5.337 - - 5.658 5.644 - - 5.667 5.644 -
Pitch Class Ent. 0.938 0.939 0.935 0.996 0.962 0.918 0.917 0.990 0.952 0.933 0.934 0.995 0.954 0.935 0.930 0.994

Interval Av. 1.710 2.584 2.367 2.941 3.059 2.388 2.635 2.933 2.062 2.582 2.412 2.939 2.142 2.566 2.426 2.956
Interval Ent. 0.610 0.915 0.895 0.939 0.930 0.856 0.897 0.936 0.650 0.916 0.900 0.939 0.722 0.915 0.898 0.937

Run Length Max 7.000 10.660 23.450 5.980 4.770 7.820 10.970 5.230 6.930 8.490 18.610 5.840 6.900 9.270 19.790 5.650
Run Length Av. 4.078 2.535 2.616 2.481 2.525 2.476 2.524 2.470 3.551 2.512 2.597 2.486 3.413 2.513 2.582 2.472
Run Length Ent. 0.944 0.537 0.501 0.583 0.718 0.536 0.560 0.632 0.835 0.546 0.530 0.599 0.858 0.544 0.515 0.600
Voice Lead Av. 1.000 0.497 0.529 0.419 0.329 0.460 0.421 0.409 0.835 0.505 0.507 0.418 0.788 0.477 0.505 0.413
Voice Lead Ent. 0.000 0.994 0.979 0.978 0.914 0.987 0.955 0.973 0.644 0.986 0.973 0.978 0.736 0.988 0.977 0.977

Backbone Match Av. 1.000 1.000 0.450 0.425 1.000 1.000 0.499 0.424 1.000 1.000 0.452 0.430 1.000 1.000 0.463 0.426
Backbone Match Ent. 0.000 0.000 0.984 0.980 0.000 0.000 0.994 0.981 0.000 0.000 0.986 0.984 0.000 0.000 0.991 0.980

Table 2: Analysis of the properties of melodies averaged over 100 Flaneur compositions, for sixteen different generative setups.

of notes with only positive intervals (i.e., repeatedly going
up in pitch), only negative intervals or entirely zero intervals
(i.e., repeated notes). To measure the run length entropy, we
recorded the lengths of each successive run in a composition’s
melody and calculated the entropy of this sequence. The
results in table 2 help to quantify a phenomenon we observed
in the Flaneur melodies after editing, namely long sequences
of repeated notes. Recall that the LSTM in the Likelihood
Editor listening model requires a seed melody to predict the
likelihood of the subsequent pitch classes. As the window
only moves by one note, it doesn’t change greatly from note
to note, hence likelihood calculations can sometimes differ
very little over a series of notes, resulting in repeated notes.

The average maximum run length over the 100 L- melodies
with all passing notes included was 23.450, which is inflated
due to the repetitions. However, the repetitions are broken
up with the requirement that backbone notes retain their
backbone quality, as the maximum run length reduces to
10.660. Interestingly, while the maximum run length is higher
for edited melodies than voice leading ones, the average
run length is lower. This again indicates that melodies are
less predictable, with many changes in direction and long
passages of repeated notes. We also see that the more passing
notes in a melody, the more notes in general, hence the higher
the potential for repeated notes and increased maximum run
length. As run length for edited melodies grows, entropy
decreases, which can again be explained by the repetition of
notes, rather than increasing or decreasing pitch runs.

In addition to clarifying the editing process, table 2 shows
the wide range of entropies for melody properties achievable
with certain choices in the generative setup. Hence, there
is some evidence that users can control various entropies of
the melodies produced, hence can vary melodic expectation
(Pearce and Wiggins 2006), and we plan to explore this fur-
ther. For completeness, we also measured the voice leading
quality of each composition’s melody, giving a score of 1 if a
note’s pitch is within one whole tone of the previous note’s
pitch, 0 otherwise. We also measured a backbone match cal-
culation, scoring 1 for each backbone note which remained so
after editing, 0 otherwise. The results from these evaluations
largely conformed to our expectations, as per table 2.

Conclusions and Future Work

We have presented the Parley neuro-symbolic system as a
series of generative and analytical modules able to compose
music in stages while exposing decisions and opinions as
talking points. As with (Aggarwal and Parikh 2020), we
believe neuro-symbolic approaches hold much promise for
more understandable and interesting generative AI systems.
We plan to implement dozens more rule-based modules cover-
ing music theory and pre-trained neural models for analysing
compositions. As above, the modules will be analogous to
composers following rules/heuristics, listening to their evolv-
ing compositions and trying to balance global features of the
music. We plan to integrate automated reasoning (Robinson
and Voronkov 2001) and constraint solving (Rossi, van Beek,
and Walsh 2006) techniques to help in the latter tasks.

We also plan to more formally define the notion of a talking
point. We believe this is a valuable form of framing (Cook
et al. 2019; Charnley, Pease, and Colton 2012) creative pro-
cesses and outputs, which could improve the interactions that
users have with a generative AI system, either in terms of ca-
sual creation (Compton and Mateas 2015) and entertainment,
reflective creation (Kreminski and Mateas 2021) or education
(Llano et al. 2020). Once Parley is more sophisticated (in-
cluding a more intuitive user interface), we plan experiments
with amateur and professional musicians and composers to
get feedback on the talking points and on Parley in general.

We have already started handing over some creative re-
sponsibilities to Parley, for instance with the Orchestration
Designer and Editor modules able to choose instruments to
(try to) achieve a mood or theme. We are also experiment-
ing with a module which can expand excerpts into entire
compositions, following mood arcs where the strength of the
mood expressed waxes and wanes over the episodic struc-
ture of the composition. We hope to investigate the value
of neuro-symbolic music composition, where users follow
fully (computationally) autonomous processes, with intrigue
and explanation provided by talking points about Parley’s
own compositions, rather than those being made by a user.
Ultimately, we aim for Parley to add to musical culture itself,
as described in (Colton and Banar 2023).



Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments, suggestions and pointers to relevant prior
work. We would also like to thank the developers of the vari-
ous software packages that Parley is built on top of. Berker
Banar and Sara Cardinale are supported by the UKRI/EPSRC
Centre for Doctoral Training in AI and Music (grant number
EP/S022694/1) and Queen Mary University of London.

References

Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.;
Citro, C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.;
Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.;
Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur, M.; Levenberg,
J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.;
Schuster, M.; Shlens, J.; Steiner, B.; Sutskever, I.; Talwar,
K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F.;
Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu,
Y.; and Zheng, X. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available from
tensorflow.org.
Aggarwal, G., and Parikh, D. 2020. Neuro-symbolic gen-
erative art: A preliminary study. In Proceedings of the 11th
International Conference on Computational Creativity.
Agostinelli, A.; Denk, T. I.; Borsos, Z.; Engel, J.; Verzetti,
M.; Caillon, A.; Huang, Q.; Jansen, A.; Roberts, A.;
Tagliasacchi, M.; Sharifi, M.; Zeghidour, N.; and Frank,
C. 2023. MusicLM: Generating music from text. arXiv
2301.11325.
Aldwell, E., and Schachter, C. 2010. Harmony and Voice
Leading. Thomson Schirmer.
Assayag, G.; Rueda, C.; Laurson, M.; Agon, C.; and
Delerue, O. 1999. Computer-assisted composition at IR-
CAM: From PatchWork to OpenMusic. Computer Music
Journal 23(3):59–72.
Banar, B., and Colton, S. 2022. Identifying critical decision
points in musical compositions using machine learning. In
Proceedings of the 24th IEEE International Workshop on
Multimedia Signal Processing.
Bisong, E. 2019. Google colaboratory. In Building Ma-
chine Learning and Deep Learning Models on Google Cloud
Platform. Apress.
Bogdanov, D.; Won, M.; Tovstogan, P.; Porter, A.; and Serra,
X. 2019. The MTG-Jamendo dataset for automatic music
tagging. In Proceedings of the ML4MD Machine Learning
for Music Discovery Workshop at ICML.
Cardinale, S., and Colton, S. 2022. Neo-Riemannian Theory
for generative film and videogame music. In Proceedings of
the 13th International Conference on Computational Creativ-
ity.
Charnley, J.; Pease, A.; and Colton, S. 2012. On the notion
of framing in computational creativity. In Proceedings of the
3rd International Conference on Computational Creativity.

Cohn, R. 1998. Introduction to Neo-Riemannian Theory: a
survey and a historical perspective. Journal of Music Theory
42:167–180.
Colton, S., and Banar, B. 2023. Automatically adding to
artistic cultures. In Proceedings of the International Confer-
ence on Computational Intelligence in Music, Sound, Art and
Design.
Colton, S., and Cardinale, S. 2023. Extending generative
Neo-Riemannian Theory for event-based soundtrack produc-
tion. In Proceedings of the International Conference on
Computational Intelligence in Music, Sound, Art and Design.
Compton, K., and Mateas, M. 2015. Casual creators. In
Proceedings of the 6th International Conference on Compu-
tational Creativity.
Cook, M.; Colton, S.; Pease, A.; and Llano, T. 2019. Fram-
ing in computational creativity: A survey and taxonomy. In
Proceedings of the tenth International Conference on Com-
putational Creativity.
Correya, A.; Alonso-Jiménez, P.; Marcos-Fernàndez, J.;
Serra, X.; and Bogdanov, D. 2021. Essentia TensorFlow
models for audio and music processing on the web. In Pro-
ceedings of the Web Audio Conference.
Hitzler, P.; Eberhart, A.; Ebrahimi, M.; Sarker, M. K.; and
Zhou, L. 2022. Neuro-symbolic approaches in artificial
intelligence. National Science Review 9(6).
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Kreminski, M., and Mateas, M. 2021. Reflective creators. In
Proceedings of the 12th International Conference on Compu-
tational Creativity.
Llano, M.; d’Inverno, M.; Yee-King, M.; McCormack, J.;
Ilsar, A.; Pease, A.; and Colton, S. 2020. Explainable compu-
tational creativity. In Proceedings of the 11th International
Conference on Computational Creativity.
Pearce, M., and Wiggins, G. 2006. Expectation in melody:
The influence of context and learning. Music Perception
23:377–405.
Robinson, A., and Voronkov, A., eds. 2001. Handbook of
Automated Reasoning. MIT Press.
Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Handbook
of Constraint Programming. Elsevier.


