
Exploring Human Models of Innovation for Generative AI

Gualtiero B. Colombo, Hantao Liu, Roger M. Whitaker
School of Computer Science and Informatics

Cardiff University
Cardiff, CF24 4AG UK

ColomboG@cardiff.ac.uk, LiuH35@cardiff.ac.uk, whitakerrm@cardiff.ac.uk

Abstract

The ability to innovate is a precious commodity that hu-
mans are well-disposed to accomplishing. Currently, in the
quest for development of artificial intelligence that is gener-
ative, blueprints for innovation are important for considera-
tion. However those following principles of human innova-
tion have been somewhat overlooked. The field of cultural
evolution presents interesting models for explaining human
innovation as evolutionary processes driven by intelligent bi-
ases. These offer approaches that can be followed in an al-
gorithmic form by the machine, with particular degrees of
freedom concerning bias. In this paper we take a first step
in exploring cultural evolution models for generative AI. In
particular, we use the concepts of cultural selection and bi-
ased transformation, where changes are driven by the bias
imparted at different points of human decision making pro-
cesses, in addition to social learning from others. We develop
these approaches using a population of neural networks, each
capable of drawing an image. We explore how neural net-
works and the resultant art evolve under these alternative
interpretations of cultural evolution, using biases based on
preferred prior images. The investigation suggests that bias
must also evolve for innovation to persist, something which
is given little emphasis in the literature.

Introduction
Interest in enabling computers to support creativity is some-
thing that is as old as computer science itself. Indeed,
in an essay dating back to 1948 (Turing 1948), Alan Tur-
ing, a father of modern computing, speculated that different
forms of search would need to support “intelligent machin-
ery”, and highlighted what he called “cultural search” as
a process aligned to the mission of human creativity (Tur-
ing 1950). In very recent times we are now seeing con-
siderable progress in artificial intelligence (AI) that is cre-
ative in open-ended scenarios, particularly through gener-
ative AI. Applications such as ChatGPT (Schulman et al.
2022), DALL-E 2 (Ramesh et al. 2022), and Stable Diffu-
sion (Rombach et al. 2022) can create meaningful and com-
plex content in response to limited instructions, for scenarios
of complexity beyond which we have previously seen (Op-
penlaender 2022). This is particularly the case for generative
art and text, where the underlying models are highly depen-
dent on scale (Galanter 2016; Boden and Edmonds 2009).
For example, the training of large language models requires

billions of words, bringing into question whether as an al-
ternative, there are useful general principles through which
meaningful creativity can established by alternative compu-
tational processes (Floridi and Chiriatti 2020; Dale 2021;
Berns et al. 2021). To this end, current successful ap-
proaches include generative adversarial networks, where
creativity is driven by competition (Tan et al. 2017), rachet-
ing training between a generating and discriminating neu-
ral network that results in high quality generation for open-
ended problems including art (Shahriar 2022).

Less well considered are the processes underpinning the
evolution of human innovation. The rationale for these mod-
els is strong, as humans have been able to innovate beyond
all other species. Fundamental insights on the nature of
creative processes have spanned both computing and psy-
chology, with contributions such as those from Boden and
Sawyer (Boden 2005; 2004; Sawyer 2011) indicating meth-
ods through which the individual mind can achieve creativ-
ity. These contributions serve to counter the illusion that
creativity is a form of “magic”, instead being methods that
allow large search spaces to be navigated. It is also worth
noting the often highly social nature of creativity, in that it is
rarely achieved in isolation, and is progressively developed
by building on the achievements of others, or from “stand-
ing on the shoulders of giants”. This is something that Tur-
ing articulated in his early treatment of this subject (Turing
1948).

Today this area is recognised as cultural evolution
(Tomasello 2009; Boyd and Richerson 1988; Mesoudi
2011), a cross-disciplinary endeavour that broadly seeks to
understand how human innovations take hold (Tomasello,
Kruger, and Ratner 1993). Here innovation has a specific
meaning, representing the combination of invention and so-
cial learning (Paulus and Dzindolet 2008). In this con-
text creativity is the process supporting invention, and this
may influenced by others. Through cultural evolution, cu-
mulative culture (Mesoudi and Thornton 2018) is now seen
as a front runner in explaining how humans have become
supreme innovators as compared to all other species. The
main premise of cumulative cultural evolution is the concept
of ratcheting, where improvements and novelty build with-
out reverting to previous states over the longer term (Ten-
nie, Call, and Tomasello 2009). This allows creativity to
build in sophistication. It is argued that this presents simi-



larities to Darwinian evolution (Mesoudi 2011), albeit with
different mechanisms that allow change to happen much
more quickly. Although there is significant debate about
how cumulative culture results, at least two key models have
emerged, known as biased transformation and cultural se-
lection (Mesoudi 2021). These models expose the crucial
role that human bias plays in executing cultural evolution,
and can be approximated as simple algorithms that offer de-
grees of freedom as to their interpretation, configuration and
sophistication. They can also function without necessarily
pre-training, using association with memories to impart bi-
ases, which is often aligned with human decision making.

Contribution
Our overall interest is in techniques that are able to persis-
tently create artifacts that increasingly embody innovation
and novelty. Based on the success of humans in achiev-
ing this, in this paper we focus on two key mechanisms
of cultural evolution, namely cultural selection and biased
transformation. We adopt them as an inspiration for com-
putational techniques where a small group of retained pref-
erences are collectively engaged in creating new art repre-
sented through neural networks. Note that art is chosen as a
vehicle to study creativity because it is readily accessible for
human interpretation of innovation.

In general, innovation can be a challenging concept to
measure because features that are innovative may not be
foreseen, impeding quantitative measures. We use a general
approach where instances of art are each drawn by a neural
network and a set (or population) of images are maintained.
Bias through images (represented by neural networks) are
used to effectively represent preferences and a persistent
memory, referred to as preferred priors. We explore ways in
which bias can be applied through neural networks that are
engaged in creating art, and we include the use of techniques
from neuro-evolution to combine and impart bias. This ap-
proach allows directed modifications to be explored, where
new images are created that are then available to repeatedly
build upon in future. Since images are easily human inter-
pretable we are able to gain a first-hand qualitative under-
standing of the role of bias in creative computational pro-
cesses aligned to cultural evolution. This allows us to de-
velop new insights and hypotheses.

The Neural Network Artist
Artificial neural networks (ANNs) are a mainstay of current
AI, being robust to scaling and applicable across wide rang-
ing scenarios. We focus on a novel form of ANNs called
Compositional Pattern Producing Networks (CPPNs), that
can be used to create images (Stanley 2007). Interesting im-
ages can be produced even from simple CPPN structures -
an example is shown in Figure 1. CPPNs function by tak-
ing the x and y coordinate of an image’s pixel as the in-
put, and return as output the colour of the pixel. Thus each
CPPN can be thought of as an artist that has created a paint-
ing. The structure of the CPPN and the activation functions
used on the CPPN’s nodes determine the form of the im-
age that is produced. The previous use of CPPNs for image
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Figure 1: CPPNs representing a simple randomly generated
image and a more complex ’prior image’.

generation has been highly successful, for example being
used in participatory crowdsourcing experiments (Secretan
et al. 2008) that transformed abstract art to meaningful or
interesting compositions. Using CPPNs provides a way to
expose the “brain” of the virtual artist, and a novel point
of influence. For example it is possible to make small mu-
tations to a CPPN, such as a random change to the func-
tion of a node or the strength of connection between nodes
(Stanley 2007), resulting in perturbations to the associated
image. More directed changes can be invoked through com-
bining CPPNs so that characteristics from one image can be
used to influence another. This is non-trivial because the
structure of CPPNs may vary making it challenging to map
between such neural networks. However techniques from
neuro-evolution can be used to create this integration, such
as the crossover mechanism used in the NEAT algorithm
(Stanley and Miikkulainen 2002; Stanley, D’Ambrosio, and
Gauci 2009). Consequently, CPPNs and the approach to
combining them through crossover give a means to impart
bias in a cultural evolutionary process. These capabilities
allow new computational models based on cultural evolu-
tion to be explored. In particular, it is interesting to see
the extent to which they can be harnessed to generate novel
artifacts with persistent creativity and increased complex-
ity. This aspect gives an important insight concerning open-
endedness, which is the grand-challenge of creating an al-
gorithm that persistently creates innovations (Stanley 2019;
Lehman, Stanley, and others 2008; Stanley, Lehman, and
Soros 2017).

Experimental approach
To explore models of cultural evolution in this context, we
address two directions for experimentation. Firstly, to un-
derstand the search space and the impact of bias, we consider
biased and non-biased navigation through the search space,
and the differences between them (Experiment 1). This re-
quires consideration of the effects on changes to evolving
a selected starting image. Secondly, to understand cultural
models, we consider how approximations to biased transfor-
mation and cultural selection perform (Experiment 2), using
retained memories of preferred prior images as the basis for
bias. Note that necessarily, the evaluation here is subjec-
tive and exploratory, as a necessary first step to be further
developed. The benefits of using art are in the human inter-
pretability of the artifacts and their novelty, but this can only
be judged by selective qualitative means. Nevertheless, this
provides a useful basis to develop observations and hypothe-
ses for more rigorous future investigation.



Experiment 1: Mutating a Single Image
What happens when we mutate a CPPN, or more specifi-
cally, how is the resulting image disrupted? This is a fun-
damental question underlying models of cultural evolution.
Changes to artifacts, whether intentional or random, are the
basis for variation. Variation underpins all evolutionary
processes, without which artifacts remain in stasis. Varia-
tion opens up choice for further modification, and it is the
basis for further random or directed change. The choices
and modifications that are made determine how creativity
emerges. While the human can impart intuition in selection
and transformation decisions, using embedded skills, expe-
riences and memories, the computer requires explicit bias to
be programmed.

Algorithmic Approach
To assess this we compare two alternative strategies. Firstly
taking a single starting point CPPN, denoted I , that has been
randomly generated (and thus maps to a random image), we
apply small random changes to the edge weighting or the
activation function within a node from a hidden layer of the
CPPN. This is successively repeated to the CPPNs that re-
sult, being equivalent to a random walk through the search
space, representing an unguided and uninfluenced path. The
general approach used is presented in Algorithm 1. This
involves starting with a CPPN I (line 2) and evolving this
using a simple procedure where ns alternative random mu-
tations are made to I (called the candidate set - line 7) from
which one is randomly selected to update I (lines 8 and 9).
This approach to randomisation is used so that it exploits a
common framework of code. The output from Algorithm 1
gives a baseline to understand characteristics of a non-biased
random approach.

Secondly, we consider biased transformation, where di-
rected search is applied (Algorithm 2) in place of the small
random changes considered in Algorithm 1. Algorithm 2
has two variations embedded within it, based on the strength
of directed transformation. Initially a set of preferred prior
images, denoted P , are defined (line 1). These provide the
source of bias - in effect memories of interesting images rep-
resented by CPPNs. The starting CPPN for subsequent evo-
lution is initalised in line 2. Note that this could also be one
of the preferred priors.

The first step is to create a set of alternatives from I ,
which is called the candidate set. This is populated in
two alternative ways (line 7), either mutations of I (called
biasedTrans1) or a crossover and mutation between I and a
random CPPN from the set of priors (called biasedTrans2).
Crossover is a mechanism that combines two CPPNs and
imparts characteristics from both to form a new CPPN, akin
to creating an offspring. It is a non-trivial operation because
CPPNs are not guaranteed to have the same structure. Here
we use the crossover operator defined in (Stanley and Mi-
ikkulainen 2002). The resulting CPPN I ′ is subject to a
small mutation (line 8) to guard against I or a prior being
over-represented in the candidate set. Finally, a selection is
made from the candidate set and this involves bias aligned
to a particular prior. To achieve this, at each iteration, a pre-
ferred prior of interest is randomly chosen from P , denoted

Pi (line 5). Then a subset of the candidate set is identified,
involving a selection of most similar ni images to Pi. This
subset is called the individuals set (line 10). This excludes
those images that are less well-related to Pi. Note that sim-
ilarity is applied to the images rather than the CPPNs from
which they are defined. This requires techniques from image
processing and we employ a deep residual neural network
Resnet (He et al. 2016), trained on the over 20 million im-
ages from the Imagenet dataset, further fine tuned with the
methodology presented in (Wang et al. 2014). This allows
general abstract features of images to drive similarity, such
as shapes and patterns. It is ideal for our needs because it
ensures similarity isn’t based on over-fitting, being in more
keeping with human intuition rather than precision. From
the individuals set, then finally a random selection is made
(line 11), which is updates I .

For exploratory purposes, a candidate set with cardinality
50 has been used, alongside an individuals set of size 10 and
we run the algorithms for 50 iterations. Mutation settings
for the CPPNs are set as equal to the default from (McIntyre
et al. 2015).

Algorithm 1 Random Walk

1: procedure RANDOM WALK( Evolving CPPN I , Candi-
date Set Size ns, Number of Iterations ni )

2: I ← Pj ∈ P or I ← RandomImage; i = 0
3: while i < ni do
4: CandidateSet = ∅; j = 0
5: for j < ns do
6: I ′= mutate(I)
7: CandidateSet← CandidateSet ∪ I ′; j++;
8: V ′← Select Randomly from CandidateSet
9: I ← V ′ ; i++;

Algorithm 2 biasedTrans1 and biasedTrans2

1: procedure BIASEDTRANSFORMATION(Set of Prior
Images P , Evolving CPPN I , CandidateSetSize ns, In-
dividualsSetSize ni, NumberOfIterations ni )

2: I ← Pj ∈ P or I ← RandomImage; i = 0
3: while i < ni do
4: CandidateSet = ∅, IndividualsSet = ∅ ; j = 0
5: Set Current Prior as Pi ∈ P
6: for j < ns do
7: I ′ ← I or . biasedTrans1

I ′ ← Crossover( I, Pi) . biasedTrans2
8: I ′′= mutate(I ′)
9: CandidateSet← CandidateSet ∪ I ′′; j++;

10: Select IndividualsSet ⊂ CandidateSet as the
Set of ni Images in CandidateSet Most Similar
to Current Prior Pi

11: V ′← Select Randomly from IndividualsSet
12: I ← V ′; i++;

Experiment 1: Results
Firstly we consider the effects of random walk through
the search space, based on Algorithm 1. To demonstrate



Image a Image b Image c Image d Image e

Figure 2: Example of five images represented through
CPPNs that are used as candidates preferred priors and/or
starting points in various experiments. These are chosen for
having little similarity between them based on ResNet as-
sessment.

Image f Image g Image h Image i Image j

Figure 3: Example of five images represented through
CPPNs that are used as candidates preferred priors in various
experiments. These are chosen for having greater similarity
between them based on ResNet assessment.

this, five sample images from Figure 2 and their associated
CPPNs were taken as starting points, and the random evo-
lution of resulting images were observed. Figure 4 shows
interesting snapshots from the resulting sequence of images
produced. Relatively quick changes occur across the im-
ages, with particularly interesting iterations highlighted in
Figure 4, where the relationships between images can be ob-
served. As expected, there are no overall patterns that can
observed. Some random paths become complex in different
ways (e.g., images a and d) while others remain similarly
complex (e.g., image b), although they all tend to become
more abstract and less well aligned to particular shapes that
humans can identify with. Others drift to lower complexity
(e.g., c and e). What is evident though is the rich variety of
images that can be readily generated and how easy it is to
transverse the search space.

In contrast to a random walk, the results from biased
transformation (Algorithm 2) are stark, where the impact of
biased transformation is significant. Figures 5 and 6 demon-
strate this using a common starting CPPN (see Figures 1 and
2), and they present selections from some of the most inter-
esting images created across different runs with alternative
random seeds. These are of course subjective selections, but
are representative of the search space. In each of Figures 5,
6, 7 and 8 different priors are applied, ranging from two to
five priors. Also two alternative starting images are used, to
provide a further comparison. Finally we also consider dif-
ference in applying a set of highly similar priors (Figure 3)
as compared to a set that are mutually dissimilar, based on
ResNet similarity (Figure 9).

Using qualitative inspection from experimentation, we
draw the following observations and hypotheses. Firstly,
biasedTrans2 has a much stronger evolutionary im-

pact in terms of diversity of interesting images than for
biasedTrans1. In other words, introducing crossover pro-
vides a strong influence to direct the evolution towards cre-
ative areas of the search space related to preferred priors.
Secondly, although a minimal number of preferred priors
will support the discovery of interesting solutions, additional
priors appear to increase the diversity and complexity of the
most interesting images that are discovered. This is espe-
cially the case when crossover is involved (biasedTrans2).
However, fully displaying this using a limited number of im-
ages is challenging. Thirdly, in all cases, using alternative
random seeds is sufficient to drive the evolution in diverse
directions across the search space. This seemed to be ampli-
fied when a greater number of priors were involved, or when
crossover was employed (biasedTrans2). Fourth, it is ev-
ident that both similar and dissimilar sets of prior images
can promote creativity, while the dissimilar priors seem to
influence shape formation, while similar priors seem to add
more intricate detail to images. Finally, the results seem to
affirm that the concept of similarity to retained memories
(or preferred priors) is sufficient to drive creativity within a
few iterations without new images being directly tied to the
priors from which they have been influenced.

Experiment 2: Cultural Evolution on a
Population of Images

To further explore models of cultural evolution, it is nec-
essary to introduce a population of alternative artifacts that
are available to be updated, providing a diversity through
which innovations can accumulate and transfer between in-
dividuals. This is a basis for two key models of cultural
evolution, namely cultural selection and biased transforma-
tion (Mesoudi 2021). These models allow external influence
from multiple sources each represented by a preferred prior
image to possibly influence decision making when acting
upon a population of artifacts of some description. The dif-
ference between cultural selection and biased transformation
concerns where bias comes into play - either at the point of
selection of artifact to modify (cultural selection) or the way
in which they are modified (biased transformation). In re-
ality both these elements may combine (Mesoudi 2021) but
it is prudent, from an exploratory perspective, to understand
the differences between alternative models.

Algorithmic Approach
We use the algorithmic framework analogous to that de-
scribed in the previous section and focus on evolving a pop-
ulation of random CPPNs aligned to different models of cul-
tural evolution. Firstly we focus on the effects of bias at the
selection stage, aligned to cultural selection. In Algorithm
3 we evolve a population of N CPPNs (set Pop) by replac-
ing at each generation a subset of Pop, denoted ReplacedSet,
and replacing it with another set of CPPNs, denoted NewInd-
Set.

To decide how NewIndSet is composed, we firstly cre-
ate a set, CandidateSet (lines 8-11) from the population.
This can be created in two alternative ways (line 9), either
through mutating a randomly selected individual (which we



Image a it. 2 it. 3 it. 10 it. 15

Image b it. 5 it. 13 it. 16 it. 20

Image c it. 2 it. 6 it. 8 it. 16

Image d it. 9 it. 10 it. 14 it. 19

Image e it. 2 it. 11 it. 14 it. 20

Figure 4: Examples of representative and interesting images
produced under Algorithm 1 (random walk). Each row rep-
resents a sample of images selected from random evolution
from five starting points (Images a - e). Numbers under im-
ages indicate the iteration from which they are taken.

call random selection), or by making the selection based on
weighted similarity with a randomly selected prior Pi (line
6), representing a form of direct bias (Boyd and Richerson
1988), and then applying a mutation. We call this approach
cultural selection. The NewIndSet is then randomly selected
as a subset of CandidateSet. Finally, the set of images that
are least similar to Pi are then removed from the population
Pop (ReplacedSet in lines 16-18). This biased removal is
important in various approaches to cultural evolution (Boyd
and Richerson 1988; Dawkins and others 1996).

Algorithm 4 evolves a population of CPPNs based on
biased transformation, where the transformation of arti-
facts from the population are subject to biases. This con-
trasts to Algorithm 3 where the bias is applied to selec-
tion. As in Algorithm 3, at each generation Algorithm
4 takes a subset of Pop, denoted ReplacedSet, and re-
places it with another set of CPPNs, denoted NewIndSet.
Members of the CandidateSet are initially selected at ran-
dom (line 9). These are then either directly mutated un-
der biasedTransformation1 or crossover occurs with Pi,
representing a form of guided variation (Boyd and Rich-

start it. 31 it. 38 it. 43 it. 47
Evolution with two priors a, e

start it. 9 it. 20 it. 30 it. 49
Evolution with three priors a, d, e

start it. 25 it 26 it. 36 it. 37
Evolution with five priors a, b, c, d, e

Figure 5: Examples of the most creative and interesting im-
ages produced under biasedTrans1 (Algorithm 2) for two
(top), three (middle), and five (bottom) prior images using a
randomly generated image as starting point. Numbers under
images indicate the iteration from which they are taken.

erson 1988), denoted biasedTransformation2 (lines 10-

start it. 2 it. 4 it. 11 it. 20
Evolution with two priors a, e

start it. 2 it.15 it. 17 it. 20
Evolution with three priors a, d, e

start it. 2 it. 14 it. 19 it. 30
Evolution with five priors a, b, c, d, e

Figure 6: Examples of the most creative and interesting im-
ages produced under biasedTrans2 (Algorithm 2) for two
(top), three (middle), and five (bottom) prior images using a
randomly generated image as starting point. Numbers under
images indicate the iteration from which they are taken.



start it. 2 it. 5 it. 8 it. 9
Evolution with two priors a, e

start it. 2 it. 8 it.13 it.15
Evolution with three priors a, d, e

start it. 2 it. 3 it.5 it. 15
Evolution with five priors a, b, c, d, e

Figure 7: Examples of the most creative and interesting im-
ages produced under biasedTrans1 (Algorithm 2) for two
(top), three (middle), and five (bottom) prior images using
Image a as starting point. Numbers under images indicate
the iteration from which they are taken.

start it.10 it. 20 it. 24 it. 42
Evolution with two priors a, e

start it. 24 it. 29 it. 34 it.41
Evolution with three priors a, d, e

start it. 11 it. 14 it.24 it. 26
Evolution with five priors a, b, c, d, e

Figure 8: Examples of the most creative and interesting im-
ages produced under biasedTrans2 (Algorithm 2) for two
(top), three (middle), and five (bottom) prior images using
Image a as starting point. Numbers under images indicate
the iteration from which they are taken.

11). From CandidateSet, we then select a subset NewIndSet
that is most similar to Pi (lines 13-15). Finally, the set of

start it. 15 P8 it. 26 P1 it. 34 P1 it. 45 P6
Evolution with five priors a, b, c, d, e

start it. 3 P4 it. 10 P6 it. 34 P6 it. 46 P4
Evolution with five priors f, g, h, i, j

Figure 9: Examples of the most creative and interesting im-
ages produced under biasedTrans2 (Algorithm 2) for sim-
ilar (top) and dissimilar (bottom) sets of priors using a ran-
domly generated image as starting point. Numbers under
images indicate the iteration from which they are taken.

images that are least similar to Pi are then removed from
Pop (ReplacedSet in lines 16-18) and NewIndSet is added to
Pop. This replacement approach follows that in Algorithm
3. For exploratory purposes, a candidate set with cardinality
250 has been used, alongside an individuals set of size 10,
a replaced set also of size 10, and we run the algorithms for
50 generations.

Experiment 2: Results
Firstly we consider evolving a population of CPPNs (N =
50) and adopt only one preferred prior, taking image e
from Figure 3. This is designed to test the potential con-
vergence differences between the variations in Algorithms
3 and 4. The cultural evolution literature (Mesoudi 2011;
Boyd and Richerson 1988) indicates that while both cul-
ture selection and biased transformation support conver-
gence in simple fitness-based models, biased transformation
is quicker.

The results from Figure 10 show that biased transfor-
mation has a significant effect in directing the evolution
based on the preferred prior, as compared to both cultural
and random selection. This is particularly the case for
biasedTransformation2. Similarity here is measured us-
ing ResNet-based measure (Wang et al. 2014). Note that all
approaches involve biased removal of CCPNs from the pop-
ulation at the point at which replacements are added. The
results also show that there are fundamental limitations in
applying only a single point of bias, in this case a single pre-
ferred prior, because evolution gets drawn towards the orig-
inal point of bias, as seen in Figure 11. This is also noted in
cultural evolution treatments of biased transformation.

Secondly, based on using a set of five preferred priors
as bias, we consider the characteristics of cultural evolution
based on Algorithms 3 and 4. In Figure 14 we present a se-
lection of images representative of the most novel and cre-
ative images from across different generations for each of
the four techniques presented through Algorithms 3 and 4.



Algorithm 3 Random Selection and Cultural Selection

1: procedure RANDOMSELECTION / CULTURAL SELECTION

(NumberofGens G, EvolvingPupulationOfImages Pop,
SetofPriorImages P , PopSize N , CandidateSetSize ns,
NewIndSetSize ni, ReplacedSetSize nr)

2: NewIndSet=∅,CandidateSet=∅,ReplacedSet=∅
3: Set Pop as a Population of Random Images; g = 0
4: while g< G do
5: Select Randomly Current Prior Pi from P
6: i = 0; j = 0; k = 0
7: for i < ns do
8: I ← Select Randomly from Pop . rand. sel.

or
I ← Select from Pop Proportionally

to Similarity to P . cult. sel.
9: I ′ ← mutate(I)

10: CandidateSet← CandidateSet ∪ I ′; i++
11: for j < ni do
12: V ← Select Randomly from CandidateSet
13: NewIndSet← NewIndSet ∪ V ; j++
14: for k < nr do
15: K ← Set of ReplacedSetSize Images in

Pop Least Similar to Pi

16: ReplacedSet← ReplacedSet ∪K; k++
17: Pop← Pop − ReplacedSet
18: Pop← Pop ∪ NewIndSet; g++

Figure 10: Average distance of population to image e as the
preferred prior produced from the variations in Algorithms
3 and 4.

From inspection and multiple trials, greater levels of creativ-
ity seems apparent under biased transformation. Aligned to
these experiments, we also track the average similarity in
the population of CPPNs as compared to each of the five
priors. This is presented for cultural selection (Figure 12)
and biasedTransformation2 (Figure 13). We note that
there are considerable differences - while Figure 12 exhibits
general trends towards similarity and convergence, the alter-
native is true in Figure 13.

Based on our qualitative observation from experimenta-
tion we draw the following observations and hypotheses.
Firstly, although bias can drive creativity, it can also equally
restrict creativity and innovation if biases are restricted, as

Algorithm 4 biasedTrans1 and biasedTrans2

1: procedure BIASEDTRANSFORMATION (NumberofGens
G, EvolvingPupulationOfImages Pop, SetofPri-
orImages P , PopSize = N , CandidateSetSize ns,
NewIndSetSize ni, ReplacedSetSize nr)

2: NewIndSet=∅,CandidateSet=∅,ReplacedSet=∅
3: Set Pop as Population of Random images; g = 0
4: while g< G do
5: Select Randomly Current Prior Pi from P
6: i = 0; j = 0; k = 0
7: for i < ns do
8: I ← Select Randomly from Pop
9: I ′ ← I . biasedTrans1

or
I ′ ← crossover(I, Pi) . biasedTrans2

10: I ′′= mutate(I ′)
11: CandidateSet← CandidateSet ∪ I ′; i++
12: for j < ni do
13: V ← Set of NewIndSetSize Images in

CandidateSet Most Similar to Pi

14: NewIndSet← NewIndSet ∪ V ; j++
15: for k < nr do
16: K ← Set of ReplacedSetSize Images in

Pop Least Similar to Pi

17: ReplacedSet← ReplacedSet ∪K; k++
18: Pop← Pop − ReplacedSet
19: Pop← Pop ∪ NewIndSet; g++

random
selection

cultural
selection

biased
trans. 1

biased
trans. 2

Figure 11: Images with greatest similarity to image e as the
preferred prior produced from the variations of Algorithms
3 and 4 over 50 generations.

seen when only a single prior is applied. Thus multiple
sources of bias have an important effect on the creativity that
is achieved. Secondly, multiple sources of bias, combined
with the evolution of a population of images rather than evo-
lution of a single image (Experiment 1) provides the oppor-
tunity for much diversity of images to emerge. This is more
strongly felt under biased transformation, when the trans-
formation is heavily directed through crossover-based tech-
niques (biasedTransformation2). Finally, from observ-
ing Figures 12 and 13 we hypothesise that tensions between
biases can drive creativity and the innovation that results. In
effect biases, when heavily directed through biased transfor-
mation, are steering a path through interesting elements of
the search space, seemingly allowing more scope to evolve
shapes for example, rather than only adding complexity to
an existing form of image.



Conclusion and Future Work
This study has brought together diverse techniques from
neural networks, neuro-evolution and visual computing to
support a new exploratory approach for harnessing com-
putational creativity. These techniques have been used to
explore whether fundamental human models of innovation,
known as cultural evolution, can inspire new computational
techniques to generate creativity from minimal user input
and computational forms of bias. Models of cultural evolu-
tion represent important techniques because they capture the
ways in which humans have been supremely successful as
innovators. Art provides an excellent vehicle for exploring
computational techniques in this context, with neural net-
works creating images for human interpretation of novelty.
Our initial findings show prospects for new computational
techniques based on cultural evolution. A key issue con-
cerns the role of bias, and biased transformation in particu-
lar, shows promise. Imparting bias in a computational form
can be a challenge, and the approach undertaken here sup-
ports the idea that retained memories, and abstract similarity
to them, can function as an effective method. In other words,
ideas from the past, or embedded preferences, can shape the
creation of new artifacts in unforeseen and novel ways.

To understand the impact of biases we explored biased
and non-biased navigation through the search space. Fur-
thermore, we considered how approximations to biased
transformation and cultural selection perform, to understand
how these cultural models impact on algorithmic creation.
Our investigation highlights the neural networks’ ability to
create images that evolve based on biased transformation,
suggesting that further development should focus on the is-
sue of bias and also that bias must evolve for innovation to
persist. Novel forms of learning can be considered to al-
low adaption of bias in step with the level of complexity in
the population. Little emphasis is given to the dynamics of
bias in the cultural evolution literature, which often features
snapshots of dynamic behaviour or static fitness functions
as a proxy for bias. However machine learning and com-
putational evolutionary techniques offer new prospects for
achieving this. We believe that this could be an important
aspect in developing persistent innovation aligned to open-

Figure 12: Average distance of population to the each of
five prior images a, b, c, d, e over generations under cultural
selection (Algortihm 3).

Figure 13: Average distance of population to each of
the five prior images a, b, c, d, e over generations under
biasedTrans2 (Algorithm 4).

gen. 16 gen. 25 gen.30 gen. 34 gen. 39
random selection

gen. 8 gen. 24 gen. 34 gen. 40 gen. 49
cultural selection

gen. 10 gen. 16 gen. 22 gen 30 gen. 34
biased transformation1

gen. 3 gen. 8 gen. 16 gen. 18 gen. 19
biased transformation2

Figure 14: Examples of the most creative and interesting
images from the population produced under the variations
in Algorithms 3 and 4. A population of random images was
used as starting point. Numbers under images indicate the
generation from which they are taken.

endedness (Stanley, Lehman, and Soros 2017).
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