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Abstract
We connect critical review and analysis of creative objects
to a recent domain-independent creativity assessment frame-
work by Mondol and Brown (2021a; 2021b). Reviewing is
interesting for at least three reasons. Reviews are time- and
space-limited, unlike other tasks. Reviews are a creative task
about creative tasks, and that meta-creativity is interesting
to consider theoretically. And reviews cause communication
and learning; the various actors (the primary creator, the re-
viewer, and the reader) interact in complex ways. We show
how Mondol and Brown’s framework connects to the process
of review, and show how topics like summarization, contex-
tualization and learning fit within an algorithmic information
theory frame. We also give some interesting examples, such
as analysis of conceptual art and concert reviews, as compu-
tation tasks. We finish by showing that (as is often true of
algorithmic information theory ideas) it is hard to fulfill our
objectives with practical systems, due to uncomputability or
intractibility issues.

Introduction
Reviewing, either of a creative product like a concert or
novel, or of an academic product like this paper, includes
several goals that the reviewer must satisfy. First, the goal is
to provide an overall assessment of the quality of the prod-
uct in the first place: is the paper good, should other people
come to see the further offerings of the performance, and so
on. Second, the reviewer summarizes the product: what is
the relationship between the main characters of the novel,
say. Third, a good reviewer offers contextual information,
for example: how does the object fit within or expand its
genre, or was the performance better than expected? Aca-
demic reviews also come with creative improvements and
recommendations from the reviewer.

Reviewing is a computational task. With this lens, we see
inputs, background knowledge, execution time constraints,
memory use constraints, and output size constraints, and can
identify what a critic does, what makes a good critic, why
different critics will identify different aspects of a perfor-
mance, how readers can interpret a review, and more.

Review is also creative. Readers may be delighted by a
review’s cleverness, or by its surprising insights. A reviewer
may unexpectedly connect properties of the manuscript with
the author’s biography, or may examine an oeuvre in a novel
way, or identify how the work expands knowledge.

We approach review via a computational creativity (CC)
framework and focus on review quality and creativity. Addi-
tionally, we consider certain aspects of how reviews are cre-
ated (in particular, their limited creation times), how reviews
affect readers, and how reviews can form a communication
channel between a creator and a potential audience. In em-
phasizing these perspectives on reviews, we reconstruct the
4P’s framework (Rhodes 1961), adapted to CC by Jordanous
(2016). That is, reviews are themselves a Product, created by
a Producer, via a Process, for an audience (Press).

We focus our theory on the algorithmic information the-
ory approach to computational creativity evaluation of Mon-
dol and Brown (2021a; 2021b). That framework offers a
genre-independent definition for key concepts like novelty,
quality, typicality and more. However, our focus on review
also extends Mondol and Brown’s work, in that we focus
on properties of the reviewer: what program is the reviewer
executing? What background information does the reviewer
have? How much time does the reviewer have in which to
make a judgment? Does the reviewer have prior knowledge
or expectation about who will be reading the review?

We also focus on the reader of the review: their back-
ground and ability to interpret the review. As such, our ap-
proach focuses on the review as a complicated communica-
tion intermediary between a creator and a consumer. For
agents to talk about creative objects, we need to formalize
how they convey their opinions. Thus, key to our under-
standing of review is the relationship between a reviewer
and the reader. An expert reviewer may identify aspects of a
creative object that a naive reader cannot understand; mean-
while, a naive reviewer may not be of use to an expert reader,
who already understands the work and wants to assess if, for
example, a concert of a beloved piece is worth attending.
One example of a reviewer might in fact be the creator of an
object, summarizing it as a teaser for potential readers; this
still fits within our frame, especially if the creator is knowl-
edgeable about potential readers.

Our goal here is to document how the Mondol and Brown
framework can be applied to the overall task of critical re-
view. We discuss what it means to be a “good” review or
reviewer. And, we identify some serious challenges relat-
ing to the Mondol and Brown framework in the first place,
given that their frame expects that the quality of an object
is connected to its mathematical logical depth and sophisti-



cation, two hard-to-estimate quantities, and that the formu-
lation by Mondol and Brown does not restrict the work of a
reviewer in approximating the information found in an ob-
ject. We connect our work to computational creativity by
discussing previous efforts to shape critical review as a CC
task, and to describe how individual reviewers might bring
their own perspectives to the task of review. Our paper con-
tributes to overall understanding of how artistic objects form
a means of communication between producers and their au-
dience, and the role intermediaries play in that communica-
tion act.

Background
Here, we give two different pieces of background to our
project. First, we describe how review has previously been
portrayed in the computational creativity literature. Then we
give the necessary mathematical background for this over-
all work, focusing on the Mondol and Brown framework.
We finish this section by giving the notational framework
in which we embed the review task in terms of its various
actors.

Review and CC
Few papers discuss review in computational creativity, but
two ICCC papers (Fisher and Shin 2019; Roberts and Fisher
2020b) do. Both discuss an early effort by Stiny and Gips
(1978) connected to algorithmic aesthetics, where they con-
nect design directly with criticism, and so the full Stiny and
Gips model consists of two parts, a structure for design al-
gorithms, and a structure for criticism algorithms. In this
paper, with the Stiny and Gips model, we specifically refer
to its criticism component. Stiny and Gips base their model
on Craik’s general model of thought (Craik 1943), which
consists of a receptor that produces a description of what it
senses in the world, a processor that transforms the descrip-
tion for the effector to produce an observable response.

In the Stiny and Gips model (based on Roberts and Fisher
(2020b)), receptor function R takes object α and contextual
information Iα to produce description δ. Processor P , in
the Stiny and Gips model, is an algorithm informed by an
aesthetic system, which is a set of algorithms that form the
aesthetic criteria, and a memory of contextual information
Im. P takes description δ and contextual information Im,
and outputs, in addition to the original description δ, the best
interpretation ι and numerical aesthetic evaluation ϵ. The
effector E is a function that takes δ, ι, and ϵ to generate
review χ.

Fisher and Shin (2019) identify review as a separate cre-
ative task and highlight that critics are part of larger creative
ecosystems. They argue for the importance of computational
critics and identify five desiderata for a critic. The computa-
tional critic should 1) understand the medium, 2) emphasize
the authorial intent of an artifact, 3) reason about the cre-
ator’s output and its relationship to the subject, 4) situate the
artifact in social and historical contexts, and finally, 5) gauge
the response of the readers and viewers to the critique. Be-
sides the standard CC criteria for creativity (Boden 1992;
Ritchie 2007), they analyze essential dimensions involved

with critique: authority, authenticity, explainability, and in-
terpretability. Additionally, because of the role critics play
in society, they address the ethical concerns for when com-
putational critics are implemented. The follow-up paper
(Roberts and Fisher 2020b) further explores the Stiny and
Gips model and adjusts their approach by formalizing their
desiderata. In particular, they introduce a justification γ, as
another output of the analysis algorithm P and an additional
input to E. We extend their approach by focusing specifi-
cally on the computation that happens in both the reviewer
and in the reader, and looking at properties of all of these
agents.

Scientific review has been identified as a domain for im-
plementing computational critics because it provides ex-
cellent grounding in a specific context (Fisher and Shin
2019). A first attempt at a computational scientific critic is
pReview (Roberts and Fisher 2020a). A recent paper (Yuan,
Liu, and Neubig 2022) discusses automating scientific re-
view as a Large Language Model (LLM) task; that paper is
more oriented around the practical LLM techniques to do
this automation, and identifies some key desiderata.

Algorithmic Information Theory and Creativity
Our frame for analyzing creativity is the algorithmic in-
formation theory (AIT) framework of Mondol and Brown
(2021a; 2021b). They give a Product-focused definition of
basic concepts in creativity, including value, typicality, and
novelty. In their framework, all of these concepts are based
on properties of a Turing machine program whose output
is the digital objects under study: an object s is valuable,
for example, if there are short programs whose output is
s, but where all of them require long runtimes to execute.
Here, we give a brief introduction to the Mondol and Brown
framework; interested readers are referred to the full paper
(Mondol and Brown 2021b) for more detail. The standard
textbook on Kolmogorov complexity (Li and Vitányi 2019)
gives more complete definitions than those that follow.

Kolmogorov complexity We study digital objects, repre-
sented unambiguously. Given a universal Turing machine U
that can generate any computable object s, the Kolmogorov
complexity KU (s) is the length of the shortest input P ∗ for
which U(P ∗) = s. We ignore details of U , and often de-
scribe K(s) without reference to U , speaking of the execu-
tion of P , not U . The runtime of program P is the number of
Turing machine steps before P halts (and is infinite if it does
not halt). The conditional Kolmogorov complexity K(s|y),
is the length of the shortest Turing machine which, on input
y, outputs s: this quantity measures how similar s and y are,
or how much knowing y allows us to compress the string s.

K(s) alone is insufficient to identify if s is creative. Ran-
dom sequences have Kolmogorov complexity very close to
their length with high probability. The n-bit string 0n has
very low Kolmogorov complexity, at most log2 n. Both are
not of creative value. Instead, Mondol and Brown use two
other concepts in AIT as evidence of an object’s creative
value: logical depth and sophistication.

Logical depth The logical depth of s is the min-
imum runtime of programs with output s and with



their length close to K(s). Specifically, ldc(s) =
minP :U(P )=s,|P |≤K(s)+c runtime(P ), for some small pa-
rameter c. Objects with short, fast-running programs are
not deep (they are highly and trivially compressible and de-
compressible). Objects with only long programs are not
deep (they are random). Mondol and Brown show that high-
quality objects can be compressed, but their decompression
is slow: non-random parts of the object must be painstak-
ingly reconstructed. Consider, for example, a painting where
the positions of key objects are described by a short-to-
describe algorithm that requires a long time to execute: there
is structure in the painting, but it is hard to tease out. The
logical depth model of value says that for an object to be
of high quality, there must be substantial and complex work
embedded in the object. By contrast, Schmidhuber (2010)
has argued that beauty (which he treats as similar to quality)
is connected primarily to being of short description, regard-
less of the required runtime of a generation algorithm.

Sophistication The sophistication of s comes from a two-
part representation of digital objects. An object is defined
by giving the class of objects for which it is typical (to
its model, M ), and the information required to describe
the specific element in that class. (There is often delib-
erate ambiguity between M , the program for the model
and L(M), the class generated by M .) Valid models are
typically restricted; one straightforward requirement is that
models are Turing machines that halt on all inputs, or Tur-
ing machines that can generate any output. With such a re-
striction on valid models, then, the sophistication of a string
is sophc(s) = min(M,d):|M |+|d|≤K(s)+c,U(M,d)=s |M |. It
is the shortest model for which the two-part representation
comes close to optimally encoding the important details of
s. The model encodes the category of objects for which s is
a typical example; typicality is of course a standard desider-
atum for computational creativity (Ritchie 2007).

Sophistication is not an easy concept. The restriction to
models that are total functions removes the universal Turing
machine U as a valid model, since (without it) soph |U |(s) ≤
|U | regardless of what s is, since the universal Turing ma-
chine, run on the shortest program for S, will yield s. In-
stead, the model framework requires the identification of a
computable class of objects with a relatively short descrip-
tion that includes s as a typical member, and then the details
that identify s from all of the other class members.

Both of our previous examples of non-valuable objects
have short models. A random string s with high K(s) has as
its model a constant-length “print” program p that just out-
puts its input, so s then has a two-part code of length |s|+|p|.
By contrast, we need to be a bit more careful in describing
a repeated pattern. Consider the string s = 0k, where the
number k has K(k) ≈ log2 k (that is, the binary string k is
uncompressable). It is easily modelled by a constant-length
program p that on input of a binary number x, outputs 0x;
then the two-part code (k, p) has total length very close to
K(s), so p is a good model for s. Neither of these strings,
hence, is sophisticated: they both have short models.

By contrast, let s have fairly high Kolmogorov complex-
ity, yet compressible by complex programs. It cannot be

simply represented by its Turing machine representation as
input to U , but we can build a model of similar size to
|p| = K(s) whose language only contains s: this machine
ignores its input, and implements a universal Turing ma-
chine running p, which always halts and outputs s. The exis-
tence of this machine shows that the sophistication (assum-
ing this machine is a valid model) cannot be substantially
larger than K(s), but it could be smaller if the two-part rep-
resentation allows the model M to encode all of the com-
pressible information in s, while allowing the data d to be
uncompressible.

Key to the relationship between sophistication and value
is the important part of the two-part representation, M ,
which represents the regularizable information found in all
outputs of the model. By contrast, d, the data, is random
information ultimately not relevant to the meaning of the
model. A naive consumer of s may not be aware of the
inherent information of s, and assumes s is less sophisti-
cated than it is (mistaking s for more random data), or they
may not understand s sufficiently to compress it fully. This
challenge is the connection between review and the Mon-
dol/Brown framework.

Compression, lossy compression, and generation The
Kolmogorov complexity of an object s defines how much
information is in s, by giving an optimal compression for s.
If s is logically deep, no short program speedily generates s:
the only speedy generators of s require longer descriptions.
If we restrict to fast generators, we can only use models that
do not fully understand the information found in s.

If we restrict to programs that are both fast and short, we
cannot generate all of a logically deep string s. Instead, we
can only lossily represent s. Let s′t,n be the closest approxi-
mation to s that we can obtain by fast, short programs: that
is, s′ = argmins′K(s|s′), where s′ searches over all ma-
chines of size at most n bits and with runtime at most t steps.
If n is close to K(s), and the runtime is kept smaller than the
logical depth, then s′ may be able to represent some surface
features of s, but cannot identify the valuable pieces of s.
However, if the runtime is kept moderate, and the programs
must be short, we can still potentially explore some small
piece of the logically deep core of s, which may offer some
hint that the whole object is valuable.

Generation is also key to review. If we assert s is a “typi-
cal” example of a genre, that implies that a generator G for
that genre, run on random inputs, would yield an object of
similar quality and appearance. (We note that we will often
use the more informal term ”genre” to refer to the class of
objects created by a generator, instead of the more common
algorithmic information theory term ”class”; in part, this is
because we want to focus on creative objects.) For example,
if G generates typical romance stories, then the parametriza-
tion might indicate the names of the characters or their oc-
cupations, as well as some arbitrary details about the story,
then G could generate that new story. We only claim to
understand s when we can describe such a generator; fur-
ther, if on other random inputs, G’s output does not fit the
genre, then G is a bad representation of the class. Consider
a general-purpose compression system, like the Lempel-Ziv



(Ziv and Lempel 1978) algorithm. It may compress s, but if
run on a different input, it is likely to generate a completely
different type of output than s. As such, it is not a good
model for s.

Compression and generation are very difficult tasks to un-
derstand for simple objects because good generators of small
objects must be much larger than the objects themselves; this
yields a situation in which to analyze the quality of an ob-
ject, we must instead consider a collection of objects of a
type or make dramatic restrictions on what is a valid model;
see Brown and Mondol (2021) for more details. Table 1
gives a summary of AIT concepts used in this paper.

Review and algorithms
In our formulation, A creates the object s, B uses s as one
of its inputs and creates a review r of s, and C uses r to
contribute to its understanding of s, and whether or not to
further investigate s. For example, A might be a movie stu-
dio, creating a new movie; B writes a newspaper review of
the review, and C decides whether the movie is worth going
to on the basis of the review, in addition to learning from the
review.

Different reviewers may discover novel aspects of s; for
example, B1 may focus on the brushstrokes of a painting,
while B2 focuses on the biographical details of the creator
and B3 focuses on just giving service journalism about the
exhibition housing it. All of these might be more or less
useful to readers; we will discuss this issue later in the paper.

Review as a multi-part CC task
A review of a creative object includes several parts (Fisher
and Shin 2019). There is a summary of the object, situating
it in the domain from which it comes: for a novel, perhaps
talking about the characters and their relationships. The re-
view will include the reviewer’s assessment of quality, ei-
ther in textual form, or as a numerical rating. It can include
framing information: how the genre has changed, or what
the reviewer adores or despises. The review may describe
how the new object alters one’s understanding of the field,
or include biographical information about either the creator
or reviewer. They can also suggest improvements; this is ap-
propriate for academic papers, but could apply to any object:
a recipe tester might identify missing flavours, or a musical
reviewer might identify awkward lyrics or harmonies.

Review as a computational and creative task
Each reviewing subtask is computational: the input to an
algorithm is the object s, and the reviewer’s process in mov-
ing from their own knowledge and mental state to the tex-
tual review is the execution of an algorithm. Further, review
can also be seen as lossy compression: in summarizing a
piece of music, one gives enough description that a reader
has some better idea of the piece of music than they had be-
fore reading the review, and (if it is well-prepared) a better
estimate of the quality of the piece of music than they had
before reading the review. Formally, consider an object s
under review, created by a creator A. Assume that A is a
Turing machine computing a total function (A halts on all

Conceptual model of review in AIT

A

Creator

B1

(Naive)
Reviewer

B2

(Expert)
Reviewer

C1
(Naive)
Reader

C2
(Expert)
Reader

s s

r1 r1r2
r2

Figure 1: Here, s is the object under study, r1 is a general
review, and r2 is an expert review. The usefulness of a re-
view r to a reader C is dependent on its prior model of s.

inputs), and s = A(d), for some input d that comes from the
outside environment of A. Program A is not known to any
other observer. Reviewer B is also a Turing machine that is
given s as input, and computes a review r = B(s). B may
have some framing information as part of s (the name of the
composer of a song, the date of a performance, the title of
a poem, or an artist’s statement); in fact, it can be valuable
to consider s = (x, y), where x is the main object and y is
its framing information (Charnley, Pease, and Colton 2012).
Review r should include (possibly not well separated) each
of the parts we have described: the summary, estimate of
quality, and contextual framing for the object s. Then, the
review r is sent to the reader C, potentially along with the
same framing information available to B, and it is used by
C to help update its understanding of the object s, without
C being able to see the object s or its creation by A directly.
See Figure 1 for a conceptual model of this process.

Review is creative: in addition to identifying the prop-
erties of s, an expert reviewer can tantalize and educate
their readers. Famous movie reviewers like Pauline Kael
and Roger Ebert were considered masters of the craft, due
to their encyclopedic knowledge of the movie industry and
its customs, and other critics like Susan Sontag can join a
diverse range of fields in giving context to s and why it
matters. Hence, reviews can be assessed for typicality (is
this recognizably a review?), novelty (does it identify unex-
pected things about s?) and value (does it show important
aspects of s, or focus only on surface features of s?), and
similarly, B can also be assessed (though the distinction be-
tween B and r can be hard to identify).

How review differs from other computational tasks
One other key condition governs review, and makes it sim-
pler than other forms of critique (such as, for example, large
literary biographies): reviews are created in a short time
frame and must fit in a short space. One might be tasked with
an 800-word review of a 2-hour concert, due three hours af-
ter the concert ends, or one might be handed an 8-page paper



AIT idea notation quick summary meaning for reviews
K-complexity K(s) shortest program whose output is s not useful
conditional K-complexity K(x|y) how much information is shared between x

and y
measuring novelty and typicality

logical depth ldc(s) runtime of short programs for s one measure of value
sophistication sophc(s) length of shortest model for s another measure of value
model M program M that outputs s on a specific random

input d
way of describing s

good model M program M whose length is close to the so-
phistication of s

appropriate way of describing s

Table 1: AIT concepts used in this paper

and a 2-month deadline in which to review it. B is thus lim-
ited to Turing machines that always halt: they must halt in a
restricted time t and with their output r restricted to a limit
λ. This limitation is interesting: if t < |s|, the reviewer can-
not examine all of s, and if λ < K(s), then it is impossible
to fully describe the object (in terms of describing a pro-
gram that generates s in its entirety). Further, if t < ld(s),
then it is not possible to verify the correctness of a short pro-
gram for s (let alone find that program in the first place!). If
λ < soph(s), then we cannot give a good model for s.

Another difference, which we explore later in the paper,
is that review is connected to the reader of the review’s pre-
existing understanding of the object under study. Review is
a step in learning: if a new reader can be brought up to speed
about the genre by reading good straightforward reviews of
masterpieces of the domain that include descriptions of im-
portant milestones in the genre, this is a valuable service to
that reader, as it allows them to build better models of both
s and its genre. If the reader is already knowledgeable, then
the needed review to help them better understand a compli-
cated new piece of work is more complex.

Review and AIT
Review fits messily with AIT. A review with a short exe-
cution time cannot identify that an object is sophisticated,
for two reasons. First, even if B knew the program and in-
put that A used to generate s, it cannot run that program
in a small amount of time. If s is sophisticated, then the
program/data pair (p, d) that documents its sophistication is
both long and slow to execute. Even if (p, d) generates s, a
simpler program might also have generated it: the creator of
s may have toiled to create s, but not made a valuable object.

Instead, all review tasks can only be approximated. The
reviewer B can consider the object s within their expertise,
and can find evidence for novelty and value, but cannot be
guaranteed of success. As B specializes, they may be more
prepared to find such evidence, but at the loss of broad ap-
plicability, particularly given that B has a time limit.

Aesthetic evaluation and AIT
To identify value, we estimate logical depth or sophistica-
tion. Novelty has a full description in the Mondol/Brown
framework as well (Mondol and Brown 2021b), based on
how much a new object differs from a corpus of members
of the same genre. A novel object is both familiar (since it

can be placed in an existing model), but also unfamiliar (it is
distinguishable from other objects generated by the model in
not just random, meaningless ways). This framework lets us
not view a sonnet as “novel” when placed in a set of objects
that are all paintings, for example. Quality (as novelty, typ-
icality, and value) is estimated by describing what an object
is in the context of a good model for that object and its class,
and why it is exemplary of a sophisticated model.

Summarization and AIT
To summarize effectively, one should identify the model
from which an object is a typical example, and indicate the
ways in which the model does or does not fully satisfy the
non-random information found in the object. This relates to
quality estimation: the critic identifies the model from which
an object comes, and also the random parameters for that
model. For example, “It’s a Jackson Pollock painting, with
the paint spills in these positions, with these colors.” Again,
novelty estimation is separate from the summarization pro-
cess, and thus the task of review is not just summarization.

Contextualization and AIT
Contextualization is included in an object’s model: if we
know about a good model M for s, it cannot create surprise,
since s is then a typical example of M ’s outputs. This re-
quires that the model does not accidentally move outside the
genre on random inputs. We discuss this topic in the ex-
amples later, but a straightforward example is Duchamp’s
“Fountain” (which was a urinal): obviously, a very short
model can ignore its input and generate a sufficient descrip-
tion of the piece, but it will not generate any other Duchamp-
readymades, nor distinguish them from fakes. By contrast,
a much larger model that presents Duchamp’s Dadaist back-
ground and the scenarios in which he worked might generate
other examples of Dadaist conceptual art. Obviously, a short
review cannot give a full description of such a model, but
can present information necessary to describe how it differs
from models, like “print” programs.

The role of the reader of a review
Our discussion so far has treated review as a very quickly
created description of an object, focused on quality estima-
tion and model identification. But reviews communicate:
the readers of the review have their own tastes, their own



goals, their own knowledge, and needs to extract from the
review useful information about the object s.

This complex relationship requires unpacking. These
three actors are not playing a complex game of Telephone:
instead, a smart reviewer learns about both creator and
reader to ensure that useful information gets passed between
these two actors. B does not not merely build a short de-
scription of the model A used to create s, but also needs to
pick the best way to describe this model, given what C al-
ready knows about objects like s. If C is an expert on the
topic of objects like s, then the updates B needs to give to
the internal model C has may be of a very different class
than the model description given by B to a naive reader. See
Figure 1 for a sketch of this process.

This observation highlights a key problem with the Mon-
dol/Brown framework: it equates quality with logical depth
or sophistication, removing the chance for a reader to have
preferences and tastes. Their “complexity above all” frame
does not allow for this person to like romance novels and
that person to like conceptual art. Instead, for any object, the
goal is to group it with objects of similar kind, and establish
how well the new object extends that group: how much s
expands the set of valid members and how much computa-
tion is built into its non-random parts. We must expand our
understanding of the role of a reviewer and consider both
learning and the Press component of the 4Ps of understand-
ing creativity (Jordanous 2016).

Learning
A clear goal of a review is to allow C to better understand
s and estimate its value. Our definition of value is about re-
quired computational effort and expanding our understand-
ing the class of s, so, the B wants C to change its model of
the class of objects s comes from. That is to say, C reads the
review r, and as a result, its model for s, which C has not
seen, changes, as does its assessment of the value of both s
and its class. This is what is meant by learning: we mod-
ify our knowledge of how objects and concepts relate. If
r does not allow C to either assess s or to alter its under-
standing of the class, then C did not learn anything useful,
and the review was useless to that reader, though it might
be useful to others. If B is writing without an audience in
mind, then their optimal choice is to express observations
that will be clear to any reader, implicitly assuming that C
has no prior background in the subject under consideration,
and that without encountering s or r, C will know nothing
about s. If C is already an expert on objects like s, then B’s
job in writing a review is to focus C’s interest on aspects of s
that highlight quality or novelty, and on subtle reasons why
s differs from previous members of its type.

Estimating the quality of a review Consider review r of
object s. A natural way of assessing the quality of the re-
view r is to ask how much r simplifies s: that is, what is
K(s) − K(s|r)? But if the information of r consists over-
whelmingly of random details about s, then having the re-
view will not inform C about anything useful to assess s.
Instead, the review must help build a more accurate model
of the generator of s for r to have actually been valuable to

C, or it must represent the logically deep components of s.
Review r can be even worse than just offering random in-

formation about the object under study: it can make false
claims! Consider a review of a concert that misidentifies the
set list, or a review of an art exhibition that gives false con-
textual information about the painter. The review provides
no information to further the reader’s understanding, and the
model the reader C brings to the show may be less accurate
(finding s more atypical) than before. We will consider this
a bit further below when we look at the reader’s experience.

To estimate the quality of review: If M is a good model
of s, then by conditioning on r, we can estimate how many
additional regularities are captured after observing r, which
is K(M)−K(M |r). Conversely, the irregularities of s are
modelled with K(s|M). We could fit the model M with
r to estimate if the model improves as it captures more ir-
regularities, that is K(s|M)−K(s|M, r). We can separate
information about s in r into two parts: those that connect
to M and those that connect to its random input.

Alternatively, we can use the logical-depth frame to also
explore the quality of a review: let ldc(s|r) be the minimum
runtime of a program for s whose length is at most K(s|r)+
c. This computes how much runtime is needed to give a
short description of s given r. If ldc(s|r) ≪ ldc(s), then
the review r captures critical information found in s, and is
therefore a good review. If instead the required runtime has
not changed much, then while r may capture information
about s, it does not conveyed much of value.

Estimating the quality of a review to a reader Again,
we must also consider the quality of a review to a specific
reader. If C does not read Czech, then a brilliant Czech
review will do nothing to help the reader. Moreover, there
is insufficient information in r to teach the reader to read
Czech. We must consider how reading r affects C, and see
how information is transferred.

Let K(M |C) be how much information C needs in or-
der to create a good model M , without having seen the re-
view r. If K(M |C) is high, then s is complex and the
reader is unprepared; if K(M |C) is small, the reader is
prepared. In both cases, r may help C change its model.
Suppose that M1 is a model that does a good job of ex-
plaining previous examples that C has seen, and that M is
a model that explains both those previous objects and also
s. K(M |M1) is the added novelty brought to bear by the
creation of s. The key quantity under consideration, then, is
K(M |M1)−K(M |M1, r). That is, how much information
is created in C by reading r that is relevant to M? A de-
tailed review that establishes a small component of M , and
how it changes as a result of s, may be of help to an advanced
reader, but may contain much less overall information than
a general review. However, that general review may offer
little actual new content to a reader C.

We may impose a time limit on C’s execution as well. It
is probably inappropriate to allow C enough time in under-
standing r to learn a new language. If we put a time limit t′
on C’s computation using r as an input, then let M ′ = C(r)
be the new model that C has after running for t′ steps on
input r; if K(M |M ′, C) < K(M |C), then C has learned



something useful about s from the review r in its short time.
C can also have knowledge about specific reviewers, and

can learn to trust a particular reviewer B to give good ad-
vice. Our model does not really handle this circumstance,
which has been brought to our attention by a peer reviewer
(whom we hope enjoyed our work); however, C can iden-
tify which reviewers’ overall quality estimates most track
with its own choices. It is worth recalling that in the Mon-
dol/Brown frame, since quality is an absolute quantity, there
is less accounting for individual taste; we discuss this below
when we consider limitations of our framework.

Communication through a naive reviewer A review can
still be useful to an expert reader even if the author of the
review is not an expert. B may explicitly notice features of
s that are novel even to an experienced reader. If an artist
has changed their colour palette, B may not know that the
shift has happened, while highlighting A’s colour choices.
C can then update their model of A’s work, even though B
does not explicitly represent the change. A related example
of this phenomenon might also be if someone noted the D-
S-C-H motif in “Rejoice in the Lamb” (Britten 1943), which
is an homage to Dmitri Shostakovich, without explaining
the four-note sequence. Communication happens between
A and C even though B is not aware of the content.

Creative reviews, creative reviewers
Reviews themselves are creative objects. A review r of a
creative object s has value by describing s (giving informa-
tion about the model that generates s, or about the logical
depth and novelty of s). But it can have novelty and value in
that process. Consider reviewers B1 and B2; if both identify
elements of s showing it is of high quality, but those identi-
fied by B1 are more often known by people in the audience
than those identified by B2, then to a typical reader, B2’s
review will be novel, and as such have much more value
than B1’s. A clever reviewer discovers new things to en-
joy about a piece of creative work, and then shares that joy.
Reviews can also provide delight to their readers in and of
themselves; not only can they highlight the creativity and
model-breaking natures of a new object, but they can just
be objects of creative value in their own right. It is a chal-
lenge to separate these aspects of a review’s quality from the
overall analysis of creativity.

Creative reviews can also suggest improvements. AIT
does not offer an easy way to give small corrections; if these
corrections take up the bulk of a review, they will not change
the underlying model very much (since one can use an ex-
isting model augmented with “at line X, change word Y to
word Z” commands). Reviews that describe the underlying
model for s that the reviewer B believes A has used could
be made richer, and improve the overall value or novelty s.

We can also explore the creativity of the reviewer, not just
the review; while the Producer perspective is not an obvi-
ous use case for AIT (which might be expected to focus on
products, since it connects to properties of objects), one can
either analyze the program that B executes in its review pro-
cess, or one can focus on a collection of reviews by B, to
see whether a single creative review is an accidental flash

of genius or represents consistent excellence in a reviewer’s
work.

Examples and limitations of the approach
Here we explore some real-world examples of review and
how they fit within our conceptual framework.

Conceptual music and art
Consider the iconic piece 4’33” by John Cage, in which
the performers sit for four minutes and thirty-three seconds
making no deliberate sounds. A performance of this work
is hard to describe in a single object s, but the piece can
be “summarized” easily. But if we look at it with an eye
towards AIT, and in particular, towards sophistication, it is
insufficient to model it as a “print” program whose input is
“make no deliberate sounds for 273 seconds.” This model
ignores the awkwardness of sitting in a room with other hu-
mans where normally one expects to see music performed in
the normal way. Instead, to properly summarize, one needs
a model that, on random inputs, yields typical performance
experiences for even this ostensibly simple piece, differing
only in random details. Such a model is likely impossible,
even for 4’33”, to present in a short review. B must include
descriptions, likely to improve C’s understanding, enough
to push its model closer to the truth of what the piece is.
To describe the novelty and value of the experience, C’s ex-
perience with conceptual music would need to have been
pre-estimated by B (for a naive reader, this piece utterly al-
ters their experience of what a concert is; a seasoned reader
would understand what differentiates performances).

Similarly, looking at Duchamp’s “Fountain” mentioned
earlier. The short “it’s an early twentieth-century urinal in
an art gallery” review does not offer enough information
on why this piece provokes such ire among gallery-goers,
and certainly does not allow the reader to assess whether it
improves or worsens the show. By contrast, a review that
describes the state of early 1900s sculpture, and describes
how “Fountain” expands the art gallery experience, is po-
tentially a much better review, giving a reader a better sense
of what other provocative conceptual art would be like. The
“it’s a urinal in a gallery” reader will be more prepared for
other examples of other nouns to replace “urinal”, but will
not have a reason to understand scatological conceptual art
in general; while a reader given a provocative review that
describes “Fountain” might find, for example, Andres Ser-
rano’s 1987 work “Piss Christ” (a photo of a crucifix in a
vial of the artist’s urine) less surprising.

A conceptual artist’s process can also be the focus of the
works; consider Roman Opalka’s paintings of the ”numbers
from 1 to infinity”, where the artist’s project was to paint
consecutive numbers to represent the passage of time. Here,
one might review either the individual paintings, or the pro-
cess itself, in either case, one would again contextualize the
creator’s practice within the genre of conceptual art.

Finally, Sol Lewitt’s work, which consists of short algo-
rithmic descriptions of exactly how someone is to create the
object. It is possible that a model that creates algorithmic
art might be created by a reader, after reading a review. The



review might describe several specific choices made by the
person implementing the algorithm, to give a sense of what
a different typical implementation looks like, and the com-
plexity needed to properly understand Lewitt’s work.

Searching for a relevant explanation for conceptual art,
then, is a computational task of finding evidence for quality,
valuable summarization, and contextual information. Even
for “simple” conceptual pieces, there may be much to dis-
cover. Again, review is not merely lossy encoding of s: it is
lossy encoding of s and how to understand it.

Concert reviews, short and long
A concert review offers an opportunity for both conveying
important details about the performance (date, time, venue,
set list) and also individual aspects about the performer and
their genre. In a short review, the reviewer may still con-
vey core performance details to naive readers, but these de-
tails are obvious to a well-prepared fan. A review that goes
into detail about what was amazing might help out a novice
reader to understand what demonstrates successful perfor-
mances. While also focusing on specific details that made
the concert different, allowing the expert to see why there is
novelty and not just value in the performance.

A much simpler review (or preview) can also still yield
important information about genre and quality. One of us
once saw the Hilliard Ensemble, a Renaissance vocal quar-
tet, describe their next piece as: “Late Tallis, early Byrd”.
These four words prepared the listener for the upcoming
piece, while also making it clear that the singers are English
(the piece they were about to present was French). Like so
many other cases of short sentences, these four words pro-
vide much context and much model shaping to a prepared
listener, and no context at all to a novice (they might even
confuse one into believing the piece was English!).

Limitations of our approach
Fundamentally, our approach describes what reviewers need
to do in the process of assessing quality, typicality, and nov-
elty of a creative object, but the actual project of creating,
within a time limit, a high-quality short review is complex.

Reviewing good objects is hard Reviewers assessing a
sophisticated object face a challenging task: they must iden-
tify, in a short time, why the object comes from a large, slow
model M . If B is itself highly sophisticated, it may be able
to zero in on certain subfeatures of the object under study,
and identify why these are consistent with the object over-
all being of good quality: for example, they could describe
a single object in an exhibit, giving the reader enough in-
formation to better understand what to look for on a time-
unlimited tour through an installation. In this way, the re-
viewer may spend serious effort to identify bits of informa-
tion from the creator program A, but nonetheless, the review
is productive, since K(A|r) < K(A).

It is also possible that a reviewer unprepared to analyze
the high-quality object cannot, in the short time allowed, ex-
plain the features of the object. In this case, while B fills
r with true information about s, it will not be very useful
to C. In the AIT sense, this means that the reviewer might

describe some random bits d that are the input to the creator
program A, not pieces of the structure of A itself. While
these contribute to K(s), they are not central to understand-
ing s, and the reader of the object is not better prepared to
encounter other objects of the type.

Since reviews are time limited, no critic is a general-
purpose critic. Instead, a sophisticated, specialized critic,
when handed an object it is well posed to review, can iden-
tify high-quality parts of the object efficiently, and is pre-
set to describe the model in language that a reader will un-
derstand. A claimed general-purpose reviewer must spend
some of its time chasing down blind alleys. We could theo-
retically handle this situation by creating teams of reviewers
(the equivalent in computational terms of parallel program-
ming), but the most sensible thing is to assign reviewers by
expertise and by awareness of the identities of the readers.

Reviewing bad objects is hard Reviewing unsophisti-
cated objects is also hard. If an object comes from a sim-
ple, fast model, it can still be extremely hard to verify in a
short amount of time. A high-quality reviewer might have
learned features of high-quality examples of a genre without
sufficient awareness that these features are not the important
items to find; if every good painting by a particular artist
uses a lot of blue paint, it is easy to highlight this surface
feature and incorrectly assigning high-quality to trivial new
objects. Mondol and Brown (2021b) also discuss the char-
latan phenomenon, when clever agents knowingly assign
high-quality estimates to poor objects by describing com-
plex programs with long runtimes to compute s; this can be
seen as (fake) evidence of logical depth. Naive readers can
easily be confused by such reviews into overestimating the
object, while experienced readers still must identify errors
in a review that claims a junky object is a work of genius.

An incorrect review r of a bad piece of art has almost no
effect on a reviewer’s actual understanding: the information
gain of K(M |C)−K(M |C, r) will be modest, since r gives
minimal information towards M , a good model for s. Still,
since a bad piece of creative work has low K(M) to begin
with, an incorrect review may accidentally give information
toward an initial simple model; this is part of why we focus
on the absolute number of bits in K(M |C)−K(M |C, r).

AIT shows the challenge in review We end this discus-
sion of AIT and reviews by noting that our message is not
hopeful. Reviewers who can detect complexity quickly are
rare, and we cannot verify high logical depth and sophisti-
cation in short runtimes since a short, fast program may also
exist where a short, slow program has already been found.
It is sometimes possible to properly explain why an object
is trivial, but a critic can be caught up in enthusiasm for the
trivial work of a beloved creator or a charlatan, and give an
explanation that (falsely) highlights perceived complexity.

This difficulty comes down to the twin dilemmas of the
Mondol/Brown aesthetic theory: objects are valuable if they
embody much work, and such objects appear more trivial
(random) to naive consumers until they are explained with
appropriate models. (By contrast, the Schmidhuber (2010)
approach focuses solely on K-complexity; it, too, is hard
to tease out since simple strings may still appear complex



unless one knows the short algorithm that explains them.)
In a time-limited review, it is challenging or impossible to
explore this work, and to properly explain these models. In-
stead, special-purpose reviewers and experts can only ap-
proximate this aesthetic lens.

Future work
We have described how reviewing fits with algorithmic in-
formation theory. The challenge is to make our insights
practical: almost all areas AIT touches find either huge run-
times or uncomputable results. For example, identifying
good models requires that not much smaller models work
well, and that the model input is truly uncompressible; com-
puting logical depth requires knowing K(s) and the runtime
of machines computing s. This is beyond a general-purpose
algorithm with reasonable runtime for any interesting input,
meaning that AIT largely provides an abstract restatement
of a number of normal computational or human tasks. There
are also a few specific concerns that connect to this specific
application of AIT: notably, real-world algorithms for build-
ing seemingly creative objects seem huge, and that any form
of embodiment can cause us to question what “the object
under study” is, and whether it has a unique identity. Fur-
ther work will address the queries below about practicality,
parameterization, and embodiment.

Connections to machine learning
Large language models (LLMs) and other large machine
learning models show some of the complexity of review, as
they require a truly enormous number of parameters before
giving reasonable language creation. If such a a system is
the “model” in the sense of our paper, then K(M) will al-
ways be huge: it is the size of the code for the LLM; the
data part of the two-part code is the input (prompt) to the
model. This, though, requires extremely long strings s for
K(M) < K(s); such strings cannot be well explored by a
time-limited reviewer. We still require much assessment to
figure out for what kinds of input the AIT frame can work.

Embodiment
Another challenge with linking AIT and review is the
phenomenon of sensory embodiment (Guckelsberger et al.
2021). Do B and C interact with the same object s? We
have assumed that s is properly represented by a single digi-
tal string, but B and C may perceive it differently. B and C
may either or both experience disability and inexactness in
their ability to perceive s. If B watches a concert from the
front row, the experience described in r may be inaccessible
to C from a back row. If B is colour-blind, r cannot help C
learn about the subtle choices in shading that A made.

Another way in which embodiment (and other concerns
about physical and memory limitations) affects AIT and re-
view is the finiteness and sequencing of memory. In AIT,
K(s|y, x) ≈ K(s|x, y); it does not matter much in which
order the two objects x and y appear. But encountering
two different large and complex objects will have differ-
ent effects if they cannot both be stored; the more recently-
experienced object may have more details in memory, while

the more distantly-experienced object may have had a more
fundamental effect on the internal model the reader has of
the category from which s, y and x all come. The key ef-
fect here, then, is forgetting, which we propose to discuss in
future work.

Conclusion
We present review of creative objects as a computational
creativity task, using Mondol and Brown’s framework as a
starting point. In our discussion, review is recast as quickly
identifying features of a good model explaining an object.
For a simple object, the features identified in a review can
either be among the few interesting (non-random) aspects of
the object, or might be simply surface features differentiat-
ing the object from similar ones, but which are also random.
For complex objects, the best features to identify in a review
tease out the complexity at the heart of the objects; unfortu-
nately, these features can be extremely hard for a reviewer
to identify in a short space and quick review period.

We have briefly discussed the ways in which targetting re-
views for their audiences has an AIT formulation, and have
also described why assessing creative and uncreative objects
are both hard tasks. While our approach does not yield prac-
tical implementations, it gives a proper theoretical underpin-
ning for a central task of the creative world.
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