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Abstract

At the heart of creativity is the forging of new con-
cept combinations and the adapting of existing ideas to
new situations. However, these processes have resisted
mathematical description; concepts violate the rules of
classical logic when they interact, e.g., concept com-
binations can exhibit emergent features not possessed
by their constituent concepts. These challenges can
be addressed using the quantum cognition framework,
wherein nonclassical behavior is described in terms of
superposition, entanglement, and interference. While
in classical probability theory events are drawn from a
common sample space, in quantum models events are
defined only with respect to a measurement, or (in quan-
tum cognition) a context, and the probabilities reflect
the underlying reality. The measurement (or context)
causes collapse from a superposition state to a definite
eigenstate. The paper explains how creativity can be
modeled using quantum cognition approach with an il-
lustrative example, and discuss how the approach could
be implemented computationally. Quantum comput-
ing is widely expected to revolutionize many fields in
the near future through immense increases in speed and
computing power. The time may be ripe to explore the
potential of quantum computational creativity.

Introduction
Though creativity is a vast and multifaceted topic (Jordanous
and Keller 2016), at its core is the generation of new con-
cept combinations (Estes and Ward 2002). However, mod-
elling concept combination turns out not to be straightfor-
ward; there is extensive evidence that people use conjunc-
tions and disjunctions of concepts in ways that violate the
rules of classical (including fuzzy) logic; i.e., concepts in-
teract in ways that are non-compositional (Aerts, Aerts,
and Gabora 2009; Estes and Ward 2002; Hampton 1988;
Osherson and Smith 1981). This noncompositionality is ob-
served in exemplar typicalities (e.g., although people do not
rate ‘guppy’ as a typical PET, nor a typical FISH, they rate
it as a highly typical PET FISH), as well as properties (e.g.,
although people do not rate ‘talks’ as a characteristic prop-
erty of PET or BIRD, they rate it as characteristic property
of PET BIRD). This problem has made concepts resistant
to mathematical description, and plagued efforts to model
how new meanings emerge when people combine concepts

and words into larger semantic units such as conjunctions,
phrases, or sentences.

One study of this phenomenon analyzed data on the rel-
ative frequency of membership of specific exemplars of
general categories or concepts, as well as of conjunctions
of them (Hampton 1988). For example, participants were
asked whether an exemplar such as Mint is a member of
FOOD, whether it is a member of PLANT, and whether it is
a member of FOOD AND PLANT. For several items, par-
ticipants assessed the examplar as more strongly a member
of FOOD AND PLANT than of either of the two component
concepts FOOD and PLANT alone. The relative frequency of
membership for Mint, for example, was 0.87 for the con-
cept FOOD, 0.81 for the concept PLANT, and 0.9 for the con-
junction FOOD AND PLANT. It is difficult to conceive of a
classical probability model that could encompass this find-
ing, and it was proven that no such model exists, but that it is
possible to describe this using a quantum probability model
(Aerts 2009). Findings such as this suggest that a quantum
approach could prove useful in computational creativity.

This paper outlines the rationale for a quantum approach
to modeling creativity, and illustrates the approach using a
specific example. It then discusses possible ways to compu-
tationally implement the approach. A glossary of terms is
provided at the end. Note that the quantum approach does
not assume that anything at the quantum level of subatomic
particles affects cognition (and in this sense, it is somewhat
unfortunate that it has come to be called the quantum ap-
proach). It merely uses a generalization of mathematics that
was first applied to quantum mechanics.

Rationale for the Quantum Approach
Mental states involving uncertainty, ambiguity, and contex-
tuality figure prominently in creative cognition, and quan-
tum formalisms are uniquely suited to the formal description
of such states. This is because a quantum system can be in
a superposition state, which has the potential to transition
into, or (in the quantum jargon) collapse to different states
depending on how it is measured, or (in quantum cognition),
the perspective, or context, from which it is considered. For
example, consider the situation in which a farmer wonders
what to do with an old tire. If he encounters a horse, he
might consider the concept TIRE in the context see horse,
which might lead him to invent a TIRE BOWL, i.e., a bowl



for his horse (Figure 1). However, if he considers TIRE
in the context see child, he might be more likely to make
a TIRE SWING. Much as a qubit is not in a specific state
(neither 0 nor 1) until a gate causes it to collapse to either 0
or 1, the mental state of wondering what to do with the old
tire encompasses multiple possible ideas for reuses of the old
tire, and the context influences its ‘collapse’ to one of them
or another. Since the superposition state of a concept incor-
porates these different possible contexts and outcomes, the
quantum approach appears to be better-suited than classical
approaches to capture the open-endedness of creativity.

Figure 1: When the context see horse comes before
see horse, the old tire is more likely to be used as a horse
bowl (top). When the order of contexts is reversed, it is more
likely to be used as a horse-shaped tire swing (bottom).

Accordingly, formalisms first used to model situations of
ambiguity and contextuality in quantum mechanics (Khren-
nikov 2010; Wang et al. 2013). have been used to modeled
many phenomena relevant to creativity, including semantic
spaces and the combination of words and concepts (Aerts
2009; Aerts and Gabora 2005; Gabora and Aerts 2002;
Bruza et al. 2009; 2015; Clark, Coecke, and Sadrzadeh
2008; Coecke, Sadrzadeh, and Clark 2010; Lewis, Marsden,
and Sadrzadeh 2020), similarity and memory (Pothos and
Busemeyer 2022; Nelson et al. 2013), information retrieval
(Van Rijsbergen 2004; Melucci 2008), decision making and
probability judgement errors, including order effects (Buse-
meyer, Wang, and Townsend 2006; Busemeyer et al. 2011;
Mogiliansky, Zamir, and Zwirn 2009; Yukalov and Sornette
2009) language and text perception (Aerts and Beltran 2020;
Surov et al. 2021), cultural evolution (Gabora and Aerts
2009; Gabora, Scott, and Kauffman 2013), tonal attraction
in music (Beim Graben and Blutner 2019), and humor (Gab-
ora and Kitto 2017). There have also been findings that cog-
nitive processes exhibit signature features of quantum struc-
ture such as superposition, entanglement, and interference
(Aerts 2009; Aerts et al. 2012; 2016; Busemeyer and Bruza
2012; Surov et al. 2019).1

Brief Outline of the Quantum Approach
Before applying the quantum approach to creativity, we
briefly outline how quantum probability differs from clas-

1The quantum approach may be related to the signal processing
approach to meaning generation, and hence creativity, based on
spectral modelling of brain activity (Wiggins 2020).

sical probability. Classical probability describes events
by considering subsets of a common sample space (Isham
1995). That is, considering a set of elementary events, we
find that some event e occurred with probability pe. Classi-
cal probability arises due to a lack of knowledge on the part
of the modeller. The act of measurement merely reveals an
existing state of affairs; it does not interfere with the results.
In contrast, quantum models use variables and spaces that
are defined (sometimes implicitly) with respect to a particu-
lar measurement. Measurements (or contexts) directly influ-
ence quantum systems, imposing definite states that may not
have been present beforehand (Freedman and Clauser 1972).

In the quantum formalism, the state Ψ representing some
aspect of interest in our system is written as a linear super-
position of a set of possible states referred to as basis states
{ϕi} in a Hilbert space, denoted H, which allows us to de-
fine notions such as distance and inner product. In creating
this superposition, we weight each basis state with an am-
plitude term, denoted ai, which is a complex number rep-
resenting the contribution of a component basis state ϕi to
the state Ψ. Hence Ψ =

∑
i aiϕi. The probability that the

state changes to that basis state upon measurement is |a|2.
This non-unitary change of state is called collapse, which is
modeled as a projection.

The choice of basis states is determined by the value being
measured, termed the observable, Ô. In quantum mechan-
ics, the observables are physical quantities such as position
or momentum values (but as we shall see, in quantum cog-
nition they can be, for example, specific instantiations of a
concept in a particular context). The potential measurement
outcomes oi correspond to states of the entity of interest.
These resultant states of our measurement (or context), are
the basis states of the Hilbert space, thus they shape how we
model the entity to be measured, and its possible outcomes
oi. The basis states corresponding to an observable outcome
are referred to as eigenstates. Observables are represented
by operators.2 Upon measurement, the state of the entity is
projected onto one of the basis states.

It is also possible to describe combinations of two entities
within this framework, and to learn about how they might in-
fluence one another, or not. Consider two entities A and B
with Hilbert spaces HA and HB. We may define a basis |i⟩A
for HA and a basis |j⟩B for HB, and denote the amplitudes
associated with the first as aAi and the amplitudes associated
with the second as aBj . The Hilbert space in which a com-
posite of these entities exists is given by the tensor product
HA⊗HB. The most general state in HA⊗HB has the form

|Ψ⟩AB =
∑

i,j
aij |i⟩A ⊗ |j⟩B (1)

This state is separable if aij = aAi a
B
j . It is inseparable, and

therefore an entangled state, if aij ̸= aAi a
B
j .3

2Specifically, Hermetian operators, which are defined on a com-
plex inner product space, but we do not go into that here.

3It has been argued that the quantum field theory procedure,
which uses Fock space, gives a superior internal structure for mod-
elling concept combination (Aerts 2009). Fock space is the direct
sum of tensor products of Hilbert spaces, so it is also a Hilbert
space. For simplicity, we omit such refinements here.



Quantum Cognition and its Application to
Creativity

We first outline in general terms how the quantum frame-
work is adapted to cognition, and then apply it to creativ-
ity using a specific example. The set of possible states of a
mental construct, such as a particular concept, is given by
Σ. The amplitude term associated with a basis state repre-
sented by a complex number coefficient ai gives a measure
of how likely a given change of state is. The basis states
represent possible instantiations of the concept. States are
represented by unit vectors, and all vectors of a decomposi-
tion have unit length, are mutually orthogonal, and generate
the whole vector space, thus

∑
i |ai|2 = 1. Self-adjoint op-

erators4 are used to define context-specific subspaces. The
context causes the state of concept to collapse to one of its
eigenstates. The role of the observable is played by the de-
tectable changes to the . Thus, we model change in the con-
cept under a specific context by collapse to a new state.

Each possible form of a concept represented by a partic-
ular basis state can be broken down into a set fi ∈ F of
features (or properties), which may be weighted according
to their relevance with respect to the current context. The
weight (or renormalized applicability) of a certain property
given a specific state of the concept |p⟩ and a specific context
ci ∈ C is given by ν. For example, ν(p, f1) is the weight of
feature fi for state p. Thus ν is a function from the set Σ×F
to the interval [0, 1]. We write:

ν : Σ×F → [0, 1] (2)
(p, fi) 7→ ν(p, fi)

A function µ describes the transition probability from one
state to another under the influence of a particular context.
For example, µ(q, e, p) is the probability that state p under
the influence of context e changes to state q. Mathemati-
cally, µ is a function from the set Σ × C × Σ to the interval
[0, 1], where µ(q, e, p) is the probability that state p under
the influence of context e changes to state q. We write:

µ : Σ× C × Σ → [0, 1] (3)
(q, e, p) 7→ µ(q, e, p)

Thus our quantum model consists of the 3-tuple (Σ, C,F),
and the functions ν and µ.

Let us now make this more concrete using the example
of a farmer wondering what to do with an old tire. The
state of TIRE, represented by vector |p⟩ of length equal
to 1, is a linear superposition of basis states in a complex
Hilbert space H which represent possible states (instances,
interpretations, or types) of this concept, including typical
states such as SNOW TIRE, and atypical ones such as TIRE
SWING. The different states of TIRE can be described as
different subspaces into which TIRE can be projected, and
thereby, experienced as meaningful. Our knowledge of the
possible uses, or affordances, of TIRE comes to us by way
of its projections into these subspaces.

4Unlike Hermetian operators, self-adjoint operators are defined
over the real or complex numbers.

For simplicity, let us suppose that the farmer’s initial con-
ception of TIRE is a superposition of only two possibilities
(Figure 2). The possibility that the tire is considered useful is
denoted by the unit vector |u⟩. The possibility that it should
be discarded as waste is denoted by the unit vector |w⟩. The
state of the concept TIRE is denoted |t⟩. Their relationship
is given by the equation

|t⟩ = a0|u⟩+ a1|w⟩, (4)

where a0 and a1 are the amplitudes of |u⟩ and |w⟩ respec-
tively in the farmer’s mind. States are represented by unit
vectors and all vectors of a decomposition such as |u⟩ and
|w⟩ have unit length, are mutually orthogonal and generate
the whole vector space; thus |a0|2 + |a1|2 = 1.

Figure 2: Left: In the default context, TIRE likely collapses
to projection vector |w⟩ which represents that it is waste, so
a0 < a1. Right: In the context environment, it likely col-
lapses to orthogonal projection vector |u⟩ which represents
that it is useful, so b0 > b1.

Note that, in someone else’s mind a0 and a1 might be dif-
ferent (as epitomized in the saying “one person’s trash is an-
other person’s treasure”). Indeed, if the farmer sees a recy-
cle sign, and thinks of TIRE in the context environment, he
himself may feel inspired to find a creative reuse for the tire.
Consider the situation in which this is indeed what happens.
If the farmer has a horse, the context see horse might be a
member of the set C of possible contexts that could influ-
ence the subsequent state of the concept TIRE. The concept
TIRE in the context see horse is denoted |th⟩.

Activation of the set L of properties of TIRE, e.g., the
property ‘weather resistant’ denoted f1, spreads to other
concepts for which these properties are relevant. Possible
items that must be weather-resistant that could be made from
the tire, and thus possible states of |ph⟩, are (1) a bowl
for the horse, or (2) a saddle. We denote HORSE BOWL
and TIRE SADDLE |l⟩ and |e⟩, respectively, and the corre-
sponding possible states of TIRE are denoted |lh⟩ and |eh⟩.
Thus, the restructured conception of TIRE in the context of
see horse is given by

|th⟩ = b0|uh⟩+ b1|wh⟩ (5)

where

|uh⟩ = b2|thlh⟩+ b3|theh⟩+ b4|thsh⟩, (6)

and where |thlh⟩ and |thsh⟩ represent the possibility that he
thinks of HORSE BOWL and TIRE SADDLE respectively,



and |th⟩ represents the possibility that even in the context
see horse the farmer thinks of the idea TIRE SWING.

Consider the set of strongly weighted properties of
SADDLE, such as ‘made of leather’ denoted f2 and ‘has
stirrups’, denoted f3. Because ‘made of leather’ and ‘has
stirrups’ are not properties of TIRE, ν(t, f2) << ν(e, f2),
and similarly ν(t, f3) << ν(e, f3). Therefore, |b4| is small.
However, consider the property of bowl ‘has curved edges
to keep food in’, denoted f4. Since the curved edges of a tire
could stop horse food from falling out, ν(t, f4) ≈ ν(l, f4).
Therefore, |b3| is large. Thus µ(l, h, t) >> µ(e, h, t). In
the context see horse, the concept TIRE is more likely to
collapse to HORSE BOWL. Note that HORSE BOWL has the
emergent property, ‘holds horse food,’ which is a property
of neither TIRE nor BOWL. We can model the emergence of
new properties by describing TIRE BOWL as an entangled
state of the concepts TIRE and BOWL. HORSE BOWL is
thereafter a new state of both concepts TIRE and BOWL. En-
tanglement introduces interference of a quantum nature, and
hence the amplitudes are complex numbers (Aerts 2009).

We now consider the contexts see horse and see child, and
for simplicity we consider only two possible outcomes for
each, HORSE BOWL and TIRE SWING. This could be de-
picted in an analogous manner to Figure 2, with the con-
texts default context and environment replaced by see horse
and see child, and USEFUL and WASTE replaced by TIRE
SWING and HORSE BOWL on the x and y axes respectively.
Once again, the context influences the probabilities associ-
ated with each reuse idea. Interestingly, as depicted in Fig-
ure 1, if both contexts are encountered, the final creative out-
come depends on the order in which the contexts are encoun-
tered. If see horse is encountered first, the thought trajectory
likely goes the HORSE BOWL route, but if the child is en-
countered first, it likely goes the TIRE SWING route, cul-
minating in HORSE TIRE SWING. Such order effects are
accommodated in quantum formalism because projection to
subspace a1 then b1 ̸= projection to subspace b0 then a0.

The TIRE example shows that a quantum cognition ap-
proach to concept interactions, which has been shown to be
consistent with human data (Aerts 2009; Aerts et al. 2016),
can model the restructuring of concepts during the honing of
a creative idea.

Quantum Computational Creativity
Quantum cognition could be incorporated into computa-
tional creativity building on existing computational quantum
cognition models. The quantum Bayesian network (QBN)
combines classical Bayesian networks with quantum proba-
bility theory to represent and model human decision-making
under uncertainty (Low, Yoder, and Chuang 2014). QBNs
have been useful for explaining cognitive biases such as the
conjunction fallacy, but more promising routes for model-
ing creativity are quantum machine learning (Biamonte et
al. 2017) or the quantum associative memory approach
(Ventura and Martinez 2000), the latter of which proposes
that human memory retrieval is influenced by quantum-like
interference effects that can account for context-dependent
memory. It has been proposed that while such interference
effects may have a disruptive effect on retrieval, they enable

the fusion of seemingly unrelated context-dependent con-
cepts and ideas that lie at the core of creativity (Gabora and
Ranjan 2013). This suggests that such interference effects
may be important for computational creativity.

Conclusions
This paper discussed the rationale for bridging quantum cog-
nition and computational creativity, and outlined key steps
toward the realization of such a move. A quantum com-
putational creativity model is only as accurate as the num-
ber of basis states, properties, and contexts it includes, but
with the advent of large language models, this becomes less
prohibitive. The approach incorporates the ongoing inter-
action between potentiality (superposition state) and actu-
alization (eigenstate), and it is this capacity of a quantum
system to exist in a superposition of multiple states that lies
behind the speed and power of quantum computing, and the
widespread belief that it could revolutionize many aspects
of our lives. It is widely believed that quantum computing
will have a near-term revolutionary impact on many fields,
thus, the time seems ripe for exploring its incorporation into
computational creativity.

Appendix A: Definitions
Amplitude: A complex number similar to a probability
value that gives the likelihood of a particular quantum state.
Amplitudes can interfere (constructively or destructively).
Collapse: The change when a quantum system is measured,
from a superposition of states to a single definite state.
Eigenstate: A state associated with a particular observable,
or context, that has a definite value when measured.
Entanglement: A phenomenon wherein two or more quan-
tum structures are linked—even if widely separated—such
that the state of one cannot be described independently of
the others, a change to one instantly affects the others.
Hilbert space: A mathematical vector space for describing
quantum states and their dynamical evolution.
Interference: The phenomenon wherein waves associated
with different quantum possibilities overlap and interact, ei-
ther constructively, such that they amplify each other, or de-
structively, such that they cancel each other out.
Observable: A measurable quantity represented by a math-
ematical operator that acts on a quantum state.
Qubit (short for ‘quantum bit’): The fundamental unit of
quantum information. Unlike the classical bit, the basic unit
of classical computing, which can be either a 0 or a 1, a qubit
can exist in a superposition of both 0 and 1 simultaneously.
Superposition: Unlike classical systems, where objects
have definite properties, a quantum system can be in a com-
bination of different states at the same time. This combined
state is referred to as a superposition.
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