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Abstract

We present an interactive evolutionary approach to ex-
ploring the space of synthesizer patches which combines
an evolutionary optimizer with a variational autoencoder
neural network. The objective is to work with musicians
to explore the complex space of patches rather than pro-
gram patches themselves, an often tedious and difficult
task. The technique uses an algorithm to wander through
the parameter space, while engaging the musician in as-
sessing the quality of discoveries and providing real-time
feedback to the algorithm. We describe the method and
argue for it as a co-creative system.

Introduction
A patch is a program for a music synthesizer which directs
it to produce a given kind of sound when played by a musi-
cian. The term dates from early synthesizers, which were pro-
grammed by connecting various modules with patch cables to
control the flow of audio and modulation signals. Nowadays
a patch is typically a fixed-length array of parameter values
which together specify the nature of the sound generation
elements used, their settings, and their connections.

Programming synthesizer patches can be daunting. While
earlier synthesizers had relatively few parameters, modern
synthesizers can have many hundreds of them. Indeed, some
additive synthesizers have several thousand parameters, pre-
senting a difficult high-dimensional design space. Still other
synthesizers, such as romplers, have parameters consisting
of many hundreds of unordered options. Critically, the rela-
tionships between parameters may be nontrivial. Some kinds
of synthesizers, such as subtractive synthesizers, have param-
eters which are relatively independent of one another, and so
their effect on the overall sound can be predicted and tuned
independently. But other synthesizers, such as frequency
modulation (FM) synthesizers, have parameters with strong
and nonlinear relationships, and the impact of changing one
parameter will strongly depend on the settings of others.1

1Some FM synthesizers were so difficult to program that musi-
cians resigned themselves to playing only the factory patches which
came on the units: these patches have since become famous. For
example the Yamaha DX7’s E. Piano 1 and Bass 1 factory patches
were used on numerous pop songs, as was the Yamaha TX81Z’s
LatelyBass patch.

Finally many synthesizers, particularly those from the 1980s
and 1990s, have very poor interfaces, making programming
them from their front panels tedious.

But synthesizers do not have to be programmed only from
their front panels: they can also be programmed via MIDI,
a standardized serial port interface with a packet protocol.
This makes it possible to design software tools called patch
editors which allow the musician to program the synthesizer
remotely using a better quality interface on a computer screen.
However even with an improved interface, the number and
complexity of synthesizer patch parameters can still make
programming them a very difficult challenge.

An alternative is for the musician to collaborate directly
with the patch editor in exploring the patch space. As it turns
out, no less than Brian Eno proposed exactly this idea in a
1995 letter to Stewart Brand. He wrote:

But what if the synthesizer just “grew” programs? If you
pressed a “randomize” button which then set any of the sev-
eral thousand “black-box” parameters to various values, and
gave you sixteen variations. You listen to each of those, and
then press on one or two of them — your favourite choices.
Immediately the machine generates 16 more variations based
on the “parents” you’ve selected. You choose again. And so
on . . . . The attraction of this idea is that one could navigate
through very large design spaces without necessarily having
any idea at all of how any of these things were being made. I
want to get some synth manufacturer interested in this. They
are not too bright, in my opinion, so this might take a long
time . . . . (Eno 1996) [p. 190].

In Luke (2019) we developed a method for doing this via
interactive evolutionary optimization in Edisyn, a popular
patch editor of our own design. Using this method, the editor
wanders through the space of patches, discovering, proposing
and auditioning ones to the musician, who assesses them.
These assessments guide the editor in its search for new and
better patches. In this paper we present an extension to this
method which employs a combination of evolutionary opti-
mization with a variational autoencoder trained on a large
number of patches developed by the synthesizer commu-
nity. In short, the method wanders not through the space of
all patches, but through a manifold or subspace of patches
which resemble, to some degree, the community patches
themselves. We then discuss how and whether this back-and-
forth between the program and musician is co-creative.



Figure 1: Edisyn’s Yamaha DX7 patch editor, showing the
“Global” and “Operators 1–2” panes.

Evolutionary Computation Evolutionary computation
(or EC) is a family of stochastic optimization algorithms of
which probably the most famous example is the Genetic Al-
gorithm. An EC algorithm starts with a sample of randomly-
generated candidate solutions (a population of individuals). It
tests each individual according to some objective (or fitness)
function. It then breeds a next-generation population by iter-
atively selecting and copying individuals from the previous
population (the parents), recombining (mixing and matching)
elements of the copies, and mutating the recombined copies
with some degree of noise, producing their children. The se-
lection procedure is biased to tend to select fitter individuals.
Ideally over successive generations the current population
improves in fitness. See Luke (2013) for more on EC.

Usually the fitness function is an automated procedure, but
in our approach, the fitness of an individual is computed by
auditioning the individual (the patch) in front of a human (a
musician or sound designer), who offers an assessment. This
approach is commonly known as interactive evolution and
has been applied to a very wide range of fields ranging from
art to robotics to industrial design (Takagi 2001).

Previous Work
The seminal paper in evolutionary patch optimization was
Horner, Beauchamp, and Haken (1993), in which patches
were proposed, played on the synthesizer, and then automat-
ically compared for error against a target sound. Thus the
fitness function was an automated procedure. This approach
is known as evolutionary resynthesis.

Some later work has focused on interactive evolution,
using a human to assess patch individuals. An early and
well-known implementation of Brian Eno’s original idea is
MutaSynth (Dahlstedt 2001), a manual patch-recombination
method which eventually found its way onto the commercial
editor for the Nord Modular G2 synthesizer. The interactive
evolution literature has considered different ways to deal with
the difficulties inherent in auditioning patches, which take up
time, for humans, who are easily bored. McDermott, O’Neill,
and Griffith (2010) focused on interfaces designed to speed
the assessment and selection of solutions. Seago (2013) sim-
plified the search space by updating a parameterized model
instead of a sample (essentially a form of estimation of distri-
bution algorithm, see Luke (2019)). Suzuki et al. (2011) also
simplified the search space by restricting candidate solutions
to those drawn from an existing corpus of patches.

Rather than use neural networks in conjunction with
evolutionary optimization as we have, some work has ap-
plied evolutionary computation in the development of neural-
network-based synthesis methods (Ianigro and Bown 2016;
Jónsson, Hoover, and Risi 2015).

Edisyn
Edisyn is a popular open source patch editor library of our
design written in Java.2 Edisyn has 76 patch editors support-
ing 139 synthesizers from 39 different families, plus editors
for microtonal scales and for general MIDI parameter editing.
These editors cover a wide range of synthesizer types: addi-
tive synthesizers, subtractive, rompler, drum, FM, and hybrid
synthesizers; plus samplers, MIDI routers, and controllers.
It attempts to present these using a unified and consistent
interface. Figure 1 shows two of four panes from Edisyn’s
patch editor for the Yamaha DX7, a famous FM synthesizer.

Edisyn allows the musician to connect to a remote synthe-
sizer over MIDI, then play notes on the synthesizer, change
parameters in real-time, upload and download patches from
the synthesizer’s current working memory (the patch it is
presently playing), read and write patches to the synthesizer’s
long-term patch storage, and load and save patches to disk
on the musician’s laptop. Edisyn also offers a librarian, es-
sentially a spreadsheet of all patches on the synthesizer for
bulk modification and organization.

Edisyn is distinguished among patch editors by its exten-
sive set of automated patch exploration tools. This includes
patch mutating, recombining two or many patches to form a
child, “nudging” patches towards or away from other patches,
and real-time morphing of patches as interpolations of up
to four other patches. These features can be constrained in
several ways, notably by restricting the parameters permitted
to be mutated or recombined, and by specifying the degree of
mutation or recombination involved. Prominent among the
patch exploration tools is Edisyn’s Hill-Climber.

The Hill-Climber
Edisyn’s Hill-Climber is a patch space exploration tool using
interactive evolution. It employs a variation of a so-called
(µ,λ ) Evolution Strategy algorithm with a highly customized

2Edisyn may be downloaded at https://github.com/eclab/edisyn



Figure 2: Edisyn’s Hill-Climber in 16-Candidate mode (Vari-
ational Autoencoder turned on).

recombination and mutation method. For the Yamaha DX7
family of synthesizers this facility is further augmented with
a deep-learned neural network (a variational autoencoder), as
discussed later. The Hill-Climber, set up with the variational
autoencoder, is shown in Figure 2.

The musician initializes the Hill-Climber by selecting a
patch as a starting point. The Hill-Climber then seeds itself
with 16 or 32 patches randomly selected from the vicinity of
the initial patch. These patches are sent to the synthesizer to
be auditioned to the musician one by one; the musician can
request to re-audition a patch one at any time. The musician
selects and ranks up to three patches as favorites. The Hill-
Climber then breeds these patches to produce a new genera-
tion of 16 or 32 new patches in their vicinity. The new patches
are auditioned to the musician and the process repeats.

At any time the musician can edit patches under considera-
tion, save them, move them to other patch exploration tools,
or back up to or build a new set of patches. The musician
can designate a patch to be one of six “hall of champions”
patches: any time later they may select and rank any “cham-
pion”, as well as the current patch being edited, instead of an
individual from the current generation. Finally, the musician
can restrict the parameters that the algorithm is permitted
to modify during optimization, and has control over the de-
gree of mutation and noise applied at any time (and thus the
balance between exploration and exploitation of the space).

The Hill-Climber employs an elaborate breeding mecha-
nism which provides diversity and novelty while also offering
patches which resemble ones preferred by the musician, as
shown in Figure 3. The breeder relies on three mechanisms:
mutation, recombination, and opposite-recombination. These
algorithms are discussed in detail in Luke (2019), but we
may summarize them here. Mutation adds noise to every pa-
rameter in a patch individual. If the parameter is metric, the
noise is added by uniformly selecting from a range centered
on the parameter value sized according to the musician’s cho-
sen mutation weight. If the parameter is categorical then its
value is randomized with a certain probability again chosen
according to the mutation weight.

Recombination takes two parent individuals and produces
a child individual as follows. For each parameter in the first
parent, with some probability the parameter will deviate from
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Figure 3: Breeding mechanism for the Hill-Climber when
the musician has selected three parents (left), two (center), or
one (right). A,B, and C represent these parents ranked best
to worst by the musician, and Z is the previous generation’s
parent A. Children are produced near locations represented
by nodes in the graph (other than Z). A child is produced by
combining parents as shown (+ denotes standard recombina-
tion and − represents opposite-recombination), then applying
mutation. The notation [a,b, ...,n] indicates the number of
children produced at a location and their mutation counts.
For example, A+B [1, 2, 4] means that three children are
produced by recombining A with B: one child is mutated
once, one is mutated twice, and one is mutated four times.

the first parent’s value. If the parameter is metric, the new
value will be randomly selected from the range between the
two parents. If the parameter is categorical, the new value
will be, with 0.5 probability, set to the value of the second
parent. Recombination is meant to “mix and match” features
of two fit parents, ideally to produce yet fitter offspring.

Opposite-Recombination is a variant of Recombination
meant to add diversity or act as an inertia procedure to push
in the direction indicated by the musician’s selections. For
each parameter, it produces a value on the “other side” of the
first parent from the second parent with some probability. If
the parameter is metric, this is done by subtracting the first
parent from the second. If the parameter is categorical, then
the new value is set to the second parent unless they are the
same, in which case it is set to some random different value.

Humans are a Problem The primary challenge in inter-
active evolution is the low number of individuals (patches)
presented to the musician. It is common for an evolutionary
optimization algorithm to require tens or hundreds of thou-
sands of presentations before it has adequately optimized.
This is not possible in interactive evolution, as the fitness
function is a human, and humans are fickle, are easily dis-
tracted, and get bored quickly. It is not reasonable to expect a
human to sit through more than a few hundred patch auditions
before they give up. This difficulty is known as interactive
evolution’s fitness bottleneck problem (Biles 1994).

Because it has so few auditions available, the Hill-Climber
must resort to tricks to maximize the value of each audition.
The parameter space of patches is sparsely populated with
“good” patches, and filled with garbage or silent ones, and the
Hill-Climber must avoid these garbage patches. For example,



the Hill-Climber’s careful delineation of metric and categor-
ical parameters, with custom mutation and recombination
operators for each, avoids jumping into garbage space caused
by treating all parameters as metric (as is commonly done).

This is also a reason for the unusual breeding mechanism:
it does not deviate too far from the patches selected, but still
enforces diversity and can provide an inertia mechanism: if
the musician has moved from a previous patch Z to a new
patch A, perhaps they would prefer a patch even further in
that direction (see A−Z, B−Z, and C−Z in Figure 3).

A version of the Hill-Climber called the Constrictor, em-
ploys a different garbage-avoidance strategy: starting from N
well-vetted patches, it allows the user to iteratively remove
patches, replacing them with recombined versions of the re-
mainder. The idea is that by staying in the middle of a cloud
of well-vetted patches, we are less likely to find garbage.

However perhaps the most aggressive approach to avoiding
“bad” patches is the Hill-Climber’s new, optional variational
autoencoder, discussed next.

Variational Autoencoding
An autoencoder (Hinton and Salakhutdinov 2006) is a feed-
forward neural network that takes an incoming vector and
must output exactly the same vector. However, in the middle
of the neural network there is a narrow neck through which
data must pass. For example, the autoencoder might input
vectors of length 100, but in order to output them must pass
their information through a space of size 45. Obviously this
cannot achieve an identity function in general: but it may be
able to achieve the identity function on a finite training set of
vectors. To do this it would learn a smooth, 45-dimensional
latent space (a manifold) which passes through all of the
training set vectors in the higher (100) dimensional space.
It would then map incoming vectors to this latent space (or
encode them) and then unmap them back again on the other
side of the narrow neck (or decode them).

We employ a version called a variational autoencoder or
VAE (Kingma and Welling 2014), which learns a distribution
over the latent space instead of a direct mapping into it. This
is achieved by having the middle layer of the autoencoder
encode a collection of parameters that describe this distribu-
tion. As Gaussian distributions are commonly used and well
understood, what is learned in the model for our method is a
collection of means and standard deviations which describe
separate Gaussian functions for each dimension. While learn-
ing, the network is penalized for deviating from standard
normal distributions (in order to avoid collapsing into de-
generate zero-deviation distributions) by using a weighted
Kullback-Leibler divergence. The process during training is
to encode the vector into the parameters for the distribution,
sample from the Gaussian distribution as the latent vector,
then decode this sampled latent vector. The variance inher-
ent in this process helps map similar regions of the latent
space to similar patches: if multiple vectors near each other
in the latent space are sampled, and both are supposed to
decode to the same final vector — as often happens during
training as we will input the same vector many times — the
network will ideally learn something about the region of the
latent space surrounding those vectors in the decoder, and

225

128
SELU

76
SELU

76
SELU

76
Gaussian Sampling

Latent Vector 225

128
SELU

76

76
SELU

Latent Vector

SELU

Input

Output

DecoderEncoder

Figure 4: Encoder and Decoder Networks. Note that each
block in the encoder and decoder describe their input size.

not just the vectors themselves. This architecture, known as
β -VAE (Higgins et al. 2017), ideally restricts similar sound-
ing patches, when manipulated in the latent space, to map to
smooth, reasonable, and nearby patches in the final space.

After training, the VAE is broken into the encoder, which
maps the full space into the latent space, and the decoder,
which does the opposite. The encoder’s Gaussian sampling
layer is then replaced with the identity function. We can
then, for example, input a random vector to the Decoder, and
it would output a vector along the manifold defined by the
original samples.

Improving Patch Optimization We train a VAE on a large
corpus of human-designed patches. After training, we then
separate it into the encoder and decoder. We primarily use the
decoder as follows. The Hill-Climber is no longer maintain-
ing a population of 16 or 32 patches: rather it is maintaining
a population of vectors in the latent space. To assess a vector,
it decodes it to produce the patch, then auditions it. To seed
the initial generation, it simply uses the encoder to encode
patch seeds into latent-space vectors for the population.

How does this help us? We first train the autoencoder on
a large corpus of open, human-designed patches, and so the
latent space only passes through the parameter space in the
vicinity of these patches. Thus arbitrary vectors on the latent
space will generally map to vectors in the regions populated
by “good patches”, avoiding garbage. Unfortunately, there
are few synthesizers with an online corpus of enough patches
to successfully train an autoencoder. The Yamaha DX7 is one:
we have successfully trained an autoencoder using nearly
27K unique patches. The Yamaha TX81Z synthesizer is
possible target candidate for the future, with approximately
8K patches available. The DX7 has 145 parameters, some
categorical, and so when one-hot-encoded it comes to 225
parameters. The trained latent space was 76 parameters.

The specific architecture used can be seen in Figure 4. The
SELU is an activation function which behaves identically
to the well known Exponential Linear Unit, but has chosen
scaling parameters which cause the weights to self-normalize
over many training iterations (Klambauer et al. 2017).

We also use the autoencoder for simple patch mutation:
rather than mutate a patch directly by some amount, we
encode the patch into its latent vector, mutate the vector by
that amount, then decode the result into a new patch. The
goal, once again, is to mutate the patch but keep it near
“reasonable” patches even with significant mutation weights.



Is this Computationally Co-Creative?
It seems clear that the Hill-Climber is at least a creative
support tool in the sense of Shneiderman et al. (2005): it
supports exploration, is forgiving of error, has a low threshold
to entry, and is capable of exploring any part of the space. But
this is a very low bar: it’s the same for many very rudimentary
tools. Instead, we argue that this tool is in fact co-creative.

Karimi et al. (2018) define computational co-creativity as
“interaction between at least one AI agent and at least one
human where they take action based on the response of their
partner and their own conceptualization of creativity during
the co-creative task.” We think that the Hill-Climber easily
achieves this: it is taking action (proposing new patches)
based on the response of the human, and the human is taking
action (criticism) based on the proposals.

The Hill-Climber is an asymmetric collaboration: it is
proposing new patches, and while the musician can propose
patches to consider, they are primarily the fitness function
or critic. Thus we may view the Hill-Climber as a DIFI
(or Domain Individual Field Interaction) system (Feldman,
Csikszentmihalyi, and Gardner 1994). From a DIFI perspec-
tive, the Hill-Climbing algorithm is the Individual, and the
musician is the Field (and, if you like, the Domain).

However, a creative system must typically optimize for
two criteria at once: novelty and some notion of value (Boden
1992; Wiggins 2006). What is the Hill-Climber really opti-
mizing against? After all, the fitness function is being entirely
determined by a human being. It’s true that the system is
emphasizing both diversity (if not novelty) and quality when
breeding, but ultimately it ought to be considered co-creative
only if the human, in collaboration, is also aiming for novelty
and value when assessing fitness. We imagine that this is the
case in many situations: but humans are fickle. The system
as a whole is co-creative, in some sense, only if the human is
doing their part.

Conclusion and Future Work
We presented a system which combines interactive evolution
and a variational autoencoder to help explore the space of
synthesizer patches. We think this back-and-forth qualifies it
as a co-creative system: or certainly something rather more
than just a creative support tool.

The biggest challenge in interactive evolution still remains
the fitness bottleneck. To progress even faster, we’d need to
allow supervisory feedback: that is, allowing “I’d like the
sound brighter” or “more like a cello” rather than just “I like
this one better”. This would make it easier to argue in favor
of co-creativity as well: as the musician would be able to
contribute more to the system than mere criticism.
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