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Abstract

The Lena Singer project involves a generative AI process
based on a recent singing voice synthesis system that itera-
tively produces audio to simulate a singer learning how to
sing. Users can select an initial motivation and an initial abil-
ity for the singer, then, through a feedback-based process in-
volving random elements, the singer may improve at singing,
or they may get worse, which in turn boosts or diminishes its
confidence, ability, and motivation. In this way, we aim to
provide a simple model which simulates the learning experi-
ence of a human singer and demonstrate how it differs from
standard machine learning approaches. We also explore the
feedback loop that learning can have on internalized features,
and exemplify how a machine might express the output of this
learning. Finally, we discuss how the context provided by this
process can be seen as relatable. A demo of this project can
be found at https://lena-singer.vercel.app.

Introduction and Background
Since the introduction of artificial neural networks, the goal
has been to emulate human learning by modeling the brain
and the composition of its neural connections (Russell and
Norvig 2010). However, even current deep learning or
reinforcement learning systems can’t model some of the
complex ways particular factors or experiences can affect
decision-making and learning (Simplilearn 2022). More-
over, emulation systems are designed to approximate some
human capabilities, but there is a stark difference in how
these systems are trained (by minimizing some objective
functions) versus how a human would learn through vari-
ous experiences and situations. This is particularly seen in
the fundamental differences in biological and artificial intel-
ligence (Korteling et al. 2021).

When people learn, important factors related to self-
theories, i.e., people’s beliefs about themselves, can have
a huge impact. In the influential human psychology book
”Self-theories: Their Role in Motivation, Personality, and
Development”, Dweck frames students’ response to fail-
ure into two categories: ‘helpless’ and ‘mastery-oriented’
(Dweck 2000). The students in the helpless category, al-
though at the same initial ability as the others, tended to
lose motivation and give up, whereas the mastery-oriented
students would tend to be resilient. However, sorting into
these two categories seems to directly relate to the students’

learning goals, which are determined before they even start
learning. Other research in (Druckman and Bjork 1994) sug-
gests self-confidence is related to one’s perception of ability,
and may play a central role in how one learns skills over
time. Moreover, these variables seem to be part of a feed-
back loop, as confidence can increase motivation, which in
turn can increase ability and this can cyclically increase con-
fidence (Bénabou and Tirole 2005).

We aim here to simulate some of these internal factors
and demonstrate how their initial state may play a substan-
tial role in an agent’s ability to learn a creative skill such
as singing. Learning to sing well can take years, and often
involves thousands of hours of repetitive performance and
analysis of one’s own singing voice as it would compare to
others. This process can require a great deal of patience and
continued motivation to keep practicing. Moreover, a lack of
belief in oneself, due to low confidence, is a common cause
of mistakes in singing (Ni Riada 2019).

Recent advances in generative deep learning have pro-
duced high-quality singing voice synthesis (SVS) systems.
These systems can generate audio of a realistic human
singing voice from musical scores and lyrics. In this project,
we use VISinger2 (Zhang et al. 2022), a recent high-quality
SVS system. We combine this with a step-based probabilis-
tic learning model that we heuristically construct to con-
verge to particular outcomes. The outputs of the probabilis-
tic learning model are used to corrupt the inputs and outputs
of the singing model to alter the singer’s ability at each step.
Via a web-based front end, users can define the starting state
of the model and watch as it either improves at singing or
ultimately performs worse. Our contributions include:

1. The development of a novel initial framework for simulat-
ing aspects of human learning, built on top of an existing
controllable AI generation system.

2. The exploration of how a machine can make mistakes and
how these may differ from those made by people.

3. A demonstration of how the learning process of a relat-
able creative AI system may reassure users and encourage
them to build a narrative about the process.
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Figure 1: Overview of the Lena Singer system which shows
the major components and data flow. P, T, F represent
phonemes, phoneme timings, and frequencies respectively.
M,A,E,C represent motivation, ability, mistakes, and con-
fidence. Y represents the output audio.

System Description
The Lena Singer system is composed of four parts: the
singing model, the learning model, the corruption engine,
and the user interface. Figure 1 presents a diagram of how
the component parts work together in the overall system.

Singing Model
The underlying SVS system is VISinger2 (Zhang et al.
2022), an end-to-end model that creates a realistic singing
voice in Mandarin Chinese from an input of phonemes,
phoneme timings, and phoneme frequencies. At its core, the
model is a conditional variational autoencoder with a dis-
criminator. The model encodes phonemes, phoneme tim-
ings, and frequencies to a latent space and similarly encodes
the mel spectrogram (O’Shaughnessy 2000) of an associated
audio file. During training, the objective is to minimize the
distance between the latent encodings of related phonemes
and spectrogram representations. The model also includes
a decoder, which uses a DDSP (Engel et al. 2020)-inspired
process to generate a mel spectrogram, which is converted
to the waveform domain using a modified HiFiGan (Kong,
Kim, and Bae 2020) model. Following the decoder, a dis-
criminator is simultaneously trained to ensure high-quality
outputs that are similar to the training examples.

The developers of VISinger2 used the Opencpop (Wang
et al. 2022) dataset to train the model. This consists of 100
Mandarin songs sung by a professional singer with human-
labeled annotations. The annotations include the lyrics, the
phonemes, the notes, the note durations, the phoneme dura-
tions, and whether or not a note was a slur note. We obtained
permission to use the Opencpop dataset and trained our own
version of the model accordingly, using a single A100 GPU,
for 200k steps. The fine-grained control of phonemes and
pitches allows for precise and realistic manipulation of the
resulting audio. As part of the Lena Singer system, this SVS
system can generate one of five songs from the Opencpop

test set, with each song being around seven seconds long.
Importantly, the model is used purely to generate audio from
the inputs given to it by the corruption engine and its outputs
are not fed back into the learning model. Thus it could be
easily swapped for any other SVS system and/or dataset pro-
viding it follows the same format as the Opencpop dataset.

Learning model
In overview, we aim to implement a system able to simu-
late the human learning process, using variables that rep-
resent relatable concepts. Specifically, we develop a sim-
ple stochastic model for how factors of motivation, confi-
dence, ability, and mistakes during performance interplay
over time, as an agent practices the creative act of singing.
Overall, the learning model consists of seven variables with
a range of 0-100 which are updated at every step, based on
the values of the other variables. They represent both the
internal state of the singer (ability, motivation, confidence,
mistake factor, mistake history factor) and the external re-
sults (mistakes/mistake history). All variables are updated in
a stepwise fashion and are normally distributed with a stan-
dard deviation of 5. This allows for some randomness, hence
different results from the same starting point. Algorithm 1
shows the pseudocode for the variable updating scheme. We
designed this model with three goals in mind:

1. To simulate how a large amount of initial motivation or
ability should usually be able to overcome a low amount
of the other. Low amounts of both variables should usu-
ally lead to failure, while high amounts should usually
lead to success.

2. To ensure that the system is non-deterministic, so two ses-
sions with the same initial values of ability and motivation
may lead to different processes and outcomes.

3. To simulate how learning to sing well should take more
timesteps than giving up and stopping.

The variables in the learning model are defined as fol-
lows: Ability: the singer’s natural ability. It is inversely
related to mistakes but also affected by current motivation.
Motivation: The singer’s interest in continuing to learn. A
low motivation will cause the singer to stop trying to learn
and give up. Confidence: how confident the singer is in its
abilities. A high confidence will cause the singer to stop try-
ing to learn because it believes it is good enough. Mistakes:
how corrupted the output audio will be. Mistake Factor:
how much the current mistakes value matters to the singer.
Mistake History: how many past mistakes the singer re-
members. Mistake History Factor: how much these past
mistakes matter to the singer. The mistake factor, mistake
history, and mistake history factor variables were designed
to allow the model to learn to overcome and ignore their cur-
rent and previous mistakes as a representation of resiliency.

Although the variables and update equations are not ex-
plicitly derived from any true academic model, they were
initially inspired by human learning, then fine-tuned and
weighted to fit our goals. They rely on a feedback model
of learning where internal state variables are updated from
combinations of other internal variables and external results.



Algorithm 1 Updating scheme for the learning model

1: let N(x) = N (x, 5)
2: motivation m← minit

3: ability a← ainit
4: confidence c← 0
5: mistakes e← 0
6: mistake factor mf ← 0
7: mistake history h← []
8: mistake history factor hf ← 0
9: step n← 0

10: while n < 30 do
11: e← N(100− 0.55a− 0.45m)
12: h.append(e)
13: h.resize(10− c/10)
14: c← N(a− e ∗mf)
15: a← N(100− e+m ∗ n)
16: m← N(a−

∑
h ∗ hf)

17: mf ← m ∗ 0.01
18: hf ← (100−m/100) ∗ 0.01
19: n← n+ 1
20: if c = 100 or m = 0 then

break
21: end if
22: end while=0

For instance, confidence is derived from the agent’s current
ability as well as current mistakes multiplied by a mistake
factor. Over a maximum of 30 steps, the model will con-
verge to one of three outcomes. If confidence continues
to stay near 100, the model will stop to signify that it has
reached its goal. Or, if motivation hovers near 0, the model
will stop to show it is giving up. Finally, if the model reaches
the maximum number of steps, the model will stop to denote
that it is finished learning. The model itself depends solely
on these variables and does not rely on feedback from the
corruption engine, SVS, or the UI.

Corruption Engine
The corruption engine produces the mistakes the singer is
making. There are nine corruptions split into pre- and post-
generation corruptions. The pre-generation corruptions af-
fect the inputs to the VISinger2 model. These include over-
all speed change, inter-phoneme timing change, and ran-
dom phoneme replacement. By reducing or increasing the
phoneme timings, either by a global amount or a varying
amount, the speed of the singing is affected without chang-
ing the pitch. The post-generation corruptions are high and
low-pass filtering, compression, distortion, random pitch de-
tune, and gain reduction. Besides random pitch detune,
which is implemented directly, all other effects are imple-
mented using Pedalboard (Sobot 2021). There is also a re-
verb effect added that inversely follows mistakes to frame
the perfected singer as more professional. Uniform distri-
butions are used to regulate each corruption’s activation and
intensity, which are parameterized by the mistakes metric
or, in the case of gain reduction, the confidence metric. The
ranges for these distributions are chosen heuristically.

Figure 2: The web interface for the Lena Singer system.
This run had an initial motivation of 74 and an initial ability
of 31. Here, the agent successfully learned how to sing.

User Interface

The GUI of the system enables users to set the initial moti-
vation, ability, and song and displays the output data from
the learning model and SVS model. The motivation, ability,
confidence, and mistakes metrics are plotted on a graph for
each time step, while the audio output appears at the bottom
of the screen as a button. The GUI will also display some
text to reflect the current state of the learning run. Figure 2
shows an example session in the GUI.

Experimental Results
We evaluate here both our learning model and the corruption
engine. For all evaluations, we used a default song, as song
choice has no impact on the learning model. To evaluate the
learning model, we ran 200 simulations of the model with
random initial states of motivation and ability, sampled on a
uniform distribution from 0-100. Figure 3 shows if the run
was a success as well as how long it took based on the initial
variables of ability and motivation. Overall, it seems like
our initial goals for the learning model have been achieved
in terms of sensible outcomes from certain starting condi-
tions. In particular, a high ability or high motivation will
likely lead to success, while mediocre or poor metrics lead
to failure. Also, it seems there are many cases with a sim-
ilar initial state that lead to different results. Furthermore,
in general, it seems like achieving the task of singing takes
longer than failure. However, it is interesting that having a
high initial ability and motivation does not seem to generally
converge to success quicker than in other cases.

As a straightforward way to evaluate the corruption en-
gine, we measure the multi-resolution STFT (Steinmetz and
Reiss 2020) error between the clean audio (no corruption)
and the output audio at every time step for a particular run
with initial motivation = 86 and initial ability = 25. Figure 4
plots these metrics. It seems that the mistakes graph some-
what correlates with the multi-resolution STFT error (PCC
of 0.778). Therefore, the system reduces the quality to some
extent depending on the mistakes metric. However, we argue
that there is no requirement for a perfect linear relationship
in this emulation system.



Figure 3: Success/failure and number of steps taken for 200
initial states of motivation and ability.

Figure 4: Mistakes and MRSTFT error between corrupted
audio and clean audio on each learner model step.

Discussion
Although this project represents a toy example of human
learning, it achieves a result that is empirically much closer
and more relatable to a user’s actual experience learning a
skill than standard machine learning approaches. Each sim-
ulation run produces a unique result in terms of the learner
model variable journeys, as well as the output audio on each
step. When running a simulation with the system, a user
can experience and empathize with the learning agent, po-
tentially building up a mental story as to why a particular
outcome might have occurred. For instance, a run that be-
gins with high confidence and high motivation, but high mis-
takes, may see the confidence and motivation drop as the er-
rors increase, but then slowly start to decrease the mistakes,
leading to an increase in confidence. This could cause the
user to imagine a singer initially frustrated with their mis-
takes, but with enough resilience to overcome them and gain
confidence. These runs may cause the user to feel more con-
nected to both the intermediate and final outputs. However,
as suggested by (Colton, Pease, and Saunders 2018), barriers
exist to truly make these “life experiences” challenging for
people to accept, unless we are able to more accurately re-
flect the audience or alternatively use an enactive AI (Froese
and Ziemke 2009) approach, with a completely different so-
cial and cultural environment.

While the learning model variables and update scheme
were chosen arbitrarily, they seem to control the system such
that the results are mostly expected, but sometimes surpris-
ing. The variables also present a feedback loop, as an in-
crease in one usually leads to an increase in another. Al-
though the learning model itself is significantly more inter-

pretable than a standard deep learning approach, it is still
not entirely clear how variable updates can cause particu-
lar outcomes. The corruptions selected for this system were
primarily chosen for their ease of implementation. How-
ever, their outputs are significantly different from the con-
sequences of human errors. While people cannot physically
manipulate their voices with audio effects, some corruptions
generate unnatural outputs. Nonetheless, there are some
similarities between the two, e.g., it is common for a hu-
man singer to rush through a song or sing more quietly due
to nervousness or lack of confidence. We didn’t strive to
completely model human mistakes but attempt to illustrate
some initial examples to inspire future discussion.

Related Work
To the best of our knowledge, modeling motivation, ability,
and confidence in a learning model for a creative skill like
singing hasn’t been studied from a computational creativity
perspective. However, there is related work on the creative
process and intrinsic motivation, e.g., (Salge, Glackin, and
Polani 2014) explores intrinsic motivation in AI, and builds a
3D simulation to explore a mathematical definition of agent
empowerment as an example. In addition, (Guckelsberger,
Salge, and Colton 2017) describes an enactive framework to
map an AI’s intrinsic values and goals to its creativity. Un-
like our system, they develop a non-anthropocentric model
and aim to study creativity from the bottom-up.

Earlier work on music generation with creative agents in
(Miranda 2003) explored granular synthesis through imi-
tation agents. However, the agents themselves don’t have
any sense of embodiment or self-awareness. (Linkola et al.
2017) focus on self-awareness as it relates to metacreativity
and “the capability to reflect on one’s own creative processes
and adjust them”. Their model defines key aspects of self-
awareness that are useful even for non-metacreative systems,
namely artifact-awareness and goal-awareness. (Ford and
Bryan-Kinns 2023) study the aspect of reflection in people
using creativity support tools, and suggest that it is an im-
portant part of self-expression. Finally, (Cook et al. 2019)
discuss the idea of framing in computational creativity, de-
fined as ”providing a narrative context for the actions and
motivation of the software”. They conclude that projects that
include descriptions of the underlying processes can help au-
diences to relate to them.

Conclusions and Further Work
We presented a reasonable computational simulation of peo-
ple learning how to sing. In particular, we developed a novel
learning model and data corruption engine that attempts to
model particular aspects of human learning in a feedback
loop. We combined those modules with a recent control-
lable SVS model to synthesize realistic human singing, us-
ing the corruption engine to modify the inputs and outputs of
the SVS model to portray the human learning process. We
discussed the design decisions for our system and showed
how the system meets our intended goals through the eval-
uation of experimental results. Furthermore, we described
how such a system could be seen as relatable to a user. This



system is only a first step for future systems studying human
and machine learning through the lens of creative practice.

In general, this framework itself needs refinement and it-
eration. As a first step, future systems could attempt to have
a richer and more scientifically accurate model of human
learning for creative tasks. For example, in the previously
cited work (Dweck 2000), researchers found that, while con-
fidence is a good predictor for academic achievement, it
doesn’t help students in difficult situations. Alternatively,
a model could be developed that would be more in line with
enactive AI with intrinsic motivation, with a clear design
to allow the model to have intentional creative agency that
adapts to its environment. Moreover, while the corruptions
provide a solid baseline, future work could explore either the
idea of closer modeling of human mistakes or could posit
novel corruptions that non-anthropocentric creative agents
could explore. We would also like to emphasize the con-
clusions of (Shneiderman 2020) which suggest that assump-
tions from tool-like application systems, such as virtual as-
sistants, should not be directly applied to emulation systems
like the Lena Singer system. These should be treated and de-
signed separately to avoid poorly crafted designs since they
usually have separate goals. Finally, due to the advent of AI
systems that can realistically mimic particular human abil-
ities like singing, painting, etc..., we are particularly inter-
ested in work that follows a similar framework with different
underlying generative AI technologies.
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the manuscript, while Simon Colton contributed to the writ-
ing and editing of the manuscript.
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