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Preface

Each year, researchers and practitioners interested in computational creativity gather for the In-
ternational Conference on Computational Creativity, ICCC. From June 27 to July 1st, 2022, the
13th edition of the conference was held in Bozen-Bolzano, tucked in between the green mountains
of northern Italy. After two years of pandemic lockdown with conferences taking place in the cloud,
this marked a welcomed return to physical meetings of the community. With both its feet on the
ground, ICCC’22 also ensured that it had its head in the clouds and the whole conference was
streamed to offer a remote presentation format to the participants that were unable to travel.

The local organisational team from the Free University of Bozen-Bolzano ensured that the con-
ference rooms were in order and, together with the session chairs, that the conference was running
smoothly. Throughout the conference week, the catering team served coffee and Italian pastries to
keep the energy high among the participants, and to facilitate an as sustainable conference setting
as possible, a predominantly vegetarian lunch was served daily.

For the scientific program of the 13th International Conference on Computational Creativity, the
conference received 126 submissions: 57 to the long paper track and 69 to the short paper track.
Out of these, 55 were accepted for presentation and inclusion in the proceedings: 22 as long papers
and 33 as short papers.

Displaying an internationally diverse community, the accepted papers represent work of re-
searchers and practitioners from 48 academic institutions, ten enterprises and one private prac-
titioner, in turn spread over 17 countries: Australia, Canada, Finland, France, Germany, India,
Ireland, Italy, Japan, Luxembourg, Malta, the Netherlands, Saudi Arabia, Slovenia, Spain, the
United Kingdom and the United States of America.

We extend our gratitude to all authors who submitted their manuscripts to this conference,
and congratulate the authors of accepted papers for their excellent contributions presented in this
volume. Particularly outstanding were the following papers, which won the best paper awards in
three different categories:

Best Paper Award: Patrick Chieppe, Penny Sweetser and Eryn Newman: “Bayesian Modelling
of the Well-Made Surprise”

Best Short Paper: Kana Maruyama and Michael Spranger: “Interpretable Relational Represen-
tations for Food Ingredient Recommendation Systems”

Best Student Paper: Marvin Zammit, Antonios Liapis and Georgios Yannakakis: “Seeding Di-
versity into AI Art”

The proceedings is the result of a highly selective peer-reviewing procedure conducted by the Pro-
gram Committee. Invited for their expertise in computational creativity and closely related topics,
the members in the committee helped ensure the quality and appropriate fit of the papers selected
for inclusion in the conference. We note that as the period since the previous conference was only
nine months, both submitting authors and the PC had to work under an unusually narrow time
frame. In addition, we acknowledge the difficult conditions for this year’s PC as yet another wave
of Covid-19 broke out during the reviewing period. In light of this, we extend our warmest thanks
to those who pushed through and despite these challenges gave of their valuable time.

For the long paper track, each paper was reviewed and discussed by at least three PC members.
Based on these reviews and personal expertise, a senior PC member wrote a meta-review that



included a recommendation for acceptance or rejection. The final decisions were made by the Pro-
gram Chairs in relation to the reviews, the meta-review and the recommendations of the senior PC
members. Similarly, for the short paper track, each submission received three independent reviews.
However, since there was less time between the deadline for short papers and the conference, there
was no time for a meta-review period for the short paper track. To assist the Program Chairs in
making the final decisions, the PC members had instead been instructed to be as consise in their
reviews as possible by either leaning towards an acceptance or a rejection recommendation.

Another thing worth mentioning is that this year we wanted to pay extra attention to inclusiveness
and transparency. This manifested in two ways: The selection of the Program Committee and the
addition of two new sections in the accepted papers.

First, when selecting the Program Committee, we paid extra attention to diversity. To this end,
we looked for new talent among the authors of previous editions of the conference and especially
invited members from universities outside Europe and North America. While doing this, we also
paid attention to the gender balance of the committee and did our best to balance the scale. For
reviewing of the short papers, we also invited new members of research areas closely related to
computational creativity. The motivation for this was a wish to broaden the skillset of the PC,
expand the community and promote the research area of computational creativity to researchers
that might be interested in participating in upcoming editions of the conference. We are happy
that so many answered our call and were willing to participate!

Second, to increase transparency and openness of the proceedings, accepted papers were re-
quired to include two new sections: Acknowledgements and Author Contributions. The purposes
of these sections are to recognise the influence of individuals, sponsors and institutions behind the
research, and to in more detail describe the contribution each author had to the papers. We believe
that such transparency is threefold in its benefits. First, that it supports good research practices
of the rich variety of scientific fields uniting under computational creativity research. Second, that
it helps our authors in getting an accurate level of acknowledgement for their work. Thirdly, that
it offers our readers assistance in finding the correct researchers to contact for particular questions
about the papers.

The scientific program of ICCC’22 held, in addition to the paper presentations, book release pre-
sentations, a demo session and four highly diverse keynote speakers that also joined in a panel
debate.

Book release presentations: To support the community, three book release presentations were
held at the conference:

• Mike Sharples and Rafael Perez y Perez: “Story Machines: How Computers Have Become
Creative Writers”

• Nada Lavrač, Vid Podpečan and Marko Robnik-Šikonja: “Representation Learning: Propo-
sitionalization and Embeddings”

• Tony Veale: “Your Wit Is My Command: Building AIs with a Sense of Humor”

Demo session: All authors who had requested to demonstrate their systems along with their
paper presentations were able to participate in the demo session. The different systems were
showcased in 5-min flash talks followed by show-and-tell at individual monitors where the audience



could walk around and engage with the systems. The demo session was a fast-paced, exciting display
of computational creativity systems ranging from artistic domains to more practical applications in
information science.

Keynote speakers: With a special emphasis for having representatives from industry, research
and the arts, as well as a large span of traditional computational creativity areas; visual arts, text
generation, multi-media and computational humour, our four keynotes were:

• Aaron Hertzmann: “Can computers create art?”
• Allison Parrish: “Material Paratexts of Computer-Generated Literature”
• Ellen Pearlman: “Biometrics, AI, Embodiment, Performative Practices and the Speculative

Future”
• Oliviero Stock: “A Catchy Title”

The 13th edition of ICCC spanned a week of academic activities. Preceding the three days of
the main conference, ICCC’22 also consisted of two days of workshops, tutorials and a doctoral
consortium.

Workshops: Highly appreciated by the audience, three particular foci were offered in the work-
shops: The cultural heritage of Internet art, the role of embodiment in creativity, and what com-
putational creativity could offer in terms of a therapeutic tool. The workshops were:

• “Double View But Single Vision? Tracing Artistic Internet Browsers” by Barbara Filser, Inge
Hinterwaldner, Daniela Hönigsberg, and Konstantin Mitrokhov

• “The Role of Embodiment in the Perception of Human and Artificial Creativity” by Laura
Herman and Caterina Moruzzi

• “Therapeutic Computational Creativity & the Third Hand” by Maya Ackerman and Alison
Pease

Tutorials: In comparison to the workshops, the tutorial offered a more hands-on educational
environment to spread novel insights to the community. Topic-wise very diverse, the two tutorials
were:

• “Methods of interacting with computational systems for live artistic performance” by Kory
Mathewson, Thomas Winters, Piotr Mirowski, and Boyd Branch

• “Quantum Computing for Computational Creativity” by Alain Lioret

The doctoral consortium: To ensure that the computational creativity community grows the
next generation of researchers were invited to participate in the DC. 21 students from varying
backgrounds and at different stages of their studies participated and out of these 16 received a
scholarship. The event consisted of five-minute flash talks to the audience at ICCC that were fol-
lowed by group discussions with two assigned senior researchers. To participate, each student had
to submit a summary of their research that had been evaluated by the DC chairs and the ICCC’22
organisation. Separate proceedings for the DC contributions is available.



Social program: Further, to ensure that the computational creativity community remains a
friendly group of researchers that happily invites new members, ICCC’22 took special care to ar-
range for a social program with great networking opportunities. Social highlights included:

• A conference reception at Museon, Bozen-Bolzano’s modern art museum
• An afternoon at Firmian Messner Mountain Museum
• A conference dinner at Castle Maretsch
• An electro-acoustic music concert at the Conservatory Claudio Monteverdi: Cello & live

electronics, audiovisuals and multichannel acousmatic music by Prof. Gustavo Delgado’s
electronic music class and special guest Prof. Nicola Baroni.

As demonstrated in these proceedings, the International Conference on Computational Creativity
boasts a multidisciplinary community. Each year, we invite authors from various fields to participate
in the conference and as a community, we have tight connections to representatives from different
branches within the arts. As the research field of computational creativity has matured, it has
spread its wings and become a subject of interest in various other conferences and events as well.
However, ICCC remains an inclusive conference that warmly welcome different technical solutions
and methods over all areas of creativity research. The 13th edition of the conference particularly
excels in representing this domain-independent core of the discipline itself in that many of the
papers in these proceedings tackle a key concept beyond a specific methodological discipline. This
remains a unique feature of the ICCC conference and emphasises its importance as a publication
venue for computational creativity regardless of the increasing popularity at other venues.

Acknowledgements The ICCC’22 organisational team expresses its gratitude to its sponsors:
The Free University of Bozen-Bolzano (unibz), the Association for Computational Creativity (ACC),
the European Association for Artificial Intelligence (EURAI), Adobe Research, and the Artificial
Intelligence Journal (AIJ). Specifically, we would like to thank unibz and ACC for the general organ-
isational support, EURAI for sponsoring the participation of our invited keynote speaker Oliviero
Stock, Adobe for sponsoring the Best Short Paper award, and AIJ for sponsoring the Best Paper
and Best Student Paper awards.

We thank Prof. Gustavo Delgado and his students, as well as special guest Prof. Nicola Baroni,
for the impressive electroacoustic music concert held at Bolzano’s Music Conservatory Claudio
Monteverdi.1

We acknowledge the guidance of the ACC steering committee and the CC Task Force and we
extend our thanks to those who made ICCC’22 possible: the organisational team, including all the
chairs, the program committee and additional reviewers, as well as our student helpers. Finally,
we thank you, the reader of these proceedings, for your interest and for picking up the ideas and
work presented in this volume and turning it into the next wave of valuable contributions of future
research!

1See the details here https://computationalcreativity.net/iccc22/music-concert/ and watch it here
https://www.youtube.com/watch?v=f1uWrPjT8wU.
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Martin Žnidaršič - Jožef Stefan Institute



Contents

1 Generating narratives 1
1.1 Casual Poetry Creators: A Design Pattern and Internal Evaluation

Measures
Michele Boggia, Sardana Ivanova, Simo Linkola, Hannu Toivonen and
Anna Kantosalo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 One Line at a Time — Generation and Internal Evaluation of Interac-
tive Poetry
Michele Boggia, Sardana Ivanova, Simo Linkola, Anna Kantosalo and
Hannu Toivonen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Modern French Poetry Generation with RoBERTa and GPT-2
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Casual Poetry Creators: A Design Pattern and Internal Evaluation Measures

Michele Boggia♡ Sardana Ivanova♠ Simo Linkola♠ Hannu Toivonen♠ Anna Kantosalo♠
♡ Department of Digital Humanities ♠ Department of Computer Science

University of Helsinki, Finland
{first.last}@helsinki.fi

Abstract

We explore the concept of Casual Poetry Creators with
the aim of making poetry writing fun and entertaining
for the user. We present a simple co-creative interac-
tion design pattern based on constructing poems line by
line, suggesting the user a set of line candidates at each
step. We also propose objective measures by which a
Casual Poetry Creator can evaluate and choose which
line candidates to show to the user and sketch out a plan
to evaluate the measures and pattern with users.

Introduction
Writing poetry is a creative act. Poets do it for various
reasons—to communicate a feeling or a viewpoint, for self-
expression or for therapeutic reasons, for instance. In this
paper, we address people who are not versed with poetry but
who could nevertheless have joy from writing it—given that
they had access to easy-to-use tools that make the threshold
to try out poetry writing very low.

We explore the concept of Casual Poetry Creators, sys-
tems that use a simple interaction pattern with the aim of
making poetry writing fun and entertaining for novices. Ca-
sual Creators, a term coined by Compton and Mateas (2015),
refers to a class of co-creative tools characterized by play-
fulness and the lack of task-focus. The main goal for Casual
Poetry Creator systems, then, is not to generate great poetry,
but rather to help the user feel the joy of creativity.

We contribute two elements to Casual Poetry Creators:
First, the defining element of our Casual Poetry Creator is

a simple interaction pattern where poems are generated line
by line, with the user in control over which lines are used
in the poem. Specific design advice on casual creators has
been published in the form of design patterns (Compton and
Mateas 2015; Compton 2019; Petrovskaya, Deterding, and
Colton 2020) and case studies of designing suitable param-
eter spaces for casual creation e.g. in the domains of games
(Colton et al. 2018) and visual arts (Colton et al. 2020).
Several simple, interactive poetry generators have been pro-
posed, too. However, as far as we know, this is the first time
the task is considered within the casual creators framework.
The actual poetry generation method is outside the scope of
this paper; instead, we present methods in a separate paper
(Boggia et al. 2022). Casual Poetry Creators can be imple-
mented with different generation methods, e.g., sequence-

to-sequence linguistic models to generate lines. We hope
that our work encourages researchers to contribute novel Ca-
sual Poetry Creators based on their models.

Second, we define objective evaluation measures for as-
sessing candidate lines for poetry. These measures have sev-
eral applications: (a) with these measures, a Casual Poetry
Creator can internally evaluate its line candidates, so as to
provide an appropriate set to the user; (b) when designing a
new Casual Poetry Creator, the measures can be used to as-
sess the suitability of different poetry generators for casual
creation; (c) during the building of a Casual Poetry Creator,
the measures can help fine-tuning linguistic models for this
particular purpose.

This paper is structured as follows. In the next section,
we briefly review background in casual creators and interac-
tive poetry writing. We then introduce the interaction pat-
tern for Casual Poetry Creators. Next, we give definitions
of objective measures that can be used to implement Casual
Poetry Creators. We wrap this paper up with concluding re-
marks. In a parallel paper (Boggia et al. 2022), we give
poetry generation algorithms that are suitable for Casual Po-
etry Creators, we describe implementations of the objective
measures, and we give empirical results.

Background
Casual creators
The concept of Casual Creators (Compton and Mateas 2015)
gives a name for an old phenomenon covering both physi-
cal tools as well as software characterized by assistance, au-
tomation and limiting the domain space of possible creative
outputs to support novice creators (Compton 2019, p. 20).

Compton and Mateas (2015) define a casual creator as an
interactive system that encourages fast, confident, and plea-
surable exploration of a possibility space, resulting in the
creation or discovery of surprising new artifacts that bring
feelings of pride, ownership, and creativity to the users that
make them.

Casual creators offer an interesting platform for computa-
tional creativity developers to develop applications for use in
the real world. Examples of casual creation emerge in phys-
ical toys, as part of other, more complex software, such as
character creation tools within games, and as tools or games
are re-used for casual creation instead of their original pur-
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pose (Compton 2019, p. 6, 11, 14). Dedicated applications
conforming with casual creation are also readily available
on commercial app platforms, such as the Apple App Store
(Petrovskaya, Deterding, and Colton 2020), further speak-
ing to their role as a widely available form of pass-time for
novice creators. In addition, Casual creators offer opportu-
nities to create well-being for their users (Compton 2019, p.
3), making them a significant area to improve the outreach
of computational creativity research.

The goal of our Casual Poetry Creator interaction pattern
and the metrics are the same as with any casual creator sys-
tems: they focus on the users’ enjoyment of the creative
process itself above productivity and scaffold the creative
process by enabling the rapid and fluent exploration of a re-
stricted creative space (Compton 2019, p. 6–7).

Interactive Poetry Generators
Poetry generation is a popular research topic in computa-
tional creativity and numerous methods have been proposed
in the literature. A review of different techniques to gener-
ate poetry is out of the scope of this paper, however, and we
refer the interested reader to Gonçalo Oliveira (2017).

Interactive poetry generation where the software acts as
an intelligent or creative partner has also been addressed by
several scholars. The following are representative examples
of interactive poetry writing systems.

The Poetry Machine (Kantosalo et al. 2014; Kantos-
alo, Toivanen, and Toivonen 2015) uses a fridge magnet
metaphor for interaction. The system starts with a sample
poem generated by the system, and then the user can move
words or lines around, write more text, or ask the system to
suggest new words or lines.

Hafez (Ghazvininejad et al. 2017) produces sonnets based
on given words and eight style parameters tuned by the user.
The interaction model is based on the user adjusting the pa-
rameters and asking the system to regenerate the poem ac-
cording to the new parameters.

Machine in the Loop (Clark et al. 2018) is an approach
used for writing text line by line in other fields of creative
writing such as stories and poetry. At every iteration, the
system suggests a line which the user may then edit.

Co-PoeTryMe (Oliveira et al. 2019) includes user inter-
face functions similar to the Poetry Machine, and addition-
ally it allows constraints to be specified for new words (e.g.
rhyme) and offers an extensive editing functionality.

We focus on poetry writing applications using a very sim-
ple exploration method for the creative conceptual space
of poetry. The space is initialized based on user-given in-
put keywords, and subsequent direction of poetry generation
takes place through the one-touch and mutant-shopping in-
teraction patterns for casual creators (Compton and Mateas
2015; Petrovskaya, Deterding, and Colton 2020).

The Casual Poetry Creator design pattern that we describe
in the next section is simpler than in any of the above sys-
tems. Our aim is to make the use of Casual Poetry Cre-
ators as simple as possible: no parameters to tune, no differ-
ent user interface functions to choose from—not necessarily
even an option to edit lines produced by the system, which
removes the need for a keyboard when writing poetry with a

Casual Poetry Creator. For the input of keywords that func-
tion as seeds for line generation, different keyboard-free al-
ternatives can be considered such as pointing at words in a
document, or offering the user a set of random words from
which to select the seeds.

A Design Pattern for Casual Poetry Creators
We consider a simple model for co-creative poetry gener-
ation. The poetry generator produces poetry one line at a
time, in simple interaction with the user:

1. Before the generation of the first line, the user may give a
couple of keywords;

2. Candidates for the first line are produced with the key-
words as inspiration; if no keywords were provided, first
line candidates are produced based on random keywords
sampled from a dictionary;

3. The user selects one of the candidate lines suggested by
the system;

4. Candidates for the next lines are produced based on the
previous lines (and potentially the keywords);

5. The poem is constructed iteratively and incrementally by
going back to step 3; the user may decide to stop the gen-
eration of new lines at any time, in which case the final
poem is printed by the system.
This design allows very simple user interaction. At any

time, the system provides a handful of candidate lines from
which the user chooses one, and the system then generates
candidates for the next line based on the previous selections
of the user.

The generation of candidate lines should satisfy three cri-
teria: (1) each candidate line is related to the previous lines
in the poem, or to the possible keywords in the case of the
first line; (2) each candidate line is poetic; and (3) the candi-
dates for the nth line are diverse.

In this paper we focus on this simple interaction pattern
for two reasons. First, we believe this makes a good Casual
Creator, with extreme simplicity for the user but still a wide
space of possible poems (assuming the poetry generator is
successful in the three goals listed above). Second, the sim-
ple interaction pattern can be easily reused with other poetry
generation methods, as well as in Casual Creators in other
domains where incremental creation of artefacts is natural.

In Listing 1, we present an example implementation of
the Casual Poetry Generator pattern as a command line in-
terface.1 The example shows the keyword input and a few
iterations of the creation process including the line candidate
examples and the current lines in the poem.

The line-by-line candidate generation model can be seen
as an instance of several design patterns of Casual Creators
(Compton and Mateas 2015). It gives instant feedback in the
form of new lines based on the user’s selection; it produces
many candidates and overlays them; it avoids the blank can-
vas problem by writing lines for the user; it offers limited
actions to encourage exploration; and it’s mutant shopping

1A Python implementation is available at https://
github.com/bmichele/poetry_generation.
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Listing 1: Example outputs of the command line implemen-
tation of a casual poetry generator.
GIVE KEYWORDS: nature summer

LINE CANDIDATES:
0 Nature, in the summer’s heat,
1 Nature, in summer’s sunshine-bright,
2 Nature, like Summer’s with her own decrees,
3 And summer’s charms, by Nature given,
4 The summer’s nature and the summer’s love,
5 Nature, in summer time, is still the same,
6 The summer’s breath of nature blows,
7 And Nature, like a Summer’s flowery mist,

PLEASE CHOOSE CANDIDATE
(integer in [0,1,2,3,4,5,6,7], -1 to stop.)

[...]

CURRENT POEM STATE:
The summer’s breath of Nature blows,
Across the fields and through the trees,
Its fragrance, like the breath of May,

LINE CANDIDATES:
0 A rose-leaf in the garden-bough,
1 The breath of flowers blown in the breeze.
2 A rose-bush in the midst of May,
3 A rose-bush in the garden-bough,
4 A rose-leaf in the garden breeze.
5 A rose-bush in the morning breeze.

PLEASE CHOOSE CANDIDATE
(integer in [0,1,2,3,4,5], -1 to stop.)

in the sense that it offers alternative lines ready to be picked
by the user (however instead of changing the whole artifact,
our pattern focuses on additive iteration). Saving and shar-
ing is trivial since the approach only operates on and pro-
duces text.

Perhaps the closest parallels within existing casual creator
patterns are ’Limiting Actions to Encourage Exploration’
and ’Mutant Shopping’ (Compton and Mateas 2015). Ca-
sual Poetry Creators could be implemented in a mobile inter-
face with a ’One-touch creativity’ pattern, which uses only
one type of gesture for the interaction (Petrovskaya, Deterd-
ing, and Colton 2020). The basic interaction offered by the
pattern could of course be extended, by for example allow-
ing the user to edit the lines. Such an extended pattern begins
to resemble user interactions with existing co-creative poetry
writing systems, such as the Poetry Machine (Kantosalo et
al. 2014) or Co-PoeTryMe (Oliveira et al. 2019).

Internal Evaluation Measures
We propose four evaluation measures to assess poetry lines
produced by Casual Poetry Creators: semantic coherence,
topic coherence, tautology, and diversity. In this paper, we
do not aim to measure how poetical lines are.

These measures can be utilised both (1) by the designer

of the system during the system development to assess the
feasibility of the generation methods and (2) by the system
itself during its execution time to make informed decisions
about which set of generated line candidates to show to the
user. The evaluation measures are based on metrics and
other measures previously proposed in the literature.

Preliminaries For two vectors, the cosine similarity is de-
fined as the cosine of the angle θ between the vectors.

For two sets of tokens S1, S2 (lines consisting of words),
token similarity sim (S1, S2) is defined based on their over-
lap as

sim(S1, S2) =
2|S1 ∩ S2|
|S1|+ |S2|

. (1)

Semantic Coherence Candidate lines offered by a Casual
Poetry Creator should usually be semantically coherent with
the poem written so far. For this purpose, we define the n-
Semantic Coherence to measure the semantic similarity of
a candidate line to the n previous lines. This measure can
be used by a Casual Poetry Creator to decide which lines to
show the user. For instance, the measure could be used to
select a set of candidates mostly consisting of lines coherent
with the previous ones, but also include a few less coherent
ones to allow for surprises and turns in the poem.

The n-Semantic Coherence of a candidate verse for the
ith line of the poem is defined as follows. We consider the n
previous lines, i.e., lines i− n to i− 1, transform them to a
vector representation and compute its cosine similarity with
a vector representation of the candidate line.

More specifically, we tokenize each line, remove stop-
words, and compute the centroid of the word vectors ob-
tained for each token of the n previous line from the
Word2vec model (Mikolov et al. 2013a; 2013b). The n-
semantic coherence of the candidate is then the cosine sim-
ilarity between this vector and the vector obtained from the
candidate line by following the same procedure (tokeniza-
tion, stopword removal, computation of centroid by averag-
ing word vectors).

The idea is that the two vectors are semantic encodings of
the last lines of the poem and of the candidate line, respec-
tively, and that their cosine similarity captures the degree of
their semantic similarity. Line candidates introducing new
subjects into the poem will have lower semantic coherence.

Topic Coherence Candidate lines suggested by a Casual
Poetry Creator should usually be related to the keywords
given by the user (if any). We define Topic Coherence of a
candidate line as its semantic similarity with the keywords.
A Casual Poetry Creator can use the topic coherence in ways
analogical to semantic coherence, e.g., to ensure that the set
of candidate lines contains both topic coherent and poten-
tially surprising lines.

Technically, the topic coherence of a candidate line is de-
fined as the cosine similarity between the centroid of (the
word embeddings of) the line and the centroid of (the word
embeddings obtained from) the user-given keywords.

The idea is to extend the concept of semantic coherence
defined above and offer means to measure the topic drift of
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candidate lines from the initial keywords. Candidates char-
acterized by lower scores, when compared with the input
keywords, would look more surprising but potentially inco-
herent to the user. High values, in turn, imply lower surprise
and higher coherence.

Tautology Many sequence-to-sequence language models
are prone to produce unnecessarily repetitive lines, or Tau-
tology, and safe-guarding against them can be needed. (For
instance, in our implementation (Boggia et al. 2022) we use
mBART, which is pre-trained on denoising tasks (Liu et al.
2020). If fine-tuning is not successful, the model will tend
to repeat the same verse(s) over and over again.) A mea-
sure of tautology allows a Casual Poetry Creator to filter our
repetitive lines, if needed.

For a candidate line, we define tautology as the number
of tokens that are shared between the candidate and the pre-
vious line of the poem, normalized by the total number of
tokens in the two verses. We can express this measure us-
ing token similarity simply as sim(Si, Si−1), where Si and
Si−1 are the sets of words obtained from the candidate and
the previous poem, respectively.

Diversity A Casual Poetry Creator should produce a di-
verse set of candidate lines at each generation step. This
ensures that the user has a real choice and is more likely to
feel ownership and pride of the resulting poem. We define
the Diversity of a set of lines by the amount of words shared
between them. Usually, a Casual Poetry Creator would try
to maximize the diversity in the candidate lines it offers to
the user.

To measure the diversity of a set of lines, we utilise token
similarity sim(S1, S2) between two lines, where S1 and S2

are the set of words extracted from the lines. The diversity
is computed as the average dissimilarity between the lines
in the line set, where dissimilarity between two word sets S1

and S2 is 1 − sim(S1, S2). That is, for a set of poem lines,
we first extract the words from them to obtain a set of word
sets S = (S1, . . . , Sn), and then compute diversity div(S)
in a following manner:

div(S) =
n(n− 1)

2

n−1∑

i=0

n∑

j=i+1

(
1− sim(Si, Sj)

)
. (2)

Empirical Validation and Application
In a parallel paper (Boggia et al. 2022), we empirically
validate that the semantic coherence and diversity metrics
measure what they are supposed to, and argue that topic co-
herence and tautology will also behave favorably. We also
apply these measures on an actual poetry generation method
and report on our empirical findings.

Planned External Evaluations
We have implemented a Casual Poetry Creator as a com-
mand line interface running on a local instance, using the
poetry generation method of Boggia et al. (2022). Basic
evaluation with end users is already possible with this in-
terface, but we intend to implement it as a web-based tool

for easier access. Offering the system as a web service will
also allow easier systematic evaluation of co-creative expe-
riences of users. It would be interesting to investigate the re-
lationship between the internal evaluation metrics and users’
co-creative experiences with the system, offering further in-
sight into the beneficial use of these metrics in systems aim-
ing for Casual Poetry Creation.

Conclusion
We presented a simple interaction design pattern to facilitate
the creation of Casual Poetry Creators. The pattern is based
on line-by-line generation and selection of poem contents,
and is well suited for human-computer co-creation.

The Casual Poetry Creator design pattern only allows very
simple user interaction. The user starts the interaction by
providing a small set of keywords. Candidates for the first
line are then produced with these keywords as inspiration,
and the user selects one of the lines. After that, candidates
for the next lines are produced based on the previous lines.
The poem is constructed iteratively and incrementally in this
manner, until user decides to stop.

The interaction is highly limited on purpose. The goal
is to make the threshold for poetry writing as low as pos-
sible by keeping the interface simple. This follows the Ca-
sual Creator philosophy: the aim of the system is to help the
novice user feel joy of creativity, not to accomplish a task.

A successful Casual Poetry Creator has the ability to pro-
duce and select suitable sets of candidate lines. We argue
that in Casual Poetry Creators, good candidate lines should
be coherent with the preceding poem as well as poetic; ad-
ditionally, the set of candidates should have diversity. While
poetry generation methods are outside the scope of this pa-
per, we proposed evaluation measures that can be used as
internal filters by different Casual Poetry Creators. The pro-
posed metrics measure the coherence, diversity, and repeti-
tion in lines of poetry. Whatever method is used to generate
alternative lines, these measures can be used to control what
kind of candidate sets are offered to the user.

This paper is a first conceptual step towards Casual Po-
etry Creators. In a parallel paper (Boggia et al. 2022), we
propose matching poetry generation methods, and validate
and apply internal evaluation measures. The next step is
an evaluation of the concept and of the measures with ac-
tual users. Do the users get joy of creativity, and how do
various factors—as potentially indicated by the measures
proposed—affect how much fun it is? On the technical side,
we plan to explore measures related to the concept of poet-
icalness, e.g. by measuring poetic devices such as rhyming
and using machine learning, either as part of learning to gen-
erate new lines of poetry, or as a separate evaluation step.

Author Contributions
The concept of Casual Poetry Creators was developed
through discussions between all authors. AK acted as a
co-creativity expert and wrote the introduction, background
and the description of the casual creation pattern together
with HT. MB, SI, SL and HT formulated the internal eval-
uation measures and wrote the corresponding sections and
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Abstract

We present methods that produce poetry one line at
a time, in a manner that allows simple interaction in
human-computer co-creative poetry writing. The meth-
ods are based on fine-tuning sequence-to-sequence neu-
ral models, in our case mBART. We also consider sev-
eral internal evaluation measures by which an interac-
tive system can assess and filter the lines it suggests
to the user. These measures concern the coherence,
tautology, and diversity of the candidate lines. We
empirically validate two of them and apply three on
the mBART-based poetry generation methods. The re-
sults suggest that fine-tuning a pre-trained sequence-to-
sequence model is a feasible approach, and that the in-
ternal evaluation measures help select suitable models
as well as suitable lines.

Introduction
We propose methods that use sequence-to-sequence neural
models to generate poetry one line at a time. We use them
to implement a simple interaction pattern where the system
iteratively produces a set of line candidates from which the
user picks one, with the aim of making poetry writing easy
and entertaining for novices.1

We also consider four objective evaluation measures to
assess candidate lines especially in interactive poetry gener-
ation. While we suggest these measures elsewhere (Boggia
et al. 2022) we have not evaluated or applied them before.
In this paper, we empirically validate them and show how to
use the measures in practical applications.

Poetry generation is a popular research topic in computa-
tional creativity and numerous methods have been proposed
in the literature (Gonçalo Oliveira 2017). Interactive po-
etry generation where the software acts as an ı̀ntelligent or
creative partner has also been addressed by several schol-
ars (Kantosalo et al. 2014; Kantosalo, Toivanen, and Toivo-
nen 2015; Ghazvininejad et al. 2017; Oliveira et al. 2017;
2019; Clark et al. 2018).

Our poetry generator produces poetry one line at a time,
based on the previous lines of the poem or, in the case of
the first line, based on keywords given by the user. This

1A Python implementation of the system is avail-
able at https://github.com/bmichele/poetry_
generation.

approach supports different user interaction patterns where
suggestions for continuation are requested from the system.
In this paper, we assume the following simple interaction
pattern of Casual Poetry Creation (Boggia et al. 2022).

At any time, the system provides a handful of candidate
lines from which the user chooses one. The system then it-
eratively generates candidates for the next line based on the
user’s previous selections. Candidates for the first line are
generated from keywords inserted by the user. The system
can be easily adapted to allow more complex interaction pat-
terns, such as allowing the user to edit the system outputs.

The generation of candidate lines in such an interac-
tive setting should satisfy three criteria: (1) each candidate
should be related to the previous lines in the poem, or to the
keywords in the case of the first line; (2) each candidate line
should be poetic; and (3) the set of candidates for the nth
line should be diverse. In the next section, we present po-
etry generation methods that address points 1 and 2; in the
following section, we use the internal measures to address
points 1 and 3.

Poetry Generation with mBART
To generate poems line by line we leverage mBART (Liu et
al. 2020), a denoising autoencoder pre-trained on monolin-
gual corpora in several languages. In a nutshell, the model
takes a source sequence (e.g., a partially written poem) and
produces a target sequence (the next line of the poem).

Starting from the same base model, we fine-tune (i) a
model to generate candidates for the first poem line from
the input keywords, and (ii) a model that generates candi-
dates for additional poem lines. We will refer to these neural
models as first-line and next-line model respectively.

The fine-tuning datasets for our models are constructed
from the Gutenberg Poetry Corpus2, a corpus of approxi-
mately 3M poem lines in English language extracted from
Project Gutenberg3.

First-Line Model
In our interaction pattern the first line of a poem is generated
based on a small, unordered set of input keywords provided

2https://github.com/aparrish/
gutenberg-poetry-corpus

3https://gutenberg.org
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by the user.
In the fine-tuning step, we use the first lines of stanzas in

the corpus as target texts. Since we do not have keywords
for the poems or stanzas we obtain keyword proxies from
the first lines by selecting two or more random content to-
kens among the nouns, adjectives and verbs on the line. The
source text for each fine-tuning example is obtained by shuf-
fling and concatenating the tokens.

Next-Line Models
At every iteration, after a line is selected by the user, the
system should provide a set of candidates for the next line
of the poem. Since there is no clear prescription on the best
way to generate additional lines for a poem, we consider
several options for fine-tuning mBART. We start by consid-
ering the previous line only, and progressively move towards
more complex strategies. This allows us to compare can-
didate lines generated with different degrees of context. In
general, we expect to obtain more surprising outcomes when
the generation is based on a lower amount of textual input.

The first model we consider, Next-Line Single, is fine-
tuned as follows: we iterate over all the lines in the corpus
and build examples taking a poem line and its subsequent
line as source and target sequence, respectively. We do not
expect this model to produce lines that remain coherent with
the user keywords after the first few iterations.

To get more coherent verses, we train two additional mod-
els: “Next-Line Multi” and “Next-Line Keywords”. The
Next-Line Multi approach fine-tunes mBART by using up to
three consecutive poem lines as source sequence; the target
is the verse following the input lines. The Next-Line Key-
words approach increases coherence by conditioning next-
line generation on the keywords obtained from the user.

The fine-tuning data is similar to the Next-Line Single
model; for the Next-Line Keywords model we additionally
prepend to the source sequence a pair of words related to
the target sequence. To obtain them we first compute the
average word vector of the target sequence tokens using
Word2vec (Mikolov et al. 2013a; 2013b). We then retrieve
the ten closest words in the Word2vec model by cosine sim-
ilarity, and randomly sample two of them.

The fine-tuning strategies described above rely on the as-
sumption that the base model, when fine-tuned over poem
lines, will naturally learn to produce poetic line candidates.
However, there is no control over how this is learned by the
models and it will be influenced by the data that is present
in the original corpus.

In the Next-Line Rhyme case we fine-tune a model that
tries to generate, given a word and a line, a new poem line
rhyming with the given word. Giving the word separately
allows to produce lines rhyming with earlier lines, not just
the previous one.

The fine-tuning data is similar to the data used for the
Next-Line Single model, but we prepend to the source se-
quence a word rhyming with the target sequence; we use the
CMU Pronouncing Dictionary4 to look up rhymes. When

4https://github.com/cmusphinx/cmudict

no rhymes are found, we discard the pair. If multiple rhymes
are available, we randomly sample up to four examples.

We fine-tune all the models for 10 epochs using batches
of 64 examples over 4 GPUs. Due to the different prepro-
cessing steps taken to build the fine-tuning data, the size of
the datasets are slightly different for each model, resulting in
a number of fine-tuning steps that is between 90k and 95k.
We save model checkpoints every 15k steps.

Decoding Strategy
A good set of candidate lines is diverse, offering the user
a real choice. An autoencoder such as mBART produces
output sequences stochastically, so several candidates can
be generated from the same model.

We generate candidates by sampling multiple sequences
from the probabilities predicted by the fine-tuned models. In
this way, the output sequences do not follow a distribution of
high probability next tokens but are less predictable and can
surprise the user (Holtzman et al. 2020). The randomness
— and diversity — of the output can be controlled by the
temperature parameter: values larger than one will increase
the likelihood of low probability tokens.

Internal Evaluation Measures for Poetry
We consider four evaluation measures to assess the lines pro-
duced by the above poetry generation models. These mea-
sures can be utilised both (1) by the designer of the system
during the system development to assess the feasibility of
the generation methods and (2) by the system itself during
its execution time to make informed decisions about which
set of generated line candidates to show to the user.

Measures
We give a brief overview of the measures here. See our par-
allel paper (Boggia et al. 2022) for details.

We define the n-Semantic Coherence of a candidate for
the ith line of the poem as follows. We consider the n pre-
vious lines, i.e., lines i − n to i − 1, transform them to a
vector representation and compute its cosine similarity with
a vector representation of the candidate line. Both vector
representations are obtained computing the centroid of word
vectors from the Word2Vec model. The idea is that the two
vectors encode the semantic of the last lines of the poem and
the candidate, respectively, and that their cosine similarity
captures the degree of semantic similarity.

We define Topic Coherence of a candidate line as the co-
sine similarity between the vector representation of the line
and the average of the word embeddings of the keywords
used to generate the first poem line. The idea is to extend
the concept of semantic coherence defined above and make
it suitable to our interaction pattern in order to control the
topic drift of each candidate from the initial keywords.

For a candidate line, we define Tautology as the num-
ber of tokens that are shared between the candidate and the
previous line of the poem, normalized by the total number
of tokens in the two lines. We consider this metric as our
sequence-to-sequence models are based on mBART, which
is pre-trained on denoising tasks and can be prone to copy
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the input sequence if not fine-tuned properly. Semantic co-
herence and tautology are likely to be correlated since both
measure a similarity between consecutive lines. The former
aims, however, at comparing meanings, while the latter com-
pares words. An incoherent poem will display low seman-
tic coherence scores; a high tautology value will indicate a
repetitive poem.

We want our candidate poem lines on each generation step
to be sufficiently different from each other, to give the user
a true choice. We define the diversity of a set of lines as the
average dissimilarity between the lines in the line set, where
dissimilarity between two word sets is the additive inverse
of the normalized word overlap between the sets.

Validation Datasets
We next validate the evaluation measures introduced above,
showing that they do indeed measure what they are sup-
posed to measure. Given the lack of suitable labelled data
that could be used directly for this purpose, we resort to re-
sampling lines from real poems. We can then compare the
values of the measures on original poems against those ob-
tained for random pseudo-poems.

To validate the measures, we use a dataset of poems from
Kaggle, containing 6321 poems.5 While the Poetry Corpus
introduced in the previous section is suitable for training
neural models, it is not optimal to validate the metrics of
this section as it contains noisy data and there is no separa-
tion between poems.

Starting from the original poems, here referred to as Real
Poems, we prepare two additional poem datasets. We ran-
domly shuffle lines within each of the real poems and obtain
the Shuffled Poems dataset. We then build the Mixed Po-
ems dataset by shuffling lines between poems. To ensure
equal poem line counts in the mixed poems we compute the
poem lengths from each real poem and construct poems with
the same number of lines by sampling (without replacement)
from all the available poem verses in the corpus.

Validation of the Measures
The four metrics described above can be divided into two
classes based on their implementation. First, semantic and
topic coherence make use of word vectors to map textual
inputs in a semantic space and compare them by comput-
ing the cosine similarity. Second, tautology and diversity
are based on word overlap and rely solely on token sets. In
this paper we validate the semantic coherence and diversity
measures and argue that topic coherence and tautology will
display a similar behaviour.

To validate the n-semantic coherence we consider the
datasets with real, shuffled and mixed poems. Our hypothe-
sis is that we should observe decreased semantic coherence
scores after shuffling poem lines within a poem, and much
lower values when considering pseudo-poems obtained by
combining lines from random poems.

For each dataset we compute the n-semantic coherence
of all poem lines (excluding first lines) with the n previous

5https://www.kaggle.com/michaelarman/
poemsdataset

Figure 1: n-semantic coherence scores of Real Poems, Shuf-
fled Poems and Mixed Poems as a function of n, the number
of previous lines considered.

Temperature Diversity Diversity
without stopwords

1 0.1406 0.1039
2 0.4014 0.3429
3 0.4788 0.4232
4 0.5174 0.4434
5 0.5377 0.4701

Table 1: Average diversity scores of sets of candidate lines
as a function of temperature, a generation-time parameter
affecting diversity.

lines up to the first one or n = 10. Finally, we average the
semantic coherence values for each order n (Figure 1). The
average values of n-semantic coherence scores are system-
atically smaller when shuffling poem lines, with the lowest
average values obtained when poems are composed of ran-
dom lines.

To inspect how the diversity measure behaves when com-
puted over different sets of poem line candidates, we rely
on synthetic data produced by our first-line model. We con-
struct 100 random keyword pairs by combining nouns and
verbs sampled from a list of common English words. For
each keyword pair, we use different temperature parame-
ter of the model to generate multiple batches of ten candi-
dates each. Candidates generated with higher temperatures
are more diverse by construction.

As expected, the diversity increases as a function of the
temperature (Table 1). This is true for the full lines (mid-
dle column) as well as when stopwords have been removed
before computation of diversity (right column). This vali-
dates that the diversity measure does catch differences in the
generated lines.

Analysis of the mBART-Based Methods
with Internal Evaluation Measures

We now apply the internal evaluation measures on the
mBART-based poetry generation methods. With this brief
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Figure 2: n-semantic coherence scores for poems generated
by different Next-Line models, as a function of n, the num-
ber of previous lines considered.

Model Tautology ↓ Diversity ↑
NL-Keywords 0.206 0.184
NL-Single 0.145 0.431
NL-Multi 0.096 0.459
NL-Rhyme 0.046 0.352
Mixed 0.045 0.841

Table 2: Average tautology and diversity scores for line can-
didates generated using different Next-Line models. For tau-
tology, smaller values are better; for diversity, larger.

example we aim to shed light on the specific generation
methods, as well as to illustrate how the evaluation measures
can be used to assess generation methods. In this experi-
ment, we compare the four flavours of the Next-Line model
previously described, using the evaluation measures for se-
mantic coherence, tautology and diversity.

In order to test the generation methods without user in-
teraction, we generate poems automatically by sampling the
first poem line from a dataset of real poems and then se-
lecting a random candidate line at each generation step. We
stop the generation process after ten candidate selections.
To collect data for diversity assessment, we also log the line
candidates proposed by the generator at each iteration. We
use the above procedure to obtain 100 poems and 1000 sets
of candidates with each of the four Next-Line models.

As a baseline, we fine-tune a model over random poem
lines from the Gutenberg Poetry Corpus both as source and
target sequences. This model, called Mixed, gives a lower
bound for the coherence of poems.

We report the n-semantic coherence scores of the result-
ing poems in Figure 2, and their tautology and diversity
scores in Table 2. Based on these results we can make sev-
eral observations about the models, such as the next two.

The NL-Keywords model, introduced to avoid topic drift,
effectively improves the coherence of the poems (Figure 2),
but the price to pay is that poems become repetitive and
have low diversity (Table 2). A qualitative inspection of the

generated poems confirms this finding. For instance, this
poem was obtained with keywords “bury” and “dead”:

And let the dead folk bury their dead,
But let the dead men bury their dead,
Let the dead men bury their dead,
Let the living men bury their living,
Let the dead folk sleep.
. . . .

The NL-Multi model, on the other hand, produced rela-
tively interesting poems even without human interaction:

Which tries, and counter-stands the shock,
Of time and chance;
And, having learn’d to bear the yoke,
To bear the yoke must learn to love,
And follow Truth, and all that’s above.
The ways that lead to Heaven’s high throne,
Are long and hard to tell;
But this way leads to God alone,
And that way leads to Hell.

The success of the ML-Multi model in this respect is no sur-
prise: it obtained both high semantic coherence scores as
well as a high diversity score.

A different but important application for the internal mea-
sures is the optimization of the set of candidates towards a
desired feature. For instance, assume that the system fails to
satisfy the user because of a lack of diversity in the candi-
dates. The sequence-to-sequence models could then be used
to generate a larger number of potential candidates (which
in our setup is computationally inexpensive), and they could
then be narrowed down to a final set of candidates while
maximising their diversity.

Conclusion

We gave several variants of fine-tuned mBART-models for
line-by-line poetry generation. One variant produces open-
ing lines from keywords, while other models produce lines
to continue a partially written poem. The models consider
varying contextual information: one or more previous lines,
user-given keywords, or rhyme. The methods are designed
in a manner that should allow relatively easy adaptations to
different genres, corpora, and even languages.

We empirically validated internal evaluation measures of
lines of poetry. We showed that the proposed measures of
coherence and diversity correlate with ground truth.

Finally, we applied three evaluation measures on gener-
ation methods that continue an incomplete poem. The re-
sults indicate trade-offs between the methods. The NL-Multi
method that uses several lines as a context seems to strike a
good balance.

The choice to work line-by-line, both in generation and
in internal evaluation of poetry, stems from the desire to
support Casual Poetry Creation (Boggia et al. 2022) and
to make co-creative poetry writing as easy as possible. The
next step is an evaluation of the approach with actual users.
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firstname.lastname@{helsinki.fi1 or ens.psl.eu2}

Abstract

We present a novel neural model for modern poetry gen-
eration in French. The model consists of two pretrained
neural models that are fine-tuned for the poem gener-
ation task. The encoder of the model is a RoBERTa
based one while the decoder is based on GPT-2. This
way the model can benefit from the superior natural
language understanding performance of RoBERTa and
the good natural language generation performance of
GPT-2. Our evaluation shows that the model can cre-
ate French poetry successfully. On a 5 point scale, the
lowest score of 3.57 was given by human judges to typ-
icality and emotionality of the output poetry while the
best score of 3.79 was given to understandability.

Introduction
Poem generation is a challenging creative natural language
generation task. As a form of art, it has undergone several
changes in the history. Classical poetry incorporates typ-
ically meter and rhyme as their function was to help peo-
ple recall poems, especially when poetic tradition was still
mostly oral rather than written.

In the modern era, the role of the poetry has changed from
an art form that has to follow a fixed structure that defines
its meter and rhyming such as iamb, haiku or anapest. Mod-
ern poetry is more concerned about creating something new
by breaking any strict structural rules and by continuously
questioning what poetry is, what it can be and what it should
be (see Kantokorpi, Lyytikäinen, and Viikari 1990).

In the field of poem generation, meter is a feature that is
very often considered in generated poetry (Colton, Good-
win, and Veale 2012; Lau et al. 2018; Hämäläinen and Al-
najjar 2019b; Zugarini, Melacci, and Maggini 2019; Lewis,
Zugarini, and Alonso 2021). By incorporating meter, peo-
ple can be more forgiving when evaluating the output of the
system as it is known that people are ready to interpret more
into the content of the output of a computationally creative
system if the form is correct (Veale 2016). In other words,
a poem that looks like a poem, as in that it follows a certain
meter, must be a poem. A truly competent computational
poet should be capable of generating something that is rec-
ognizable as a poem even if its output was modern free-form
poetry.

In this paper, we explore the topic of modern poetry gen-
eration in French. We fine-tune a novel encoder-decoder ar-
chitecture which consists of a RoBERTa (Liu et al. 2019)
based model as the encoder and a GPT-2 (Radford et al.
2019) based model as the decoder. Because RoBERTa is
very good at natural language understanding tasks but poor
at generation tasks and GPT-2 is good at generation, but bad
at understanding, it makes sense to incorporate both of the
models. The task of RoBERTa is to encode the input (i.e.
to understand poetry) and the task of GPT-2 is to decode the
output (i.e. to generate poetry).

Related work

Poem generation has sparked a lot of interest in the past as
we can see in a recent survey on the field (Gonçalo Oliveira
2017). There is also some work on generating French poetry
in particular (Van de Cruys 2019; Poibeau et al. 2020). In
this section, we will provide a quick overview on some of
the related work.

Poetry has been generated by using rules. This can, for
instance, be done by modeling certain poetic features to find
suitable verses (Lamb and Brown 2019), by writing differ-
ent rules to generate verses with different poetic features
(Hämäläinen 2018) or by using templates (Colton, Good-
win, and Veale 2012).

Genetic algorithms have been popular in poem generation
as well (Manurung, Ritchie, and Thompson 2012; Yang et al.
2016; 2021). In many of these approaches, the generation
itself is not governed by rules, but rules are used to assess
the quality of each generated poem. These approaches can
be seen as a step away from fully relying on rules in the
generative process.

Recently, different neural approaches have become com-
mon place in poetry generation such as LSTM models
(Zhang and Zhang 2020; Atassi and El Azami 2022) and
GPT-2 (Hu and Sun 2020; Beheitt and Hmida 2022). Our
approach follows this line of work. How we set ourselves
apart from the existing models is that we propose a novel
poem generator model that can benefit from both RoBERTa
and GPT-2 instead of relying only on one model. In ad-
dition, we condition the beam search on rhyme instead of
solely relying on the output of a vanilla model.
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Verse Input Output Output in English
1 amant galamment escrime dame Vainement, paladin des dames, tu t’escrimes In vain, paladin of the ladies, you fight me with a sword
2 Vainement, paladin des dames, tu t’escrimes À crier que j’ai fait, ici, peu galamment. Shouting what I have done, here, little gallantly.
3 À crier que j’ai fait, ici, peu galamment. si de Laure Pétrarque avait été l’amant, if Pétrarque had been the lover of Laure
4 si de Laure Pétrarque avait été l’amant, Qui sait ce qu’il eût dit de Laure dans ses Rimes? Who knows what he said about Laure in his Rhymes?

Table 1: Example of the training data for one poem

Data
As machine learning requires data, we need a poem corpus.
For this reason, we crawl all the French poems that are avail-
able on Wikisource1. The poems are not free of noise as
some of the poems include verses in Greek alphabets, mul-
tiple different types of quotation marks, hyphens and spaces
of different lengths etc. We clean the data from all of these
inconsistencies by manually inspecting odd characters and
either by replacing them (e.g. only one type of a hyphen)
or removing them (e.g. Greek letters). The corpus contains
7553 poems. In addition, we use the French sonnet corpus
introduced by Poibeau et al. 2020. This corpus has 1039
sonnets.

Because these poems and sonnets are of different lengths,
we split all of them into stanzas. From this point on, we
treat a stanza as a poem so that all poems in our corpus are
of a similar length. This gives us altogether 25,215 French
poems and sonnets. For the purposes of our models, we do
not make a distinction between poems and sonnets.

Poem generator
In this section, we describe our poem generation model. The
model follows an encoder-decoder architecture where the
encoder is a RoBERTa model and the decoder is a GPT-2
model. Rather than training these models from scratch, we
use pretrained language models and fine-tune them for the
task of poem generation using a transfer learning approach.
We chose a RoBERTa-based model as the encoder given
their great ability in capturing contextual semantics. GPT-
2 is well-known for modeling a language; hence, making an
optimal decoder for text-generation tasks.

First we have to pick the suitable pretrained models. As
we use Transformers library (Wolf et al. 2020), we select
our models from their repository. The current state-of-the-
art French RoBERTa model is CamemBERT2 (Martin et al.
2020) which is based on the RoBERTa (Liu et al. 2019)
architecture and trained on the large OSCAR corpus (Abadji
et al. 2022) in French. We use CamemBERT as our encoder.

As for the selection of the GPT-2 model, there were sev-
eral alternatives. By trying the models out, we could see
that all of them except for Belgian GPT-23 (Louis 2020)
predicted rather poor output. The model was trained on a
variety of genres (such as news, Wikipedia, novels, Euro-
pean parliament text etc.) on a relatively big, around 60 GB,
corpus. For this reason, we opted for Belgian GPT-2 as our
decoder model.

1https://fr.wikisource.org/wiki/Catégorie:Poèmes
2https://huggingface.co/camembert-base
3https://huggingface.co/antoiloui/belgpt2

We use Spacy4 (Honnibal et al. 2020) to extract up to
4 keywords from each poem in the corpus. We train our
encoder-decoder architecture for sequence to sequence gen-
eration, where it predicts the next verse in a poem given a
previous verse. In the absence of a previous verse, we train
the model to predict the first verse of a poem from the up
to 4 keywords extracted from the poem. An example of in-
put and output in the training data for one poem can be seen
in Table 1. The first input consists of the keywords amant
(lover), galamment (gallantly), escrime (fencing) and dame
(lady), which are used to predict the first verse of the poem.

The poem corpus is split randomly to 80% for training
and 20% for validation. The model is trained for 10 epochs.
We use the Adam algorithm (Kingma and Ba 2014) with de-
coupled weight decay regularization (Loshchilov and Hutter
2017) and learning rate of 5e-05 to optimize the parameters
of the model, with cross entropy loss as the loss function to
reduce the difference between gold standard token and pre-
dicted tokens.

Rhyming is taken into account during the generation
phase. The model is requested to generate a sequence be-
tween 4 to 20 tokens, with a length penalty of 1.0 using a
greedy approach. At each step of generating the output se-
quence (i.e., when predicting the next token), we use the
model to predict the top 10 possible tokens instead of just
one highest scoring output. We then sort these candidate to-
kens based on their probabilities and rhyming scores. The
rhyming score is calculated by counting the number of to-
kens in the output that rhyme (full rhyme, consonance or
assonance) with the input (i.e., the previous verse and any
subsequent words generated during the run).

Because it is not easy to know whether two French words
rhyme or not based on the orthography (similarly to En-
glish), we use eSpeak-ng5 to produce an IPA (interna-
tional phonetic alphabet) representation for each token in
the model’s vocabulary. IPA alphabets are designed to rep-
resent how words are pronounced by writing out the actual
phonemes. We use a simple set of rules to compare the IPA
strings of two tokens with each other to determine whether
they rhyme or not.

In practice, we first ensure that both of the IPA strings are
equally long, if this is not the case, we remove characters
from the beginning of the longer string until the IPA strings
are equally long. If the strings are identical, no rhyme is
considered, because a word does not make a good rhyme
with itself. For full rhyme, the two IPA strings rhyme if they
are identical from the first vowel onward. For assonance, we
replace all consonants with a placeholder character C, if the

4The fr core news sm model
5https://github.com/espeak-ng/espeak-ng
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D’un beau travail, d’une bonne pose,
De la paix, de la beauté.
Que je plains la beauté
De la femme, qui m’inspire

From a beautiful work, from a good pose.
From the peace, from the beauty
Oh, I lament the beauty
Of the woman, who inspires me

C’est ici que s’éveille le soleil,
C’est ici que repose le grand créateur,
Dont la ruine, hélas! se renouvelle
De l’Enfant du Progrès

It is here where the sun wakes
It is here where the great creator rests
Whose ruin, alas! renews itself
From the Child of Progress

C’est un des mois les plus beaux de l’année,
C’est le printemps, c’est l’été, c’est
Le ciel où mon printemps se joue.
À mon jardin qui s’effondrit.

It is one of the most beautiful months of the year,
It is the spring, it is the summer, it is
The sky where my spring plays.
In my garden that collapses

Table 2: Examples of generated poetry and their translations.

IPA strings are identical, i.e. they share the same vowels in
the same positions, they are considered to have assonance
rhyme. For consonance, we do the same as with assonance,
but by replacing all vowels with a placeholder V.

Results and evaluation
For evaluation purposes, we generate 20 different poems
consisting of 4 verses each. For each poem, we use a set
of four randomly selected keywords among all the keywords
extracted from the poem corpus. None of the keyword com-
binations is identical to what the model saw during the train-
ing. We generate the poems similarly to the example shown
in Table 1. This means, that the keywords were used to gen-
erate the first verse, which was then used to generate the
second verse and so on.

Some of the generated poems and their translations can
be seen in Table 2. As we can see, the generated output is
cohesive and quite grammatical. We can, however, see that
sometimes the verb conjugation might be wrong such as in
the case of effondrit which is a non-existing inflectional form
of effondrer (to collapse). Also, the model has a tendency
of starting every verse with a capital letter even if it was a
continuation to the sentence started in the previous verse.

We conduct a crowd-sourced evaluation on Appen6. We
set French as a language requirement for the crowd-workers
so that we know that they actually speak French and are able
to assess French poetry. Each poem is evaluated by 20 dif-
ferent crowd-workers. An individual worker can evaluate
all 20 different poems or just some of them, in which case
the remaining unevaluated poems are shown to a different
crowd-worker. An individual crowd-worker cannot evaluate
the same poem multiple times.

For evaluation, we use the same parameters as used by
several authors for evaluating poetry (Toivanen et al. 2012;
Hämäläinen and Alnajjar 2019a; Shihadeh and Ackerman
2020): (1) The poem is typical (2) The poem is understand-
able (3) The poem is grammatical (4) The poem evokes
imagination (5) The poem evokes emotions (6) I like the
poem. These statements are evaluated in a 5 point Likert
scale, where 1 represents the worst and 5 the best grade.

6https://appen.com/

Q1 Q2 Q3 Q4 Q5 Q6
Avg 3.57 3.79 3.77 3.65 3.57 3.77
STD 0.88 0.84 0.81 0.79 0.88 0.77

Table 3: The evaluation results and standard deviation

The results can be seen in Table 3. All in all, the results
are good and show that the system can generate poetry suc-
cessfully. The lowest scores were obtained for typicality
and emotionality. The highest score was given to under-
standability. In the future, more robust human evaluation
methods need to be applied to understand why these param-
eters scored high and low (Hämäläinen and Alnajjar 2021a;
2021b).

Conclusions
In this paper, we have presented a novel approach to French
poem generation. We have presented an architecture that
consists of RoBERTa and GPT-2 models that are fine-tuned
on a poem corpus. In addition, we have modeled rhyme as a
part of the prediction pipeline of the model.

The results obtained in human evaluation are promising
and they indicate that the model performs well in the task it
was designed to do. In order to make the evaluation results
more transparent, we have released them in full on Zenodo7

together with the generated poems that were used in the eval-
uation.

Pretrained neural language models have been proven to be
useful in poem generation. In the future, it would be inter-
esting to study them in a multilingual setting, where a pre-
trained multilingual model is fine-tuned to generate poetry
using the corpora of some languages other than the desired
target language.
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Hämäläinen, M., and Alnajjar, K. 2021b. Human evaluation
of creative NLG systems: An interdisciplinary survey on re-
cent papers. In Proceedings of the 1st Workshop on Nat-
ural Language Generation, Evaluation, and Metrics (GEM
2021), 84–95. Online: Association for Computational Lin-
guistics.
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Kantokorpi, M.; Lyytikäinen, P.; and Viikari, A. 1990.
Runousopin perusteet. Gaudeamus.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. In arXiv.
Lamb, C., and Brown, D. G. 2019. TwitSong 3.0: to-
wards semantic revisions in computational poetry. In Pro-
ceedings of the Tenth International Conference on Compu-
tational Creativity, 212–219.
Lau, J. H.; Cohn, T.; Baldwin, T.; Brooke, J.; and Ham-
mond, A. 2018. Deep-speare: A joint neural model of po-
etic language, meter and rhyme. In Proceedings of the 56th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), 1948–1958.
Lewis, D.; Zugarini, A.; and Alonso, E. 2021. Syllable
neural language models for english poem generation. In
12th International Conference on Computational Creativity
(ICCC’21).
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Loshchilov, I., and Hutter, F. 2017. Decoupled weight decay
regularization. In arXiv.
Louis, A. 2020. BelGPT-2: a GPT-2 model pre-trained on
French corpora. https://github.com/antoiloui/belgpt2.
Manurung, R.; Ritchie, G.; and Thompson, H. 2012. Using
genetic algorithms to create meaningful poetic text. Jour-
nal of Experimental & Theoretical Artificial Intelligence
24(1):43–64.
Martin, L.; Muller, B.; Ortiz Suárez, P. J.; Dupont, Y.; Ro-
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Abstract
Pre-trained transformer language models have been shown
to generate human-like quality texts of different styles. In
this study, we generate short drama dialogues in the style
of German theater plays and adapt their content to various
different topics using a simple fine-tuning scheme. We show
that the generations keep the dramatic play structure while
adapting large parts of their content to a target topic, effectively
creating scenes from theater plays about a variety of subjects.
We experiment with hyperparameters to find fitting fine-tuning
configurations for various topic datasets as well as highlight
how the generations adapt to the topics in a qualitative analysis.
Our findings present a useful tool for computer assisted or
fully autonomous creative writing. Furthermore, we motivate
and explore the use of transformer language models in the
context of computational creativity, highlighting the need for
constrained and controlled language generation.

Introduction
This paper reports on a set of pilot experiments that we con-
ducted in preparation of a possible integration of AI gener-
ated elements in an actual theater production. The output
produced by recent transformer language models such as
GPT-2 is often intriguingly natural. Yet when applying such
models for language generation in a specific computational
creativity context, there are typically additional constraints
on the desired model output: in our pilot scenario, the gener-
ated text was for instance (i) supposed to follow the structural
characteristics of dramatic text; in addition (ii), the text was
supposed to revolve around a specific domain content. We
argue that such constraints to the application of pre-trained
language models are not a peculiarity arising from our ap-
plication scenario, but reflect a general challenge that an
integration of recent model types from Natural Language
Processing (NLP) research into a computational creativity
scenario faces.

Our preliminary experimental results on adapting trans-
former language models for creative language generation
are thus not only informative for scenarios with a similar
constellation of training and tuning resources; by reporting
on experience from our pilot study we also hope to make a
contribution to an open-ended (and presumably long-term)
process of identifying suitable workflows and methodologi-
cal set-ups for interdisciplinary work in the broader field of
computational creativity research.

Motivation and Background

Many scenarios in which the acts of a human (or a group
of humans) are commonly described as creative involve lan-
guage production. Writing a novel, a poem, or a theater play
is taken to involve creativity; but many other uses of language
may as well. Take the example of giving a quick-witted re-
sponse to an unpleasant interview question or to some remark
that is considered inappropriate. Since language is ubiquitous
in human activity – and it is comparatively easy to collect
samples of language output and for instance process text cor-
pora with the computer – it comes as no surprise that a lot
of research on human or machine creativity targets creativity
manifested in (some aspects of) text(s).

What is problematic however, in particular when the goal
is to develop a systematic understanding of the processes
underlying creativity, is the following: Language production
(and hence text as its output) is a massively multi-layered
phenomenon.

The multi-layered character of text. A highly diverse
collection of knowledge spheres and contextual factors play
together in the production of any element of text. Hence,
pinpointing the role of a particular knowledge source in an
account of creative behavior based on textual evidence is
very hard. Since humans can effortlessly handle the net-
work of cross relations among levels of language and text,
a decision at one level will have consequences in multiple
other levels in human-generated text. For instance, different
ways of describing a certain action (“she warned him/she
gave him a heads-up/she drew his attention to the fact that
. . . ”) may be truth-conditionally equivalent, but connotations,
conventions in a particular text genre, domain-specific jar-
gon, script knowledge about (culture-specific) scenarios etc.
can make specific alternatives appear humorous, sarcastic,
arrogant, mildly impolite, etc. Some of the most aestheti-
cally appealing examples of creative language use keep most
cross-level relations aligned with what is to be expected from
conventions etc., but then break expectations (Takala 2005;
Raby 2010) at a possibly subtle, but effective point. Creative
language use thus plays with the reader’s/audience’s (mostly
unconscious) knowledge about typical cross-dependencies of
levels of language and text.
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Consequences for computational creativity research.
The rich interrelations between levels and connotations of lan-
guage elements poses considerable challenges to systematic
generative research. Controlled experiments manipulating
certain text elements can easily be disrupted by side effects
at entirely different text levels that for instance cause human
readers to find passages unnatural.

For a long time, important subfields of computational cre-
ativity such as story generation (Gatt and Krahmer 2018;
Gervas 2009), had therefore adopted the strategy of focus-
ing on a particular text level for evaluation (and systematic
description), e.g., the plot level. The surface realization of
a formal plot description as an actual story does not aim
to reach the aesthetic sophistication of human writing. Ad-
vances in the fields underline that this strategy of focusing on
particular levels is effective for developing a better systematic
understanding of particular elements of creative writing (with-
out drawing into question that they interact freely in actual
human creative performance) (Lehnert 1981; Holmes 1985;
Papalampidi, Keller, and Lapata 2019).

Transformer language models. The developments in Nat-
ural Language Processing research on language modeling of
the past 5-10 years call for a new assessment of the situa-
tion: transformer language models using hundreds of billions
of parameters (Brown et al. 2020) and trained on gigantic
collections of text apparently display a generative behavior
that reflects many of the dependencies across text levels and
relevant knowledge spheres. In typical application exam-
ples of completing a short text prompt, the models’ choices
in text production quite often seem to adhere to what for a
human writer would be traced back to an intuition regard-
ing connotations, genre convention and the other knowledge
spheres listed above. Therefore, it is little wonder that the
new generation of language models are finding many appli-
cations in a creative writing context (Bena and Kalita 2020;
Ammanabrolu et al. 2019).

The solution? One might feel inclined to conclude that
with transformer language models, the challenge from the
multi-layered character of text for research on creativity
has been overcome: The models are capable of generating
stretches of text that are indistinguishable from human text.
However, no matter whether one wants to employ such a
model to enhance human creativity (in a co-creative scenario)
or to use algorithmic models of creativity to advance our
understanding of the processes underlying human creativity –
the plain task of eloquently completing a given text prompt
provides too little control. The language generator can “wan-
der off” freely from the starting point and may take arbitrary
“turns”, most of which can be traced back to some explainable
connection after the fact. But what is missing is even a slight
element of goal-orientation. With all the difficulties in defin-
ing creativity, there is a far-reaching consensus that it not only
involves an element of originality/novelty, but the product of
creativity also needs to have a value of some kind (creativity
as the production of “something original and worthwhile”
(Sternberg, Sternberg, and Mio 2012)). This second element

is not within the scope of the computational model of the
process when the language model can wander off freely. For
systematic research into creativity, this precludes the testing
of specific hypotheses regarding creative processes (beyond
the class of hypotheses that addresses only the role that ex-
perience and exposure to text collections that reflect certain
conventions). In a pure creativity enhancement scenario, the
inspiring effect of prompt-based generation alone may carry
quite far, depending on the human maker’s readiness to weed
out fruitless output. But here too, exerting control over cer-
tain dimensions of the generated output could make the use
of language models considerably more effective.

Desideratum. To make progress in the integration of trans-
former language models into computational creativity re-
search and applications, we can hence identify a goal for the
next years: a model architecture and methodological should
be developed that is (i) based on current transformer language
models with their ability to replicate the cross-level coher-
ence of human language production, and (ii) at the same time
allows for a constraining of several important dimensions of
the generated text.

This paper reports on experimental work aiming to con-
tribute to this goal. We start out with a pre-trained trans-
former language model and aim to constrain its generative
behavior both in terms of text structure and in terms of the
content domain that the text output is about. In a general-
izable methodological set-up, it should be possible to char-
acterize the two dimensions of constraining separately (i.e.
the method should not only be applicable when there is a
sufficiently large dataset for model tuning that happens to
combine the two dimensions).

The computational work we report on in this paper grew
out of pilot experiments conducted to have some tangible
input for brainstorming sessions regarding the integration of
AI generated elements in an actual theater production.

Related Work
From a computational point of view, automatic language
generation has long been tackled as a task that would employ
a pipeline architecture. First, knowledge structures such
as dependency graphs or tables are used to form a plan
of the events to describe (planning step). Then the the
appropriate language is inserted via automatic grammars
or slot-filling mechanisms (realization step). Such systems
employ character goals (Meehan 1977), author goals (Dehn
1981) or underlying discourse states, (McKeown 1985)
among other approaches (Callaway and Lester 2002) (Gervás
et al. 2019). In recent years however, powerful language
modeling approaches based on transformer deep neural
networks (Vaswani et al. 2017) such as GPT-2 (Radford
et al. 2019), GPT-3 (Brown et al. 2020) or T5 (Raffel
et al. 2020) have shown to generate text of near human
quality without the need of underlying knowledge struc-
tures (https://ai.googleblog.com/2020/02/
exploring-transfer-learning-with-t5.
html, https://openai.com/blog/
better-language-models/). In order to achieve this
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level of knowledge, these language models are typically
trained on millions of documents. However, while these
models easily produce sophisticated text on their own,
controlling the output can be difficult. One approach is to
employ Conditional Language Modeling (Keskar et al. 2019)
which prepends specific codes to text data. Using these
codes during inference allows the language model to draw
the generations from the part of the training data to which
the code belongs. Other approaches apply the information at
the self attention layer of the transformer network (Ziegler et
al. 2019). The approach presented in this paper also shares
similarities with (Dathathri et al. 2020)1 who influence
the gradient of the language model with keyword lists
or a separate classifier in order to guide the language
generation towards certain topics. Similarly (Pascual et al.
2021) use a simple method of guiding the language model
towards semantically similar words of a desired topic. In
many ways, the challenge in natural language generation
today lies in reconnecting pre-trained language model with
underlying knowledge structures (Chen et al. 2020a; 2020b;
Peng et al. 2021).

Experiments
In our experiment, we build a text generation model using
the GPT-22 transformer model from OpenAI (Radford et
al. 2019). GPT-2 learns to predict the most probable next
word in a sequence of words on a large collection of text.
Pre-trained GPT-2 models have seen millions of documents
and have been shown to produce several paragraphs of text
almost indistinguishable from a human author (see Related
Work). We leverage this learning power to first train a model
that generates German theater plays. While these generations
are already of fairly high quality, we inject these generated
theater plays with new topics by further fine-tuning the GPT-
2 generation models with additional data. We refer to this
additional data as topic corpus. Our goal is to produce gener-
ations which keep the formal structure of a theater play (i.e.
a sequence of speech acts that are exchanged between 2 or
more characters) but change the topic of the play to that of the
topic corpus. This way we attempt to constrain and guide the
generation model towards a specific topic without changing
the underlying structure of the learned language. We believe
that by utilizing German language, our experiments have the
additional merit of demonstrating the effectiveness of lan-
guage modeling on languages other than English, which has
already been extensively researched.

Datasets
The Quadrama Corpus (https://quadrama.
github.io/index.en) is a machine readable col-
lection of German theater plays from the late 18th and 19th

1We experimented with the approach in preliminary experiments
but found the method to be difficult to tune and easily lead to
repetitive generations.

2We choose to use GPT-2 over a newer model such as GPT-3 or
T5 because of the relatively small size of GPT-2 (compared to its
successors) and the high number of available pre-trained language
models including a model trained on German texts.

centuries. The corpus contains many detailed annotations
such as character relations, however we mostly make use
of the plain text along with the annotations of the surface
realizations of characters. We extract the text of each
play token by token and mark the characters to which
the text belongs by putting their names in capitalized
letters followed by a colon (”:”). We add a special token
(< |scene end| >) at the end of every scene, which is later
used in the generations. To form the plain text training
corpus all scenes of all plays are concatenated into one text
file. The final concatenated dataset contains 687 plays with a
total of almost 14 million words. We refer to this dataset as
Quadrama.
For fine-tuning the drama generation on a specific topic we
use a variety of corpora, all in German language. We refer
to each of these datasets as topic corpus throughout the
experiments:
German Recipes Dataset. A collection of cooking
recipes from a German recipe website available from
Kaggle: https://www.kaggle.com/sterby/
german-recipes-dataset. We concatenate all
recipes to form the corpus, which we refer to as recipe
corpus in the experiments. The recipe corpus contains 12190
recipes consisting of around 1.4 million words.
Horror Fanfiction. We create a small collection of
stories categorized under horror from German website
https://fanfiction.de. It should be noted that
these stories do not contain popular media characters (as
is common for fanfiction) but are entirely original. We
concatenate all chapters of all stories into a single file to
form the horror-fanfiction corpus. The corpus consists of
948 chapters with approximately 1 million words. Expert
Interviews. This corpus contains a set of concatenated
journalist interview transcriptions. The interview topics
revolve around modern day issues concerning business,
technology and role of artificial intelligence. We concatenate
all interviews, including interviewer questions into a
single file. In the experiments, we refer to this corpus
as expert-interview corpus. This is our smallest corpus,
containing 1242 utterances from 14 interviews and consisting
of around 91000 words. description

Evaluation
Our goal in the evaluation is to get an idea of how well the
generations adapt to the content of the desired topic while
keeping the structure of theater plays. While we curate a
number of generations for a qualitative analysis, we also
devise a simple automatic evaluation scheme which uses a
combination of three statistical properties of the generations
with regards to the topic corpus. We preprocess each topic
corpus by filtering stopwords and punctuation, lowercasing
and stemming all words, creating a set of content words D
we use to represent each topic corpus.
Given a collection of generations G, we first calculate the
number of generated words that appear in D. For each gϵG
we count how many of the generated tokens appear in D and
average the count over all generations. We assume that the
generations are thematically closer to the topic corpus when
they use a higher number of content words. We refer to this
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measure as content word frequency (1).

content− word− frequency :

∑
gϵG |{w|wϵG ∧ wϵD}|

|G|
(1)

topic−corpus−coverage :
∑

gϵG

∑ {count(w)C |wϵg∧wϵD}
|C|

|G|
(2)

In addition to how many content words are used in each
generation, we are also interested how frequent these words
are in the topic corpus. For every wϵD we calculate the
percentage of how often it appears in the set of tokens of the
topic corpus C. We refer to this score as corpus coverage.
For every g, we sum the corpus coverage of all content words
that appear in g and then average over the whole generation
set G, yielding a score we refer to as topic corpus coverage.
We report topic corpus coverage as a percentage from 0 to 1.
(2)
While the former two scores estimate the degree how much
the generation model adapts to the topic corpus, we also want
to make sure that we are not losing the text structure of theater
plays. The nature of plays entails, that there are characters
present in the text who speak the dialogue. We verify that
this property holds in the generations by making use of the
Quadrama annotations. In the Quadrama corpus, characters
are written in capitalised letters followed by a colon (”:”).
Therefore, we can count how many speakers we find in a
generation with simple surface matching. In the Results
section we refer to this score as number of speakers.
Our quantitative evaluation approach gives us the possibility
to investigate a large amount of generations automatically.
In particular, we can verify to what extent the generation
adapts its content words to the domain corpus. Overall, we
omit an analysis of readability. Manual inspection of around
100 generated texts shows That quality of the generations is
generally close to human level and the desired drama style is
often difficult to read, even in the original drama corpus. We
also decide not to evaluate coherence of the generated text,
as that is not the focus of our experiment. We do however
perform a qualitative analysis of two examples per domain
corpus in the Section Handpicked Examples. We highlight
both a successful topic adaption as well as a generation,
where the play structure has been lost or the topic has not
been integrated.

Setup
First, we fine-tune a pre-trained German GPT-2 model3 on
the Quadrama dataset (Section Datasets) for 3 epochs using
ADAM optimizer with a starting learning rate of 5e−5. The
resulting model is capable of generating drama text with
consistent grammar in a very distinct language style (Figure
5). In order to incorporate domain specific content into the
generated plays, we perform fine-tuning again using one of
the topic corpora (see Section Datasets) for a single epoch

3using the language modeling code and anonymous-german-
nlp/german-gpt2 model freely available on huggingface: https:
//huggingface.co

with different learning rates. In particular, we investigate 3
learning rates: 5e−5, 5e−6 and 5e−7. We find that training
with a learning rate higher than 5e−5 leads to overfitting and
repetitive, stale generations.
It is common practice to provide a piece of text that the
generation model then attempts to complete. This is also
called cue. In the experiments we use very short pieces of
text since we want the generations to be mostly dependent on
the generation model. We also find that generating without a
cue, the fine-tuned models will generally stick to the drama
style language instead of incorporating the new information.
As such, we provide a cue to the model that starts with a
drama character and is then followed by one or two words
from the topic corpus. We select words with a generally
high frequency in the topic corpus (Section Evaluation) to
serve as the generation model cue. For each learning rate,
we fine-tune the Quadrama-model on the topic corpus and
output 100 generations, using sampling decoding with a
top k of 50. We generate until the < |scene end| > token
is reached up to a maximum of 100 tokens. For each topic
corpus, we compare the output of the adapted generation
models to the base Quadrama-model.

Results
Statistical Analysis
Figure 1 illustrates the results of the statistical evaluation
across all generation experiments. Starting with the recipe
topic corpus, we see that the fine-tuned generation model
achieves significantly higher topic term frequency and corpus
coverage when using the larger two learning rates (5e−5,
5e−6). When using a learning rate of 5e−5, the model scores
30 words relevant to the topic in each generation on average,
which is double the amount compared to using the Quadrama
only model which was not fine-tuned on the recipe corpus.
Similarly corpus coverage more than triples when using
the larger two learning rates from 0.05 for the Quadrama
only model to around 0.15 for the fine-tuned model. This
signifies that the fine-tuned generations contain words which
span around 15% of the recipe corpus. However, looking
at the number of speakers we see that the improvements
come at the cost of the play structure. Without fine-tuning
on the recipe corpus, the model achieves 4 speakers per
generation on average. This number decreases to 1 when
using the larger two learning rates. We therefore assume
that the play structure has been lost in most generations. We
find that using the smallest considered learning rate 5e−7

yields the best compromise between play structure and topic
integration. The fine-tuned model achieves on average 20
topic words which span around 7% of the topic corpus while
keeping the average number of speakers around 3.
For the horror-fanfiction corpus, we find the overall best
compromise between topic adaption and theater play
structure when using the learning rate 5e−6. While the
larger learning rate yields a higher number of topic words
per generation it also decreases the number of speakers
to an average of 1 per generation. The smallest learning
rate preserves the number of speakers well at around 4 but
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Figure 1: Statistical analysis of all generation models. Plots show, top to bottom topic corpus coverage, topic term frequency and
number of speakers averaged over 100 generations from the generation model. The generation models considered are trained
only on the Quadrama corpus (quadrama only) or received an additional fine-tuning step for 1 epoch with the listed learning rate
on the x-Axis (5e−5, 5e−6, 5e−7) on the respective topic corpus.

hardly affects the number of topic words (around 23, same
as Quadrama only model) or their coverage the topic corpus
(around 0.01, same as Quadrama only model).
Lastly, we generate theater plays with technical or business
related topics by fine-tuning with the expert-interviews
corpus. We find that the experiment behaves similarly to
using the horror-fanfiction corpus. For the smallest learning
rate 5e−7, the frequency of topic words per generation nor
the coverage of the topic corpus improves upon using the
Quadrama only model (around 23 and 0.8 respectively). The
play structure is present, as can be seen by an average of 4
speakers per generation but we can assume that the topic is
not integrated. Overall, we see that topic corpus coverage
is not improved by any of the fine-tuned models, as it is
already quite high for the Quadrama only model at around
0.08 compared to the other topic corpora. However, we find
that when using the largest learning rate 5e−5 there are still
slightly less than 2 speakers per generation on average while
there is an improvement of 10 topic words per generation
from around 15 to around 25 compared to the Quadrama
only model. Therefore, we assume that the play structure
is still present in many of the generations, if only with 2
speakers.

Handpicked Examples

We inspect all generated texts manually and select samples
that illustrate the effect of topic integration in Figure 2, 3 and
4. We choose what we find to be the best fitting generations
for the model trained only on the Quadrama corpus on the
left. The highest quality generation for the model fine-tuned
on the topic corpus is found on the right. The cue given to the
model is marked in bold, phrases and words pertaining to the
topic corpus (selected regarding to topic corpus words, see
Section Evaluation) are marked in red and pointed brackets
(<>).
Figure 2 shows that without fine-tuning on the topic corpus,
the generation model accommodates the recipe domain to
an extent. The characters aptly react to the presence of food
items in the cue and mention Zwiebeln(onions) and Pfef-
fer(pepper), as well as Salat(salad) a number of times. The
main language style of the generation is still that of a theater
play, the food items seem to replace some of the subjects
that are talked about. Overall, the presence of food items
in the context seems to confuse the generation model which
leads to the scene being generally difficult to understand and
nonsensical in nature. Interestingly, the characters in this gen-
eration seem to actively move away from the topic of salad,
as one character exclaims: Wir haben uns zu sehr mit Salat
beschäftigt.(We have concerned ourselves too much with
salad). The effect we see when fine-tuning on the recipe-
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PRINZESSIN: Zuerst Tomaten<sauce, dann
Zwiebeln>.
JAKOB: Nun? So?
SICHEL: Warum denn für < Salat>?
JAKOB: Dazu. Man kann jeden mit <Salat und
Pfeffer>aufdecken. Und wenn man auch nichts Besseres
bietet, als <Salat>, das macht mir sehr viel Spaß.
SICHEL: Wir haben uns zu sehr mit <Salat> beschäftigt.
JAKOB: Mir scheint, es freut mich.
SICHEL: Ist es denn möglich, daß sie dir...

PRINZESSIN: Zuerst Tomaten<sauce und Pfeffer>
setzen, <dann die Gurken dazu und dann den Knoblauch
dazu bis zum Rand fein hacken, bis sie den Salat putzen
und damit die Gurken> schmieren!
FRAU VON WOLFF: So! So! Jetzt <erst die Gurken
zusammen>pflegen und dann <den grünen Salat> in
Topftöpfen festbinden <mit Pfeffer und Essig und den
Wein eingießen und mit Salz und Pfeffer würzen>.
FRAU VON WOLFF: Aber lieber <das Salz ins Wasser>.

Figure 2: Generations for the recipe topic corpus. The left column shows generations with the model trained only on the
Quadrama-corpus. The right column shows generations of models fine-tuned on the topic corpus.

PRINZESSIN: Im Schatten will ich hinscheiden.
Lulu.: Im <Schatten> will ich hinscheiden? Ich sehe des
Vaters <Tod>!
EUSENLEITNER: Mit aller Kraft.
Lulu.: Und doch ist er mir entrissen – Und doch steht
mein Mann –
TOLOMEO: Was soll das heißen? –
Lulu.: Er hat mich verlassen, aber ich darf nichts von ihm
hören, wie das <Sterben eines Kindes>.
TOLOMEO: Wozu sollt ich hinauß?

PRINZESSIN: Im Schatten des Lichts, ist es <ein
Dämon>?
DER KARAMUKAIN: Es ist <eine furchtbare
Finsternis>. Ich wachte darauf, sah die Erde mit den
Sinnen an. <Der Anblick dieses Untiers hat mich
verwirrt>. Doch <im Schatten> des Lichts, ist es <ein
Dämon>! Ich fühle mich nicht dort, fühle mich hier
<gefangen>. Versteh mich nicht weiter von diesen
Augen und auch nur von diesen verrannten Fühlen und
von dem Glauben bei der Ankunft des Herrn.
(fine-tuned on horror-fanfiction, learning rate 5e− 6)

Figure 3: Generations for the horror-fanfiction topic. The left column shows generations with the model trained only on the
Quadrama-corpus. The right column shows generations of models fine-tuned on the horror-fanfiction corpus.

corpus is much more pronounced: The characters dialogue
essentially changes to recipes as the two characters in the
fine-tuned example seem to actively talk about the prepara-
tion of a meal. The whole dialogue is structure in the style of
a recipe with several ingredients being mentionend, such as
Knoblauch(garlic), Gurken(cucumber) and Essig(vinegar).
In addition, both characters also reference methods of prepa-
ration for these ingredients, such as Salat putzen(clean the
salad) or Wein eingießen(pour in Wine). There is also still
a degree of interaction between the speakers as the second
character picks up the cucumber and salad mentioned by the
first character and furthers the cooking instructions to now
include seasoning. There are some incoherences: Topftöpfen
would mean something like potpots, which does not have a
clear meaning. Also Tomatensauce und Pfeffer setzen (put
tomato sauce and pepper) is not a valid expression since the
presence of the verb setzen would be highly confusing to
a native German speaker in this context. In general though,
incoherences seem particularly noticeable here as the recipe
style dialogue contains explicit instructions that are easily
understood and leave little room for interpretation compared
to a more poetic style of language.

We illustrate two of the generations for the horror topic
in Figure 3. Without additional fine-tuning on the horror-
fanfiction corpus, the generation model already produces
words that can be considered relevant to the topic, such
as Tod(Death) or sterben(to die). However most of the
language clearly sticks to the drama style. The word hin-
scheiden(pass away) for example is much more poetic and

more typical of drama language than what we find in the
topic corpus. The generation after fine-tuning on the horror-
fanfiction corpus clearly adopts a more prosaic style, leading
to a long text of the second character. We see, that the play
structure is not as strong as it was before fine-tuning on the
topic corpus. The language itself however reads much more
like a scary novel using words such as Finsternis(darkness),
Dämon(demon) or Untier(monster,beast). While the theater
texts already contain a good amount of dramatic or even scary
terms which lead to some adaption even without fine-tuning
we find that the fine-tuned generations tend to fit the style of
the topic corpus much better. Though this often leads to the
characters talking in long monologues, effectively removing
the theater play structure. As we already inferred from the
statistical analysis, adapting to the horror-fanfiction corpus
and keeping the drama language structure seems more diffi-
cult compared to for example the recipe corpus. A possible
reason for this is that the chapters in the horror-fanfiction
corpus tend to be a lot longer than a single recipe and as
such, the generation model is incentivised to produce longer
paragraphs of text. Another big difference is of course the
author perspective which for the recipe corpus is fixed to
an imperative, instructional style and in the expert-interview
corpus is exclusively first person dialogue. Both of these
language style naturally fit easily into theater plays, which
consist mostly of discourse between several participants. The
third person narration employed in many chapters of the
horror-fanfiction corpus however is very rarely used in drama
text. As such, we suspect the generation model has a harder
time integrating much of the text in the corpus, causing many
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PRINZESSIN: Der Zukunftsboom treibt noch immer
den Geist des <Kapitals> herauf. Wenn es aber auf der
weiten Welt dem Proletariat so lange nachhängt, so hat
das keinen Grund : die Arbeiterschaft gewinnt die höchste
Stellung.
BARBARA: Warum ist der <Weltverbesserer> so bieder
und so tiefsinnig, mein Fürst?
ZERBINO: Sein Bruder ist vielleicht krank. Sein Vater
hat ihn gesund und hat ihm alle Gesundheit verloren. Seit
zwei Weltkriegen hat sein Vater über ihn zu sprechen, wie
...

PRINZESSIN: Der Zukunftsboom wird die
<europäische Gesellschaft> bald reformieren können.
Aber Sie haben hier eine Chance.
REDLICH: Ich habe hier <ein enormes Marktpotential>
erkannt. Ich glaube auch, dass die <Industrie das
Thema der Zukunft durchaus antizipieren> konnte, so
dass man das nicht zu einer <Diskussion von Chancen
oder Herausforderungen führt>. Und das ist auch die
Grundlage dafür, dass wir es jetzt auch direkt mit den
<ökonomischen, sozialen und politischen Dimensionen
des Wandels> zu tun haben. Wir haben diese Chance
nämlich in unserer <internationalen Debatte> ...
(fine-tuned on expert-interviews, learning rate 5e− 5)

Figure 4: Generations for the expert-interview topic. The left column shows generations with the model trained only on the
Quadrama-corpus. The right column shows generations of models fine-tuned on the expert-interview corpus.

PRINZESSIN: Euer Hoheit, daß ich mich empfehle. Ein andres Exempel.
HERR VON BIEDERLING.: Ich bitte, auf wen ich mich beziehe :
DER JUNGE: Ich muß es zu ihm sagen, will dem Herrn von Biederling sagen, da ich dem Herrn auf dem Ball nicht allein
zuhören soll.
FRAU VON MAUER.: Mein Herr, ich darf mich noch auf die Sache einigen.
DER DRITTE: Zum Glück kann ich mir meine Untersagung zur Unzeit überlegen, Ihr habt ja vor der Verlobung in der Galerie
mit Herrn von Biederling gestanden.
HERR VON MAUER.: Ich weiß, daß Ihr Euch heute noch auf das Wort einläßt, weil –
DER JUNGE: Sie ist zu der Aufseherin gekommen, die in der Galerie wartet.

Figure 5: Generation from the German GPT-2 model fine-tuned on the Quadrama corpus. The cue given to the generation model
is marked in bold.

generated texts to trail off into narrations rather than theater
plays.
Figure 4 illustrates generation results using the expert-
interview corpus. Again, we find that the model can
adapt to the topic without seeing the topic corpus, albeit
within the confines of its play context. The scene gen-
erated without fine-tuning on the topic corpus yields a
conversation about politics, mentioning words like Kapi-
tal(capital),Arbeiterschaft(working class), Proletariat and
Weltkrieg(world war), which are all topics that can reason-
ably occur in theater plays. Though these terms are tech-
nical and relate to finance and politics, they do not reflect
the topics of the expert-interview corpus which deals more
with modern day businesses and computer technology. After
fine-tuning on the expert-interview corpus we find that the
generation incorporates much more modern terms, such as
Marktpotential(market potential) and internationale De-
batte(international debate) which are not very typical of
theater plays thus demonstrating a degree of topic integration
that was not present before. It should be noted that this is
the only experiment where we picked generations using the
largest learning rate of 5e−5. While for the other two topics,
this learning rate caused the play structure from the genera-
tions to be lost, here we can still find many generations with
at least 2 speakers. This might well be because the expert-
interviews corpus consists of dialogue-style language and as
such, causes the model to retain this dialogue structure after
fine-tuning.

Discussion
Selection of high quality Generations
First, we should note that there are many generations which
do not exhibit the favourable properties of the ones shown in
Section Handpicked Examples. Some generations do not
include the topic at all, despite fine-tuning and the genera-
tion cue. Other generations that fit the desired topic stray
to far from the structure of a theater play and as such do
not introduce any speakers into the scene. In order to find
high quality results manual inspection of the generations is
necessary. We do find however, that the provided statisti-
cal analysis is helpful in selecting good generations. While
we checked all generations when curating the best results
we ended up finding the most promising generated scenes
from the models that offered the best compromise between
the number of speakers and the frequency of topic words.
In addition, we believe that our approach works well in an
assisted creative writing setting where the author has more
control over text that is generated line by line. This way, the
generation model can be used like a tool that inspires creative
output, in our case theater plays with possibly unusual topics.

Quality of generated Scenes
We find that many of the generations lack coherence overall.
Many of the spoken dialogues, while grammatically correct,
are very hard or impossible to make sense of. We investi-
gate a generated example fine-tuned only on the Quadrama
corpus in Figure 5. While the general style of language is
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PRINZESSIN: Euer Hoheit!
KÖNIG: Ja Prinzessin. Was gibt es?
PRINZESSIN: Nun, ich will die ganze Welt aufbieten, und Euer Hoheit wollen mich nicht in den Krieg stürzen.
KÖNIG: Ich bin ein alter Narr, und ich bin ein ehrlicher Mann ; ich habe mich mit den alten Menschen in Verbindung gesetzt.
PRINZESSIN: Das wäre ein Unglück, wenn Ihr mich nicht in den Krieg ziehen lassen würdet.

Figure 6: Generation from the German GPT-2 model fine-tuned on the Quadrama corpus. This generation was created in tandem
with the generation model. Text pieces provided by the author are marked in bold, the remaining text is automatically generated.

very evocative of a classic German theater play, the actual
content of the scene is harder to follow. We find some plot
points in the scene though: Someone was waiting in a gallery
(Galerie) before an engagement (Verlobung) and now an
attendant (Aufseherin) is waiting there. It is not clear who
is speaking to whom however, which makes constructing a
narrative near impossible. We also find that the generation
model greatly benefits from a longer context. Figure 6 shows
a scene created by alternating between the human author
and the generation model. We find that in Figure 6, existing
characters are repeated more consistently. In addition, the
princess (PRINZESSIN) character states a desire to go to a
war in both of her generated passages, displaying a coherence
that is not present in Figure 5.
Interestingly, we also find that after fine-tuning on a topic
corpus, the generations generally show more coherence when
they actually adapt to the topic and are easier to understand.
This effect can also be observed in the generations presented
in Section Handpicked Examples, for example in Figure 2,
where the generation without fine-tuning on the topic corpus
seems confused by the presence of particular words. We
assume that the reason for this lies primarily in the fact, that
the words which are relevant to the topic are very rare in
the Quadrama-corpus and as such, the generation model is
less certain on how to continue the generation. This can lead
either to the generated words become more and more random
or to the generation model starting to ignore the topic words.
It should also be noted however, that the language present in
the Quadrama corpus is generally very complex and often
hard to understand even for native speakers. Theater plays
employ a very distinct language style and often obscure de-
tails of characters motivations, actions and intentions within
the dialogue. In addition, many plays in the corpus are more
than on hundred years old and use a vocabulary that is very
different to modern language. This is a possible reason why
the GPT-2 generation model replicates the language style but
struggles with generating a coherent narrative. Apart from
providing longer contexts to the generation model, another
possible way to possibly improve overall cohesiveness would
be to use more data for more robust fine-tuning, avoiding
possible overfitting. Another approach is to tackle the de-
coding process of the language model. There are decoding
strategies that reportedly improve the coherence in generated
content ((Holtzman et al. 2019)) and those methods will
likely improve results in our experiments as well.

Conclusion
Across all experiments, we find that our fine-tuning approach
can achieve integration of the desired topic without losing

the structure of theater plays. In particular, we show that
the generation models incorporate words and concepts that
were not present before the fine-tuning on the respective topic
corpus. Furthermore, we illustrate that these concepts are
integrated into dialogue spoken by at least two characters,
creating a mixture between the theater play structure and
the respective topic. While there is still room for improve-
ment, particularly in the coherence of generated texts and
the fairly high selection effort, we conclude from our results
that our approach generally achieves its goal of injecting a
new topic into the existing language structure. Furthermore,
our approach does not require abundant data or specialised
annotations. Apart from the corpus of theater plays, topic
corpora similar to the ones presented in Section Datasets can
be easily acquired from openly available sources. In addition,
we also show that such a topic corpus does not need to be
particularly large. The smallest topic corpus we use is the
expert-interviews corpus with less than one hundred thousand
words and we still see a strong effect there. This is useful
in practice, as training a transformer language model on too
little data can quickly lead to overfitting and consequently
causes uninteresting, often repetitive generations.
We propose to further experiment with different ways of
encoding to improve the readability and coherence of the
generations. We also encourage the use of our fine-tuning
approach in creative writing settings, be it fully automatic or
in co-operation with the generation model in order to try out
unusual combinations of topics.
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Abstract 

Several narratological studies have investigated plot 
patterns within specific story genres. However, these 
studies focused only on specific genres; thus, the com-
mon characteristics of general plot structures have not 
been recognized. In this study, cross-genre and sub-
genre comparisons of plot patterns were quantitatively 
performed based on common symbol sets to describe 
the plot structures. Common symbol sets for describing 
the plot structures were utilized for analyzing the plot 
structure to compare different genre plot patterns. The 
target genres and stories were selected based on sales 
rankings and popularity rankings for popular Japanese 
entertainment works. Typical plot patterns for each gen-
re were extracted from the analyzed plot structures us-
ing the N-gram-based pattern extraction method. Inner 
structures of genres were extracted using hierarchical 
clustering. As a result, common plot characteristics and 
differences between genres, and interpretable subgenre 
plot patterns were extracted. Although the results of this 
paper are limited to the popular Japanese entertainment 
genre, the proposed method can apply to other stories 
and genres in different cultures. 

 Introduction 
Automatic story generation based on computational literary 
studies has become a popular research method. There are 
various methods for automatic story generation, for in-
stance, applying plot patterns based on traditional narratol-
ogy (Gervas 2014), utilizing agent-based approaches 
(Binks, Roberts and Young 2016), or deep learning meth-
ods (Fan, Lewis and Dauphin 2019). It would be useful to 
clarify the characteristics and structures of existing stories 
for the development of these methods and to establish a 
method for human-like storytelling ability using artificial 
intelligence. 
 Narratology is the academic field dealing with the char-
acteristics and structures of stories. There are several tradi-
tional studies on narratology. For instance, Propp insisted 

that 31 functional elements can compose about 300 Rus-
sian folktales about magic, based on analysis of story struc-
ture (Propp 1968). Furthermore, Campbell proposes that 
there is a common story structure within myths all over the 
world (Campbell 1949). Due to the influence of philosoph-
ical structuralism, the characteristics of those research tar-
gets were thought to be various structures (structures of 
plots, characters, and narratives); therefore, these research 
methods are called story structure analysis (Barthes 1968). 
Several studies have clarified that it is possible to extract 
the common plot structure of stories belonging to a specific 
genre by collecting and analyzing several such stories. 
Based on these old humanistic studies, recent research fo-
cusing on several specific genre stories has clarified that 
the quantitative and objective extraction of common plot 
structures can be executed using computational methods 
(Murai 2020; Suzuki, Sasaki and Hakamada 2018; Saito, 
Yoshida and Nakamura 2021; Iwasaki, Toyosawa and 
Ishikawa 2021; Oba, Ota and Amano 2021). In these recent 
studies, the plot structures were described as sequences of 
symbolized scenes or functions. The common plot struc-
tures of specific genres were extracted using quantitative 
methods for symbolized sequences. 
 However, these studies focused only on specific genres; 
thus, the common characteristics of general plot structures 
have not been recognized. Therefore, common symbol sets 
for describing the plot structures of several different genres 
have been developed (Murai, Toyosawa and Shiratori 
2021a). Identifying common symbols across story genres 
enables a comparison of the characteristics of typical plot 
patterns of each genre. In addition, the internal structure of 
each genre has not yet been investigated. Moreover, the 
extracted typical patterns could become a foundation for 
automatic story-generation systems. In this study, cross-
genre and sub-genre comparisons of plot patterns were 
quantitatively performed based on common symbol sets to 
describe the plot structures. Cross-genre comparison and 
sub-genre analysis would enable more sophisticated story 
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generation for instance, genre combined story generation, 
and user's taste oriented detailed story generation.  

Materials and Methods 

Dataset and categories for plot analysis 
Comics, games, and novels of several popular genres in 
modern Japanese entertainment culture were selected, 
based on the sales and popularity rankings, to compare 
different story genres (Murai, Toyosawa and Shiratori 
2021a). The most popular selected genres were “Adven-
ture,” “Battle,” “Love,” “Detective,” and “Horror.” These 
are based on hypotheses that popular works should include 
some fascinating plot patterns for most people, and that 
typical plot patterns can be extracted quantitatively by 
gathering same genre works. To extract typical plot struc-
tures for each genre, works of combined genres (such as 
“love comedy”) were eliminated, and popular short stories 
were selected based on the rankings. In cases where there 
were not enough popular short stories, popular long stories 
were divided into short stories based on the changes in the 
purpose of the stories’ protagonists (Nakamura and Murai 
2020). 
 Subsequently, the selected stories were divided into 
scenes, and scenes were categorized manually by research-
ers of narratology based on the functions of each scene as a 
story plot. The criteria of the story division are as follows 
(Murai, Matsumoto and Sato 2011): 
 Physical transitions of places 
 Elapsed time (except very short case for instance, a few 

seconds of silence) 
 Appearance, exit, or movement to another place; birth 

and death of main characters 
 End of explanation for readers (except very short case) 
 These criteria are based on traditional scene divisions in 
narratology. 
 After the scene division, the classification of each scene 
was performed based on the category table (Murai, Toyo-
sawa and Shiratori 2021a; Murai, Toyosawa and Shiratori 
2021b)  
 Table 1 depicts the number of analyzed stories and 
scenes in five genres. Table 2 lists the nine regions and 29 
large categories of the plot elements. One story is depicted 
as a sequence of 29 scene types. For instance, if there is a 
story about a protagonist who encounters some man-made 
disaster, such as a battle, and finally defeats the ringleader 
behind it using a special given power (an example of a 
typical battle genre plot), that story can be depicted as a 
sequence of several large categories: “Disaster,” “Ability 
improvement,” “Confrontation,” and “Everyday.” 
 Moreover, 29 large categories were divided into 227 
small categories. The relationships between the large and 
small categories are depicted in Table 3. In the categoriza-
tion process, each scene was categorized based on small 
and large categories. 
 Each scene division and categorization process were 
performed by at least two individual analysts. When the 
results of the two analysts were different, they discussed 

which was better and decided on the final result. This type 
of collegial system (Someren, Barnard and Sandberg 1994) 
is often utilized in the literary analysis of the humanities 
field. 
 

Table 1. Analyzed stories and scenes for each genre. 
  Story Scene Average scenes per story 
Adventure 226 1750 7.7 
Battle 375 2994 8.0 
Love 172 1604 9.3 
Detective 134 1281 9.6 
Horror 167 1484 8.9 

 

Genre clustering based on plot sequence 
To investigate the subgenre structure of each story genre, a 
clustering method was applied. The categorized scene se-
quences of the stories were clustered based on the Le-
venshtein distance of sequences composed of small catego-
ries. To avoid the effect of story length, the Levenshtein 
distance of two stories was divided by the shorter length of 
the two stories. More specifically, the hierarchical cluster-
ing from the Ward method was applied. 

Plot pattern extraction 
Each story genre was assumed to have a typical plot pat-
tern. There are several methods to investigate frequently 
appearing serial symbol patterns, such as the N-gram or 
Markov chain. In this study, an N-gram-based pattern ex-
traction method was applied (Saito, Yoshida and Nakamu-
ra 2021; Iwasaki, Toyosawa and Ishikawa 2021). In this 
algorithm, if the order of appearance of symbols is appro-
priate, non-continuous sequences are also calculated as N-
gram pattern. The pattern extraction process was as fol-
lows: 
 
 1. N-gram distribution is computed based on plot se-
quences within target stories 
 2. Several patterns with high frequency are selected 
from N-gram 
 3. One element is added to the selected patterns under 
the condition that the added pattern appears as frequently 
as possible in the N-gram. 
 4. Several patterns in which the sum of the included N-
gram’s frequency is larger are selected. 
 5. Steps 3 and 4 are repeated until the pattern length be-
comes of the specified length which user can decide. 
 By applying this algorithm to a group of similar stories, 
a typical plot pattern can be extracted with an arbitrary 
length (Murai, Toyosawa and Shiratori 2021b).  
 A typical plot pattern of each story genre was extracted 
based on whole target genre stories for comparison. More-
over, to investigate the inner structure of each genre, typi-
cal plot patterns of clusters within genres were extracted 
based on stories within the target cluster. 
 
 An example of steps of 1 to 3 are also described in Fig-
ure 1. In Figure 1, 3-gram is calculated at first. In the next 
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step, frequently appeared pattern(s) in 3-gram (in this ex-
ample “ABC”) was selected. In the third step, one symbol 
is added to the selected frequently appeared pattern “ABC” 

in order to include as match pattern as in calculated 3-gram. 
In this example, added pattern “ABCD” includes “ABC”, 
“ACD” and “BCD.”  

 
Table 2. Large categories for cross-genre plot analysis. 

Region Large category Description 

Existence 

Arrival Encounter with the protagonist, including events such as birth and revival 
Leaving Leaving from the story, including permanent departure such as death 

Change 
Change in a character's attributes (e.g., swap, transform, and face change by plastic 
surgery) 

Capability 
Ability improvement Positive change in a character's ability 
Ability decline  Negative change in a character's ability 

Movement 

Getting travel route A character is able to travel 
Escape Escaping from something (e.g., retreat, withdrawal, liberation, and prison break) 

Losing travel route 
A character cannot move (e.g., losing transportation facilities, detention, kidnap-
ping, and arrest) 

Information 

Search Effort for obtaining information (e.g., exploration, survey, and research) 
Discovery Disclosure of some information or hidden truth 
Misunderstanding A character has a misunderstanding 
Doubt A character notices something suspicious and has doubts 
Concealment Some scenes about hiding information (e.g., concealment, disguise, and scam) 

External information 
External information presentation for audiences through elements such as prologue 
and epilogue to explain about the world of the story 

Regularity 

Order, promise 
It includes not only promise, transaction, and compliance, but also warning and 
prophecy. 

Violation It includes crime, negligence, ignorance of warnings, and inattention. 

Intention, request 
It includes scenes related to characters making decisions, that is, scenes involving 
wishing, request, persuasion, and invitation. 

Intention 

Completion of request A scene that mainly consists of fulfilment of a request 
Failure of request A scene that mainly consists of a failure or refusal to grant or fulfil a request 

Insanity 
Situation wherein the character cannot control themselves (e.g., madness, confu-
sion, and possession by evil spirits) 

Relationship 

Positive relationship 
Positive changes in human relationships (e.g., conversion, reflection, reconciliation, 
expression of gratitude) 

Negative relationship 
Negative changes in human relationships (e.g., quarrel, betrayal, arrogance, and 
disgust) 

Positive love relation-
ship 

Positive changes in human love (e.g., falling in love, confession of feelings, dating, 
and marriage) 

Negative love relation-
ship 

Negative changes in human relationships in the context of love (e.g., jealousy, bro-
ken heart, and divorce) 

Influence 

Aid 
It includes many types of “help,” such as rescue, nursing, assistance, encourage-
ment, and sacrifice. 

Interference 
It includes not only explicit interferences, but also acts that intentionally make the 
other person uncomfortable. 

Confrontation Combat and competitions, including sports 

Environment 
Everyday Scenes of ordinary everyday life 

Disaster 
It includes not only natural disasters, but also accidents and mental crises such as 
severe depression 
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Table 3. Small categories for cross-genre plot analysis. 
Large category Small categories 
Arrival Arrival, Encounter, Resurrection, Birth, Making acquaintance, Reunited, Noticing a person 
Leaving Leaving, Exit, Death, Suicide, Exclusion, Sealed, Separation, Exorcism 
Change Change, Character's transformation, Replacement, Becoming another person, Memory loss, Pregnancy 
Ability improvement Ability improvement, Growth, Releasing sealed abilities, Becoming a companion, Getting back lost item, 

Gaining an item, Recovery, Recovery of physical condition, Healing, Improvement of social position, 
Enabling equipment, Cosmetic surgery 

Ability decline  Ability decline, Withdrawal of a companion, Item loss, Stealing, Debility, Deterioration of physical condi-
tion, Illness, Injury, Social demotion, Incapacity, Sealed abilities, Memory loss 

Getting travel route Getting travel route, Opening a route, Acquisition of method for movement, Transportation, Moving 
Escape Escape, Retreat, Withdrawal, Extrication, Liberation, Disappearance 
Losing travel route Losing travel route, Detention, Kidnapping, Confinement, House arrest, Arrest, Blockade, Limitation of 

travel route, Change of travel route, Loss of method for movement 

Search Search, Exploration, Investigation, Expedition, Research, Experiment, Tracking, Vigilance 
Discovery Discovery, Disclosure, Confession, Exposure, Recovery of lost memory, Correct reasoning, Invention, 

Ingenuity 
Misunderstanding Misunderstandings, Misinterpretation, Mutual misunderstandings, Hallucinations 
Doubt Doubt, Mystery occurrence, Strange event, Disturbance, Misguided reasoning, Suspicion, Sign, Clue, 

Unaccounted 
Concealment Concealment, Deception, Takeover, Disguise, Fraud, Camouflage, Secret sharing, Ambush 
External information External information, Disclosure of world settings, Lessons learned, Recipes, Prologues, Epilogues, Af-

terglow, Side story 
Order, promise Order, Promise, Negotiation, Compliance, Warning, Notice, Prophecy 
Violation Violation, Stealing, Infidelity, Carelessness, Negligence, Ignoring warnings 
Intention, request Intention, Request, Determination, Declaration, Persuasion, Invitation, Acceptance, Seduction, Noticing a 

goal, Noticing a destination 
Completion of request Completion of request, Fulfillment of wish, Achievement of goal 
Failure of request Failure of request, Abandonment of wish, Failure to achieve the goal 
Insanity Insanity, Runaway, Possession, Confusion, Derangement, Stunned, Syncope, Drunkenness, Brainwashing, 

Enslavement 
Positive relationship Positive relationship, Conversion, Remorse, Reconciliation, Soothing, Acceptance of requests, Gratitude, 

Forgiveness, Hospitality 
Negative relationship Negative relationship, Quarrel, Betrayal, Arrogance, Disgust, Refusal of request, Provocation, Rebuke, 

Unkindness 
Positive love relation-
ship 

Positive love relationship, One-sided love, Mutual love, Falling in love, Confession of love, Date, Dating, 
Marriage, Reconciliation of lovers, Physical relationship 

Negative love relation-
ship 

Negative love relationship, Jealousy, Breaking up, Quarrel of lovers, Rejected love, Divorce, Prohibited 
romance  

Aid Aid, Protection, Rescue, Nursing, Encouragement, Sacrifice, Relief, Support 
Interference Interference, Enemy appearance, Intentional man-made disaster, Unreasonable demand, Intimidation, 

Annoying seduction, Bullying, Casting a spell, Revenge, Persecution 
Confrontation Confrontation, Battle, Competition 
Everyday Every day, Peace, Quiet, Daily event, Relaxation, Rest, Solution, Satisfaction, Praise 
Disaster Disaster, Damage, Natural disaster, Curse, Unintentional man-made disaster, Ordeal, Predicament, Disap-

pointment, Despair, Shame, Regret, Dissatisfaction 
 

Results 

Hierarchical clustering of each story genre 
The results of hierarchical clustering are presented in Fig-
ures 2–6. The dotted line indicates the cutting point of the 
dendrogram tree. Similarly, to compare each genre, five 
genres were divided into several clusters according to the 
number of stories included. Stories shorter than three ele-
ments were eliminated during the clustering process. 

Typical plot pattern of each genre 
To compare the typical plot patterns of each genre, an N-
gram based plot pattern extraction algorithm [9, 10] was 
applied to stories of five genres. Table 4 shows the results 
of typical plot patterns based on a large category descrip-
tion of the plot sequences. Table 5 depicts the results based 
on the small category description. The number of scenes 
was set to eight, which was close to the average plot length.  
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 Moreover, to extract typical plot patterns within genres 
and to investigate their internal structure, typical plot pat-
terns of clusters within each genre were extracted based on 
small categories. Table 6 depicts the results of the adven-
ture genre, Table 7 depicts the battle genre, Table 8 depicts 
the love genre, Table 9 depicts the detective genre, and 
Table 10 depicts the horror genre. The number of scenes in 
the typical plot patterns was set to 8 (this is near to average 
plot length). 
 

 
Figure 1. An example of pattern extraction algorithm 

 

Figure 2. Clustering results of plot patterns in adventure 
genre 

 

Figure 3. Clustering results of plot patterns in battle genre 

 
 

 
Figure 4. Clustering results of plot patterns in love genre 

 

 
Figure 5. Clustering results of plot patterns in detective 

genre 
 
 

 
Figure 6. Clustering results of plot patterns in horror genre 
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Table 4. Genre-typical plot patterns based on large categories for cross-genre plot analysis. 
 Adventure Battle Love Detective Horror 

1 Search Arrival Positive love relationship Discovery Arrival 
2 Discovery Interference Negative love relationship Intention Intention 
3 Losing travel route Aid Arrival Search Discovery 
4 Intention Confrontation Aid Arrival Exit 
5 Ability improvement Exit Positive love relationship Discovery Completion of request 
6 Getting travel route Discovery Discovery Interference Arrival 
7 Search Interference Negative love relationship Search Intention 
8 Discovery Aid Positive love relationship Discovery Discovery 

 

Table 5. Genre-typical plot patterns based on small categories for cross-genre plot analysis. 

  Adventure Battle Love Detective Horror 
1 Blockade Battle Making acquaintance Discovery Request 
2 Opening a route Exclusion Date Investigation Leaving 
3 Expedition Enemy appearance Falling in love Encounter Completion of request 
4 Arrogance Interference Confession of love Exposure Gaining an item 
5 Battle Incapacity Positive love relationship Discovery Making acquaintance 
6 Battle Support Dating Investigation Discovery 
7 Death Battle Disclosure Correct reasoning Request 
8 Opening a route Exclusion Date Confession Completion of request 

 

Table 6. Genre-typical plot patterns of clusters in adventure genre based on small categories. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 
1 Expedition Blockade Reunited Gaining an item 
2 Blockade Arrogance Exposure Reunited 
3 Provocation Battle Search Change 
4 Battle Battle Nursing Blockade 
5 Gaining an item Death Exposure Battle 
6 Opening a route Opening a route Confusion Support 
7 Expedition Rescue Request Change 
8 Battle Disclosure Rebuke Battle 

 

Table 7. Genre-typical plot patterns of clusters in battle genre based on small categories. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 
1 Interference Disturbing Enemy appearance Battle Reunited 
2 Support Completion of request Quarrel Enemy appearance Battle 
3 Battle Reunited Detention Interference Battle 
4 Exclusion Exposure Intimidation Incapacity Reunited 
5 Exposure Request Support Support Betrayal 
6 Interference Exposure Aid Gaining an item Battle 
7 Support Nursing Battle Battle Incapacity 
8 Battle Ordeal Relief Exclusion Negative relationship 
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Discussion 
 Table 4 indicates that each genre pattern includes char-
acteristic plot elements. For instance, Adventure and De-
tective genres include “Search” and “Discovery” twice. 
However, the difference of “Search” between adventure 
and detective genre is unclear. Conversely, Table 5 indi-
cates that “Expedition” appears in the Adventure genre and 
“investigation” appears in the Detective genre. Therefore, a 
small category would be appropriate for extracting the dif-
ferences between typical plot patterns in each genre. How-
ever, to extract the commonality of different genres, large 
category-based plot patterns would be appropriate. 
 Considering the similarities between different genres, 
each one has “Discovery” based on a large category. 
Therefore, the common plot structure for the five genres 
would be to disclose new information to the reader with 
surprise. Moreover, “Arrival” of new characters is also a 
common function for several genres. However, the identity 
of the new character may differ depending on the genre. 
 From the viewpoint of differences, there are various 
differences between genres based on small categories, even 
if those plot elements are included in the same large cate-
gory.  
 These differences can be investigated by analyzing the 
internal structures of genres. Typical plot patterns based on 
clustered stories in each genre indicate that there are vari-
ous subtypes within a genre. Table 11 shows a manual in-
terpretation of the extracted plot patterns for each cluster. 
These plot patterns can be interpreted as typical patterns 
within a specific genre. 

Conclusions 
 Based on the category table for cross-genre plot analysis 
and five genres of plot data sets of Japanese popular enter-
tainment stories, cross-genre comparisons for typical plot 
patterns were performed in this study. As a result, common 
plot elements were extracted and differences between gen-
res were depicted. Moreover, genre stories were clustered 
using the hierarchical clustering method, and typical plot 
patterns of each cluster were also extracted. The extracted 
plot patterns of clusters can be interpreted as typical story 
types within the target genres. Since the resulting patterns 
can be thought to be eligible detailed characteristics of the 
target genres, those features would be applicable to devel-
op more sophisticated story generation algorithms. In addi-
tion to the plot patterns, if the patterns within the relation-
ships and the roles of story characters can be quantitatively 
extracted, it would become the basis for more impressive 
story generation ability in the future. 
 The results of this study are confined to the popular Jap-
anese entertainment genre, and the number of analyzed 
stories was about only 1,000. Therefore, the obtained clus-
ters and patterns cannot be claimed to be general or univer-
sal. However, the method proposed in this paper can be 
applied to other stories and other genres in different cul-
tures by expanding the category table appropriately. More-
over, it could be possible to investigate more detailed genre 

inner structures by adding many more stories to the plot 
data set. 
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Table 8. Genre typical plot patterns of clusters in love genre 
based on small categories. 

  Cluster 1 Cluster 2 
1 Date Prologues 
2 Positive love relationship Making acquaintance 
3 Mutual misunderstandings Request 
4 Falling in love Rescue 

5 Confession of love Positive love relationship 
6 Dating Making acquaintance 
7 Jealousy Date 
8 Date Disclosure 

 

Table 9. Genre-typical plot patterns of clusters in detective 
genre based on small categories. 

  Cluster 1 Cluster 2 
1 Discovery Request 
2 Investigation Exposure 
3 Encounter Investigation 
4 Exposure Correct reasoning 
5 Discovery Confession 
6 Investigation Discovery 
7 Correct reasoning Escape 
8 Confession Battle 

 

Table 10. Genre-typical plot patterns of clusters in horror 
genre based on small categories. 

  Cluster 1 Cluster 2 
1 Request Hospitality 
2 Leaving Gaining an item 
3 Completion of request Quiet 
4 Gaining an item Discovery 
5 Making acquaintance Arrival 
6 Discovery Hospitality 
7 Request Leaving 
8 Completion of request Discovery 

 
 
 

Table 11. Interpretation of each story type of extracted plot patterns based on cluster. 
Genre Cluster Story type 

Adventure 

1 Expedition for extermination of an enemy 
2 Expedition for finding a truth 
3 Resolution of some illness or injury 
4 Problem and solution about a change in a characters' attribute 

Battle 

1 Resistance against repeated interference 
2 Guidance to an ordeal 
3 Relief for victims 
4 Victory by obtaining special power 
5 Detection and punishment against traitors 

Love 
1 Resolving misunderstandings between lovers 
2 Prince Charming 

Detective 
1 Encounter to a murder case 
2 Request for resolving a murder case 

Horror 
1 Request from a ghost 
2 Requital of a favor by a ghost 
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Abstract

Poetry generation within style constraints has many cre-
ative challenges, despite the recent advances in Trans-
former models for text generation. We study 1) how
overfitting of various versions of GPT-2 models affects
the quality of the generated text, and 2) which model
is better at generating text in a specific style. For that
purpose, we propose a novel setup for text evaluation
with neural networks. Our GPT-2 models are trained on
datasets of collected works of the two Romantic-era po-
ets: Byron and Shelley. With some models, overfitting
manifests by producing malformed samples, with oth-
ers, the samples are always well-formed, but contain
increasingly higher levels of n-grams duplicated from
the original corpus. This behaviour can lead to incor-
rect evaluations of generated text because the plagia-
rised output can deceive neural network classifiers and
even human judges. To determine which model is better
at preserving style before it becomes overfitted, we con-
duct two series of experiments with BERT-based classi-
fiers. Overall, our results provide a novel way of select-
ing the right models for fine-tuning on a specific dataset,
while highlighting the pitfalls that come with overfit-
ting, like reordering and replicating text, towards more
credible creative text generation.

Introduction
Contemporary text-generation systems can create output
whose surface features strongly resemble the source mate-
rials upon which they are trained. Such generative systems
can have credibility in computational creativity research as
they can be demonstrated to possess knowledge and pro-
duce novel and valuable results in a directed fashion (Ven-
tura 2016). As described below, there is a growing body of
work that has recently been emerging in this direction in
Natural Language Processing (NLP) research, via the grow-
ing popularity of OpenAI’s GPT (Radford et al. 2018; 2019;
Brown et al. 2020). While GPT-based systems for stylis-
tic reproduction have attracted some criticism (Falk 2021;
Floridi and Chiriatti 2020), in general, their results have
been impressive and deserve further attention in computa-
tional creativity research (Dale 2021; Köbis and Mossink
2021).

Soon, these systems could generate new works in the style
of authors from previous eras, perhaps even inspired by cur-

rent events or social movements. However, before this can
become reliably possible without relying on human supervi-
sion to cherry-pick the results, we need to learn how well
these new transformer-based systems can be trained, and
what pitfalls exist with them. In particular, we need to know
what are the differences in performance between various
versions of the models, to allow for optimal selection. Here,
we describe some steps toward these aims.

Ideally, we would like to conduct a large scale human
evaluation of GPT-2 produced text, but such evaluations are
prohibitively costly and difficult to organize for most re-
searchers, therefore in this study we are focused almost en-
tirely on automated evaluations. For the first objective of
this study—detection of over-training of GPT-2 models—
we perform a visual evaluation of the samples to watch for
malformed text, and then we perform the BLEU (Papineni et
al. 2002; Yu et al. 2017) evaluation of the samples to watch
for excessively high levels of similarity (on the n-gram level)
of the samples to the original dataset. For the second objec-
tive, which is to investigate which GPT-2 model performs
best at the task of generating text in specific authors’ style,
we use BERT (Devlin et al. 2018), which is currently state-
of-the-art in text classification, to identify texts that appear
closer to the source material than to the output of GPT-2
models.

Poetry generation has long been an area of interest
in computational creativity research (Lamb, Brown, and
Clarke 2017; Oliveira 2009; 2017). Previous work includes
the use of machine learning (Das and Gambäck 2014;
Loller-Andersen and Gambäck 2018; Rahman and Manu-
rung 2011), mining of corpora or other source material as
inspiring examples for stylistic reproduction (Gervás 2011;
Lamb and Brown 2019; Rahman and Manurung 2011;
Toivanen et al. 2014) as well as approaches such as expert-
based distributed systems (Corneli et al. 2015; Misztal
and Indurkhya 2014), the use of constraints (Rashel and
Manurung 2014; Toivanen et al. 2013), evolutionary ap-
proaches (Manurung 2004) and knowledge-based/linguistic
models (Hämäläinen 2018; Oliveira and Cardoso 2015;
Veale 2013). Style imitation systems have also attracted at-
tention in text generation (Alvarez Cos, Perez y Perez, and
Aliseda 2007) and other domains (Ens and Pasquier 2018;
Pachet and Roy 2014), though we note that attention has
also been paid to the creativity required to deviate from a
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given style (Elgammal et al. 2017).
The growing attention being paid to GPT-based ap-

proaches in NLP research is beginning to get replicated in
computational creativity. Here, we could mention a few no-
table examples where GPT-2 or BERT were applied to po-
etry generation: (Liao et al. 2019) have fine-tuned GPT-2
to generate Chinese classical poetry, (Köbis and Mossink
2021) have conducted an extensive human evaluation of
GPT-2 generated English poetry, (Li et al. 2020) have exper-
imented with applying rigid constraints in generation of both
Chinese and English poetry, (Wöckener et al. 2021) have
analysed the problems with maintaining rigid stylistic con-
straints in poetry generation while using RNN and GPT-2,
and (Nikolov et al. 2020) and (Oliveira 2021) have explored
a transformative, BERT-based approach to lyrics generation.
Lyrics were also generated from GPT-2 and evaluated using
BERT in (Wesek 2019).

The scope of this study is focused on poetry generation
in a general language style of a specific author, learning
from a corpus of poetry by two highly-regarded English po-
ets: Lord Byron (1788-1824) and his contemporary Percy
Bysshe Shelley (1792-1822). Here, we tackle poetry gener-
ation by fine-tuning GPT-2 models on the collected works of
both authors.

GPT-2 and BERT models
The GPT and BERT models are derived from the Trans-
former architecture (Radford et al. 2018; Devlin et al. 2018),
which is a form of an Encoder-Decoder model, where RNN
or LSTM networks have been replaced by multiple layers of
attention mechanisms (Bahdanau, Cho, and Bengio 2014;
Vaswani et al. 2017), thus allowing all input to be pro-
cessed simultaneously by dispensing with sequentiality. The
original Transformer model followed the Encoder-Decoder
architecture because it was intended for machine transla-
tion, where we first have to encode the source language
sequence, and then decode it into the target language se-
quence (Sutskever, Vinyals, and Le 2014). Most other NLP
tasks, however, do not require this kind of setup, and subse-
quently, the Encoder and Decoder blocks started to be used
separately. The Decoder block was first developed by Ope-
nAI into the Generative Pre-trained Transformer (GPT), and
soon later the Encoder block was developed by Google into
the Bidirectional Encoder Representations from Transform-
ers (BERT). The first editions of GPT were released in two
versions: small and medium, and have managed to advance
the benchmarks on many NLP tasks (Radford et al. 2018).
BERT was also released in two versions, which roughly
matched the size of the small and medium GPT models to fa-
cilitate comparison. BERT has proven superior to the match-
ing GPT models in Natural Language Understanding, while
GPT excelled in Natural Language Generation (Devlin et al.
2018). This was expected because of the specific differences
between the architectures of the Encoder and Decoder trans-
former blocks.

While the original Transformer (i.e. the translation ma-
chine) required separate training for each language pair, both
GPT and BERT follow the transfer learning paradigm (Rad-
ford et al. 2018; Devlin et al. 2018). Both of them are first

pre-trained on the large corpora of text (ranging from 5GB
to 800GB, depending on the version). This initial training
is very demanding in terms of time and the required hard-
ware. The model can then be used “out of the box”, or can
be fine-tuned for a specific task and that is where transfer
learning actually comes to play. The fine-tuning process is
much faster and requires much less powerful hardware. Af-
ter fine-tuning, the model can be used for a destined down-
stream task, using additional layers, which are referred to as
“heads”, that accomplish those tasks (Radford et al. 2018;
Devlin et al. 2018).

The consecutive GPT versions use the same general archi-
tecture, but with much larger numbers of layers and “atten-
tion heads” (attention mechanism working in parallel). They
are also trained on increasingly large datasets. Currently, the
latest version of OpenAI’s GPT is GPT-3; however, it can
only be used through OpenAI’s API. While the use of the
base GPT-3 models through an API is free, fine-tuning of the
model (at the time of writing this paper) has to be paid for.
There exist other large language models, already exceeding
the size of GPT-3, for example: Gopher (Rae et al. 2021),
Megatron-Turing NLG (Smith et al. 2022), and Jurrasic-
1 (Lieber et al. 2021), which, if available to the public at
all, can only be used via their APIs. The hardware require-
ments of these models are way above of what researchers
at most universities can access. Here, we should also men-
tion the models released by EleutherAI: GPT-J-6B (Wang
and Komatsuzaki 2021) and GPT-NeoX-20B (Black et al.
2022). However, their hardware requirements, while smaller
than those of the models mentioned above, still exceed the
hardware we can access.

This study was therefore carried out using GPT-2, which
we could fine tune on our hardware. Applying GPT-3 and
other large-scale models to poetry generation is left for fu-
ture work. It is not unreasonable to expect that the results
we obtained using GPT-2 will translate to larger language
models when they become more accessible.

At present, there are two different applications of GPT-2
available. The original edition of GPT-2 is by OpenAI (Rad-
ford et al. 2019; OpenAI 2021). The source code of the
interface for this version was later propagated with some
changes by (Shepperd 2021), and as such it was used in
research, for example (Lee 2019; Lee and Hsiang 2020b;
2020a). The second application is in the Transformers li-
brary (Transformers Documentation 2019; Wolf et al. 2019).
This edition introduced significant changes to the code of the
interface, making the process of fine-tuning and generation
easier. We are using both applications in our experiments.

The GPT-2 models from the Transformers library that are
used for text generation are referred to in their library as
“Language Modelling Head” models (Transformers Docu-
mentation 2019), therefore in order to distinguish them from
OpenAI models, in this paper, we refer to them as “LMH”
models, while the OpenAI versions are referred to as “Reg-
ular”. These two implementations differ significantly. The
LMH models have a standard learning structure of training
epochs, where each epoch has a specific number of steps
depending on the size of the dataset. The Regular models
do not use epochs in training. Additionally, training of the
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Figure 1: Training and evaluation loss for the LMH Small model
(Top) and the Regular Small model (Bottom) fine-tuned for 250K
steps on the dataset of Collected Works of Lord Byron.

LMH models is much faster per training step as compared
to the Regular models. The Regular models are released in
four versions: Small (124M parameters), Medium (345M
parameters), Large (774M parameters) and XLarge (1558M
parameters). The LMH models, at the time of writing this
paper, were released only with Small, Medium and Large
versions, with the same number of parameters as the re-
spective Regular models. Due to hardware limitations, we
only fine-tune the Small and Medium models, and as a re-
sult, we use four models in total for each task: LMH Small,
LMH Medium, Regular Small and Regular Medium. Exper-
iments with the Large and XLarge models are left for future
research. It has to be noted that, at this point, we are not ex-
perimenting with adjusting hyperparameters, neither during
fine-tuning nor during sample generation. The default top k
for both models is 50, default temperature is 1, default top p
is 1 for Regular models, and 0.9 for LMH models. For con-
sistency, we have set top p value for LMH models to 1. The
train/test split of the datasets is 70/30.

Figure 1 shows the training loss and evaluation loss for the
Regular Small and LMH Small models fine-tuned on the By-
ron dataset for 250K steps (results for medium models and
for models fine-tuned on the Shelley dataset are very sim-
ilar, and therefore are not presented here). We can see that
the lowest evaluation loss is achieved very early in the fine-
tuning process: for LMH models, this occurs around 5000
fine-tuning steps, and for the Regular models even sooner,
around 1700 steps. We believe this is because the datasets

Author Org size Length Final size Length
Byron 7.2 MB 183643 2.4 MB 62947
Shelley 2.3 MB 59207 0.98 MB 29151

Table 1: Details of the datasets including original size, original
length (lines), pre-processed size, pre-processed length (lines).

used for fine-tuning are relatively small, and the models
become overfitted fairly early. In this study, we investigate
whether the point of the lowest evaluation loss is optimal for
early stopping of the fine-tuning process, and to get deeper
insights into the behaviour of the GPT-2 models, we evalu-
ate the actual quality of the generated samples. To that end,
we conduct a number of evaluations of samples generated
at specific checkpoints. This will be further described in the
later sections.

Data preparation
Original datasets
Our main interest is generation and evaluation of poetry
in the style of a specific author. For that purpose we have
chosen two Romantic-era poets: Lord Byron and Percy
Bysshe Shelley. The datasets for both of them were cre-
ated from their collected works, downloaded from Guten-
berg.org (Project Gutenberg 2020), by removing all intro-
ductions, forewords, footnotes, generic Gutenberg text at the
end of the file, replacing all extended Latin characters with
a closest matching ASCII character (for example“ Ã” is re-
placed with “A”, “á” with “a”, etc.). Sequences of multiple
blank lines in the original text were replaced by a single
blank line. We have removed all metadata, i.e., page num-
bers and the end of line verse numbers. We have left the
poems’ titles and chapter numbers, since they contribute to
author’s ”style”, but also to preserve the separation of in-
dividual poems. Being aware of the destructive impact that
artefacts of poor pre-processing of data can have on the out-
put of GPT-2, we have paid particular attention to the task
of data preparation. Both the original and the pre-processed
datasets can be found on our online repository1.

Additionally, we have removed all plays, thus leaving
only poetic works. The purpose of this pre-processing was to
leave only the poetic text written by the authors themselves.

Setup 1 for visual and BLEU evaluations
We fine-tune all four GPT-2 models used in this study (Reg-
ular Small, LMH Small, Regular Medium, LMH Medium)
on both datasets (Byron and Shelley). For the visual and
BLEU evaluation in Experiments 1 and 2, we fine-tune the
GPT-2 models for 250K steps, generating 100 samples at
each 10K steps interval. The samples are generated with a
length of 1000 tokens (the maximum sample length for these
models is 1024 tokens). We generate only 100 samples at

1Our datasets and example outputs generated by GPT-2 are
available at:
https://github.com/PeterS111/
GPT-2-for-Byron-and-Shelley
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each checkpoint because of the time it takes to generate full-
length samples (for example the LMH Medium model run-
ning on Nvidia P100 GPU takes around 2 minutes per sam-
ple). Thus we obtain 8 sets of 2500 samples, four for each
author.

Setup 2 for BERT evaluations
Datasets for the visual and BLEU evaluations created in
Setup 1 have an insufficient number of samples per check-
point (only 100) to be used for training the BERT-based clas-
sifiers. For this reason, we create a separate set of 8 datasets
by fine-tuning all of our GPT-2 models on both datasets
for 10K steps and generate 1K samples at each 1K steps
checkpoint. We have chosen this span of checkpoints be-
cause it covers the sweet spot where the evaluation error is
at the lowest, and we can observe the quality of the samples
immediately before and after that point. Thus we obtain 8
datasets of 10K samples. The samples are limited to 600 to-
kens, since as we explain later, we use only the first 20 lines
of each sample in Experiments 3 and 4.

Part 1—Evaluation of the overfitted models
In this section, we analyse the impact of overfitting on the
quality of the produced samples. This is to emphasize the
importance of early stopping of the fine-tuning process and
to explore how the existing quantitative metrics (such as
BLEU) correlate with the overfitting of GPT-2.

Experiment 1—Visual evaluation of text quality
During this research, we have observed that while generat-
ing text with the full length possible, many samples come
with significant errors. We have decided to establish whether
there is any regularity in the production of the malformed
samples. For this purpose, we analyse the datasets from
Setup 1. From every 100 samples generated at a specific
checkpoint, 10 samples are selected at random and evalu-
ated manually by the authors using the following procedure:
when looking at the sample, we check at which point within
the sample the text becomes unintelligible or contains obvi-
ous errors. We take note of the line number where this hap-
pens, and we take note of the total number of lines in the
sample (including the blank lines at the end). Then we cal-
culate the percentage of the correctly produced lines. After
that, we calculate the average value for those 10 samples.
We repeat this for all 25 checkpoints. The results for both
datasets are shown in Figure 2. Examples of correct and mal-
formed samples generated in our experiments are available
on our repository.

We can see that the Regular models score almost 100%
across the whole range of fine-tuning checkpoints. For the
LMH models, the percentage of correctly generated text
within a sample is at its best at 10K and 20K checkpoints,
and after that, it rapidly decreases to around 35% for the re-
maining checkpoints.

We have observed that once the errors start appearing in
the samples generated by the LMH models, the remainder
of the sample is almost always malformed. In contrast, the
Regular models occasionally produce a few malformed lines

Figure 2: Results of the visual evaluation of text quality for sam-
ples generated from the Byron (top) and Shelley (bottom) datasets.

in the middle of the sample, but the subsequent text is con-
sistent again. The LMH models’ output does not have this
“self-repairing” property. We are aware that these results
could be different if much larger or much smaller datasets
were used for fine-tuning. The reason we chose datasets of
this size is because of our objective of style preservation of
an individual poet.

A well-formed sample with a Byron-style text of 1000 to-
kens usually spans around 45 to 80 lines in a text file. How-
ever, the malformed samples from the LMH models could
sometimes exceed 180 lines, of which often only around 30
lines at the top of the sample are of good quality. With the
Shelley-style samples, the malformed samples can exceed
250 lines, with more or less the same proportion of correctly
produced text. This is because the number of tokens per line
plummets, and many blank lines are inserted into the sam-
ple. This “stretching” phenomenon was not observed in the
samples produced by the Regular models. One could raise
a question whether these results were caused by poor data
pre-processing. This, however, is unlikely since our data pre-
processing was rigorous and comprehensive, as described in
the section on Data Preparation. Given the quality and fine-
ness of data used for fine tuning, it is clear that the errors in
the samples must be caused by the properties of the models
themselves.

Because of the malformed text in long samples, in the
subsequent experiments with the BERT-based classifiers, we
will limit the sample length to the first 20 lines of text from
each sample. This is because our goal in the second part of
this study is to evaluate only well-formed outputs, instead of
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learning to spot obvious errors, like repeated lines, garbled
and unintelligible text, etc.

The results of the visual evaluation in Figure 2 show a de-
ficiency of the LMH models after 10K-20K training steps
with these specific datasets. When these results are con-
trasted with Figure 1, one can notice a clear correlation be-
tween overfitting—quantified by a high evaluation loss in
Figure 1–and the ratio of malformed lines in Figure 2. Such
a correlation in not present in the results of the Regular mod-
els, however, and their results in Figure 2 do not detect any
malformed text according to the visual evaluation. For this
reason, we perform a BLEU evaluation in the next experi-
ment to see if the effect of overfitting can be uncovered in
the samples from the Regular models.

Experiment 2—What does the BLEU evaluation
tell us?
The visual evaluation has informed us that samples from the
Regular models appear to be correctly produced across all
the checkpoints from 10K to 250K fine-tuning steps, regard-
less of the increasing evaluation loss between those check-
points. But, are there any noticeable and measurable changes
in text quality between those checkpoints? In order to estab-
lish that, we perform a BLEU evaluation of those samples
against the original dataset.

Bilingual Evaluation Understudy (BLEU) was originally
designed to evaluate machine translation (Papineni et al.
2002), where we have the master translation of the sentence
in the source language, and a candidate translation produced
by the system. BLEU compares and counts the matching n-
grams between the master and the candidate, resulting in a
score between 0 and 1. The closer the score is to 1, the better
for the translation task because this indicates that the can-
didate translation is more similar to the master translation.
While not designed for that, BLEU is sometimes used to
evaluate text quality (Yu et al. 2017), but when used for this
purpose, it suffers from several deficiencies. Our objective,
however, is to measure only the n-gram based similarity be-
tween the samples and the original text. We therefore expect
that BLEU is an appropriate algorithm for our application
because we have two types of text to compare, albeit we in-
terpret the scores differently. Unlike in the translation tasks,
in our research, we are aiming at a lower score, which indi-
cates that fewer n-grams in the sample were copied from the
original dataset, thus demonstrating a higher level of origi-
nality. In other words, we treat the BLEU score as a plagia-
rism detector on the n-gram level, which would be quantified
by a high score. We use it to explore if there are any trends
in the averaged BLEU scores between consecutive check-
points. In our application of BLEU, we score each sample
against the original dataset, and then average the results,
similarly to what was proposed by (Yu et al. 2017) and im-
plemented by (Wesek 2019). The implementation of BLEU
used in our code was from the NLTK library2.

Like in Experiment 1, we follow Setup 1, and we use 100
samples for each checkpoint from 10K to 250K. Samples

2Natural Language Toolkit Documentation:
https://www.nltk.org/

Figure 3: BLEU scores for Byron (top) and Shelley (bottom) cal-
culated for samples with 1000 tokens length.

have the length of 1000 tokens. We compute BLEU for all
the 100 samples at each specific checkpoint, and we take the
mean of those values to obtain a single value per checkpoint.
Figure 3 shows that the BLEU score consistently increases
with the model fine-tuning steps for both Regular models.
This indicates an increasing similarity of the samples com-
pared to the original dataset, when the models are fine-tuned
for longer. This increasing BLEU score basically means that
GPT-2 plagiarizes n-grams from the original dataset. On the
other hand, the BLEU scores for samples from the LMH
models do not increase in the same way. This is because of
the increasingly high amount of the malformed text, which
prevents the BLEU score from rising. When we evaluated
the samples truncated to 200 tokens (which discarded all the
malformed text in the samples from the LMH models), the
increase of the BLEU scores for both types of models was
very similar. In other words, they consistently rose with the
number of fine-tuning steps.

Altogether, we have observed that overfitting in the LMH
models is easy to spot because the samples are malformed
in an obvious way, but we must remain cautious about over-
fitting the Regular models, where the results of overfitting
are not noticeable by our visual evaluation (Figure 2). Fur-
thermore, the samples from the Regular models appear to
be well-formed across all the checkpoints, while contain-
ing increasingly higher levels of plagiarized text or n-grams.
This means that both automated and human evaluators could
be misled by such outputs, since we cannot expect them to
have memorized the original text. As a result, it is advisable
to stop the fine-tuning process when the evaluation loss is
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minimised or soon after when the samples start to be well
produced after the initial learning of the model. Excessive
training can lead to plagiarised n-grams, with even entire
blocks of text repeated in GPT-2’s output for the numbers of
fine-tuning steps above 100K on our datasets.

A base requirement for GPT-2 to be creative is that it cre-
ates semantically and syntactically correct output. However,
one way for it to do so is to just copy the source material,
so high BLEU scores (or another measure for plagiarism de-
tection) can indicate that the system is moving away from
the novelty, which is also fundamentally necessary for cre-
ativity. As such, using a system like BLEU can be helpful in
experiments with GPT-2-based poetry.

Part 2—BERT evaluation of correctly
produced samples

In this section, we perform two experiments with a BERT-
based binary classifier to establish which of the four GPT-2
models used is best at replicating the authors’ style.

Experiment 3—Can fine-tuned GPT-2 outwit
BERT?
In this experiment, we aim to verify if GPT-2’s outputs can
be of a sufficiently high quality to confuse a BERT-based
classifier trained to distinguish the generated text from the
original work of a poet. The experiments in the previous sec-
tion have warned us about the plagiarized text (n-grams) in
the samples from the Regular models. This behaviour, how-
ever, starts to become prominent late into the fine-tuning
process, which, in our case, is well after 10K fine-tuning
steps. For this reason, the samples we evaluate in this ex-
periment are produced from checkpoints at 1K to 10K fine-
tuning steps, which is before the plagiarism starts having sig-
nificant impact.

Our previous experiments with the visual and BLEU eval-
uation have informed us that in the samples from the LMH
models, for most checkpoints, only the first part is of high
quality, and therefore, in this experiment, we use only the
first 20 lines of each sample. This is because our intention is
to apply BERT to the text that is correctly produced, and not
learn to spot obvious mistakes, like in the malformed sam-
ples. The original text of the author is also split into 20-line
fragments before it is fed into BERT, both for learning the
classifier and for prediction. For each BERT-classifier, we
prepared a dataset of 1K samples for each label, giving 2K
samples in total, where label 0 is for samples from the origi-
nal dataset, and label 1 for the samples generated by GPT-2.
The train/test/validation split is 70/25/5. We use “bert-base-
uncased” from the Transformers library, which is trained for
20 epochs, with the Adam optimizer, and a learning rate
of 2e-5. The average classification accuracy on test data is
taken as a final result of classification. Since our classifica-
tion problem is balanced, i.e. the input contains the same
amount of samples for both labels, we do not need to calcu-
late Precision, Recall and F1 scores, and we can rely solely
on accuracy. As described in the section on data prepara-
tion, we train the GPT-2 models for 10K steps and generate

Figure 4: Results of the BERT evaluation of the Byron (left) and
Shelley (right) checkpoint samples produced by the four different
GPT-2 models. Row 1 (top): Regular Medium models, Row 2: Reg-
ular Small, Row 3: LMH Medium, Row 4 (bottom): LMH Small.

1K samples at each 1K steps interval. This scope of check-
points encompasses the best evaluation loss for both types
of models (Figure 1). This allows us to observe the changes
in classification results for 10 checkpoints, with a separate
dataset of 2×1K samples for each checkpoint. Thus we train
ten BERT-classifiers for each dataset/GPT-2 model pair.

It is important to note how we interpret the results. In most
applications, the closer the values of accuracy are to 1, the
more desirable the performance of the classifier is. In this
experiment, however, the GPT-2’s output will be deemed to
be indistinguishable from the original text, when the BERT
classifier behaves like a random classifier. We know that a
random classifier has an expected accuracy of 0.5 in a two-
class problem. On the other end, an accuracy of 0 would
mean the model still distinguishes between classes. For these
reasons, the accuracy of 0.5 is our desirable target that can
be seen as the evidence of GPT-2’s high performance in gen-
erating high quality text. We can think of this as a sort of a
“Turing test”, which is successful when the BERT classi-
fier behaves like a random classifier. This adversarial eval-
uation approach has been used before in NLP with both
human (Köbis and Mossink 2021) and automated evalua-
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tions (Bowman et al. 2015).
Figure 4 shows the classification results for Byron and

Shelley’s datasets generated from all four GPT-2 models
used in this study. The results show that the Regular mod-
els perform well on all checkpoints on both datasets, but in-
terestingly the Regular Small model required 6K steps to
reach its optimal performance, while its lowest evaluation
loss is at 1700 steps (Figure 1). This indicates that we cannot
rely on the evaluation loss alone, but instead, we may want
to analyse the models’ output to establish the optimal early
stopping time. The LMH Medium model performs well on
Byron, but very poorly on Shelley. The LMH Small models
have the lowest scores on both datasets. Thus, the Regular
models appear to be a more reliable choice.

All models appear to have similar, stable performance
across all 10 checkpoints (Figure 4), and thus these results
do not correlate with the evaluation loss. This is because they
are for the numbers of fine-tuning steps when no strong over-
fitting is observed (Figure 1) and the BLEU scores did not
increase significantly yet (Figure 3).

In the next experiment, we use BERT and Setup 2 again
to compare the GPT-2 implementations, but using a different
experimental design.

Experiment 4—Which GPT-2 is better at
replicating the author?
In the previous experiment, we were classifying samples
from the original dataset (label 0) against samples from a
specific GPT-2 model (label 1). This gave us some indica-
tion as to which model is better at replicating the authors’
style.

Here, we propose a novel setup for text evaluation with the
BERT-based classifier. This time we take samples from two
different GPT-2 models, which we assign labels 0 and 1, and
we classify against them only the samples from the original
author’s writing. The accuracy is averaged, and it indicates
to which models’ output the samples from the original are
closer.

To train the classifier, we use the dataset of 1K samples
generated from two different GPT-2 models in a given pair
after 10K steps of training. We selected this number of fine-
tuning step because (according to our previous experiments)
both the evaluation loss (Figure 1) and the BLEU scores
(Figure 3) show that we are not comparing overfitted models
that plagiarize the original works. As explained before, only
the first 20 lines of each sample are used in this experiment
(see Setup 2). Just like in the previous experiment, we use
“bert-base-uncased” from the Transformers library, which is
trained for 20 epochs, with the Adam optimizer, and a learn-
ing rate of 2e-5. Every classifier is tested on an additional
test dataset of 1K samples randomly selected from the orig-
inal authors’ corpus, each sample 20 lines in length. The re-
sults are averaged, giving a single value of accuracy. This
value indicates which label the original dataset is closer to,
i.e., which GPT-2 generates text more similar to the original
work. Since we have four different models, we can create six
possible pairs (Table 2 and Table 3) for each dataset.

Since the class labels are 0 and 1, Tables 2 and 3 can
be interpreted in the following manner: when the score is

smaller than 0.5, then the model listed in the left column
wins, and conversely, when the score is greater than 0.5, then
the model in the right column is the winner.

Tables 2 and 3 show that the Regular Medium model wins
on both datasets. On the Byron dataset, the Regular Medium
model is clearly the best, Regular Small and LMH Medium
are both second best and appear to have very similar perfor-
mance, while LMH Small scores the lowest. This is consis-
tent with the findings from the previous experiment in which
the Regular models led to better results. Regarding the Shel-
ley dataset, the Regular Medium model again performs the
best, but the other three models have similar performance.
This could indicate that the LMH Small model performs bet-
ter on the Shelley dataset because it is much smaller than the
Byron dataset.

Label 0 Label 1 Score
Regular Medium LMH Medium 0.32

Regular Small LMH Small 0.08
Regular Medium Regular Small 0.32
LMH Medium LMH Small 0.09
Regular Small LMH Medium 0.51

Regular Medium LMH Small 0.08

Table 2: Results of Experiment 4. Byron’s work is classified using
BERT models trained on two types of GPT-2 generated data.

Label 0 Label 1 Score
Regular Medium LMH Medium 0.31

Regular Small LMH Small 0.49
Regular Medium Regular Small 0.28
LMH Medium LMH Small 0.54
Regular Small LMH Medium 0.49

Regular Medium LMH Small 0.31

Table 3: Results of Experiment 4. Shelley’s work is classified using
BERT models trained on two types of GPT-2 generated data.

To conclude this section, both evaluations with the BERT
classifier—the first being a sort of a “Turing test”, and
the second being our novel setup—show that the Regular
(OpenAI original release) models perform better in general.
While we have to watch out for Regular models’ tendency to
plagiarize text, they could be a preferred choice, especially
if we want to generate text with the full sample length of
1024 tokens.

Discussion
This pilot study represents initial explorations into investi-
gating GPT-2 from a computational creativity perspective.
The question of whether GPT-2 can generate high-quality
poetry (Lamb, Brown, and Clarke 2016), or creative poetry
(not necessarily the same goal, as reflected in (Jordanous
2018)), is much larger than the scope of this pilot study;
here we focus on the initial steps of model selection for
this domain and avoiding problems caused by and analysing
consequences of overfitting. One critique of a system based
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on generating the style of a known poet (Gervás 2011) is
how a poet’s style can diverge during their career. This crit-
icism deserves focused attention in our future work; it is
not a straightforward question to address and will benefit
much from collaboration with experts in English literature.
A quick attempt to solve this problem might involve train-
ing the model by tagging the dataset with indicators of which
period of the author’s writing the specific parts come from,
and then applying those tags during generation of poems.

A key question here is: is GPT-2 creative? Our work above
does not answer that question but gives us some material
to consider, which we structure according to the ‘Four Ps’
of creativity: Producer, Product, Process, Press (Jordanous
2016). GPT-2 can produce Products that might be deemed
creative, and it learns from a controlled Press (environment)
in the form of the input corpus (though it is not able to in-
teract more widely with its Press). The Process is (very) ar-
guably creative as an example of Boden’s exploratory cre-
ativity (Boden 2004). Does GPT-2 possess attributes of a
creative Person though? This is hard to claim; GPT was de-
veloped as a language model, not an AI system, and behaves
as a tool to assist a user. That being said: we see such poten-
tial to enhance future GPT-x systems through computational
creativity research, to make GPT more creative in its own
right.

A related question is: is the core task of generating new
poems in an existing author’s style a valid computational
creativity task. Brown and Jordanous consider exactly this
question in a new paper (Brown and Jordanous 2022), and
give an overall fairly positive answer; in particular, the ques-
tions we are addressing in this paper (in particular around
avoiding plagiarism and around ensuring high-quality out-
puts) provide some evidence that the task we are addressing
is non-trivial in important ways, and hence more likely to
require proper computational creativity effort.

Conclusion
In this study, we analysed the GPT-2 models’ outputs with a
twofold objective: 1) to observe how overfitting affects the
output of GPT-2, and 2) to compare the quality of the output
from various versions of GPT-2.

While working with deep neural networks, we are nor-
mally looking for the point of the lowest evaluation loss
because this is known to lead to the best generalisation
(Shalev-Shwartz and Ben-David 2014), though we also
know (Domingos 1998) that a bit of overtraining or more
complexity can lead to better results on a specific test
dataset. The lowest evaluation loss in our results happens
very early in the fine-tuning process, that is, before 10K
steps in each case. We have trained our models for much
longer (up to 250K steps) in order to observe how over-
fitting affects the quality of the generated samples. In the
case of the LMH models, overfitting manifests by produc-
tion of malformed samples. In the case of the Regular mod-
els, the samples are almost always well formed, even for
250K training steps. However, using the BLEU evaluation,
we have discovered that, with overfitting, the BLEU score of
the samples evaluated against the original dataset is contin-
uously rising, which means that samples contain higher and

higher levels of n-grams plagiarized from the original cor-
pus. Effectively, the samples are becoming a kind of collage
or pastiche of the original, instead of being fluently created.
Such samples could easily mislead both human and auto-
mated judges and make them believe that the samples are
“good”, while they simply contain text plagiarized from the
original sources. We should add that with extreme overfit-
ting observed after around 100K training steps, our GPT-2
models plagiarize even long blocks of text (e.g. 50 lines of
the original poem can be reproduced by a GPT-2 in many
runs; see our supplementary repository for specific exam-
ples). Overall, given that we know that machine learning
researchers recommend more complex models (Domingos
1998), we advice to stop the fine-tuning process as soon as
the samples start looking “good” after the initial learning of
the model, and to always check for plagiarism, which can
mislead metrics and evaluation that cannot flag plagiarism.

With regards to the second objective of automated evalu-
ation of samples to determine which GPT-2 model would be
preferred for poetry generation, we have used two different
setups of the BERT-based binary classifier. The first exper-
iment with BERT showed that Regular models are a more
reliable choice.

The second BERT experiment, which is our novel ap-
proach, in which we classify the samples from the original
dataset by the classifier trained on samples from two differ-
ent GPT-2 models, shows a clear advantage of the Regular
Medium model on both datasets. These results are consistent
with those of the first setup, and confirm the above findings
that the Regular models appear to perform better than LMH
models on style preservation tasks.

This study stresses the importance of applying various
methods of text evaluation. As of yet, we do not have a sin-
gle method that would tell us which text is “better”. Quan-
titative methods, like BLEU, can tell us about the repeated
n-grams, but they do not inform us about the creative qual-
ity of the text. Deep neural network classifiers offer a viable
solution, but they can be misled by plagiarised outputs that
would be indistinguishable from the original data. Based on
our findings, we advice to always use multiple methods of
evaluation.

The evaluation setups that we investigated require further
research. Will they still provide valid insights when applied
to Large and XLarge GPT-2 models, or even the larger mod-
els like GPT-3 or EleutherAI’s GPT models? Will they be
different when applied to much larger or much smaller fine-
tuning datasets? If different versions of BERT were used,
would they produce different evaluations? This is ongoing
research and we hope this study has offered useful insights
into the practicalities of evaluating GPT-2-produced text.

The overall contribution of this paper could be seen as
both to the AI tools for computational creativity and to the
methodologies, which seem to be quite intricate given that
the machine learning models lose their generalization capa-
bility when overfitted, and can, therefore, plagiarise easily.
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Köbis, N., and Mossink, L. D. 2021. Artificial intelligence
versus Maya Angelou: Experimental evidence that people
cannot differentiate AI-generated from human-written po-
etry. Computers in human behavior 114:106553.
Lamb, C., and Brown, D. G. 2019. Twitsong 3.0: Towards
semantic revisions in computational poetry. In ICCC, 212–
219.
Lamb, C.; Brown, D. G.; and Clarke, C. 2016. Evaluating
digital poetry: Insights from the CAT. In Proceedings of the
seventh international conference on computational creativ-
ity.
Lamb, C.; Brown, D. G.; and Clarke, C. L. 2017. A taxon-
omy of generative poetry techniques. Journal of Mathemat-
ics and the Arts 11(3):159–179.
Lee, J.-S., and Hsiang, J. 2020a. Patent claim generation
by fine-tuning openai GPT-2. World Patent Information
62:101983.
Lee, J.-S., and Hsiang, J. 2020b. PatentTransformer-2: Con-
trolling patent text generation by structural metadata. arXiv
preprint arXiv:2001.03708.
Lee, J.-S. 2019. Personalized patent claim generation and
measurement. arXiv preprint arXiv:1912.03502.
Li, P.; Zhang, H.; Liu, X.; and Shi, S. 2020. Songnet:
Rigid formats controlled text generation. arXiv preprint
arXiv:2004.08022.
Liao, Y.; Wang, Y.; Liu, Q.; and Jiang, X. 2019. GPT-
based generation for classical chinese poetry. arXiv preprint
arXiv:1907.00151.
Lieber, O.; Sharir, O.; Lenz, B.; and Shoham, Y. 2021.
Jurassic-1: Technical details and evaluation. White Paper.
AI21 Labs.
Loller-Andersen, M., and Gambäck, B. 2018. Deep
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Abstract

We present Spindle, a mixed initiative tool for author-
ing choice-based interactive fiction that targets Twine, a
popular framework for text-based storygames. Twine
artifacts have properties of both stories and games,
placing our system at the intersection of Automated
Game Design (AGD) and Automated Story Generation
(ASG). We construct a generative pipeline that involves
condensing narrative context into a compact represen-
tation in order to feed to a pretrained language model,
which we further fine-tune. We demonstrate that, by
maintaining narrative context in the prompt presented
to the language model, we can greatly improve over the
loss of long-term coherence that still plagues such mod-
els. Our story compression technique for representing
narrative context uses a handful of freely available nat-
ural language processing libraries and models, demon-
strating that such interpretive pipelines can be built with
limited computational resources and low cost. The re-
sulting tool is capable of producing full-text branch-
ing narratives, or of generating individual passages that
maintain a high degree of narrative coherence with the
prior passages. The framework we design is both lan-
guage model-agnostic and narrative theory agnostic, al-
lowing future researchers to easily expand on it with
new language models and story representations. We re-
lease our code under the BSD-4-Clause1.

Introduction
While large language models have proven capable of pro-
ducing highly coherent text for such purposes as auto-
completion and chat bots, less research effort has gone into
exploring the entirely new forms of media they enable. We
are interested in ludic spaces that may be created by ad-
vancements in language model-based story generation, and
present one such tool, a system for authoring interactive
fiction which allows for expressive interaction with an AI
model. By focusing on the experience of writing as a target
for AI augmentation as well as a source of entertainment,
this project is influenced by two fields of study: computer
mediated writing and automated game design, resulting in
a system that is both engaging and encouraging of narrative
experimentation.

1https://github.com/alex-calderwood/spindle

Our tool allows users to author interactive-fiction narra-
tives with the Twine framework, alternately ‘passing the
keyboard’ between the system’s language model and the
user at will. When queried, the system utilizes a method
of narrative compression to come up with an understanding
of the current thrust of the story, and uses that understand-
ing to condition the generation of the next passage. This
approach is novel in how it uses the compressed narrative
context to improve the coherence of generated narratives
through prompt engineering. Prompt engineering is a new
and understudied paradigm where pretrained language mod-
els are guided towards better responses by providing a suc-
cinct (often templated) prompt to the model at the time of
prediction (Reynolds and McDonell 2021). This method of
iterating on a series of prompts has been successfully used
in the computational creativity literature for text to image
generation (Liu and Chilton 2021).

Unlike many past story generation techniques, which gen-
erate a list of ordered plot events, our system generates fully
realized multi-passage branching narratives, with a capabil-
ity for mixed-initiative use. The generated passages follow
Twine syntax and include outgoing links (player decision
points) and corresponding passage titles. Generated pas-
sages display a level of narrative coherence that allows the
model to ‘yes-and’ the user’s apparent authorial intention,
while still enabling a degree of defamiliarization that results
from the composition of nearly appropriate text, an attribute
of AI writing which has been said to be prized by writers
including the novelists Robin Sloan and Sigal Samuel, who
respectively envision an AI writing assistant as “less Clippy,
more séance” and describe feeling “strangely moved” by AI
writing (Calderwood et al. 2020).

We fine-tune GPT-3, a model notable for its introduction
of meta-learning, or zero-shot learning, to language gener-
ation (Brown et al. 2020). Under the zero-shot paradigm,
queries consist of a small number of example (prompt, re-
sponse) pairs. Further, fine-tuning such a model allows it
to capture the grammar and stylistic accompaniments of a
structured corpus such as our dataset of Twine stories. The
model has notably been used to enable gameplay in AI Dun-
geon2, a text adventure game that allows arbitrary player in-
put (Hua and Raley 2020). Accessing the model through the

2https://play.aidungeon.io/
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OpenAI API and utilizing other open-source NLP packages,
we fine-tune our GPT-3 based models at a small fraction
of the cost of traditional NLP development, and all systems
easily run on an internet-connected laptop.

Background
Creating a Twine game is an act of writing as well as interac-
tion design; Twine games are ‘played’ by reading and read
through play, and generating these artifacts requires both
story and game generation techniques.

Automated Story Generation
Automated story generation has long been considered a
grand challenge of artificial intelligence. Early systems used
symbolic reasoning (Meehan 1977; Lebowitz 1987), often
utilizing hierarchical generation based on grammar rules
which provide model interpretability, clearly identifiable de-
sign spaces, easy extensibility, and little or no input data,
though they sometimes lack robustness (Black and Wilen-
sky 1979; Riedl and Young 2010). Tracery has found pop-
ularity as an author-focused generative text tool with non-
deterministic grammar production (Compton, Kybartas, and
Mateas 2015). When it comes to full stories, “hand-authored
templates are seen as insufficient for large scale narrative
generation” (Roemmele 2018), though the combination of
generative grammars with language modeling has not been
sufficiently explored. A major component of many narra-
tive generation systems includes a planner, a system that
searches for a goal story state from the current state to find
the series of narrative actions needed to bridge that gap (Por-
teous 2016; Young et al. 2013). StoryAssembler is a relevant
example of a system that uses a planner to generate Twine-
like interactive narratives (Garbe et al. 2019).

Utilizing statistical NLP, Chambers and Jurafsky (Cham-
bers and Jurafsky 2008) define the narrative cloze task as
the prediction of missing narrative events from an event
sequence, which they produced from short plot descrip-
tions. Their technique involves running a dependency parser
over a collection of plot summaries to produce grammati-
cal relationships, using these to extract a sequence of pred-
icates along with their subject and object noun phrases, and
then resolving these into ordered event chains. Pichota and
Mooney (Pichotta and Mooney 2016) build on this frame-
work, utilizing an LSTM architecture to extract (s, v, o,m)
event tuples from Wikipedia articles (corresponding to sub-
ject, verb, object, and modifier, respectively). “John and
Mary went to the store,” becomes (john, go, store, ∅). This
event list may be thought of as a high-resolution, but po-
tentially low accuracy, representation of the narratological
notion of a fabula, or the chronological ordering of events in
a narrative (Bal and Van Boheemen 2009).

Martin et al. follow this approach with a three part decou-
pled architecture: a system that extracts event tuples from
unstructured narratives, an event2event model that predicts
the next event predicated on the previous events, and an
event2sentence model which expands a sequence of events
back into natural language (Martin et al. 2018). To im-
prove the model’s performance, they used entity recogni-

tion to generalize characters and locations during predic-
tion, which were memorized and later in-filled. This work
serves as the closest inspiration for our approach. Our use of
modern large-pretrained language models allows us to com-
bine the event prediction and text generation steps into one
text completion step, and our narrative interpretation module
functions as a memory of important narrative entities with-
out the need for back-filling generalized text.

Many attempts at narrative generation focus just on the
production of language, but Mexica (Pérez and Sharples
2001) models creative writing as a cognitive process that
consists of engaged and reflective states. In the reflective
state, the model evaluates coherence, interestingness, and
novelty of the generated sequences for text refinement. Our
strategy utilizes reflexive interpretation to increase coher-
ence of the proceeding passages. Like the generation of
long-form text, automated interpretation of full stories has
proven challenging, not least because it relies on systems
such as long distance character co-reference resolution to be
of a high-accuracy. BookNLP (Bamman, Underwood, and
Smith 2014) is one of the few systems that approaches this
tough problem. Increasing the quality of generated stories
will likely need to incorporate global measures of coherence,
and will therefore likely require the semantic readings that a
system like BookNLP can provide.

The Virtual Storyteller System is a plot generation system
that used a director model to orchestrate emotional episodic
plots (Theune et al. 2003; Theune et al. 2004). The au-
thors imagine a user acting as a character within the narra-
tive, allowing them to influence the course of the story some-
what like a role playing game, not dissimilar to our mixed-
initiative writer model.

Relation to Automated Game Design (AGD)
Full-game generation has historically focused on games that
can be automatically analyzed with automated game players
or a stack of static evaluation criterion (Pell 1992; Browne
and Maire 2010; Cook, Colton, and Gow 2016). Such
game generators seek to maximize a particular optimization
function that guides search, which may be grammar-based,
constraint-satisfying, or evolutionary in nature. They often
utilize an intermediate Game Description Language (GDL)
(Schaul 2013; Summerville et al. 2018; Duplantis et al.
2021), typically a text representation that is designed to have
a high expressive range, produce interesting games a high
proportion of the time, and be suitable for automatic search.
Both Inform 7 and Ceptre can be viewed as narrative GDLs;
the former is used in the TextWorld framework (Côté et al.
2018). In our case, Twine’s Twee syntax3 is modeled and
generated analogously to these GDL’s. From it, the Twee
compiler targets interactive HTML.

The automated game players in AGD are intermediate
processes that form interpretations of games, similar to the
readings our system produces to conduct the narrative flow.

Cook et al. point out that most automatic game generation
scholarship has gone towards “objectives, obstacles, and the
notion of challenge” (Cook 2015). Game generators have

3Examples at: https://dan-q.github.io/twee2/tutorial.html
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Figure 1: A small Twine tree. The Start node (passage and links) was written by hand, further passages and titles were generated
by Spindle. For space, only passage titles links are shown.

recently begun exploring the hard problem of automatically
producing games with semantic, thematic, and cultural im-
port, rather than focusing on fun or challenge. In (Cook
2015), the authors point to narrow readings of the word
‘game’ as hampering fruitful experimentation in generative
systems. Unanswerable questions like “Is this a game?”, “Is
this a story?”, or “Is this art?” often surface at challenging
moments in the development of new expressive mediums,
defensively boxing-in existing endeavours rather than nur-
turing interdisciplinary growth. Game-O-Matic is the first
game generation system that attempts to reason about the
rhetorical relationships between objects that make up the
game, utilizing the theory of operational logics to build up
an understanding of possible player interpretations (Treanor
et al. 2012). Gemini takes this a step further, using an-
swer set programming to build up a proceduralist reading
of a game as it is generated, using that reading to influence
generation (Summerville et al. 2018). In (Cook 2021) the
authors attempted to generate games without scores, focus-
ing on the aesthetic experience of play. It is worth noting that
they found it challenging to determine their level of success
or generate through a broad expressive range, in part due to
the unclear notion of success.

Automatic game generation and games as a whole have
seen relatively slow adoption of language models. AI Dun-
geon is one notable exception (Hua and Raley 2020). A
few reasons for this may be that language models are un-
predictable, sometimes producing undesirable sexist, racist,
and otherwise inappropriate language. Twine games are his-
torically inclusive of explicit and otherwise non-normative
content (Harvey 2014), meriting a conversation about what
a nuanced treatment of complex social, sexual, and psycho-
logical issues looks like in the context of these models.

Additionally, getting these models to understand narra-
tive context is difficult, as we will see. Some work has been
done to use language models to evaluate text games (Côté
et al. 2018; Kostka et al. 2017a; Kostka et al. 2017b). Fan
et al. use neural generation to populate the world of a text-
adventure game (Fan et al. 2020), but did not attempt full
narrative generation. Earlier games such as Scribblenauts4

have used human specified corpuses as safer and more reli-
able tools for injecting language understanding into games.

4https://en.wikipedia.org/wiki/Scribblenauts

(Barros et al. 2019) used Wikipedia as a corpus to automat-
ically generate murder mystery games populated with char-
acters and appropriately themed puzzles.

Twine
Twine is a platform designed to give non-coders the abil-
ity to author branching interactive fiction narratives. Such
games are designed and written via a visual authoring
tool that positions narrative passages on an interface re-
sembling paper notes connected by strings on a corkboard
(Friedhoff 2013). Passages are Twine’s “equivalent of a
page in a Choose Your Own Adventure book” (Friedhoff
2013), containing markdown-style hyperlinks to other pas-
sages. Gameplay consists simply in clicking between pas-
sage links, which may simulate making narrative choices
for a first or third person character. Passages and links
are handwritten, as contrasted with more open-ended com-
mands available in parser games. Collections of Twine
games include the Interactive Fiction Database5 and itch.io6.

Mixed-Initiative Interface

Figure 2: Entry into the prototype interface.

Our system models writing a Twine story as constructing
a graph of passages connected by their respective links, first
soliciting a title and by-line from the author, and then mov-
ing into the authoring of the Start passage.

Spindle’s interface is designed to treat both the human and
machine as writers capable of drafting or refining passages

5https://ifdb.org/viewlist?id=ax0yq2ksub57ie7o
6https://itch.io/games/made-with-twine
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in the working story. The system maintains a ‘To Do List’, or
a fringe of outgoing passage titles that have yet to be drafted.

At present, the system’s primary interaction loop begins
by asking the user to select a passage title from the To Do
List. Passage selection is accomplished with arrow keys —
building a graphical UI is the focus of the next iteration of
the tool. Next, the user is asked to indicate whether they
would like to 1.) draft the passage body in a spartan text ed-
itor, 2.) indicate that the system should automatically gen-
erate the passage body using the narrative context stored for
that passage, 3.) view the passages thus far written by the
mixed-initiative system, 4.) generate N passages sequen-
tially from the head of the list, or 5.) conclude the writing
process, inserting placeholder text for unwritten passages.

The writer may for instance describe a branch point in an
adventure game, say, a description of a cave with many tun-
nels for the player to explore. The tool is designed not to
impose stylistic restrictions on the writer, so they may au-
thor link text in declarative or imperative styles (“You head
into the entrance covered in stalactites” vs “Enter the slimy
tunnel”) or any other text (“An unusual door”). Addition-
ally, the writer can override the link text with specific titles
for the linked passages so that “enter the cave” corresponds
to the more conventionally formatted title “The Cave”.

The author may want to immediately write some pas-
sages and generate placeholder text for the others. Alter-
natively, they may decide to have the system generate all
narrative branches recursively to create unplanned stories to
play themselves. Using the tool in this manner allows it to
produce ‘games that the developer wants to play’, which is
commonly cited as a reason game makers get into develop-
ment.

After a passage has been written by human or machine,
it is parsed by the system to ensure it is well-formed Twine,
and passed back to the writing protocol if not. In practice,
the models we train rarely produce malformed syntax.

When all passages have been written or writing is manu-
ally concluded, the system uses the Twee compiler to con-
vert the passages into playable HTML, saves those files, and
then launches the Twine game in the default web browser as
shown in Figure 3. At present, the games do not make use of
custom visual styling, though we imagine future work will
include conditionally generating stylesheets on the basis of
a game’s thematic content.

Formulating the Generation Problem
Twine stories can be thought of as directed graphs composed
of passages pi := (ptitlei , pbodyi ) connected to others by out-
going links. Each story contains a predefined Start node.
Any text in the body may be formatted as a link to a speci-
fied passage7.

The model should ideally be aware of all preceding text
in order to generate the next passage, according to the prac-

7Advanced Twine authors sometimes make use of macros or
custom Javascript code to allow conditional or stateful storytelling.
While language models have shown an ability to produce complex
code snippets, for simplicity we have excluded passages containing
these features.

Figure 3: A screenshot of a playable Twine game produced
by the system, corresponding to the tree in Figure 1

tice of automated feature engineering in which deep learn-
ing models themselves learn what information is relevant
to their predictions. In practice, it has been observed that
longer prompts decrease the coherence of completions in
large language models and many strategies for increasing
long form coherence have recently been proposed (Guan et
al. 2021; Cho et al. 2018). Prompt engineering therefore
necessitates a trade-off between including more information
that might be useful to the prediction, and not ‘overwhelm-
ing’ the model with too much text. State of the art text com-
pletion models typically allow no more than around 1024
words shared between the input (prompt) and output (com-
pletion). So we define two auxiliary functions whose pur-
pose is to condense preceding passages to a length that can
be ingested without a loss of coherence due to to this phe-
nomenon.

These abstract functions are implemented according to
authorial goals and narratological propositions. In our ex-
perimentation, we repeatedly iterated over their practical im-
plementation, each addition seeming to enhance narrative
coherence along some dimension.

A narrative reading R(pi) = ri is a representation of the
features most salient to the given passage. These represen-
tations can be arbitrarily complex, holding on to important
details such as characters and plot events, and stylistic fea-
tures such as tone or point of view, throwing away details
determined to be irrelevant.

Additionally, an explanation function X(pi) =
X(r0, ..., ri−1) = χpi

maps chains of narrative read-
ings to a plain text description χpi

of the narrative context
leading up to passage pi. A sequence of individual readings
r0, ..., ri−1 forms a context chain for a passage at depth i
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along the minimum spanning tree path between the passage
and Start, p0. The necessity of a plain text description falls
out of the paradigm of transfer learning: using an out of
domain model on a sub—or alternate—domain8. By trans-
forming our latent story representations into English, we
can plug in any large pre-trained model into the generation
pipeline, and ensure our code base is largely model agnostic.
Additionally, the narrative descriptions produced by this
intermediate stage of the system are highly interpretable, as
they are in plain English.

Text Preprocessing and Model Training
We use these X and R (implementations detailed in the next
section) to approximate a distribution L over the narratives
we aim to generate. We would like to provide the narrative
context to the model, alongside the title of the passage to be
generated: χp|ptitle in order to produce a pbody . Fan et al.
(Fan, Lewis, and Dauphin 2019) and others have shown that
preprocessing text—injecting external knowledge, adding
start and end tokens, and generalizing named entities—aids
in generating coherent stories.

Data Processing
To begin, we convert Twine binaries into Twee 2, to repre-
sent the interactive stories textually as in Figure 4. Gather-
ing sufficient Twee-formatted stories required modifying the
Twee source9 to handle decompilation from games natively
authored in the graphical Twine interface.

We split our collection of Twine stories into passages, ex-
cluding passages with macros and non-unicode characters.
Next, we run our narrative reader and explanation functions
on our corpus to produce textual descriptions of the story
up until this point. Finally, we build (prompt, response)
pairs for each passage by appending to the readings unique
start and end tokens unlikely to appear in the corpus (e.g.
start :=<∥start∥>):

prompt(p) = start|χp|ptitle|begin
response(p) = pbody|end

Of the 512 Twine stories downloaded from itch.io, only 82
were Twee decompilable, producing 10,784 passages with a
total of 11,098 embedded links.

Training
For each of the following experiments, we feed the pro-
cessed training examples to the OpenAI completion end-
point with the default meta-parameters: top p, temperature,
and best of all set to 1. Experimenting with a different top p
would retrieve multiple responses from the model, which
we could pick from based on some retrospective evaluation.
This is left for future work, as is providing the user with
temperature (stochasticity) control. Each experiment uses
GPT-3’s largest available 175B parameter davinci model,
resulting in three separate fine-tuned models. Fine-tuning

8https://ruder.io/state-of-transfer-learning-in-nlp/
9https://github.com/tweecode/twee

involves a limited retraining of a neural network’s weights
(until recently, this typically meant a selective retraining of
only the latter levels of a feed-forward network) (Howard
and Ruder 2018; Lester, Al-Rfou, and Constant 2021). Fine-
tuning through the API abstracts the typical machine learn-
ing workflow, which typically requires splitting data into
training and test sets, selecting an optimization function, and
tuning hyperparameters.

Running a fine-tune job is currently free and took under
three hours for each tune. The total cost incurred from us-
ing the models did not exceed $40, demonstrating that using
open-source language toolkits on top of fine-tuning existing
large language models is a viable way to cheaply develop
creative language applications.

Narrative Reader Development

In this section we present a series of increasingly sophis-
ticated implementations of the two interpretation functions
and example passages generated by each from the same Start
passage (Figure 4).

:: Start
A tornado devastated town. Now you, Robert,

and Maya are alone.
[[Head outside|take them outside]]
[[Continue to shelter at home.|tell them to

stay inside]]

Figure 4: Our example input passage setting up a story about
a tornado. Bracketed text indicates link text followed by the
passage linked. Double colons :: represent a passage title.

0. Naive Method

The first question we wanted to address was the capability
of a fine-tuned davinci model to generate grammatical Twine
stories, regardless of their narrative coherence. For this base-
line, X(p) returns no narrative context and passage bodies
are generated solely based on their corresponding title.

We found that fine-tuning the davinci model with this
narrative reader generated Twine stories with correct Twine
syntax with high reliability despite the medium size of our
tuning dataset. This freed us to refocus on the quality of
the generated narratives in subsequent definitions of R and
X . The passages are sometimes formatted with rich text that
we were surprised to see render appropriately through Twee.
Unsurprisingly, the passages followed English grammar and
storytelling conventions.

The passages generated naively were disjointed; Figure 5
shows subsequent passages completely diverging from the
tornado narrative. The only times any narrative continuity
was observed between passages was when the titles were ex-
tremely explicit. Additionally, passages switch perspective
and verb tense, introduce new characters and do not refer
back to previous characters.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

48



:: tell them to stay inside
<div id="day">
Day 49
</div>
You are in your car. You’re on your way to

pick up your daughter from daycare.
You’re still not ready to take this step.

The thought of leaving your child alone
for a whole day makes you cold.

You have a lot of work to do to finish your
project. You need to finish the sound
engine, implement a pathfinding system,
design the world generation...

Your free time is running short.
You need to finish your project. You need to

do it soon.
[[ok now im ready]]

:: ok now im ready
You look at your opponent. His eyes are

locked on you, a mixture of fear and
anticipation on his face. You draw your
sword and run towards him.

You both charge at each other, swinging your
swords wildly. You manage to land a few
hits, but he parries most of them.

Suddenly, he jumps back and cowers in
fear. "You can’t beat me", he cries. You
look down and see the cause of his

panic. You did a horrible job of
cleaning the blood of your opponent off
your sword. Horrible. You’ve been
defeated by a sword-swinging mop.

[[You’re done.|engstart]]

Figure 5: Two passages generated via the naive method did
not show continuity with the initial tornado passage (Figure
4) or each other, but demonstrate adherence to Twine syntax.

1. Zero-Shot Summarization
One concept for our narrative reader function was to use
GPT-3 as a zero-shot summarizer, defining X and R accord-
ing to Equations 1 and 2.

R(pi) = ZeroShot(pi) (1)
X(r0, ..., ri−1) = r0|...|ri−1 (2)

Using davinci, our ZeroShot summarizer produced ac-
curate single sentence summaries of complex multi-
character passages using the following prompt scaffold:

My job is to summarize short stories
into a single sentence. Here is an
example of a longer story:

"""
<Passage Text>
"""
This is my one-sentence summary:
"""

While this prompt engineering approach to summa-
rization was promising with davinci, we did not have

the resources to perform the summarization to produce
(prompt, response) pairs on our full dataset. Davinci is
10x the cost of the next largest curie model, which tended to
simply produce the first sentence of the passage rather than
an accurate summarization. In order to fine-tune the model
with the ZeroShot narrative reading function, we would need
to generate a summary for all 10,784 passages in our tuning
dataset. Since OpenAI’s pricing model charges per gener-
ated token, this was prohibitively expensive with the davinci
model.

2. Entity Recognition

:: tell them to stay inside
You go back out to the hallway, where your

best friends are waiting.
"Are you crazy?" asks Robert. "You said it

was a trap!"
"It probably is a trap," you admit. "But I

can’t just leave them in there."
Maya just looks at you with big, sad eyes.
"Please," she says. "just this once."
You sigh. "I don’t know, Robert. I’m not

going to be able to sleep if I know you
two are in danger."

"Like you sleep anyway," says Robert. "What
if something happens to us and you don’t
even know?"

"Can’t we at least try to alert the [[unggoy
]] about the danger first?" you ask.

:: unggoy
"Ain’t you the one who told me to ’keep my

head up lowbrows’ and all that?"
[[Well, I’m just looking out for you.|

another1]]
[[I have a solution.|another1]]

Figure 6: Passages generated via the entity recognition
based reader from the same input passage as before.

For our next experiment, we define our narrative reading
as

R(p) := (qp, cp, lp) (3)
where c was the set of characters referenced in the passage,
l the set of locations, and q, the set of pronouns (“they”,
“you”, “she”, etc.). These were extracted from passage text
using the python spacy library for part of speech tagging and
a pretrained BERT model10 for state of the art entity recog-
nition (Devlin et al. 2019). The explanation function X
counted the characters and locations in the context chain and
wrote the most frequent (top 8) of each to short sentences of
the form: “Locations mentioned: ..., Characters mentioned:
... Pronouns referenced: ...”.

This model proved capable of generating passages that
consistently referred back to previously mentioned locations
and characters (Figure 6 mentions ‘Maya’ and ‘Robert’ from
the previous passage), adding a sense of social and spatial

10https://huggingface.co/dslim/bert-base-NER
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continuity to the stories. However, the passages generated
still do not often follow the narrative, or if so, only loosely
or by chance.

3. Event Extraction / Fabula
For the final experiment we report, we utilize the event ex-
traction methodology of (Martin et al. 2018).

:: tell them to stay inside
"It’s dangerous out there!" you scream. You

feel weak, but you manage to stand.
Maya and Robert look at you in shock. "You

can’t be serious!"
"I have to do something!" You say. "I have

to protect everyone!"
You turn and rush back outside. You ignore

the searing pain in your back and [[seek
out the children]]

:: seek out the children
You find a house with no roof and only

walls left. What was once a house is
now just a pile of rubble. You find a
group of around 20 children huddled
together. They are crying and shaking.
What do you do?

[[you try to talk to them]]
[[you leave them alone]]

Figure 7: Passages generated via the fabula reader.

We expand on our previous narrative reader (Equation 3)
with the following:

R(p) := (qp, cp, lp, ep) (4)

where ep is an ordered list of (s, v, o) triples extracted from
the passage.

X is defined similarly to the previous section, with the
addition of a bulleted list of events, written in plain text as
in Figure 8.

Thanks to modern NLP libraries, this reader architecture
is cheap to run even on a CPU. Here, it does not directly pre-
dict event ei+1from ei, as in (Martin et al. 2018), who use
a further LSTM model to expand predicted events into sen-
tences. Rather, the pretrained language completion model,
when fine-tuned on a corpus of (prompt, response) pairs
that include this event list, is expected to jointly learn next-
event likelihood alongside Twine grammar.

To reduce the prompt length (necessitated by the discus-
sion in the section Formulating the Generation Problem), we
apply the following crude reduction algorithm to produce a
new event list for X . We chose 32 as a constant following
initial tests and intuition.

func reduce(events):
while length(events) > 32:
events = events[::2] // every other event

The effects of this necessary reduction step means that im-
portant events may be omitted from the fabula presented as
context to the model. It is an active area of NLP research to
find mechanisms to reduce the length of the prompt given to
a text generation model while discarding only less important
details. One may for example imagine a system for sifting
events based on perceived relevance to the current passage.

<|begin|>Pronouns referenced: you, yourself,
anyone, and everyone. Mentioned

Locations: None. Mentioned People: Katie
. Preceding Events:

* you packed bag
* you asked mom
* you tried not to look at anyone in the

eyes
* you shove bag
* you use body weight
* you hear sound
* it gives way
* plane begins to move
* you feel hand<|title|>:: offering support

<|start|>

Figure 8: An example prompt produced through the fabula
reader.

However, the passages generated by this version of the
model seem to appropriately introduce new characters and
back-reference existing ones (‘Maya’, ‘Robert’ in Figure
6). It tends to stay on topic, with the deeper passage in
Figure 6 appropriately following the tornado theme with-
out overtly mentioning it. This example also demonstrates
the model’s tendency to follow the Twine convention of pre-
senting branch points that represent straightforward charac-
ter actions at the end of a passage, often weighted by con-
siderations of exploration and morality.

Discussion
Generating Twine Stories
The project was originally motivated by asking if Twine syn-
tax could be modeled in a straightforward way, and when
GPT-3 was brought on board to bootstrap the process, it be-
came clear that syntax was a trivial problem, inter-passage
fluency was very high, and intra-passage coherence was the
problem to solve. This required an exploration of the story
generation literature. In iterating on our narrative reader for-
mulation, we demonstrated that multiple theories of narra-
tive can be substituted into this generative framework and
that pairing the interpretive system with prompt-engineering
is a fruitful methodology for language model based interac-
tive story generation.

The Authoring Experience
Using the tool to write interactive fiction is itself a fun,
game-like experience. The feeling of having primed the
model to generate something interesting and coherent within

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

50



the given narrative context is uniquely pleasurable, some-
what like having succeeded in having an interesting con-
versation with a stranger, resulting in the discovery of new
opportunities for directions to take your writing. High co-
herence is not the only goal in building the model however;
unexpectedness is also key (Table 1). The hope is that a tool
like this might be useful for professional writers as well as
novices looking for inspiration, writing assistance, and for
those who would rather experience a custom Twine story
than write one.

Passage Coherence User Response

Incoherent; random Annoyance, Confusion
Mildly Coherent; unex-
pected

Defamiliarization, Curiosity

Coherent; unexpected Amusement, Joy, Ideation
Coherent; expected Boredom

Table 1: Based on informal testing with 6 users, we iden-
tified a few common user responses to the various levels of
coherence the models produce.

Limitations and Future Work
As we’ve established a method for using automated narrative
readings to guide narrative text generation, it is clear that
there are many additional theories of narrative that could be
used instead of the fabula + entity method we arrived at.
Such possible readings include formalist theories such as the
SIG (Elson 2012), reader-response models (Castricato et al.
2021), or frame-based computational readings (Peng et al.
2021). Our earlier experimentation with other unsupervised
summarization methods did not yield promising results, but
a reviewer points out that this should be formally evaluated,
and recent non-GPT abstractive summarization techniques
such as those found in (Alomari et al. 2022) may suffice
11). The fabula-based event structure we arrived at does not
encapsulate a total understanding of narrative and we look
forward to experimentation with many other representation
formats.

Mawhorter et, al. has introduced the theory of choice po-
etics, “a formalist framework for understanding the impact
of narrative choices on the player experience via their op-
tions, their outcomes, and how those relate to player goals”
(Mawhorter et al. 2018). Its application to this work seems
clear; we might model the sequence of choices that led to the
present passage as an additional component of the reading.

Recent work has shown complex world state may be
learned from a story via semantic role labeling, which can
be used to populate knowledge graphs about the story world,
and then stories can be generated such that they reduce dif-
ferences between the current story world graph and a given
goal graph (Peng et al. 2021). This approach is an extremely

11such as RefSum (Liu, Dou, and Liu 2021) or gensim’s Tex-
tRank summariser (tinyurl.com/2s35hcr4

promising approach to story generation. Integrating a simi-
lar knowledge graph parsing approach into our architecture
is an obvious next step, as is integrating a symbolic planner
to reason over inferred narrative semantics.

Additionally, we are working towards a front-end inter-
face that will allow for a more seamless revision-iteration
loop for more lively or dynamic interaction with the written
text. This will enable us to conduct a user study to assess
the quality of the written work and the experience of work-
ing with the tool.

Finally, the evaluation of story text coherence beyond
qualitative analysis needs to be addressed. Story coherence
is generally assessed with human evaluation, though auto-
mated analysis of new character introduction or scene/object
permanence may be possible. Without these evaluations, we
are unable to make objective statements about the increase
in narrative coherence we see from the baseline narrative
reader to the fabula approach.
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Abstract 

A previous paper presented Witscript, a system for gen-
erating conversational jokes that rely on wordplay. This 
paper extends that work by presenting Witscript 2, 
which uses a large language model to generate conver-
sational jokes that rely on common sense instead of 
wordplay. Like Witscript, Witscript 2 is based on joke-
writing algorithms created by an expert comedy writer. 
Human evaluators judged Witscript 2's responses to in-
put sentences to be jokes 46% of the time, compared to 
70% of the time for human-written responses. This is 
evidence that Witscript 2 represents another step toward 
giving a chatbot a humanlike sense of humor. 

 Introduction 

To be truly enjoyable and credible, a conversational agent 
like a social robot needs to produce contextually integrated 
jokes about what's happening at the moment (Ritschel, 
Aslan, Sedlbauer, and André 2019). 
    Existing computational humor systems can generate 
conversational jokes that depend on wordplay. But generat-
ing jokes that don't rely on wordplay has proven to be more 
difficult. Indeed, generating all types of humor is often 
regarded as an AI-complete problem (Winters 2021). Nev-
ertheless, Witscript 2 is a novel system for automatically 
generating contextually integrated jokes that are based not 
on wordplay, but on common sense. 

Related Work 

Few systems for the computational generation of verbally 
expressed humor can generate contextually integrated 
jokes, such as jokes improvised in a conversation. The 
term verbally expressed humor is used here to mean humor 
conveyed in language, as opposed to verbal humor, which 
is sometimes used to mean humor that depends on word-
play (Ritchie 2000). 
    The method of Zhang, Liu, Lv, and Luo (2020) gener-
ates a punch line given a set-up sentence and relevant 
world knowledge. But its effectiveness is limited because it 
does not incorporate explicit humor algorithms. The sys-
tem of Ritschel et al. (2019) transforms a non-ironic utter-
ance into a humorously ironic version using natural lan-
guage processing and natural language generation tech-
niques. Zhu (2018) uses search engine query statistics to 
generate a response to a user's utterance that is humorously 
improbable given the subject of the utterance. The PUNDA 

Simple system (Dybala, Ptaszynski, Higuchi, Rzepka, and 
Araki 2008) and the Witscript system (Toplyn 2021) gen-
erate joke responses in a conversation, but those jokes rely 
on wordplay. 
    In contrast, the Witscript 2 system uses explicit humor 
algorithms to generate, in real time, conversational jokes 
that rely on common sense instead of wordplay. 
    One of those humor algorithms, derived from the Sur-
prise Theory of Laughter (Toplyn 2021), specifies that a 
monologue-type joke has these three parts: 
1. The topic is the statement that the joke is based on. 
2. The angle is a word sequence that smoothly bridges the 

gap between the topic and the punch line. 
3. The punch line is the word or phrase that results in a 

laugh. It's an incongruity at the end of the joke that, sur-
prisingly, turns out to be related to elements of the topic. 

 
    Witscript 2, like Witscript, incorporates the Basic Joke-
Writing Algorithm (Toplyn 2021), which consists of five 
steps for writing a three-part joke: 
1. Select a topic. A good joke topic is one sentence that is 

likely to capture the attention of the audience. 
2. Select two topic handles. The topic handles are the two 

words or phrases in the topic that are the most attention-
getting. 

3. Generate associations of the two topic handles. An 
association is something that the audience is likely to 
think of when they think about a particular subject. 

4. Create a punch line. The punch line links an associa-
tion of one topic handle to an association of the other 
topic handle in a surprising way. 

5. Generate an angle between the topic and punch line. 
The angle is text that connects the topic to the punch 
line in a natural-sounding way. 

 
    Now I'll describe how the Witscript 2 system executes 
the five steps of the Basic Joke-Writing Algorithm. 

Description of the Witscript 2 System 

The Witscript 2 system is powered by a large language 
model, OpenAI's GPT-3 (Brown et al. 2020). The most 
capable GPT-3 model currently available is used, the text-
davinci-002 model. GPT-3 was trained on a filtered 
version of Common Crawl, English-language Wikipedia, 
and other high-quality datasets. I accessed GPT-3 via the 
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OpenAI API (https://openai.com/api/) and did 
not fine-tune the model. 
    Here's how Witscript 2, using GPT-3 components, exe-
cutes the Basic Joke-Writing Algorithm to generate a joke 
response to a conversational topic: 
1. Select a topic. Witscript 2 receives a sentence from a 

user and treats it as the topic of a three-part joke. For 
example, the user tells the system, "The U.S. is planning 
to buy 22 aging fighter jets from Switzerland." 

2. Select two topic handles. The GPT-3 API is called with 
a prompt to select the two most attention-getting nouns, 
noun phrases, or named entities in the topic. From that 
example topic, GPT-3 selects the topic handles "fighter 
jets" and "Switzerland." 

3. Generate associations of the two topic handles. The 
GPT-3 API is called with a prompt to generate a list of 
associations for each topic handle. In our example, for 
"fighter jets" GPT-3 generates a list including "F-22 
Raptor." For "Switzerland" it generates a list including 
"Swiss chocolate." 

4. Create a punch line. The GPT-3 API is called with a 
prompt to select one association from each list and com-
bine them. In our example, GPT-3 selects "F-22 Raptor" 
and "Swiss chocolate" and combines them to create the 
punch line "Swiss Chocolate F-22s." 

5. Generate an angle between the topic and punch line. 
The GPT-3 API is called with a prompt to generate a 
joke, based on the topic, that ends with the punch line. 
In our example, the system generates the joke "I hear 
they're delicious Swiss Chocolate F-22s." The system 
responds to the user with the joke. 

System Evaluation 

To evaluate Witscript 2, I used the same methodology and 
13 input topics that were used to evaluate Witscript (Top-
lyn 2021). For a new baseline, I used the text-davinci-002 
model of GPT-3; for each input topic, the GPT-3 API was 
called with the prompt "Generate a short response." 
    I hired workers via Amazon Mechanical Turk (AMT) to 
evaluate the responses generated by GPT-3 and Witscript 
2, and also the responses of Witscript and a human comedy 
writer that are listed by Toplyn (2021). None of the 13 in-
put topics were used in any prompts given to the GPT-3 
API. I specified that the AMT workers had to be located in 
the United States and have a Human Intelligence Task 
(HIT) Approval Rate greater than or equal to 95%. 
    The 52 input and response pairs were put in a random 
order and presented in that same order to all of the AMT 
evaluators, who were not told how the pairs had been ob-
tained. Given each input and response pair, the evaluators 
were asked to rate the response as either 1 (not a joke), 2 
(almost a joke), 3 (a joke), or 4 (a very good joke). 
    Each input and response pair was evaluated by 15 AMT 
workers (780 ratings total). Table 1 shows the first re-
sponse that was output by the three systems for each input, 
along with the human's response. All the responses were 
transcribed exactly as they were output. The mean rating 
given by the evaluators for each response is also shown. 
 
 
 
 

Source Input and responses Rating 

 1. Input: A man pulled out a gun at a Popeyes restaurant when he heard they had no more chicken 

sandwiches. 

 

GPT-3 This is ridiculous! People need to learn to control themselves. 1.80 

Witscript Popeyes gun? Um, not a Bubba Gun.   2.53 

Witscript 2 The man was arrested and charged with "attempted Cajun Fried Chicken." 2.47 

Human He also objected to any new laws on bun control.   2.40 

 2. Input: America’s national forests are being severely damaged by the illegal growing of marijuana.  

GPT-3 This is a huge problem that needs to be addressed. 1.53 

Witscript America marijuana? Yah, so now he wants to be not in Canada cannabis.   2.20 

Witscript 2 The worst part is the people doing it are just "smoking weed in the trees." 1.73 

Human Which explains the new Forest Service mascot, Tokey the Bear.   2.33 

 3. Input: For Oktoberfest, Adidas is releasing sneakers that repel beer and vomit.  

GPT-3 That's pretty slick! 2.27 

Witscript Adidas vomit? Ah, I like the Puma poop.   2.80 

Witscript 2 Budweiser Puke. 2.07 

Human And they’re changing their slogan to “Just Spew It.”   2.60 

 4. Input: Two men were arrested in the theft of a hundred thousand diapers.  

GPT-3 This is a serious crime. If convicted, the two men could face significant jail time. 1.60 

Witscript Theft diapers? Like, they stole stroller.   2.00 

Witscript 2 The headline should have read: "Pampers & Robbers." 2.80 

Human They were charged with potty larceny.   2.93 

Table 1: Responses generated for each input, with the mean rating of each response on a scale from 1 (not a joke) to 4 (a very good joke). 
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 5. Input: It's the twenty-fifth anniversary of the Blue Man Group.  

GPT-3 That's so cool! 1.60 

Witscript Blue anniversary? Heh, welcome to the Bluebilee.   2.73 

Witscript 2 And they're celebrating their Blue Wedding Anniversary. 2.13 

Human To celebrate, they’re starting their own health plan: Blue Man Blue Cross Blue Shield.   2.87 

 6. Input: Thirteen TGI Fridays were selling cheap liquor in premium brand bottles.  

GPT-3 That's a lot of TGI Fridays. 1.93 

Witscript Thirteen Fridays? Okay, but I prefer a nine night myself.   2.67 

Witscript 2 The good news is that they're now serving "Drunken Wings." 2.47 

Human The company claims it’s a new promotion: TGI Fraudays.   2.73 

 7. Input: At a zoo, the first rhinoceros ever conceived by artificial insemination was born.  

GPT-3 How wonderful! 1.53 

Witscript Rhinoceros insemination? Mmm-hmm, welcome to the zoosemination.  1.93 

Witscript 2 The baby rhino's parents are so excited, they can't wait to show him off to their friends. They're going to take 

him to the in vitro rhinoceros horn. 

2.27 

Human Usually rhinos are conceived using that dating site for large mammals, Ashley Mastodon.   2.53 

 8. Input: Dow Chemical is turning raw sewage into drinking water.  

GPT-3 Dow Chemical is turning raw sewage into drinking water. This is a great way to recycle water and help save 

the environment. 

1.87 

Witscript Dow Chemical drinking? Yup, so not Dowing.   2.33 

Witscript 2 I'm not sure if that's a good thing or a bad thing, but they're calling it the 'Dow Jones Industrial Fountain.' 1.80 

Human To make it more appealing, they’re calling it Pooland Spring.   3.13 

 9. Input: A new study says drinking sugar-sweetened beverages increases the risk of death.  

GPT-3 This is yet another reason to avoid sugary drinks! 1.73 

Witscript Beverages risk? Huh, I have to focus on drinks risks.   2.20 

Witscript 2 The study was sponsored by "Coca-Cola funeral." 2.07 

Human That's why they're renaming that soft drink Coca-Coma.   2.53 

 10. Input: In one of its restrooms, the Guggenheim Museum is installing a solid gold toilet.  

GPT-3 This is an interesting bit of news. 1.80 

Witscript Gold toilet? Yep, to make a toilet pure.   2.33 

Witscript 2 "The Golden Throne." Yeah, it's a little gaudy, but it's perfect for a museum that's already full of crap. 2.93 

Human It’s perfect for people who have just eaten 24 carrots.   3.20 

 11. Input: A brewery apologized for a beer that shares the same name as a Hindu deity.  

GPT-3 The brewery has issued an apology and is taking steps to rename the beer. 1.73 

Witscript Shares Hindu? Heh, no Sikh stock.   2.07 

Witscript 2 I guess they should have seen that one coming. Now they're getting hammered for "Beer Brahma." 2.33 

Human No word yet on their plans for their other beer, Buddha-weiser.   2.73 

 12. Input: A truck was stolen that contained half a million dollars' worth of handbags.  

GPT-3 This is a serious crime with significant financial implications. The truck and its contents should be recovered 

as soon as possible. 

1.73 

Witscript Truck handbags? Yep, of vanbags.   2.13 

Witscript 2 The truck was a Ford Vuitton. 2.73 

Human The thief was arrested and the handbags were charged as accessories.   3.07 

 13. Input: A man was caught during a home burglary wearing only lingerie.  

GPT-3 This is an outrageous story! 1.67 

Witscript Burglary lingerie? Yes, and the burglaries bikinis.  2.47 

Witscript 2 Victoria's Secret police report. 2.60 

Human He was charged with panty larceny.   2.93 

Table 1 (continued). 

 

Table 2 compares the systems based on their ratings. The 
second column shows that Witscript 2's responses were 
rated, on average, about halfway between those of the 
GPT-3 baseline and the human, a professional comedy 
writer. Witscript 2's responses were also rated, on average, 

the same as Witscript's responses, a result that may not 
seem particularly impressive. But that result is encouraging 
because it shows that Witscript 2 can create jokes that are 
as successful as, but more sophisticated than, mere word-
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play jokes, which are usually regarded as the low-hanging 
fruit of computational humor. 
    The last column of Table 2 shows the percentage of re-
sponses that the evaluators rated as "a joke" or "a very 
good joke." Witscript 2's responses were judged to be jokes 
46% of the time, compared to only 25% of the time for the 
GPT-3 baseline responses. This result, too, is encouraging 
because it is additional evidence that a system to generate 
contextually integrated jokes is feasible. 
 

System Mean rating % jokes (ratings of 3 or 4) 

GPT-3 1.75 25.1% 

Witscript 2.34 47.2% 

Witscript 2 2.34 46.2% 

Human 2.77 70.3% 

Table 2: Comparison of the systems based on their ratings. 

Discussion 

Computational Creativity 

I believe that the Witscript 2 system demonstrates compu-
tational creativity instead of mere generation because its 
output exhibits three characteristics: novelty, value, and 
intentionality (Ventura 2016). 
    The system's output has novelty because each contextu-
ally relevant joke that the system improvises in response to 
a new input has almost certainly never been created before 
by it or by any other agent.  
    The system's output has value in that human evaluators 
judge the system's responses to be jokes 46% of the time, 
and conversational jokes like those output by the system 
have worth and usefulness (Dybala et al. 2008). 
    And the system produces that novel, valuable output 
with intentionality in several ways: It restricts its genera-
tion process by using domain knowledge about how a pro-
fessionally-written joke is structured. It generates jokes in 
an autonomous fashion by using a language model prompt-
ed with an inspiring set consisting of quality examples, 
namely professionally-written jokes. Finally, it apparently 
employs a fitness function to intentionally filter out joke 
responses that don't meet some threshold of value. 
    For example, given the topic "Today the Arby's fast food 
chain announced the release of a vodka that tastes like their 
French fries," Witscript 2 responded, "The good news is, 
now you can get drunk and fat at the same time." In doing 
so, it deliberately rejected the punch line that it had gener-
ated using the Basic Joke-Writing Algorithm: "Smirnoff 
and McDonald's." Instead, it improvised a different punch 
line and created a joke that it somehow decided was more 
worthy of being output. 

Commonsense Knowledge 

In addition to computational creativity, Witscript 2 demon-
strates commonsense knowledge. This commonsense 

knowledge consists of knowledge of everyday com-
monsense relations. 
    For example, in generating the joke about the fighter jets 
from Switzerland, Witscript 2 exhibits taxonomic reason-
ing (Davis and Marcus 2015) when it infers that "F-22 
Raptor" is an instance of "fighter jets." In terms of the 
commonsense relation types in the commonsense 
knowledge graph ATOMIC 2020 (Hwang et al. 2021), 
Witscript 2 humorously infers that a physical object from 
Switzerland would be made of ("MadeUpOf ") a material 
commonly found in ("AtLocation") Switzerland, i.e., Swiss 
chocolate. Witscript 2 also infers that a physical object 
made of Swiss chocolate would be ("HasProperty") deli-
cious. 

Contributions 

This paper makes the following contributions: 
1. It introduces a novel system for automatically improvis-

ing contextually integrated jokes that don't depend on 
wordplay. 

2. It shows how computational humor can be implemented 
with a hybrid of a large language model and symbolic 
AI, where the symbolic AI incorporates expert 
knowledge of comedy domain rules and algorithms.  

3. It demonstrates that generating humor that relies on 
some commonsense knowledge may not be an AI-
complete problem. 

Future Work 

I anticipate that future work will improve the performance 
of Witscript 2 until its jokes based on common sense are 
rated better than the wordplay jokes of Witscript. To that 
end, work will be directed toward getting Witscript 2 to 
execute the Basic Joke-Writing Algorithm more effective-
ly. 
    To accomplish that, the following will be explored: us-
ing different prompts and configuration settings for base 
GPT-3 models; fine-tuning base GPT-3 models to create 
multiple customized versions, each version optimized to 
carry out one joke-writing step; and substituting different 
large language models for GPT-3. 

Conclusion 

The Witscript 2 joke generation system could be integrated 
into a chatbot as a humor module; the proprietary software 
is available for license. Such a humor-enabled chatbot 
might potentially animate an artificial, but likeable, com-
panion for lonely humans. 
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Abstract 

Every expressive medium allows us to ground meaning 
in different ways. Comics, or the so-called 9th art (after 
film and TV), are sequential integrations of words and 
images that offer more possibilities than either words or 
images alone can offer. Like any art form, comics settle 
into clichéd norms – panels, balloons, tails – and give 
rise to genres that dominate at the expense of all others, 
such as the superhero genre. Yet comics can also use a 
vivid emotional expressivity to imbue physical actions 
with potent feelings, lending intuitive immediacy to the 
gamut of human concerns. This paper considers comics 
as both a medium for automated story-telling and as a 
meaning representation from which machines can shape 
specific meanings for particular audiences. We propose 
two XML standards for communicating via comics: one 
to define an underlying narrative, and another to define 
the comics derived from it. The latter uses a repository 
of visual assets to convey actions and emotions, placing 
posable characters against a backdrop of stock settings. 
We show how a combinatorial approach accommodates 
all of the outputs of an automated story-generator, and 
also explore how it adapts to the very human exchanges 
of an online debate, such as the fractious Twitter debate 
on vaccines. Comics appear to be a practical medium in 
which to make targeted interventions into a polarizing 
debate, to present opposing points of view to each side.   

 See You In The Funny Pages 
Although frequently packaged in a disposable form, comics 
have been described as a sequential art by Eisner (1985) – 
for whom the Eisner prize in comics is named – and as the 
ninth art by Maurice De Bevere, the creator of Lucky Luke. 
At its simplest, a comic strip is a sequence of framed snap 
shots, called panels, separated by thin bands of whitespace, 
called gutters. Each panel is usually square or rectangular, 
typically framed in a black border, and sometimes labeled 
with a caption above or below the scene depicted within. A 
typical panel contains a mix of textual and visual elements, 
to depict a specific action in a certain setting, and to record 
any words that are spoken (or privately thought) in context. 
Those words are most often contained within text balloons, 
either rounded speech balloons or fluffy, cloud-like thought 
balloons, whose tails link them to the vocalizing characters. 

 These conventions have become the stuff of cliché, but 
as McCloud (1993) has shown, this normative grammar of 
comics allows for a great deal of divergence and creativity. 
Indeed, even text balloons can vary tremendously from one 
context to another, to shape meaning as well as just contain 
it (Forceville et al., 2010). Although the ease with which 
children adapt to the medium’s mechanisms allows some 
to dismiss it as juvenile, this ease also reflects the depth of 
the cognitive foundations in which the medium is rooted 
(Cohn, 2013; Cohn & Magliano, 2020). For instance, one 
intuitively reads a comic strip in the order one reads a text, 
from top to bottom and left to right in the West, and from 
right to left and back to front in the East. No one needs to 
be taught how to read a comic strip. Readers simply adapt 
to the blended medium as a new form as visual reading. 
 This work explores the automated generation of comic 
strips as containers and communicators of meaning. While 
the marriage of visual and textual forms makes comics an 
ideal medium for computational creativity, our aim is to do 
more than produce comic-shaped outputs that readers may 
find attractive in their own right. Rather, our aim is to use 
the comic strip as a means of communication in which we 
pour meaning from one kind of container – such as a text – 
into another – a comic combining images and words – with 
no, or little, loss of meaning. Our goal is not an end-to-end 
production of comics in which interior levels of meaning go 
unexposed to scrutiny and manipulation by the producer, 
but a controlled, meaning-preserving translation from one 
explicit representation of meaning to another. To this end, 
we present a comics-generator that works with the outputs 
of an automated story-generator, translating each tale from 
a purely textual form to a vivid blend of words and images. 
 Although comics are entertaining in their own right, we 
explore a practical use of the medium here. Consider why 
they are called ‘comics’ or ‘funny-books’ in the first place: 
the name is a carry-over from the earliest newspaper strips 
in which short, whimsical diversions were illustrated (the 
first American “comic book”, Famous Funnies, repackaged 
these newspaper funny pages as a standalone periodical). 
Even serious comicbooks – which some now call Graphic 
Novels – still carry traces of the comical and the unserious. 
The larger context of this work makes use of these vestiges 
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to package polarizing and perhaps unwelcome meanings in 
more welcome and disarming forms. Those meanings arise 
in heated online debates, such as the Twitter debate around 
vaccines, in which disputants on each side show a tendency 
to dig in, tune out and listen only to those on the same side. 
Machines can help to break down these echo chambers by 
making targeted interventions into the debate, using comics 
to summarize and distill the main arguments on both sides. 
As a first step, we will examine how well a framework for 
producing comics from computer-generated tales can also 
produce comics from these arguments, preserving the gist 
of each argument and the gist of any given user’s position. 
 With these goals in mind, the rest of the paper assumes 
the following structure. After exploring some related work 
and ideas in the next section, we present our combinatorial 
approach to comics production, which maps from an XML 
schema for machine stories to an XML schema for comics. 
We next consider applications of this mapping of XMLs, in 
dialogue-driven comics production and online intervention. 
For the latter, comics must be attuned to the dynamics of a 
debate as reflected in a representative dataset, so we model 
the debate via statistical analysis of a large Twitter corpus. 
Our analysis of the vaccine debate will show that a comics 
creator that is attuned to a sufficiently rich story creator is 
capable, through the liberal use of visual metaphor, to also 
accommodate the diverse arguments of a topical debate. 

Related Work and Ideas 
Comics are a sequential art that requires a narrative impetus. 
A generator can produce this impetus for itself, by creating 
its own stories, or it can acquire its narratives from another 
source, such as an existing story-generator, or from another 
medium, such as film (by e.g. reusing film scripts), theatre, 
online discussions (e.g., chatrooms, Twitter), or games. For 
example, a comic narrative might visualize the sequence of 
moves in a chess game as a sequence of real-world actions 
(Gervás, 2014), or mirror the sequence of moves in a video 
game. In the latter, game screenshots might also be used to 
provide the visual contents of the comic’s panels. 
 The Comic Chat system of Kurlander et al. (1996) takes 
its narrative impetus from chatroom interactions, and turns 
those textual discussions into comic strips, filling one panel 
per conversational turn. Each interacting user is assigned a 
stock comic figure, such as a lantern-jawed jock, an exotic 
princess, or an anthropomorphic animal, where each figure 
has a small number of facial expressions and neutral poses. 
Those expressions, used to convey the basic emotions, are 
determined via a sentiment analysis of a user’s contribution 
to a turn, which floats overhead in a text balloon. Because 
this narrative impetus tracks the human inputs, Comic Chat 
is free to focus on the technical craft of the medium, and it 
shows a firm grasp of the grammar of comics. It uses long-
shots to start a conversation, and close-ups for subsequent 
turns. All figures, balloons and tails are intuitively ordered 
within a panel to ensure ease of reading from left to right, 
and a small number of backgrounds is used consistently to 
maintain continuity from one panel to the next.   

 The Comics2D system of Alves et al. (2007) builds its 
comics from the storyworld representations of a generator 
of dramatic fiction, such as that of Cavazza et al. (2003). If 
a fiction generator does more than generate narative texts, 
and also provides a visual representation of its story-world, 
a comics generator can tap into this visual model too, to fill 
its panels with snapshots of the story. Comics2D uses its 
own XML representation of a comic, via a schema it calls 
CSDL (or Comic Strip Description Language). The schema 
defines nodes for each of the principal elements of a comic, 
from panels and scenes to backgrounds and characters, and 
also explicitly tags what happens in the transitions between 
panels. Comics2D is a modular system that allows users to 
plug-in alternate renderers, and it should support any story-
generator than works with CSDL, although the relationship 
between renderer and generator is typically a complex one.  
 A comic strip is a sequence of snapshots held together by 
the driving logic of a story, but this logic often lies hidden 
in the gutters between panels. Data-rich machine learning 
approaches can teach a machine to infer this logic, so that 
it can predict for itself what should come next in the story. 
To this end, Iyyer et al. (2017) have created their COMICS 
dataset from 1.2M comic panels, for which the text within 
is automatically transcribed. They estimate that most panel 
transitions are either action-to-action (~34%) or subject-to-
subject (~32%), while ~17% extend a conversation, ~14% 
shift from one scene to another, and less than 1% illustrate 
the moment-to-moment dynamics of a single action. Iyyer 
et al. train a hierarchical network of LSTMs to derive a 
context model for a given sequence of panels, and use this 
model to score candidates for the words and images in the 
subsequent panels. Although the model still underperforms 
humans, it showcases the value of a multi-panel context 
and a multimodal integration of visual and textual features. 
 Such a model might, in principle, also generate the next 
panel, and not just prefer one or another panel continuation. 
Melistas et al. (2021) use two neural architectures to create 
comics in the style of Japanese manga: a language model, 
GPT-2, to produce the text of each panel, and a generative 
adversarial network, StyleGAN2, to synthesize the images. 
As with Iyyer et al., they create a dataset of manga comics 
for which textual transcriptions are automatically extracted. 
Text areas are then inpainted to yield text-free training data 
for the image synthesizer, whose training is further boosted 
with images of Japanese anime. Low-resolution outputs are 
then subsequently refined with a trained upscaling network. 
The approach is suggestive and highly experimental, as the 
generative models for text and image operate independently 
of each other, to produce sequences of images that have no 
pre-conceived relation to the text balloons that adorn them. 
 Agrawal et al. (2016) show it is feasible to make comics 
from a jumble of captioned photos, by using a mix of word 
and image features to infer the most natural narrative order. 
Those photos can, in turn, serve as a basis for generating a 
comics-style rendering for each photo/panel. Yet, as useful 
as these rich datasets are for machine-learning approaches, 
they lack a key dimension: a sense of the underlying story 
that gives the images and text their narrative momentum. 
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A Combinatorial Approach 
Melistas et al. use a neural blackbox to generate the textual 
content of a comic strip in a single pass, so its output is a 
surface form that lacks an overt deep structure. A generator 
that produces XML-tagged surface forms can be subjected 
to tests of well-formedness and schema-specific validity, so 
that ill-formed or invalid outputs can simply be resampled, 
but raw surface forms can offer no such affordances. Multi-
pass approaches that first generate a deep ‘fabula’ structure 
before producing the surface rendering of the story – as text 
for a narrator and dialogue for the characters – offer even 
more control to the creator of comic strips. This fabula can 
be mapped to the panel layout of the comic, while narration 
text can provide the panels’ captions, and dialogue text can 
provide the contents of the panels’ balloons. What may now 
seem like old-fashioned approaches to story-generation are 
thus well-placed to support step-by-step comics production. 
 Any story-generator that provides an explicit fabula built 
from a fixed inventory of action types, a surface rendering 
of the story, and dialogue for its characters, is well suited 
to automatic comic generation. While there are many story- 
generators that potentially fit this bill, from that of Cavazza 
et al. (2003) to Montfort et al. (2013) and Gervás  (2014), 
we make use of the Scéalextric system here (Veale, 2017). 
Scéalextric structures each story as a sequence of “beats.” 
As defined by Gaiman (2021), a beat is the smallest unit of 
action in a story or comic, a discretely resolvable event that 
is worthy of textual or visual rendering. A beat focalizes a 
moment in time, and is the ideal unit of comics structure. 
Each Scéalextric beat comprises a single two-person action 
from its inventory of 800 distinct types, which encompass 
the realms of romance, crime, medicine, politics, business, 
religion and war. Each beat is rendered as a 3rd-person view 
of the event, which can serve to caption the corresponding 
panel, and provides spoken (or internal) dialogue for each 
of the two participants, which can fill the panel’s balloons.  
   We define a scene as a sequence of beats that focalize the 
same characters. A scene may juggle several characters, but 
each beat will focus on just two at a time. As the characters 
move in and out of a setting, the scene changes. A dramatic 
change typically tracks a change in location, and a change 
in background for the corresponding comic panels. Such a 
change may warrant a visual flourish such as a splash panel 
or an establishing shot for the new location, while a lower 
key shift may warrant just a close-up on a single character. 
 To tease apart the varying concerns of story and comic, 
we define two XML formats, one for each. ScéalXML is the 
schema that captures the nested layers of a Scéalextric tale, 
embedding the textual substance of narration and dialogue 
within a beat structure that also defines fabula-level events. 
This schema can, in principle, be used to encode the stories 
of other generators, either as is or with some extensions, so 
that the same mapping to ComiXML, and then onwards to a 
rendered comic strip, can serve those other generators also. 
ComiXML is the schema that encodes a comics-level view 
of the same events. ScéalXML composes scenes from beats, 
while ComiXML composes analogous chapters from panels. 
Although designed to mirror ScéalXML in the first instance, 

ComiXML has obvious overlaps with the CSDL schema of 
Alves et al. (2007), and with the CBML (or Comic Book 
Markup Language) of McIntosh (2005) and Walsh (2012). 
   In addition to parallel scene/chapter and beat/panel nodes, 
ScéalXML & ComiXML also define character/figure nodes. 
In a story, a <character> element names a recurring entity 
that participates in one or more beats as either the agent or 
the patient of an action. Nodes of this type also specify long 
and short names for a character, as well as the pronouns for 
referencing them obliquely. Scéalextric’s cast of thousands 
comprises well-established personae from fact and fiction, 
such as Cleopatra, Darth Vader, Bill Gates and Maleficent. 
This adds colour, and a potential for humorous incongruity, 
to the textual outputs of Scéalextric, but it poses a challenge 
for any comics application that must render them visually. 
 This challenge is two-fold: we need to render characters 
in ways that are recognizable, or at least differentiable, and 
we need to render them in emotionally expressive poses that 
reflect our intuitions of how one performs a specific action. 
We also need to imbue the outputs with an inherently zany 
or whimsical charm; a comic may have a serious intent, but 
to disarm a skeptical audience it must also appear flippant. 
We meet this challenge with a bespoke set of visual assets 
called funny-bones. Unlike those of Kurlander et al. (1996), 
which attach emotive heads to neutral bodies, these assets 
integrate a strong emotion with a vivid pose, since a feeling 
is not separable from the actions that cause it. Each funny-
bone has a large expressive head with short rubber limbs, 
and modifiable hair, skin and lips that allow each to depict a 
male or female Scéalextric persona. For instance, Cleopatra 
is pre-defined with long black hair, olive skin and red lips, 
Julius Caesar is given short white hair, pale skin and pink 
lips, and a bald or nearly bald character, such as Joe Biden, 
is simply given short, skin-toned hair. We do not shoot for 
accuracy, just a cartoonish sense of who these people are.    

 
 
 
   
 
 
 
 
 
 

  
Fig. 1. A single panel with two funnybone figures, configured as 
Joe Biden and Donald Trump, in poses exorcising and exorcised. 

Fig. 1. presents a panel for the single Scéalextric story beat,  
<Joe_Biden exorcises Donald_Trump>. Its two figures face 
each other against a blank setting, and are configured with 
appropriate hair, skin and lip values. In the XML encoding 
of this <panel> node, each is also specified with a location 
(left or right of panel), orientation (facing left or right), and 
a balloon node (speech or thought) with an apt text filling. 
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We consider the emotions expected of the agent and patient 
roles for each of the 800 Scéalextric actions, and how best 
to render them in mid-action. This leads us to produce 230 
funny-bone assets – e.g., an angry figure attacking, a scared 
figure running away, a strident figure with a puffed chest – 
and assign one or more to each role of all 800 actions. These 
230 assets serve, for the most part, as visual metaphors that 
concretize and exaggerate the action. So, destructive figures 
brandish giant hammers or axes; doctors wield scalpels and 
syringes, and mad scientists cackle as rats scurry underfoot. 
Zealous figures thump bibles or hurl fireballs, and sick ones 
slump in wheelchairs as sad ones stand under storm clouds. 
The assets favour immediacy over nuance, drama over tact. 
The same is true of the 100 backdrop images that we create 
to anchor an actor to the domain of their action. Backdrops 
include hospitals (interior and exterior), dungeons and labs, 
churches and offices, outdoor scenes (parks, farms, streets), 
edifices (police stations, court houses, banks, government 
buildings, jails) as well as battlefields, cafés, gyms and bars. 
These are mapped both to Scéalextric actions and to specific 
figure assets. The first mapping allows the system to pick a 
backdrop for a pre-defined action, and the second allows it 
to infer a suitable choice for any arbitrary pairing of figures. 
For instance, a stalker lurking in the bushes (stalking pose) 
must be placed against an outdoor scene, not an indoor one. 

 

 

 

 

 

 

 

 

Fig. 2. A panel with “Mount Rushmore” as its backdrop. The two 
figures are colour-coded to visually represent red and blue states. 

The <setting> element is used to add a background asset to 
a panel in ComiXML. As illustrated in Fig. 2, which shows 
one panel of a comic for the hashtag #DemsAreDestroying 
America, backdrops add another degree of metaphoricity to 
a panel’s meaning. Here the background is a character in its 
own right, with the Mt. Rushmore setting used to depict the 
USA; the two figures are further colour-coded to represent 
blue states (i.e. “Dems”) and red states (i.e. “not Dems”). A 
backdrop can be used literally, to denote a real setting such 
as a bar or kitchen, or metaphorically, as when a battlefield 
scene evokes bitter enmity, or a police state (barbed wire 
and searchlights at night) is used to denote oppressiveness. 

Applications 
These assets are sufficient to give every Scéalextric story a 
comic-strip form. The general application, named Excelsior, 

can sample Scéalextric’s ouevre at random, or retrieve tales 
that involve a given character, such as Oprah or Bill Gates. 
Examples of Excelsior’s comics for two Scéalextric stories 
are accessible online.1 Its comics can be rendered as HTML 
documents that are suited to direct publication on the web, 
or as animated GIFs that may be shared within a tweet. 
 A co-creative variant of Excelsior engages in a dialogue 
with the user to refine the comic that is jointly produced. A 
metaphor-oriented chatbot, named Figaro, is repurposed to 
manage this dialogue using its rich lexicon and a system of 
pattern-matching rules. The narrative impetus for the joint 
work is at first provided by the user, in the form of a simple 
statement, typically a metaphor, that establishes the action, 
such as “my life is a joke” or “Donald is in the dog house.” 
As in most chatbots, this input is then mapped via a series 
of stimulus : response rules into a corresponding output text. 
However, Excelsior does not generate raw surface outputs 
but XML forms that integrate a story-level understanding of 
the input with a ComiXML rendering of that interpretation. 
 It does this by tapping into the Scéalextric causal graph, 
which links every story action to every possible next action 
via so, but and then arcs. The Figaro lexicon connects the 
words of the user’s input to relevant vertices in this graph, 
so that e.g., “life” maps onto interact_with (agent), “joke” 
maps to is_entertained_by (patient) and laugh_at (patient), 
and “in the dog house” maps to criticize (patient),  chastise 
(patient) and banish (patient). Excelsior arrives at its story-
based interpretation of a user input by seeking out a path in 
the causal graph between the vertices provided in the input. 
This pathway, a sequence of connected Scéalextric actions, 
is first converted into ScéalXML and then into ComiXML. 
For instance, the input “My boss is a tyrant” is mapped to a 
path linking command(agt, pnt) to despise(pnt, agt), which 
is summarized by the chatbot as: “A BOSS COMMANDS, BUT 
TAUNTS, SO EVENTUALLY IS DESPISED BY A HARSE CRITIC.” 
To produce a three-panel strip from its narrative, the system 
chooses Scéalextric characters to portray its key roles, such 
as Boudicca & Spartacus or Sideshow Bob & Lisa Simpson. 
Notice how Excelsior infers that the user despises his boss, 
because the boss goes from giving orders to issuing taunts. 
 The initiative now passes back to the user, who can either 
accept the system’s inferences with an affirming “yes” or 
“OK”, or reject them with a “no” or a “try again.” The user 
can also request a near alternative, by replying “almost” or 
“not quite”, or require that the main roles be swapped by 
responding “the other way around.” The user can elaborate 
an acceptable response by replying “so?” or “then what?”, 
or introduce a dramatic kink to the tale with a “but.” Each 
such reply prompts the system to add another action to the 
developing story, and another panel to the growing comic. 
New additions are in turn subject to acceptance or rejection 
by the user, who guides the system through the story space 
from the initial input to the final narrative and comic strip.  
 This co-creative, dialogue-driven variant of Excelsior has 
yet to be fully evaluated. However, its lexicon plays a key 
role in the web-scale application that we will evaluate next.  
                                                
1 https://tinyurl.com/ykdn33r3 and https://tinyurl.com/4b5ekc2y   
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Interventions: Comics With A Purpose 
We can distinguish between comics that have a meaningful 
narrative and those whose narrative serves a larger meaning. 
The former tell a story that may divert and entertain us, but 
the latter carry a message that their creators need us to hear. 
Think of the difference between the newspaper comics that 
avoid politics and those, like Gary Trudeau’s Doonesbury, 
that weave a political stance into the subtext of their stories. 
Comics can be used as a candy-coloured wrapper for views 
that some readers deem unpalatable, thereby increasing the 
diversity of the audience for those views. Or, as argued by 
Johnson et al. (2020) in the context of the rancorous online 
debate about vaccination, by increasing the heterogeneity of 
arguments in a community we can stop it from growing into 
a self-reinforcing echo-chamber. So, as a first step to using 
comics as our medium of intervention into early-stage echo 
chambers, let’s explore this debate as it unfolds on Twitter. 

Characterising the data and the debate 
Twitter’s streaming API was used to collate a dataset of all 
tweets that use a relevant hashtag from a list of approx. 60 
tags, from #GetVaccinated to #NoVaccinePassports. During 
Q4 of 2021, as national vaccination drives ran at full tilt, a 
corpus of 1.6M tweets from nearly 400k users was gathered.  
 To characterize the debate, we take a rather simple view 
of a user’s “stance” on vaccination, and assume that one is 
either pro- or anti-vaccines. The debate is more subtle than 
this dichotomy allows, and encompasses those who chafe 
at vaccine mandates, vaccine passports, masks, lockdowns, 
or at any curtailment of their pre-Covid lives. Nonetheless, 
there is still a sufficient consistency of attitudes to vaccines 
to make this pro/anti split a useful one. To assign a stance 
to each user, we build a graph of all retweets in the dataset, 
to indicate who retweets whom, and how often they do so. 
In this graph we identify the 100 most retweeted users, the 
so-called influencers or evangelists, and manually assign a 
pro (+1.0) or anti (-1.0) numeric stance to each. For every 
other user in the graph, we now estimate their stance as the 
weighted average of the stances of those that they retweet, 
weighted by the number of times they retweet them. After 
50 iterations, the initial evangelist stances percolate down 
to every reachable user in the graph, to mark their position 
in the debate as a number between -1.0 and +1.0. In total, 
149,162 users (38%) are assigned a positive pro stance and 
214,066 users (55%) are assigned a negative anti stance. 
The remaining 7% are not in this retweet graph, or are not 
connected to one of our initial evangelists. Of those that are 
assigned a stance, the pro/anti split in the debate is 41/59%. 
 The dataset contains 39,366 distinct hashtags, many of 
which show a clear pro- or anti- bias, from #VaccinesWork 
to #DoNotComply. To evaluate our automatic assignment 
of stances, we look at the most frequently-used tags in the 
data and identify 100 clearly pro and 100 clearly anti tags. 
Looking at those who use these tags, we find clear support 
for our approach to stance allocation. The probability that a 
user who uses more pro-tags than anti-tags is assigned a 
pro-stance is .994, while the probability that one who uses 
more anti- than pro-tags is assigned an anti-stance is .999. 

 Hashtags condense arguments into compact, meme-like 
forms, such as #VaccinesSaveLives and #FauciLied, so to 
take the pulse of a debate we must get a handle on its tags. 
We first assign a stance to every hashtag, by estimating the 
stance of each as the weighted mean of the stances of those 
who use it, weighted by the number of times they use it. As 
a result, 39% of tags are assigned a positive pro stance, and 
61% of tags are assigned a negative anti stance. These tags 
are viewed as discrete wholes, yet most tags are multiword 
forms with a headline-like structure. To unzip each hashtag 
into its headline content, we apply the camel case heuristic 
(as interior words tend to be capitalized) and a large lexicon 
(specifically, the Figaro lexicon of the previous section) to 
produce a sequence of words from each composite tag. 66% 
of the tag set, or 25,999 tags, can be segmented in this way.   
   Because Figaro’s lexicon supports metaphorical analysis, 
it categorizes its entries along image-schematic dimensions 
such as accepting (up, love, praise, pick, etc.) and rejecting 
(down, fire, kill, dump, etc.). It also marks negation words 
(no, never, don’t, etc.), and those related to responsibilities 
(e.g., rule, law, tax) and rights (e.g., freedom, truth, choice). 
We extend this lexicon to also mark geographic locations, 
such as Australia, the USA, China, Europe and their cities. 
We also mark references to the left or right of the political 
spectrum (e.g. Dems, Biden on left, GOP, Trump on right). 
This allows us to characterize the argument carried in a tag 
along these dimensions (e.g., responsibilities in Europe, or 
an acceptance of rights in the USA). If we now view users 
as aggregates of the arguments they use, i.e. as aggregates 
as the hashtags they use, we can apply this characterization 
to users too. For instance, we can say whether a given user 
is more accepting than rejecting (i.e., uses more accepting 
arguments than rejecting ones), or more focused on rights 
over responsibilities (i.e. uses more tags focused on rights), 
or more likely to reference the political left than the right. 
 Unsurprisingly, the hashtags of the anti-vaccination side 
show a clear preference for overt negation. The probability 
that a negated tag is assigned an anti-stance is .762, while a 
negated tag that highlights responsibilities has a probability 
of .981 of being labeled anti. Similarly, any tag that shows 
a rejecting attitude to responsibilities has a .942 probability 
of being labeled anti (these results are significant at the p < 
.0001 level). A clear political faultline is also evident at the 
hashtag level. Hashtags that mix rejection and a reference 
to the political left have a .957 probability of being labeled 
anti, while those that mix rejection and a reference to the 
political right have a .920 probability of being labeled pro. 
 These regularities also hold at the user level. A user that 
is more accepting than rejecting, and uses more accepting 
arguments than rejecting ones, has a .898 probability of 
being labeled pro, while one that is more rejecting than 
accepting has a .915 probability of being labeled anti. This 
simple criterion accounts for 75% of all stanced users. The 
battlelines are very clearly drawn in this debate, since any 
user that makes even a single rejecting reference to the idea 
of responsibility (177,319 do, or 45% of all users) has a 
probability of .966 of being labeled anti. Once again, each 
of these findings is significant at the p < .0001 level. 
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Evaluation: Data-Driven Comics 
Excelsior has been adapted to work with the outputs of the 
Scéalextric story-generator, but can it be used to represent 
the cut and thrust of arguments in the vaccination domain? 
To test its applicability to online debates, a sample of 1,500 
tweets is selected at random from our vaccine dataset. Each 
tweet has one or more hashtags with a quantifiable stance, 
and each contains one or more well-formed sentences that 
can be used as its narrative content. The sample has an even 
split of pro and anti sentiments (750 tweets of each stance). 
To test the expressive range of the Excelsior representation, 
we consider whether humans versed in this representation 
can effectively map these 1,500 tweets into a comics form. 
If so, we can have faith that the representation is expressive 
enough for generating comics about wide-ranging concerns. 
Moreover, the resulting mapping provides a parallel corpus 
for training an automatic translator of tweets into comics –
this is a subject for future work and another paper – and as 
a baseline for evaluating comics generated from hashtags. 
 Annotators are first familiarized with Excelsior’s assets 
and its markup conventions. A lightweight markup is used 
in lieu of full ComiXML, so that annotators need not create 
detailed XML forms. Rather, the markup simply segments 
each text into separate panels, and identifies the figure that 
speaks (or thinks) each chunk of text. For each figure in the 
panel, a pose and an orientation is also defined, and for the 
panel itself, a backdrop asset may also be specified. This is 
sufficient for a machine to construct the full XML for itself. 
 All 1,500 tweets were translated into a comics form, and 
none were discarded or labeled as too difficult to translate. 
The annotators used 95% of the available assets to markup 
the sample, which suggests they have a broad applicability. 
For the sample as a whole, the 5 most frequently used pose 
assets are: operating (a figure in a surgical mask carries a 
syringe and knife); experimenting (the same figure, without 
the mask, cackles as a rat scurries underfoot); defensive (an 
anxious figure retreats with its arms outstretched); running 
away (a scared figure flees in terror); and rude (an angry 
figure “flips the finger”). The 5 backdrop assets most often 
used are: hospital (interior); hospital (exterior); graveyard 
(tombstones and grass); government (a view of congress); 
and battlefield (barbed wire, ruins and scorched earth). 
 Each tweet text to be annotated contains, on average, 14 
words. When annotators segment these texts into a series 
of comics panels, the mean number of panels per tweet is 
2.82 (sd.=.92). Most comics are thus two to four panels in 
length. The mean number of words per text segment – and 
thus, per panel – is 4.68 (sd.=2.85). Most text balloons will 
thus contain between two and eight words apiece. Specific 
assets are favoured for the depiction of the arguments from 
opposing stances. Vaccination is generally depicted using 
the operating pose for the “pro” tweets, and depicted using 
the more sinister experimenting pose for the “anti” tweets. 
The graveyard and hospital backdrops find equal favour in 
pro and anti tweets – the graveyard is a terminus for those 
who refuse vaccination, or who die from its side effects – 
but government and battlefield are preferred by those who 
campaign against (rather than for) vaccination mandates. 

Hashtag Comics: Automated Generation 
We estimate that 120 person-hours of effort were needed to 
translate this sample of 1,500 tweets into ComiXML. This 
investment of time and effort might be repaid by a machine 
learning approach to generation that uses this tagged dataset 
for supervised training, but it is still a significant outlay for 
each new debate topic to be modeled (e.g., climate change). 
Any automated approach to argument-by-comics will likely 
lack the finesse of a human-led one, but it should be easier 
to adapt to new debate topics. Whole tweets are too loosely 
structured to serve as the basis of this automated approach, 
but hashtags – which work best when used as hooks for the 
content they adorn – are ideal: they capture the gist of an 
argument in a pithy form that one hopes will “go viral.” 
 To begin, we pass every hashtag in the dataset through a 
segmenter, to identify its individual words. As noted earlier, 
25,999 tags (or 66% of the total) can be segmented using a 
lexicon and the norms of “camel casing.” The latter allows 
a tag to be segmented even if some of its words are not in 
the lexicon, such as “#CovidIsAHoax. Figaro’s lexicon will 
cover most of the domain-independent terms that are used, 
such as “is” and “hoax”, but important terms like “Covid” 
must also be added, as must the names of central figures in 
the debate, such as “Fauci,” “Pfizer” and “Biden.” To plug 
the largest holes in the lexicon, we rank the unlisted terms 
by frequency in the tag set, and add entries for the top 200. 
This leads us to add entries for “Covid” and “Covid19”, as 
well as for casual references to vaccines (“vax”, “vaxxed”) 
and for recurring characters in the debate (Tony Fauci, Joe 
Biden, Scott Morrison, Boris Johnson, etc.) and the various 
ways in which they are named in a tag. For these characters 
we define Excelsior specifications for their cartoon effigies 
(e.g., white hair for Fauci, blond for Boris, bald for Biden), 
and for “Covid” we specify the poses stalking and preying. 
Every comic hero needs a comic villain, and named figures 
are convenient bogeymen (or bogeywomen) for the debate.  
Any user that mentions Fauci in even a single tweet is very 
likely to hold anti-vax views (probability = .914), while for 
Bill Gates that probability rises to .947; for Jacinda Ardern, 
the prime minister of New Zealand, it rises to .996.  
 A hashtag can be automatically translated into ComiXML 
if: every word in the segmented hashtag has a lexical entry; 
the hashtag provides enough material for at least one panel; 
its lexical entries specify poses for two figures in each one; 
and, for certain terms, suggests a backdrop for the panel too. 
The hashtag may contain lexical items that do not translate 
into any visual element, such as function words (“a”, “the”, 
etc.), as these can contribute to the content of text balloons, 
but it may not contain a term that falls outside the lexicon. 
These restrictions lead to 9,802 hashtags (or one third of all 
tags that can be segmented) being mapped into ComiXML. 
In turn, 36% of these comics are produced for hashtags that 
are associated with a pro-stance, and 64% are generated for 
tags that suggest an anti-stance. For this dataset, there is a 
political dimension to how tags convey stances – anti tags 
lean right and pro tags lean left – so the translator uses this 
finding to colour the figures in its panels. For a comic that 
is created for a pro tag, the protagonist – the figure who 
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utters the words of the tag – is blue, and the antagonist is 
red. For an anti-leaning tag, the comic’s protagonist is red 
and the antagonist is blue. In the comic of Fig. 3, for the 
anti tag #DemocratsAreDestroyingAmerica, “Democrats” 
is defined by the lexicon as one who votes for Biden, so the 
red protagonist is instead paired with a cartoon Joe Biden: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Comic for the anti tag #DemocratsAreDestroyingAmerica. 

As a comic unfurls from left-to-right, it reveals successive 
words in the hashtag. Each panel hinges on a single hashtag 
term that suggests a pairing of figure poses. “Democrats,” 
for instance, suggests voting for and saintly, where the latter 
is the pose struck by the cartoon Biden. The setting for this 
panel is suggested by the voting for pose, which is strongly 
linked to backdrop polling station and only weakly tied to 
the backdrop government. This weak association suggests a 
scene change in the second panel, which stages the copula 
term “are” in a dramatic, Hamlet-like fashion. In the third 
panel, the action term “destroying” suggests a pairing of the 
poses destructive and running away, while “America” is 
rendered in the same panel as the backdrop Mt. Rushmore. 
The narrative impetus of the comic, the original hashtag, is 
ultimately summarized with a final borderless, blank panel.  
 When a hashtag takes a dramatic turn, its comic does too. 
By forcing the narrative into a two-fisted tale of protagonist 
vs. antagonist, the red protagonist becomes both Democrat 
and anti-Democrat, a figure that starts the tale by voting for 
Biden and ends it by fleeing from him in terror. We see just 
as dramatic an arc in the comic of Fig. 4, which is derived 
from the pro-leaning tag #CovidIsNotGone. “Covid” ranks 
high in the list of lexicon gaps for the vaccine dataset, and 
we plug the gap with an entry that specifies a colour (green) 
and a pose (preying). This makes “Covid” a state of being, 
a posture that can change from one panel to the next. In the 
first panel, the antagonist is portrayed as “Covid”, preying 
on a scared protagonist. In the next, which depicts negation 
with a wag of the finger, the antagonist resumes her “pro” 
colouring. The emergent effect suggests that Covid can lurk 
within a character, waiting for a chance to express itself. 

 

 

 

 

 

 

 

 
 
 
 
 

Fig. 4. A comic generated for the pro hashtag #CovidIsNotGone. 

Discussion 
How do the comics that are generated automatically from 
hashtags compare with those created manually from entire 
tweets? On average, a hashtag-based comic contains 2.83 
panels (sd. = .687), including the final summary panel, and 
its average speech balloon has 1.46 words (sd. = .55). The 
typical hashtag comic is thus punchier than a typical tweet-
based comic, yet the tag comics hit the same high notes. As 
was the case in the human-translated sample, this larger set 
uses 95% of Excelsior’s assets, and likewise numbers the 
backdrops hospital interior and government, and the poses 
operating and defensive, among its top 10 most-used assets. 
Other highly ranked assets include the poses preying, sick 
and scared (to depict coronavirus and its victims), and the 
backdrops graveyard (for pro- and anti- deaths) and police 
state (a dark variant of government, to suggest oppression). 
 Most of Excelsior’s poses depict highly emotional states, 
bound up in the character actions that evoke those states. A 
significant proportion of Excelsior’s backdrops also evoke 
– or stand in for – emotional states, such as the graveyard, 
police state, dungeon, and battlefield backgrounds, which 
can be used literally – in a Scéalextric tale, for instance –  or 
metaphorically, in debate spaces such as that for vaccines. 
Our sample of 1,500 pro- and anti-vaccine tweets serves as  
a representative slice of the Twitter debate, and since these 
are mapped onto Excelsior’s emotional images by hand, we 
can be confident that these choices capture the tenor of the 
online debate. But how well do our hashtag comics capture 
the dominant themes and emotions of the debate? To assess 
how closely our automated comics hit the same notes, we 
measure the correlation between the usage frequencies of 
each asset for both manual and automatic comic generation.   
 Comparing the usage frequencies of all Excelsior assets 
across both sets of comics, we find that Pearson’s r = .824. 
This reflects a strong correlation between the choices that 
humans make when visualizing online arguments, and those 
that the machine makes when visualizing them for itself. 

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

65



 Concluding Remarks 
Comics are an appealing delivery mechanism and framing 
device for our stories, wherever they happen to come from. 
Data-driven comics are a specific form of “creativity with 
a purpose” (as opposed to “art for art’s sake”) that uses the 
expressive and representational affordances of the medium 
to convey a specific message and advance a particular goal. 
So, on the back of some large-scale data analysis and some 
small-scale plugging of lexical gaps, a comics generator can 
be adapted to tell the stories of a diverse body of users, and 
in doing so affect the ways in which they interact. That, at 
least, is our goal here: to tell the stories, and express the 
concerns, of different users to a wider audience than they 
might otherwise reach, and thus increase the heterogeneity 
of viewpoints within their opinion “silos.” We have shown 
how individual arguments, as expressed in individual tags, 
can be translated into comics without loss of emotionality. 
A machine can understand those arguments, like those who 
make them, at a general level e.g., as rejecting or accepting 
of particular people, policies or ideas. But, as a next step, 
we must do more than echo the arguments in comics form, 
and target them at communities that are least open to them. 
These practical interventions will pose the best test of the 
formats, resources and tools that we have presented here. 
 Comics can be added as a medium of expression to many 
kinds of computational creativity system. Story-generators 
are just the most obvious, and we anticipate that ScéalXML 
can be adapted – with minor extensions – to suit the needs 
of systems other than our own choice, Scéalextric. In cases 
where this necessitates the creation of new assets, such as 
pre-Columbian imagery for the Mexica stories of Pérez y 
Pérez (2007), these additions will benefit both systems. We 
have shown here how comics can serve as a means of data 
visualization i.e., as a means of emotively visualizing the 
drama inherent in aspects of a large data set. A comic can 
be the main creative output of a system, or a useful means 
of framing the system’s explanations of its own creativity. 
If used for the latter, we expect to find a great many outlets 
for comics-based creativity, in a wide range of applications 
that go beyond what we typically think of as story-centred. 
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Abstract

Narratives about disasters triggered by a chain of con-
nected incidents need to combine very diverse elements,
such as the set of possible problematic events, the causal
relations between these events and their potential conse-
quences, the set of solutions that might be applied, the
relations of the solutions to the problems and the ex-
pected effects of the solutions. Successful modeling of
the search space of such elements would provide means
for generating plot lines based on attempts to avert dis-
asters. A prototype has been constructed that combines
features to model causality, set sequences of actions to
mirror emergency protocols, probabilistic information
on event sequencing and timed injection of events. The
relative merits of the prototype are discussed and con-
clusions concerning the general task of modeling this
type of narrative are drawn.

Introduction

Plot lines where a small incident sets off a chain of events
that can potentially lead to catastrophic consequences are
a staple ingredient of entertainment fiction. They are usu-
ally combined with additional plot lines outlining attempts
to break the chain of causality leading to disaster. Of these
attempts, all but the very last one will usually fail, taking the
story to the brink of disaster before success is achieved.

In order to obtain a computational model that captures the
characteristics of the search space with sufficient detail, the
following features need to be modeled: 1) interest (events
corresponding to normal/acceptable operation are not of in-
terest to the narrative), 2) causality (of the kind that cap-
tures the relationship between certain events and their con-
sequences), 3) projection of current events forward into time
(in order to foresee unwanted developments and plan against
them) 4) potential solutions (that might be applied to stop the
problems).

The present paper purposefully sets out to develop a
model designed to capture these aspects of the problem. Al-
though we assume that accurate modeling of all the aspects
is beyond the scope of a simple paper, we will consider an
initial approximation capable of creating narratives that are
both realistic and interesting.

Previous Work
A number of aspects are relevant to the modeling of these
types of narrative: their relation to simulations of the physi-
cal systems involved, their adversarial nature – disaster wait-
ing to happen vs. characters attempting to avert it – and the
role of causality in them.

The construction of computer simulations of nuclear
power plants as physical models (Lu 1999) has been ex-
ploited as a platform for inexpensive cognitive psychology
research (Ulrich et al. 2017). However, most of the events
in such simulations are likely to correspond to regular per-
formance of the plant, and unlikely to merit inclusion in a
narrative that aims to be interesting. A model aimed at gen-
erating interesting narratives needs to focus on events that
fall outside the regular performance of the plant.

The task of responding to emergencies is reactive: initiat-
ing incidents trigger chains of events that put the plant and
emergency responders set in motion plans to avert disaster.
This opposition has been modeled in computational narra-
tive before (Dehn 1989) in terms of authors aiming to thwart
some of the goals of their characters as a means to create
interest in the plot.

Models of causality based on defining preconditions for
actions to represent causal relations have been used suc-
cessfully to model narrative in terms of planning problems
(Riedl 2004). An initial situation and a desired goal are pro-
vided and the planner finds a sequence of events to connect
them. Adversarial conditions are considered in interactive
narrative (Porteous, Cavazza, and Charles 2010), where an
initial plan by the system may be altered by the actions of
the user and the system replans periodically to ensure its fi-
nal goal is always achieved.

Generating Plotlines based on Averting an
Imminent Disaster

The present paper aims to develop a procedure for construct-
ing plot lines built around the idea of an upcoming disaster
set in motion by a small incident, and a series of attempts
to prevent it. To develop a system capable of modelling this
type of behaviour, the following assumptions are made: 1)
uneventful operation of the system warrants no narrative, 2)
some kind of triggering incident (that constitutes a problem
or has the potential to lead to a problem) sets a narrative in
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motion 3) a sequence of events linked by causality is set in
motion, such that 4) (at least) the final event in that sequence
constitutes a problem; 5) the problem triggers a (number
of) reactions, and 6) the reactions tend to be plans (possi-
bly more than one) all designed to solve the problem (or
some part of it) in some way, 7) reactions may themselves
trigger additional causal chains of events and 8) further inci-
dents (also problematic) may take place that break the causal
chains arising from reactions.

Disaster movies usually combine a large number of types
of events (meteorology, natural disasters, human error, ter-
rorism, mismanagement. . . ). Exhaustive modelling of all
these types of events is beyond the scope of this paper. In
order to provide a relatively simple domain with the desired
complexity where causality relations between events can be
defined in objective terms an existing knowledge-base for
accidents in nuclear power stations1 is chosen as underlying
world model.

Traditional planning systems are ill suited for modelling
this type of problem because: 1) the model cannot be de-
terministic (problems may or may not happen in different
runs of the system, and these changes in behaviour need to
be achieved without having to change the rules that govern
the causality of the system), 2) emergency protocols take the
form of timed sequences of events (responders are not nec-
essarily aware of the causal chains that they are intended to
trigger), and 3) potential chains of causality initially identi-
fied by the system may need to be broken by further prob-
lematic events (this allows the capture of mismatches be-
tween expectations and real system reactions).

Customised Representation of Narrative
Events are represented as atomic propositions. The causal
chaining of events is modeled by the possibility of assigning
to each event a set of preconditions that may trigger it (the
activation of the preconditions is said to cause the follow-
ing events). A description of the lexicon entries for events
concerning how heat affects people are listed in Table 1, to-
gether with an example of how they would be chained by the
system into a causal sequences of events (in the absence of
interventions in the form of emergency responses).

Time is modelled in a step fashion, with a succession of
turns taking place, and a set of events taking place simulta-
neously at each turn. The set of events that take place in a
given turn are said to be activated on that turn.

An initial requirement is that the system allow for both
user-driven configurable mode – to allow narratives to be
generated on demand for specific situations – and an au-
tonomous generation mode – where the system generates
narratives by exploring the search space of possible narra-
tives with no guidance from the user. To allow for this possi-
bility, the system includes functionality for injecting events
at particular moments in time. An injection schedule indi-
cates the relative timing for a given set of events, starting
from the point at which the injection is triggered. Table 2
shows an example of an injection schedule.

1Currently under development for the ADARVE project, ref.
SUBV-20/2021, funded by the Spanish Nuclear Security Council.

The second basic requirement is that the system be capa-
ble of representing the occurrence of problems that may lead
to consequences, most of them undesirable. The occurrence
of problems may be represented using the functionality for
injecting events.

Whenever an event is activated, the system uses causal
chaining basedon preconditions to identify any events that
may be triggered as consequences. The full chain of conse-
quences of an event is computed during the turn when the
event is activated, but they do not start to be activated un-
til the following turn. At each turn, the next level of con-
sequences from preceding events is activated unless some
solution has blocked them.

Table 3 presents a set of causal chains produced by the
system that capture various possible problems modelled for
nuclear power plants and the outcomes predicted if no action
is taken.

Modelling Emergency Response to Problems
To model responses to problems, the system contemplates a
set of elaborate responses (emergency plans) to problematic
events (these elaborate responses are represented as patterns
of actions to be undertaken in particular order and following
an established relative timing between them).

Emergency responses are encoded in the system at three
different levels. At the first level, a solution for a given
problem associates the problem itself with the name of a
particular plan of actions. At the second level, the actual
plans to be carried out are represented as a timed sequence
of events to be injected into the system. These timed se-
quences are also represented as injection schedules. At the
third level, the system models consequences of actions taken
as part of plans in the same way that it modelled conse-
quences of problems. This allows these emergency plans to
be expanded into causal chains triggered by actions in plans
without having to explicitly list the consequences in the de-
scription of the plan. Causal links between plan actions and
further events are modelled in the lexicon. Table 4 shows an
example of a causal chain arising from a plan. This exam-
ple shows how the problem chain shown in Table 1 may be
interrupted by the application of an emergency plan.

Probability Driven Construction of Event
Consequences
Causal relations between events are not always completely
deterministic. Often consequences follow the events that
trigger them only in some cases. This peculiarity should
also be included in the model.

The system considers that, for each event that is activated,
the set of its possible consequences needs to be compiled.
For the events in this set, a conditional probability of oc-
currence given the triggering event must be considered. To
inform this process, a probability of occurrence is associated
with each event. For a more realistic model, the conditional
probabilities of each consequence given its trigger should be
considered, but a single probability is considered an accept-
able approximation for an easier initial model.

At each turn, the consequences of events activated in
the preceding turn are considered for activation. Based on
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Trigger Event
(injected event) HeatReachesPeople
HeatStartAffectingPeople CAUSE [HeatReachesPeople] HeatStartAffectingPeople
PeopleSufferFromHeat CAUSE [HeatStartAffectingPeople] PeopleSufferFromHeat
PassOutFromHeat CAUSE [PeopleSufferFromHeat] PassOutFromHeat
PeopleDie CAUSE [PassOutFromHeat,SufferTerminalRadiationPoisoning] PeopleDie

Table 1: Extract of lexicon entries for events concerned with the effect of heat on people (first column), together with an
example causal sequence produce by the system.

Time offset Event
0 Tornado
1 DamageToGenerator
2 NoFuelForDieselPoweredElements

Table 2: Example of injection schedule showing a tornado,
damage to a generator, and lack of fuel.

DamageToDieselPumps
DieselPumpsNotWorking
NuclearReactorStartsOverheating
OverheatsNuclearReactor
NuclearReactorReachesDangerousTemperature
CoolantEvaporates
HeatReachesPeople
NuclearReactorStartsToMelt
RadioactiveMaterialExposed
HeatStartAffectingPeople
NuclearReactorMeltdown
PeopleSufferFromHeat
PassOutFromHeat
PeopleDie

Table 3: Examples of causal chains for problems in a nu-
clear power plants and the outcomes predicted if no action
is taken. Horizontal lines represent turn transitions.

Problem/HeatReachesPeople
Problem/HeatStartAffectingPeople
StartingPlanToSolve/HeatReachesPeople
Solution/RemovePeopleToSafety
Problem/PeopleSufferFromHeat
Solution/PeopleSafe
PlanSuceeded@HeatReachesPeople

Table 4: Causal chain arising from the activation of an emer-
gency plan.

a random factor, consequences in this set are activated if
a randomly generated number falls under the probability
threshould associate to the event.

There is another aspect of consequence that needs to be
captured in the model. In certain cases, two contrasting po-
tential consequences of the same event are registered, and
only one of them should be activated in any particular situ-
ation (disjunctive branching). To capture this feature, situ-
ations of this type are also explicitly encoded in the system
and a probability is assigned to them that is used by the sys-
tem to select only one of them when expanding.

The introduction of probabilistic information becomes a
useful tool for customising system performance to meet
the different required modes. For the autonomous mode,
weighted random choice informed by the recorded proba-
bilities allows for consistent variation in the outcomes. Ex-
plicit customisation of the relative values of the probabilities
allows the user to constrain the search for narratives to par-
ticular subsets of the search space, allowing operation in the
configurable mode.

Disjunctive branching is used to capture the dichotomy
between success and failure of actions undertaken in pursuit
of particular goals in response to emergencies. In this way,
when the system is being run in the autonomous mode, plans
may succeed or fail regardless of diligent application of es-
tablished protocols, making the narratives more interesting.
For the configurable mode, the user may tailor the probabil-
ities used for disjunctive branches to drive system outcomes
to particular alternatives.

Compilation of a Full Plot
The system operates on an injection schedule taken as input,
that determines a certain sequence of events that happen at
particular times. These are the incidents that create the cas-
cade of problems. The system progressively compiles chains
of consequences for events at a given turn and determines
which events in those chains will happen at the next turn. It
also compiles which responses may be undertaken to break
the chains of undesirable consequences. Table 5 shows an
example of a plot line generated for a combination of a dam-
aged transformer and lack of fuel for diesel generators.

Due to its reliance of probabilities to drive the final out-
come, subsequent runs of the system will produce plots out-
lines for different narratives for a given input. Additionally,
the probabilities may be tailored The system can be used as
a co-creation assistant, allowing the user to compile a set of
plot outlines for a given configuration (input + defined prob-
abilities) or even for combinations of different inputs and
values for the probabilities.
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State
0 Problem/DamageToPowerTransformer (injected)
1 Problem/LowPowerToOperatePlant (from DamageToPowerTransformer)
2 StartingPlanToSolve/LowPowerToOperatePlant

Solution/ShutDownNon-vitalSystems ToSolve/@LowPowerToOperatePlant
PlanEnded ToSolve/@LowPowerToOperatePlant

3 Solution/MorePowerAvailableForVitalSystems (from ShutDownNon-vitalSystems)
Problem/ElectricPumpsShutDown (from ShutDownNon-vitalSystems)

4 PlanSuceeded ToSolve/@LowPowerToOperatePlant
StartingPlanToSolve/ElectricPumpsShutDown
Solution/HookUpDieselGeneratorToElectricPumps ToSolve/@ElectricPumpsShutDown
PlanEnded ToSolve/@ElectricPumpsShutDown

5 Problem/OverheatsNuclearReactor (from ElectricPumpsShutDown)
Problem/NoFuelForDieselPoweredElements (injected)

6 Problem/NuclearReactorReachesDangerousTemperature (from OverheatsNuclearReactor)
Problem/CoolantEvaporates (from OverheatsNuclearReactor)
Problem/DieselPumpsNotWorking (from NoFuelForDieselPoweredElements)
StartingPlanToSolve/NoFuelForDieselPoweredElements
Solution/FuelDelivery ToSolve/@NoFuelForDieselPoweredElements
PlanEnded ToSolve/@NoFuelForDieselPoweredElements

7 Problem/HeatReachesPeople (from NuclearReactorReachesDangerousTemperature)
Problem/NuclearReactorStartsToMelt (from NuclearReactorReachesDangerousTemperature)
Problem/RadioactiveMaterialExposed (from CoolantEvaporates)
Solution/StartsDieselGenerator (from Solution/FuelDelivery)

8 PlanSuceeded ToSolve/@NoFuelForDieselPoweredElements
Problem/HeatStartAffectingPeople (from HeatReachesPeople)
Problem/NuclearFuelMeltingPointReached
Solution/StartsElectricPump (from StartsDieselGenerator)
StartingPlanToSolve/HeatReachesPeople
Solution/RemovePeopleToSafety ToSolve/@HeatReachesPeople
PlanEnded ToSolve/@HeatReachesPeople
StartingPlanToSolve/RadioactiveMaterialExposed
Solution/DivertReactorCoolantToWastePool ToSolve/@RadioactiveMaterialExposed
PlanEnded ToSolve/@RadioactiveMaterialExposed

9 PlanSuceeded ToSolve/@ElectricPumpsShutDown
Solution/PeopleSafe (from RemovePeopleToSafety)
PlanSuceeded ToSolve/@HeatReachesPeople
Solution/FillsUpWastePool (from DivertReactorCoolantToWastePool)
PlanSuceeded ToSolve/@RadioactiveMaterialExposed

Table 5: Example of Generated Plot. Injected events are
shown in Bold, the relations of causality between the various
elements in Italic, the responses in Typewriter font

Discussion
The prototype includes various techniques to allow it to cap-
ture the full set of requirements identified from the formative
analysis of the desired type of narratives.

The procedure for construction of consequence trees from
an initiating event (problem) mirrors the representation of
causal relations as used in planning-based representation of
narrative, but it differs from them in that the chaining applied
is not goal-driven. This is because the behaviour being mod-
elled does not correspond to intentional actions, but rather
to expanding consequences of given events. As in planning
solutions applied to interactive narrative, only part of each
plan built is actually used as a contribution of the narrative,
because events from attempted solutions may cut off conse-
quences of problems and further incidents may block some
of the solutions.

The introduction of probabilistic information to drive the
process of expanding events into consequence trees allows
selective exploration of the search space. Customisation of
the set of probabilities for specific runs allows relative steer-
ing of the outcome narratives.

The mechanism for injecting particular events according
to a fixed schedule allows configuration of the system to pro-
duce narratives triggered by specific events, or modified at
particular points by specific events.

The mechanism for modelling emergency response to
problems in terms of set sequences of relatively scheduled
events allows the representation of known emergency proto-

cols or accepted plans of action in each particular domain.
All these mechanisms may be useful in the context of

larger storytelling systems, where a disaster-averting plot
line may need to be tailored to combine well with other
plot lines (romantic interest, social problem, rivalry between
characters. . . ). Plot lines of other types may be generated
by completely different mechanisms (Gervás 2021), created
by hand or reused from known plot schemas (Concepción,
Gervás, and Méndez 2016). Automated combination of
more than one plot line may be considered (Gervás, Con-
cepción, and Méndez 2022).

The solution employed in this paper for knowledge repre-
sentation is based on simple propositional atoms, each one
representing an event. This solution is considerably clumsier
than those used in existing attempts at modelling narrative,
such as those based on planning, grammar, or case based
reasoning. However, it presents the important advantage of
being an acceptable approximation to all the formalisms em-
ployed in each of those paradigms. Since the problem being
considered in this paper appears to require a combination
of several of these techniques, it was important to allow a
solution compatible with all. Refinement of the knowledge
representation can be considered as further work. In that
process of refinement, the specific features that characterise
each of the paradigms may be considered as possible exten-
sions for the model, but in all cases they must be evaluated
for compatibility with the elements from other paradigms
that have been identified as necessary.

Conclusions
The model presented in this paper captures adequately the
requirements identified for narratives about averting disas-
ters triggered as final consequences of some initial incident.

The methodology followed in the paper, basing the con-
struction of the model on combining a set of technologies to
ensure that it contemplates the main features of the problem
domain, places the priority in finding an adequate solution
to a real problem. This is compatible with existing theoreti-
cal analyses of the complexity of narrative that suggest that
successful modeling of narrative requires inclusion of spe-
cific representational solution for the many different aspects
(Gervás and León 2014) that contribute to the richness of the
medium.

With respect to future work, a number of potential lines
are considered. First, the refinement of the knowledge rep-
resentation schema to include information on the agents par-
ticipating in the events would lead to a finer grained mod-
eling of both the problems and the solutions being consid-
ered in the narratives. Second, since the successful model-
ing of the narratives in the inspiring set has been shown to
require features of causality, of set sequences of events, and
of probabilistic information, refinements to the model may
be considered based on planning, case-based reasoning, and
Bayesian inference networks.

Overall, the proposed solution remains a simple initial ap-
proximation to the problem, but it serves to highlight the
need to contemplate a number of techniques to capture the
full spectrum of features that are found in the narratives in
the inspiring set.
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Abstract
Within this paper we propose an interdisciplinary approach at
the interface of computer science and architecture to predict
design phases using a deep neural network, based on archi-
tects’ hand drawings. The overall goal of the metis projects is
to provide architects with appropriate design step suggestions
using deep learning (DL) and based on semantic information
of Building Information Modeling (BIM), inspired by tex-
tual autocompletion of digital keyboards on smartphones. We
describe the process of our sketch protocol study and open-
source software prototype developed for sketch data acquisi-
tion with a WACOM tablet and video recordings, as well as
the evaluation of the sketch protocol study and the results of
the recurrent neural network (RNN) with Long Short-Term
Memory (LSTM) architecture, trained with the sketch data
quantified through the prototype tool. The initial prediction
results of the current and the consecutive design phase ap-
pear promising to predict with high accuracy. Our future
plans include tracking the architects design process through
the labyrinth of design decision making using different men-
tal layers (e.g. design phases) as filters all the way to the
bottom to isolate the individual mental process of a singular
design step.

Introduction
The world population is expected to reach ten billion by
2050 with about two thirds of the population living in the ur-
ban area (United Nations 2019). In order to meet the grow-
ing demands for residential housing, architects need to be
able to work faster, more sustainably and efficiently, while
simultaneously increasing architectural quality. Meanwhile,
Artificial intelligence (AI) has established itself in recent
years as a crucial domain of computer science for industry,
research, and even daily life. Likewise, Computer-Aided Ar-
chitectural Design (CAAD) and digital semantic models of
Building Information Modeling (BIM) became essential as-
pects and everyday tools of the contemporary architectural
design process. However, AI cannot be seen as a leading
supportive computational method in the building sector, but
promises huge potential and opportunities.

The DFG funded research project metis II aims to train
recurrent neural networks (RNN) to suggest further design

steps during the early design stages in the manner of au-
tocompletion, inspired by the mechanisms of digital key-
boards on smartphones. The intelligent system generates
suggestions using deep learning (DL) and case-based rea-
soning (CBR) methods that analyse the design process se-
quences found in the training set. This approach is derived
from the use of reference buildings for designing architec-
ture - as a source of inspiration, design decisions and ex-
plicit information, and a tool for evaluation and communi-
cation (Richter 2010). We attempt to assimilate to the con-
versational idiosyncrasies of the designer, following the idea
of the ‘Architecture Machine’ by Negroponte (1973). Sim-
ilar to an actual conversation, the intentions of the architect
needs to be clarified in the interaction between the AI and
the operator for progressing and suggesting. Even more so,
between an architect and its supportive intelligent system, as
the designers workflow can become disrupted, if questions
are answered “which are not yet being addressed, ... [im-
plying] that more is known about the solution than is really
the case” (Lawson 2004, p. 53). As sketching supports the
development of ideas and intentions (Lawson 2005), and is
an effective tool for communication, sketch-based interac-
tion is a promising method for an intuitive interaction with
CAAD systems, naturally integrating into the design process
(Leclercq and Juchmes 2002).

In this paper we present our approach for autocompletion,
as well as our sketch protocol study. We describe the pro-
cess for the data acquisition, analysis and pre-processing of
an architectural sketch protocol study, as well as for train-
ing an RNN with our collected sketch data acquired through
dividing the sketch protocol data into relational design se-
quences, such as design phases, design intention and design
steps, to train an RNN to detect design process patterns.

Related Work
The idea of an intelligent design assistant supporting archi-
tects design decision making is derived from the ‘Architec-
ture Machine’ of Negroponte (1973) and digital keyboards
on smartphones. It is to support the user by predicting and
offering suggestions based on architectural design knowl-

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

73



edge we acquired through sketch protocol studies. Sketch
protocol studies are a common research tool for observ-
ing architects and their design process. The protocol study
types range from ‘Thinking aloud’ studies for simultaneous
reporting and explaining by the participant to retrospective
studies with reporting and retracing the steps and decisions
afterwards. Suwa and Tversky (1997), as well as Lawson
(2004), have found retrospective sketch studies to be more
natural for the sketching participants because of an uninter-
rupted design flow and being more true to a genuine work
environment. Further, Suwa and Tversky (1997) propose
video recording the sketch process for supporting the par-
ticipant during the consecutive reporting in order to avoid
selective recall, as architects and designers “are notoriously
good at post-hoc rationalization of their processes” (Lawson
2004, p. 16). However, neither protocol study type results in
quantitative data so far, solely qualitative ones.

In order to obtain quantitative results, categorisation
needs to be introduced to the rich sketch data. Thus, Law-
son (2004) presents the possibilities of temporal or rela-
tional segments for sequencing sketch protocols. Neverthe-
less, he sees only the relational ones are a true possibil-
ity for creating reproducible results, without “the assump-
tion that they are also ‘capable of characterising designing”’
(Lawson 2004, p. 16). Consequently, Lawson (2004, 2005)
proposes the orderless design phases connected via ’nego-
tiations’: Analysis, Synthesis, Evaluation and Communica-
tion, which are similar to the loosely ’interrelated’ phases
by Laseau (2000): Analysis, Exploration, Discovery, Ver-
ification and Communication. The two authors differ as
Laseau (2000) further divides the Synthesis into Exploration
and Discovery, while both agree on Communication being a

separate category that is continuously accompanying the dif-
ferent phases. Furthermore, Barelkowski (2013) introduces
Knowledge Management as part of the internal Communi-
cation of the architect with their own ideas specifically for
the Analysis into the design process, e.g. deliberate igno-
rance of certain aspects, criteria or constraints, for being able
to progress within the design process of controlled conver-
gence (Buxton 2007). Thus, Barelkowski (2013) divides the
Analysis into Knowing and Understanding.

Such quantifiable sequencing can be used to train an
AI with sketch protocol data using supervised DL models
based on RNNs (Sutskever, Vinyals, and Le 2014), whereat
LSTM (Hochreiter and Schmidhuber 1997) or Gated Recur-
rent Units (GRUs) (Cho et al. 2014) are possible underlying
sequence processing technologies. Further, other parame-
ters, e.g. time, coordinates and pressure during the hand
drawing process, can be traced and quantified through fre-
quency, similarity and amount.

Approach
In this paper we propose a novel sequence learning based ap-
proach for the detection and prediction of architects’ design
phases using quantitative data acquired through sketch pro-
tocol studies. Within the following paragraphs we present
our autocompletion approach, the data acquisition and anal-
ysis of the sketch protocol study data, and the pre-processing
and integration of the data into an RNN model.

For our autocompletion approach we envision a closed AI
pipeline of components that recurrently inform and learn:
Quantitative Analysis, Training the RNN and Sequencing the
Design Process (see Figure 1). We draw from the field of
Human-Computer-Interaction (HCI), specifically Human-

    Sequencing
          Design Process

HUMAN -
COMPUTER -
INTERACTION

DESIGN
THEORY

COMPUTER
SCIENCE

Dataset    Retrain

Sequences

Training RNN

Quantitative Analysis

Figure 1: Envisioned autocompletion approach of the metis projects.
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System-Interaction (HSI), to obtain quantifiable results of
sketch protocol studies as a genuine practice of the early de-
sign stages of building design, based on sequences of the
design process, found in the research field of Design The-
ory. The quantitative results of sketch protocol studies are
used as a dataset to train an RNN (i.e. area of Computer
Science), which is again used for retraining to improve the
detection of sequences of the design process.

DESIGN STEP

DESIGN INTENTION

DESIGN PHASE

Figure 2: Visualisation of the mental layers as used for se-
quencing from design step through design intention to de-
sign phase.

We aim to track the design decision making process of ar-
chitects to obtain sequences for quantifying the design pro-
cess. Drawing from Lawson (2004; 2005), Laseau (2000),
Barelkowski (2013), Darke (1979), and Schön and Wiggins
(1992), we propose three different mental layers of rela-
tional sequences of a design decision (see Figure 2): the
design step (e.g.‘outlining parcel’) as the finest clustering
category, followed by the design intention, i.e. intention
behind the executed design step (e.g.‘requesting/requested
information’ by rendering the parcel dimensions tangible),
culminating in the broadest sequence, design phases. Based
on the aforementioned authors, we formulate the design pro-
cess as six phases without any order, but with an overarching
Communication to further elaborate the common Analysis -
Synthesis - Evaluation (ASE) model: Analysis - Knowing,
Analysis - Understanding, Synthesis - Exploration, Synthe-
sis - Discovery, Evaluation - (Informing) Knowing and Eval-
uation (- Final) (see Related Work Section).

Within this paper we describe our specific approach for
acquiring a first dataset for training an RNN using protocol

studies, as is illustrated in Figure 3. For our study we have
presented so far eight architects of different specialisation,
experience level and age with the following design task:

A one-storey high two unit complex (52 sqm per unit),
detached from the surrounding buildings, is built as a
first step to extend student housing in the Olympic Vil-
lage of Munich. The main facade of unit 1 faces North,
while unit 2 is east-bound. One unit consists of 1 living
room, 1 kitchen, 1 bathroom, and 2-3 bedrooms.
After reading the design task accompanied by site plans

and answering possible questions concerning the task, the
participant draws schematic designs with a WACOM FL 0.4
pen on a piece of paper - to enable a genuine architectural
design process of sketching - on top of a WACOM tablet
for 15 minutes, while being video recorded. The architect
can choose to place additional layers of transparent sketch
paper on top or switch between any number of pieces of pa-
per. The WACOM tablet traces the sketching, including the
parameters of time, pressure and coordinates, and saves the
sketch data. Afterwards the architect is being video recorded
while retrospectively reporting on the design process of the
sketching, while watching the previously recorded video.

After processing the video data into transcripts, one study
sessions provides us with: two videos (Sketching and Retro-
spective), two transcripts (Sketching and Retrospective), and
the Sketch data. To pre-process the Sketch data for receiving
quantifiable architectural design process data, we introduce
the previously described design phases including Communi-
cation, to the sketch data as sequences of the design process,
as well as architectural objects (e.g. ‘room’, ‘wall’). We cre-
ate custom labels, which are manually assigned to the sketch
protocol study data (i.e. sketch data, transcripts) (Bielski
et al. 2022a), using our own open-source sketch protocol
analyser tool (Ziegler 2021). The different output files in
the form of JSON objects are introduced to an LSTM-based
model as the consecutive RNN in our DL pipeline using the
TensorFlow library (Abadi et al. 2015). The LSTM model
itself includes a layer for pre-processing the quantitative as-
pects, namely time, pressure and coordinates, and the nor-
malised sketch protocol data labelled with design phases
and architectural objects. Based on a supervised learning
scheme, the LSTM is trained with this data including tem-
poral correlations, using a 10-fold cross validation with data
samples from randomly selected time periods. The details
of the mode of operation of the LSTM will be published in
our paper at the ECPPM 2022 (Mete et al. 2022).

Hand drawn sketch LSTM modelLabel creation Protocol analyser

Sequence Train
Analyse

Figure 3: Process of our sketch protocol study.
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Results and Discussion
The overall impact of an intelligent design assistant, sug-
gesting further design steps, on the architect and their archi-
tectural design decision making process is to be examined
for possibly hemming the creative design process and even
imposing decisions.

However, our evaluation for an intelligent design assis-
tant, suggesting further design steps enhanced with explain-
ability, suggests that the cognitive horizon of architects is
broadened by simpler and earlier access to additional infor-
mation (i.e. explanation visualisations) and new perspective
through other possible design solutions (i.e. design sugges-
tions). Nevertheless, the design suggestions must be pro-
vided in a clear way as suggestions to ensure the user’s own-
ership over the design decisions (Bielski et al. 2022b).

Further, the first results of the sketch protocol study sug-
gest that following the design process through the mental
layers of Figure 2, a domain expert can successfully assign
the design phases to the sketch data and the transcripts for
uniformly labelling the sketch protocol study data. Thus,
we are able to obtain quantifiable sketch data. Furthermore,
the training of our LSTM shows promising results as we are
able to predict both the current and consecutive design phase
with an accuracy of 94% (Mete et al. 2022).

The successful workflow and encouraging results need to
be viewed on the background of their limitations. The re-
searcher, an architect, labelling the sketch protocol data, has
prior knowledge of Design Theory and analysis of the archi-
tectural design process, resulting in possible biases. Further,
the amount of training data is limited (8 participants) due to
a difficult recruiting process because of the COVID-19 pan-
demic. Finally, the design phases are the broadest sequenc-
ing method proposed for segmenting the architectural design
process, entailing few design phase changes per study ses-
sion: approx. 10 to 20 changes per 20,000 timestamps.

In order to remedy these shortcomings, we have taken the
measures and adjustments, such as using the characteristics
of the ‘reflective practitioner’ (Schön and Wiggins 1992) and
‘primary generator’ (Darke 1979) for supporting the iden-
tification of the design phases. To temporarily overcome
the data acquisition bottleneck to properly train an LSTM,
the protocol data is sliced into processing windows of fifty
timestamps. Consequently, we increase the amount of data
for the system to learn from and afterwards randomly sepa-
rate it into training and testing data for improved data qual-
ity. Finally, in order to increase the time accuracy of the sys-
tem for determining the changes of design phases, we define
a custom loss function as an augmented version of the cur-
rently applied binary cross entropy loss to instead emphasise
on the learning of sequence windows, which include design
phases changes and thus, their pattern for transition.

Conclusion and Future Work
Through our sketch protocol study we explore the possibili-
ties to track the design process through investigating the de-
sign decision making of architects using sketching on a dig-
ital drawing board for creating design autocompletion (i.e.
the ultimate goal of the metis projects), as well as attempt to

begin building a training set for an ANN. Our study results
suggest that sketch data from sketch protocol studies can be
quantified, using labels of design phases, derived from De-
sign Theory, and our open-source sketch protocol analyser
tool, based on HCI methods. Our Computer Science ap-
proach for a sequence learning based LSTM for tracking the
design process by the means of these labels complements
these methods to build a base training set.

So far, we have sequenced the design process of the early
design stages with the broadest segmenting sequence, i.e.,
design phases. We plan to further quantitatively investigate
the sketching process using the rest of the previously de-
fined mental layers (see Approach Section). The next step
is to consider the design intentions until finally, we are able
to detect and predict appropriate design steps to suggest a
continuation of the design process.
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Abstract

The generation of artifacts through computational cre-
ativity (CC) systems is hitting the headlines with in-
creasing frequency. Although impressive, this paper
will not focus on the outcomes achieved by these sys-
tems, but rather on a specific dimension of artistic pro-
cesses: embodiment. I discuss the results of a recent
factorial survey study aimed at testing the influence that
embodiment has on the evaluation of creativity. These
findings show that the physical dimension of artificial
systems interacting with human artists contributes to the
perception of the interplay between artificial and hu-
man agents as a creative collaboration. I propose that
a closer study of the dynamics of interaction between
embodied machines, human artists, and the public can
facilitate progress in both the artistic and the technology
sector.

Introduction
In the last decades, computers and Artificial Intelligence
(AI) systems have been increasingly involved in the field
of creativity, by generating creative artifacts or by assist-
ing human artists in their creative processes (Lubart 2005;
Marks 2015): composing music in the style of Bach (Huang
et al. 2019), creating paintings sold for hundreds of thou-
sands of English pounds at renowned auction houses, and
even having their say in the fashion industry (Byers 2020).
The rapid technological development of AI systems and the
advances in the computational creativity (CC) field demand
a more detailed and overarching analysis of the impact that
the deployment of technology in the arts can have on differ-
ent aspects of the creative world.

This paper discusses the results of a recent study on the
influence of embodiment on the perception of creativity in
human and artificial systems. In the design of, and aims
behind, the study, I assumed the validity of the hypothesis
made by Guckelsberger et al. (2021) that “furthering our
insights into embodied computational creativity (CC) will
play a critical role in advancing the goals of CC more gen-
erally.” With a few exceptions (Sharples 1994), the role of
embodiment in creativity has arguably not been investigated
in depth in the literature, and even less so in connection with
AI. Still, the perception of the artists’ embodiment is gener-
ally deemed to be a key aspect of the observer’s response to

the artwork (Freedberg and Gallese 2007). The aim of the
paper and of the study here reported is, thus, to contribute to
closing this gap by reporting empirical findings on the influ-
ence of embodiment on perceptions of creativity. 1

Rather than just focusing on artistic creativity, the study
examined perceptions of creativity also in the context of sci-
entific practices. This was done in accordance with the belief
that creativity is not limited to artistic practices, but should
instead be investigated in a wider spectrum of fields and dis-
ciplines, including science (Pease et al. 2019).

Background and Related Works
Sensory-motor intelligence is a crucial aspect of human and
animal intelligence, and a key requirement to develop com-
mon sense knowledge (Pfeifer and Iida 2004). In social
science, the influence of the embodiment factor in shaping
cognitive processes, is strongly advocated by the embodied
mind paradigm (Foglia and Wilson 2013; Varela, Thomp-
son, and Rosch 2017). Since the promotion of research in
embodied intelligence in the Nineties by Rodney Brooks
(Brooks 1991), and the arguments against cognitivism and
neuro-reductionism which started to gain traction in many
fields, the field of robotics has been involved in the devel-
opment of AI as a discipline in an increasingly substantial
way.

Robotics and embodied intelligence are employed for a
wide range of tasks, from space exploration to industrial
manufacturing, including applications in the creative sector.
Already in the eighteenth century, the fascination for creat-
ing art through and with robots started with the creation of,
among other robotic systems, the humanoid automata cre-
ated by the watchmaker Pierre Jaquet-Droz (Leymarie, Bes-
sette, and Smith 2020). Recently, the interest of both artists
and computer scientists for ‘creative’ machines increased,
for example with the creation of ‘painting robots’ (Cohen
1995; Deussen et al. 2012; Jean-Pierre and SaId 2012;
Smith and Leymarie 2017; Srikaew et al. 1998; Tresset and
Leymarie 2013; Yu and Chen 2018).

1The notion of embodiment that will be assumed is that of
‘physical’ embodiment, namely “characterizing systems with a
physical body that can interact with the environment by being sub-
jected to and by exercising physical force” (Guckelsberger et al.
2021).
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The embodiment dimension introduces constraints that
may not be present in purely computational settings, and
these constraints may contribute to enhancing creativity
(Costello and Keane 2000; Johnson-Laird 1988). Still, a
general reluctance at attributing creativity to AI, irrespec-
tive of whether it is embodied or not, is well-known and
addressed in the literature (Mumford and Ventura 2015;
Colton 2008; Jordanous 2012; Natale and Henrickson 2022).
Previous studies aimed at investigating this phenomenon, by
focusing on the evaluation of perceptions of creativity (Jor-
danous 2012; 2016; Karimi et al. 2018). The present study
inserts itself into this dialogue, contributing to the investi-
gation of creativity attribution through empirical insights re-
sulting from the manipulation, made possible by a factorial
survey methodology, of the dimension of embodiment and
other dimensions (Simo Linkola and Kantosalo 2022).

Study on the Influence of Embodiment on
Perceptions of Creativity

Aims
Answering whether artificial systems can be deemed cre-
ative is not among the scopes of the study. Acknowledg-
ing the contested nature of the concept of creativity, this
paper will not be trying to propose a definition of creativ-
ity, either (Jordanous 2016; Jordanous and Keller 2016;
Moruzzi 2021). Rather, the discussion will focus on the in-
fluence of embodiment on evaluations of creativity.

The starting hypothesis of the study is the following:

Hypothesis. Between the attribution of creativity and the
embodied presence of the actor performing the process un-
der examination, there is a positive correlation.

Namely, artificial systems possessing physical actuators
through which to perform an action can be considered more
creative than systems that reach the same result but with no
physical intervention on the surrounding environment.

This hypothesis is motivated by some studies carried out
in online and live contexts (Herman and Hwang 2022), and
by past surveys conducted by the author on creativity per-
ceptions of the process and products by generative art algo-
rithms (Moruzzi 2020b). Participants to these surveys ex-
pressed the belief that an essential dimension for creativity
is the physical presence of the artist during the creative pro-
cess, a dimension that was deemed as lacking from the sys-
tems under examination.

In their overview of academic publications on embodied
computational creativity in the last ten years, Guckelsberger
et al. (2021) indicate some directions for future work in the
field of computational creativity. In particular, they suggest
to (i) “conduct qualitative and quantitative empirical studies
on the impact of a specific embodiment, treated as indepen-
dent variable, on (the perception of) creativity”, in order to
produce generalizable and empirical studies on the effect of
embodiment on artificial creativity and its perception, (ii)
employ objective and not subjective measures of creativity
when conducting these studies, and (iii) avoid ambiguous
uses of the concept of creativity. This paper responds in par-
ticular to suggestion (i), reporting the results of an empirical

study conducted through online factorial survey experiments
on perceptions of creativity in human and artificial agents.2

In addition to the exploration of the impact of the em-
bodiment dimension, the study presented in this paper was
designed also to test the influence of other dimensions on
perceptions of creativity: agency, explainability, and the ar-
tificial or biological nature of the actor performing the ac-
tion. In the interest of the focus of the present paper, the
analysis of the influence of these other dimensions will not
be addressed.3

Procedure
Participants were recruited online through academic
newsletters in philosophy, art, and computer science. Data
collection took place over three weeks in July 2021. Partic-
ipation to the online questionnaire was voluntary and no in-
formation has been collected that could directly or indirectly
identify a survey participant. After successful participation
in the survey, respondents have been asked for their email
address in a separate survey to participate in a raffle for one
of three C50.00 e-commerce vouchers as an incentive for
participation.

The time needed for completing the online survey was of
around 15 minutes. Participants first completed an online
consent form and a demographic questionnaire that included
questions about their age, level of education, field of studies,
and current occupation.

In the second part of the study, participants were asked
questions regarding their intuitions about features of agency
and creativity. Results regarding agency attribution will not
be reported here as they are not relevant in respect to the
focus of this paper.

Regarding creativity, respondents were presented with the
question: “Which of these concepts do you associate with
the notion of ‘creativity’?” and they were asked to choose
all the features that applied from the ones reported in the list
of Table 1. These attributes were chosen among the ones that
are more commonly associated to creativity in the literature
on the topic (Jordanous and Keller 2016; Moruzzi 2021). In
brackets is the number of the times that each attribute has
been selected by respondents.

Factorial Survey Experiment
The central section of the questionnaire consisted in a fac-
torial survey experiment, an approach which presents study
participants with different vignettes which describe hypo-
thetical scenarios (Auspurg and Hinz 2014). In this study,
vignettes were in the form of a short text, but they can also
be images or videos. The situations outlined in the vignettes
have different attributes (dimensions) and participants are

2With ‘agent’ I understand in this paper “anything that can
be viewed as perceiving its environment through sensors and act-
ing upon that environment through actuators” (Russell and Norvig
2011). I will use the term ‘actor’ in the instances in which I do
not assume that the individual necessarily possesses agency, as the
latter was one of the independent variables of the study.

3These other dimensions will be investigated in a paper in the
proceedings of the xCoAx 2022 conference, currently in press.
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Creativity Attributes
Novelty (128)

Problem-solving (87)
Surprisingness (66)

Value (52)
Instinctiveness (5)
Serendipity (22)

Unexplainability (20)
Genius (33)

Pleasantness (4)

Table 1: Creativity. List of creativity attributes, participants
had to choose from. In brackets is the number of times each
attribute has been selected.

asked to express their judgement regarding them. The values
(levels) of the dimensions are varied in order to test the im-
pact that they have on the participants’ evaluation. The fac-
torial survey design was particularly beneficial in this con-
text, as it enables to test the effect that the manipulation of
independent variables (in this case, embodiment) has on the
dependent variable (in this case, creativity perception). In
Table 2 are the variables that had been included in the exper-
iment:

Variables
Independent Identity of the actor

Agency
Embodiment
Explainability

Dependent Agency Attribution
Creativity Perception
Authorship Attribution

Control Process performed

Table 2: Independent, dependent, and control variables used
in the factorial survey experiment.

Results in respect to the influence of the dimensions of
Agency and Explainability on creativity will not be reported
as they are not relevant to the focus of the present paper.

The process of creation, performed in the experiment, was
kept constant, as control variable. The focus on the role of
the body in both the creation and the appreciation of cre-
ative processes centers the discussion around creativity as a
process rather than a product. While there is no doubt that
machines can produce artifacts that are aesthetically appeal-
ing, more critical is the question of whether the process they
undertake in order to create the latter can be deemed cre-
ative. By focusing on the process, it is possible to assess
the experience behind the creation of an artifact and, thus,
compare human and machines that engage with creative pro-
cesses (Leymarie, Bessette, and Smith 2020).

Different vignettes resulted through the combination of
the different levels of the variables, or dimensions, above
mentioned. Figure 1 shows the dimensions and variables of
the 8 vignettes present in this study. A random selection was
programmed into the survey to determine which vignettes to

present at the beginning of the survey to each respondent.
Each respondent was assigned two vignettes, constructed

on the basis of two scenarios: Scenario A. Painting a canvas,
and Scenario B. Discovering a vaccine. In reading the text of
the vignettes, participants were asked to engage in a thought
experiment. They could not actually perceive the process
described in the vignette and were required instead to imag-
ine the process and the properties involved. The following
is the structure used for the vignettes. Between brackets are
the dimensions, the value of which is manipulated.

Scenario A: Painting a picture
[Actor] is/are in the Royal Moondust Academy of Arts
to paint a canvas. The process [actor] undertake/s is the
following:
(If Displaying agency:) First, [actor] [agencyat-
tribute1adv] selects the color palette and tools needed
to paint the picture, then starts painting on the canvas.
Lastly, [actor] [agencyattribute2adv] observe/s the picture
and decide/s to stop painting, as the current state is the
best possible result that can be obtained.
(If Not displaying agency:) First, [actor] randomly pick/s
some colors and tools, then starts painting on the canvas.
Lastly, [actor] all of a sudden, lift/s the brushes from the
canvas and stop/s painting.]
The final painting is considered to be visually pleasing by
a general audience.
(If Explainable:) A faithful record of the process of the
painting of the canvas is published in an open-access
journal. All the processes made to achieve the result are
explicitly reported and clearly explained in a language
understandable to a non-specialist audience.
(If Not explainable:) No record of the creation of this
painting is available because a full report of the processes
that led to the final result could not be produced by [actor].

Scenario B: Vaccine discovery
[Actor] work/s in the Research Laboratory of Sundance
University to perform experiments to find a vaccine
against COVID-19. The process [actor] undertake/s is the
following:
(If Displaying agency:) First, [actor] [agencyat-
tribute1adv] generate/s hypotheses from the available
background knowledge and models, then carry/ies out
the experiments in the Lab. Lastly, [actor] [agencyat-
tribute2adv] analyze/s and interpret/s the results obtained.
If not displaying agency:) First, [actor] automatically tries
all combinations of the available background knowledge
and models to generate hypotheses, then carries out the
experiments in the Lab. Lastly, Dr. Miller generates
the results by performing mathematical calculations and
selecting the more statistically relevant answer.
With success! Through the experiment [actor] find/s out
a specific feature of the protein shell of the SARS-CoV-2
virus. This allows [actor] to develop a vaccine that is
able to train the immune system to combat not only the
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known variants of the virus but also every possible future
mutation of it. And what’s more, the vaccine works
against all influenza viruses! The vaccine goes through
rigorous testing and it is finally approved and licensed.
(If Explainable:) A faithful record of the experiment is
published in an open-access journal. All the passages
of the experiment and the processes made to achieve the
result are explicitly reported and clearly explained in a
language understandable to a non-specialist audience.
(If Not explainable:) No record of the experiment is
available because a full report of the processes that led to
the discovery could not be produced by [actor].

Participants had to read the vignettes and provide their
impression of the levels of agency and creativity displayed
by the actors in the presented scenarios.

In what followed, respondents were then asked to moti-
vate their answers through a free response field, compul-
sory to move on with the questionnaire. Comments have
been first organized in an Excel spreadsheet according to
the scenario and vignette they were referring to. Within the
single vignettes, they have then been arranged in descend-
ing order, according to the corresponding rating of creativity
and agency that had been given by the respondent (Tables 6,
7) The content of the responses was then qualitatively ana-
lyzed using a grounded theory methodology (Charmaz 2006;
Martin and Turner 1986). This method was chosen as op-
posed to the method applied in the analysis of the rest of
the survey. Instead of starting with a hypothesis, e.g., the
hypothesis on the correlation between embodiment and per-
ceptions of creativity, the comments were analyzed without
starting from any assumption, in order to test whether what
emerged from the comments confirmed the results of the
other sections of the survey.

Results
Demographics
The final sample consisted of 161 participants. The mean
age is of 39.1 years. 157 out of 161 participants have a
university-level education. 126 participants have a human-
ities, 22 an artistic, 15 a scientific, and 11 a technology
educational background (selection was not mutually exclu-
sive). The current occupation of most of the participants is in
the education sector (Student 44, Academic 66, Engineer 3,
Teacher 10, Admin 7, Retired 6, Other 25). The prevalence
of participants with an educational and/or academic back-
ground and occupation is due also to the channels through
which the survey has been advertised.

Factorial Survey
After carefully reading the vignettes, respondents were
asked to rate the process of, respectively, the creation of a
painting (Scenario A) and the discovery of a vaccine (Sce-
nario B) for their creativity on a 7-points scale from ‘Not at
all creative’ to ‘Very creative’. In both Scenario A and Sce-
nario B, the average creativity was evaluated at 0.6 points,
slightly above the mid-point of the scale.

What is more interesting, though, is to examine how the
perception of creativity is affected by the manipulation of

the different dimensions. Table 3 shows how the partici-
pants’ evaluation of creativity changes by varying the Actor
dimension, namely by presenting the process as performed
by a human, an AI, a team of a human with an AI, or a team
composed of two AIs. Values are rounded to the nearest
hundredth, and they are reported in respect to the baseline
(0) which corresponds to an individual human actor.

Statistically significant results, i.e., when the “p-value”
(Pr(> |z|)) is inferior to 0.05, are marked in Table 3 with
an asterisk.4 Just for the fact of not being a human, but rather
an artificial actor (other dimensions being equal), the AI is
judged as 0.88, 1.00 and 0.98 points less creative than an
individual human actor. What may come as a surprise, is
that also the Human+Human team has been judged as 0.54,
0.74, and 0.68 points less creative than an individual human
actor.

Est. Std. err z value Pr(> |z|)
Painting scenario

Human 0 0 0 0
AI -0.88 0.43 -2.00 0.04*
Hum.+Hum. -0.54 0.37 -1.44 0.15
Hum.+AI -0.18 0.38 -0.48 0.63

Vaccine scenario
Human 0 0 0 0
AI -1.00 0.43 -2.31 0.02*
Hum.+Hum. -0.74 0.37 -2.01 0.04*
Hum.+AI -0.58 0.43 -1.36 0.17

Combined scenarios
Human 0 0 0 0
AI -0.98 0.32 -3.08 0.002*
Hum.+Hum. -0.68 0.25 -2.68 0.007*
Hum.+AI -0.39 0.27 -1.46 0.14

Table 3: Actor Dimension. The table shows the impact of
the manipulation of the Actor dimension on the perception
of creativity.

Table 4 shows how the participants’ evaluation of creativ-
ity changes by varying the Embodiment dimension in re-
spect to the baseline, which corresponds to the actor being
not embodied. Only the results where Actor = AI are re-
ported, as it is assumed that all humans are embodied.

In both Scenario A and B, when the actor is described
as embodied (i.e., as a robot acting through robotic arms),
the evaluation of creativity is lower than in the case of the
actor being a computer software. Specifically, the agent is
evaluated 0.14 and 0.27 points less creative than the software
in Scenario A and B, respectively.

Somewhat disappointingly, the results concerning the in-
fluence of embodiment on the evaluation of creativity are
not statistically significant. Indeed, in both cases the p-value
is higher than 0.05, i.e., the value under which the p-value

4If the p-value is more than 0.05 there is no strong evidence
against the null hypothesis, i.e. the hypothesis that there is no rela-
tionship between the variables being considered. From this, how-
ever, does not necessarily derive that the alternative hypothesis (i.e.
the independent variable does affect the dependent one) is false.
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Figure 1:
Vignettes distribution. The scheme shows the distribution of the four dimensions (actor identity, embodiment, agency, and

explainability) with their respective levels in the factorial survey experiment. From the distribution resulted 8 distinct
vignettes.

Est. Std. err z value Pr(> |z|)
Painting scenario

Actor=AI
Not embod. 0 0 0 0
Embodied -0.14 0.36 -0.39 0.70

Vaccine scenario
Actor=AI
Not embod. 0 0 0 0
Embodied -0.27 0.45 -0.61 0.54

Combined scenarios
Actor=AI
Not embod. 0 0 0 0
Embodied -0.18 0.30 -0.62 0.54

Table 4: Embodiment Dimension. The table shows the im-
pact of the manipulation of the Embodiment dimension on
the perception of creativity. Baseline is the absence of the
attribute.

indicates that the relationship between two variables is sta-
tistically significant. Thus, these results give us ground to
neither confirm, nor disconfirm the starting hypothesis. Still,
while the quantitative analysis of the influence of embod-
iment on creativity resulting from the factorial survey ex-
periment is not conclusive, more interesting results emerge
from the comments to the scenarios left by participants.

Free Response Field
Tables 6 and 7 report some of the participants’ comments left
in the free response field after completing the factorial sur-
vey experiment. Here, respondents were asked to motivate
the reasons behind the evaluation of the creativity exhibited
by the actors in the scenario they were presented with. When
possible, for each vignette (Vig.) are reported comments
that are representative of the full range of creativity evalua-
tion scores (Creat.).5 Keywords are marked in bold by the

5Vignette 4 presented an embodied AI (robot), vignette 3 a dis-
embodied AI actor (software), vignette 7 a human and an embodied
AI, vignette 8 a human and a disembodied AI (Fig. 1).

author, and the categories under which each comment has
been collected are indicated in column 2. The list of the
categories that emerged from comments is reported in Table
5:

Categories
Anthropomorphism

Autonomy
Collaboration

Data crunching
Problem solving

Randomness
Tool

Training

Table 5: Categories. List of categories that emerged from
the analysis of the participants’ comments through grounded
theory methods.

Scenario A (Painting) Considering the painting scenario
performed by an individual artificial actor (Vignettes 4 and
3), no meaningful difference emerges between the com-
ments relative to the vignette in which the actor is embodied
(Vig. 4) from the ones relative to the vignette in which the
actor is a software (Vig. 3). In the comments following
a positive evaluation of creativity, ‘Autonomy’ seems to be
the prevailing feature that is attributed to the actor and that,
consequently, led to a high rating of creativity (Table 6).

On the other hand, comments following a negative evalu-
ation of creativity, identify the robot or software as a ‘Tool’
that is, and should, be controlled by human agents. None
of the comments relative to these first two vignettes refer
to the role that the physicality of the robot might or might
not play in performing the action, aside from the action of
‘picking colors and tools’ that is ascribed to it by participant
1532983358 and that follows a declaration of autonomous
decision-making process from the side of the robot itself.

More interesting observations can be made by considering
the comments to the vignettes in which human and artificial
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Scenario A (Painting)
Vig. Category Creat. Comment
4 Autonomy 7 The robot was trained and now decides based on the training data. So, it has undergone a

process similar to a human learning how to paint. Id. 679187182
Autonomy 6 The research team did not interfere with the process and Omega decided itself about the

process (picking colors and tools). Id. 1532983358
Tool 2 The robot is only an extension of the intentions and goals of the human researchers. Id.

1072971333
Random. 1 The work can be satisfying but cannot count as creative: this is similar to a child who spills

paint on a floor in a constellation that looks nice by accident. Id. 1727392082
Tool 0 A robot cannot be creative: it should merely be a slave for humans. Id. 1078614007

3 Autonomy 6 The final painting seems to be novel and valuable and produced in a fairly autonomous way
by Omega. Id. 633966012

Anthrop. 4 Even though the painting is pleasant, some inner motivation (in the sense of intuition) is
missing bc [sic] it is a software. Id. 1440542658

Tool 1 Omega is more like a tool rather than an autonomous agent. Omega’s agency is limited by
the researchers’ design goals and intentions. Id. 1072971333

7 Autonomy,
Collab.

7 They decided what to do and acted together. Id. 178982639

Collab. 7 Helen and Omega created a painting. Together they applied paint on canvas in such a way
that they found satisfied their taste and intention. Id. 178982639

Collab. 6 The participation of each one of them and the interaction between them is necessary to
perform the work. Id. 1702380099

Collab. 6 There was collaboration and communication of some sort between Helen and the robot and
I think that is creative. Id. 1206682464

Tool 4 Helen uses the robot as a tool, both for the painting process and for the input for the colour
palette. Id. 1724824616

8 Anthrop. 6 Helen clearly has creativity, as for Omega, that would depend upon the underlying architec-
ture. Id. 785499956

Anthrop. 4 I don’t believe we are yet at a stage to give equal ratings to Helen and Omega, the rating is
above average because the human is involved. Id. 1361386133

Anthrop. 0 Software is not creative. Id. 1150045635

Table 6: Free responses; Painting scenario. The table reports some participants’ comments in the free responses field after the
vignettes based on the painting scenario. Comments have been organized according to creativity score given by respondents
and by categories, following a grounded theory method.

actors are collaborating (Vignettes 7 and 8). When the hu-
man is presented together with an embodied artificial agent
(Vig. 7), the rating of creativity is higher (the lowest rating
is 0) and participants explicitly refer to a high level of ‘Col-
laboration’ (Collab.) and cooperation that is not indicated in
the case of the software and the human as joint actors (Vig.
8). Indeed, when the artificial actor is not embodied, the
creativity, when at all recognized, is attributed to the human
actor alone (i.e., Helen, see participant 785499956). A cate-
gorical refusal at acknowledging the possibility for software
to be creative (participant 1150045635) is contrasted in Vig.
7 by a description of the robot Omega as a tool that Helen
can use to express her creativity (participant 172482461).

Scenario B (Vaccine) In the comments relative to the sci-
entific discovery scenario, there is no mention of the collab-
oration that was instead deemed happening between humans
and machines in scenario A. The relatively small sample of
participants to the study and the low number of significant
comments do not allow us to draw a conclusion regarding

whether this disparity between the two scenarios is indica-
tive of the fact that human-machine collaboration is deemed
more relevant for creativity in artistic than in scientific sce-
narios. Still, the comments confirm the estimate results ob-
tained from the factorial survey experiment (Table 4) which
show that the embodiment of the artificial actor is, slightly,
less relevant to creativity in the scientific than in the artistic
scenario.

In the vignette presenting the human interacting with the
software (Vig. 8) the comments following a positive evalu-
ation of creativity ascribe the latter to the human actor who
uses Alpha as a ‘Tool’ or as a useful, but not autonomous,
support (participants 680035971, 2070596251). In the vi-
gnette depicting Dr Miller working with robot Alpha (Vig.
7), the robot is recognized as a ‘person’ by one participant
for its creative contribution (participant 1017771618). In
general, hesitation at attributing creativity to the artificial
actor is observed as coming together with the observation
that the action performed is not creative but rather system-
atic ‘Data crunching’ (Table 7).
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Scenario B (Vaccine)
Vig. Category Creat. Comment
4 Data

crunching
6 There is no bootstrapping by the robot, only exhaustive try-out, computation that is. Still its

application worth some creativity. Id. 101174398
Tool 4 It is using a tool (a self-learning machine) to undertake a task. I see this as little more creative

than using a supercomputer to break a coded message using brute force. Id. 2006543588
Data
crunching

0 The robot is systematically trying all possible combinations of background knowledge,
which is the opposite of creatively doing anything. Id. 1100858543

3 Collab. 6 All of this strikes me as hugely creative and collaborative problem-solving. Id. 240767967
Data
crunching

5 I don’t know if creativity or computational power is the better term. Id. 1361386133

Data
crunching

0 I think it is sophisticated data crunching, the creativity comes from the initial ideas of the
designers. Id. 1724824616

7 Prob.
solving

7 A huge amount of creative problem-solving is needed to produce the results described in
the story. If a robot is participating creatively, then that robot is, de facto, a person, and
unambiguously exhibits creativity. Id. 1017771618

Training 6 They use a lot of background knowledge and models, it’s a less intuitive process but more
logic-based so it’s not that creative as the painter. Id. 111980832

Anthrop. 4 Dr. Miller was indeed creative, but it is difficult to know the role by the robot. Id. 1078614007
8 Tool 7 If we consider Alpha to be a mathematical structure (which it is) and if we suppose that Dr.

Miller had instead used a different sort of mathematics (and pencil and paper) then we’d not
hesitate to ascribe creativity to Miller. By parity of reasoning, this case if creative also. Id.
680035971

Tool 7 The doctor is utilising Alpha as a tool, a sophisticated tool - but in essence no different than
a painter’s brush. Id. 2070596251

Tool 4 I think it is not a lot about creativity in this scenario, but about a clever use of a new (and
sophisticated) tool called Alpha by the scientist. Id. 1440542658

Data
crunching

0 The generation of hypotheses and the evaluation of experiments seems to be things ‘canned’
algorithms could do. Id. 2066630687

Table 7: Free responses; Vaccine Scenario. Free responses; Painting scenario. The table reports some participants’ comments
in the free responses field after the vignettes based on the vaccine scenario. Comments have been organized according to
creativity score given by respondents and by categories, following a grounded theory method.

Discussion
The reflection on the role of embodiment for the perception
of creativity in computational systems is included in a wider
discussion on the reception of the engagement of AI systems
in the creative sector.

As mentioned, a generalized skepticism against AI en-
gaging in creative activities is well-known and reported by
the literature (Moruzzi 2020b; Mumford and Ventura 2015).
The acquisition of problem-solving skills, agency, and other
features of general intelligence has been indicated as a possi-
ble way for AI to gain the appreciation of the public (Bown
and McCormack 2009; Gizzi et al. 2020; Moruzzi 2020a;
Natale and Henrickson 2022), while other studies report how
only the possession of anthropomorphic qualities and a gen-
eral humanization of technology can lead AI to be perceived
as creative (Moruzzi 2020b; Mumford and Ventura 2015;
Wyse 2019).

Two obvious limitations of the present study need to be
pointed out here: (i) the embodiment dimension comes in
degrees, namely the grade of the physical presence of agents
and of their interaction with the surrounding environment
can vary. In order to conduct a more compelling test on the
influence of embodiment on creativity, it would, therefore,

be necessary to use more levels in the embodiment dimen-
sion and to vary them more accurately. The wider aim of the
study that has been presented prevented a more detailed vari-
ation of the embodiment dimension. In addition, (ii) in order
to obtain more representative and significant results, a bigger
and more diverse sample of participants would be necessary.
Notwithstanding the value of factorial research methods for
assessing the influence of variables on the testing hypothe-
sis, a drawback of this methodology is, indeed, the need for
high numbers of participants in order to obtain statistically
relevant results for each of the vignettes presented (Auspurg
and Hinz 2014). Follow-up research starting from the re-
sults of this study will explore the impact that the language
used to describe artificial actors has on creativity percep-
tions (e.g., tool vs collaborator). During the workshop ‘The
Role of Embodiment in the Perception of Human and Ar-
tificial Creativity’, as part of ICCC’22, we will expand the
methodology followed in the survey presented in this pa-
per, allowing participants to the workshop to assist to live
performances by the digital illustrator Renaud Chabrier and
by the artist Daniel Berio, who will conduct a procedural
generation of graffiti through robotic applications. This ‘on-
site’ study will allow us to obtain more precise and detailed
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results on the role of embodiment in the judgment of the
aesthetic value of an artifact and on the evaluation of the
creativity of the process behind its creation.

Conclusions
This paper started with the suggestion made by Guckels-
berger et al. (2021) that conducting empirical research on
the influence of embodiment on the perception of creativity
could contribute to the field of computational creativity as
a whole. The paper replied to this suggestion by present-
ing the results of a recent empirical study on perceptions of
creativity in artistic and scientific processes performed by
human and artificial agents. The study started with the hy-
pothesis, motivated by previous research, that embodiment
positively influences perceptions of creativity. This hypoth-
esis has been tested in the central part of the study through
a factorial experiment and the corresponding modulation of
the levels of the embodiment dimension. From the results
of the evaluation of vignettes in both the artistic and scien-
tific scenario, however, no significant observation could be
made. Indeed, the dimension of embodiment had a statisti-
cally irrelevant weight on evaluations of creativity.

As partial compensation for the non-conclusive results
following the quantitative analysis of the influence of em-
bodiment on creativity, more interesting results have been
obtained from the qualitative analysis of the comments left
by participants in the free responses section. In particular,
what emerges from this study is a higher propensity of re-
spondents in acknowledging collaboration and creative ex-
change between the human and the artificial actor when the
latter is embodied (in the form of a robot). This tendency is
observed only in the artistic scenario (Scenario A). What is
common to both scenarios, is the description of the artificial
actor as a ‘Tool’ in comments associated to low ratings of
creativity.

This indication of the relevance of embodiment in the
artistic collaboration between human and artificial actors
suggests the importance of exploring the creative potentiali-
ties that may emerge from human-machine interaction in the
context of artistic processes in further research. The increas-
ingly frequent use of technology in the art sector, indeed, is
inevitably bringing with it a modification and development
of the relationship between artists, technology, artifacts, and
the audience. Importantly, the nature of the human-machine
collaboration, as well as the ascription of different character-
istics to the machines that may interact with human artists,
are dependent on the viewers’ perspectives: some may at-
tribute more autonomy to the machine, others may see it as
just a tool (Audry and Ippolito 2019).

This, in conclusion, is the ultimate reason for the rele-
vance of the recommendation by Guckelsberger et al.(2021):
empirically investigating the perception of creativity and the
influence of embodiment on it is crucial for illuminating and
suggesting fertile new grounds for co-creativity opportuni-
ties. Different kinds of embodiment may generate differ-
ent modalities of human-machine and machine-machine co-
creativity (Davis et al. 2019; Kantosalo and Toivonen 2016;
Kantosalo and Takala 2020; Karimi et al. 2018; Saunders
and Bown 2015), and this in contrast to the vision of art and

artworks as dis-embodied and devoid of any consideration
about the context in which they emerge (Audry 2021).
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Abstract

The research on physically and socially situated artifi-
cial agents could complement and enrich computational
models of creativity. This paper discusses six perspec-
tive lines of inquiry at the intersection of creativity and
social robotics. It provides a description of ways in
which the field of social robotics may influence (and
be influenced by) creativity research in psychology and
speculates how human-machine co-creation will affect
the notions of both human and artificial creativity. By
discussing potential research areas, the authors hope to
outline an agenda for future collaboration between cre-
ativity scholars in psychology, social robotics, and com-
puter science.

Introduction
The field of Human-Robot Interaction (HRI) provides a fer-
tile environment for interdisciplinary dialogue and recipro-
cal exchange of results, perspectives, methodologies, and
scientific language. This is an ideal context to tackle the
problem of human and artificial creativity and study how
creative outcomes arise from the interaction between human
actors and their social and techno-material environment.

Saunders et al. (2010) and Gemeinboeck and Saun-
ders (2013, 2010) were among the first to recognize the
potential of HRI to investigate the enacted and embodied
nature of creativity. Beyond the opportunities to interact
and improvise with a new kind of creative system, the au-
thors addressed the role of shared physical and social space
for the transmission of cultural and tacit human knowledge
to robotic agents. Fitzgerald, Goel, and Thomaz (2017)
further explored the notions of embodied creativity and
human-robot co-creativity in tool-rich human environments
and pointed to the challenges and opportunities that phys-
ical situatedness of robotic agents poses for computational
creativity research. After reviewing recent work related to
artistic applications of social robots, Lubart et al. (2021)
concluded that, in contrast to ‘disembodied’ computational
models of creativity, physically embodied and socially situ-
ated artificial agents, i.e., social robots, afford real-time ac-
tion and co-creation with humans. The authors argued that
social robots represent a potentially efficient ecologically-
informed instrument to design, support, and extend human
creative thought and action, thus complementing computa-

tional creativity research. Figure 1 depicts the process of
Human-Robot co-creation as the inter-action between hu-
man (person), robot, and their socio-technical environment
(press), leading to the emergence of novel and useful prod-
ucts.

This article provides an overview of the interplay between
social robots and creativity research and outlines possible
lines of inquiry at the intersection of these fields. Six per-
spective research directions are identified: 1) development
of methodologies for studying human-robot interaction and
co-creation; 2) investigation of human-robot teaming and
co-creativity in multiple professional contexts; 3) evaluation
of robot’s and human-robotic system’s creative capabilities
and outcomes; 4) development of educational applications
of social robots to enhance human creativity; 5) artistic ap-
plications of social robots; 6) the use of social robots to em-
ulate the human creative process.

Our intention is twofold. First, we reflect on the cur-
rent state of research in the field of human-robot interaction
and propose possible research directions across disciplinary
boundaries. Second, we aim at pointing to the current chal-
lenges of existing studies and suggest possible solutions.

Figure 1: Human-robot co-creation embracing 4 P perspectives on
creativity: Person, Process, Press, and Product (Jordanous 2016;
Rhodes 1961)
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Six lines of research at the intersection of
creativity and robotics

A recent review by Guckelsberger et al. (2021) drew at-
tention to the importance of embodiment for computational
creativity research and a deeper understanding of human
creativity. The authors highlighted the relevance of the 4E
Cognition paradigm (Newen, Bruin, and Gallagher 2018;
Malinin 2019) for creativity research and called for the em-
bodied computational creativity (CC) research programme.
Drawing on this in-depth analysis of embodied CC and re-
cent research in social robotics and cognitive science, below
we discuss six perspective lines of inquiry at the intersection
of robotics and creativity.

Development of methodologies for studying
human-robot interaction and co-creation
As recently noted by Onnasch and Roesler (2021), an in-
creasing variability of existing robots’ capabilities and in-
teraction scenarios limits possibilities of comparison and
generalization of findings in HRI research. To address this
challenge, the authors have proposed a detailed taxonomy
to structure and analyse human-robot interaction. Their
framework provides three category clusters, such as robot
characteristics (e.g., morphology, level of autonomy, task
specification), interaction contexts (e.g., field of applica-
tion, settings), and team classification (team composition,
human role, etc). While acknowledging the heuristic value
and graphical character of the proposed taxonomy, we sug-
gest that the HRI field may also profit from the adoption
of existing methodologies and psychological frameworks
to structure different HRI scenarios. Specifically, we see
great potential for the application of activity theory ini-
tially outlined by Vygotsky (1987) and further developed
by Leont’ev (1978), Engeström (1987b), and Kaptelinin and
Nardi (2006) as a theoretical lens to formalize the interaction
between artificial and human actors.

Figure 2: Activity system and two major principles of the activity
theory: the tool-mediated character of human activity and its ori-
entation towards an object/outcome.

One of the possible units of analysis in activity the-
ory is an activity system composed of three basic compo-
nents: subject, tools, and object (outcome) of the activ-
ity1 (fig. 2). Nardi (1996) discussed the resemblance of ba-
sic premises of activity theory with theories of situated ac-
tions (Suchman 1987) and distributed cognition (Hollan,

1For a rigorous and extended description of activity theory and
other key components of the activity system: community, rules, and
division of labor, see Engeström (1987a; 1987b), and Lindblom
and Alenljung (2020), Ceha et al. (2021), Huang and Mutlu (2012)
for applications of activity theory in HRI.

Activity
level

Question Description Example

Activity Why?
Determined
by motives

1a. Building a house;
1b. Completing
a software project

Actions What?
Determined
by goals

2a. Laying the
foundations;
2b. Programming
a module

Operations How?
Determined
by conditions

3a. Using a hammer
- grasping, striking;
3b. Using operating
system commands

Table 1: Hierarchical structure of activity. Based on Kuutti (1996)

Hutchins, and Kirsh 2000). Indeed, activity theory is in line
with contemporary views of embodied and situated cogni-
tion, which consider tools as an organic element of extended
cognitive systems (Favela et al. 2021). Engeström (2001;
1987a) also proposed relevant conceptual tools for under-
standing social action, depicting collaboration as a network
of two (or more) interacting activity systems.

Activity theory considers human behaviour at different
levels of abstraction by specifying three possible levels of
analysis, ascending from motor operations to complex activ-
ities (table 1). Notably, these three levels could be aligned
with the three-stratum structure of affordances, proposed
under the term means-end hierarchy by Vicente and Ras-
mussen and later elaborated by Wagman, Cialdella, and
Stoffregen (2019). Vicente and Rasmussen (1990) sug-
gested that a hierarchically organized set of affordances may
be seen as a ‘functional landscape’ (p.223) through which
agents navigate while accomplishing a task.

The concept of affordances has received increased im-
portance in the context of collaborative human-robot activ-
ities (Chu and Thomaz 2016; Koppula and Saxena 2015)
and creativity research (Kimmel and Hristova 2021; Malinin
2019; Glăveanu 2013). In terms of activity theory, creativity
could be re-described as a journey of the actor in interaction
with socio-cultural means and tools through a hierarchically
organized landscape of affordances towards the production
of new and useful artifacts2.

Advances in the HRI field allow to further develop and ad-
just activity theory to the current technological context. As
such, it could be used as a heuristic model to formalize and
understand how human and robotic actors plan their actions
and cooperate across three activity levels and multiple in-
teraction layers (Kantosalo et al. 2020) towards a common
objective—generating creative artifacts. Different human-
robot system configurations could be imagined according to
an increased level of robot’s autonomy.

2In activity theory the artifact is not necessarily material, it
could be conceptual or behavioural.
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Human-robot teaming and co-creativity in multiple
professional contexts
The automation and robotization of human jobs have been
considered amongst future global threats, leading to unem-
ployment (Frey and Osborne 2013). Although it is evident
that robots will increase their presence in workplace con-
texts and will automate some routine tasks, in contrast to the
‘threatening’ view, here we consider possibilities of human-
technology teaming (Waefler 2021). In the following, we
will speculate on how the role of a robot will depend on how
much creativity is needed for the job and how different oc-
cupations could benefit from the presence of an embodied
artificial agent.

At the first level, we place jobs that eventually necessi-
tate some form of creative problem solving or episodic pro-
duction of novelty. Examples could be teachers, astronauts,
lawyers and alike3. At this level, the robot could play a role
of a tool in supporting human activity (fig. 3).

An artificial agent might use different strategies to in-
crease human performance and extend the horizon of human
action possibilities depending on the stage of the creative
process (Amabile 1983; Wallas 1926; Bourgeois-Bougrine
et al. 2017):

• Problem definition and representation: suggest search-
ing for alternative formulations of the problem, consider
different media to represent it, and look for hidden af-
fordances or relevant problem/object properties and at-
tributes.

• Preparation: find and visualise relevant information or in-
spiring sets, make mind maps, sketches, planning trees.

• Generation and exploration of possible actions: sug-
gest questioning assumptions, find analogies, use men-
tal/physical synthesis (combination of elements) or dis-
assembly (elimination of elements), search for limita-
tions, potential functions and attributes, means-end anal-
ysis, switch attention from problem to the environment,
switch mode from generation to action. An artificial agent
could also visualise ideas and simulate or model possible
movements using their own’s bodies.

• Solution evaluation and validation: propose to evaluate
the solution from different perspectives, make a SWOT
(Strengths, Weaknesses, Opportunities and Threats) anal-
ysis, search for alternative actions and strategies, and
analyse failures.

As human creativity could be promoted via physical en-
gagement and exploration (Finke, Ward, and Smith 1992;
Glăveanu 2012; Suwa, Gero, and Purcell 2000; Schön
1992), robots seem to be a perfect tool that allows humans
to alternate and blend thinking and doing. Beyond cogni-
tive support and stimulation, a robot would provide emo-
tional support and stimulate human motivation due to phys-
ical presence—an aspect that has become increasingly im-
portant during the COVID crisis. One could envisage that

3We acknowledge that even within these professions the degree
of creative intensity could vary and sometimes reach the Pro-C
level (Kaufman and Beghetto 2009).

a cup of coffee, a hug (or a kiss using the Kissenger ma-
chine (Cheok and Zhang 2020)), or verbal encouragement
would be beneficial for the creative process. Another use-
ful function of such an agent-for-every-day-problem-solving
could be its ability to keep track of human problem-solving
efforts and possibility to retain and analyse successful meth-
ods and solutions.

Figure 3: Robot as a tool supporting human creative activity.
Adapted from Lubart et al. (2021)

At the second level, we place professions in which the
creation of new and valuable artifacts is a necessary part of
a job (Koehorst et al. 2019). Professional chefs, art direc-
tors, copywriters, and scientists fall into this category. If
in the previous scenario, the role of a robot was to inform
and stimulate a human actor, this level is marked by an in-
creasing degree of robotic engagement in the human creative
process. Beyond the capacities outlined above, a robot is en-
gaged in solution-generation or execution of specific actions
and operations set by a human within his or her creative ac-
tivity. By generating plans and hypotheses and automating
human operations, artificial agents would vastly expand the
scope and variety of actions available to human actors.

Finally, the third level would be marked by full human-
robot teaming, where two activity systems–human and
robotic–cooperate in order to achieve a common objective
(fig. 4). In the process, they coordinate their activities and
synergistically contribute to the production of a novel and
valuable artifact. This new type of technologically aug-
mented human creativity (which we call Tech-C) will be
paralleled with the emergence of new types of jobs based
on mutual inspiration, joint exploration, and co-creation be-
tween humans and machines. These new jobs which neither
humans nor robots could perform alone should be governed
by legal and ethical rules to be developed.

Figure 4: Human-robot co-creation as cooperation of two activity
systems. Adapted from Lubart et al. (2021).

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

89



Evaluation of robotic, and human-robotic systems’
creative capabilities and outcomes
Increasing human-robotic co-creativity in occupational set-
tings will raise demand for the assessment of creative poten-
tials and evolving creative capacities of robotic and human-
robot systems. Developing common metrics to measure
robotic capabilities and human-robot interaction is neces-
sary in order to inform future education requirements, an-
ticipate future changes in skill demand (OECD 2021), and
improve the performance of human-robot teams (Steinfeld
et al. 2006). In this regard, we expect an increasing applica-
tion of existing human tests and devices as a basis for such
assessment.

Not all existing tests would be suitable, however, as many
of them are constructed given predominant views of creativ-
ity as an essentially ‘disembodied phenomenon’ that hap-
pens mostly in a human mind. Our formalization of cre-
ativity as an activity stresses the role of perception and ac-
tion, as well as symbolic and physical tools for the devel-
opment of new and useful products. Therefore, below we
present examples of possible tests that could be relevant for
robotic creativity and human-robot co-creativity assessment
accounting for robots’ physical embodiment.

• Torrance Thinking Creatively in Action and Movement
test (Torrance 1981). This embodied analogue of the Al-
ternative Uses Task (Guilford 1967) would ask a robot
to come up and demonstrate multiple ways to do the ac-
tion (e.g., put a cup in a bin). Initially developed for chil-
dren starting from 3 years old this test would evaluate the
robot’s capacity to choose and compose a broad variety of
actions to fulfil the same goal. Sufficient behavioural vari-
ation along with objects exploration might be key compo-
nents necessary for innovation and solving new problems
in the wild, arguably by increasing the opportunity for
learning object affordances and physical properties (Grif-
fin and Guez 2014). This test could be used as inspira-
tion for developing other practical challenges to measure
human-robot co-creation.

• Construction using Lego blocks (inspired by Or-
tiz Jr 2016). A robot would be asked to construct a house
using Lego blocks and progressively add new integrated
structures such as a garage or a garden. The same task
should be completed in multiple possible ways. Collabo-
rative creations could be evaluated via the construction by
taking turns with humans.

• Escape-room challenge (inspired by the study by Law,
Kasenberg, and Scheutz 2020). A human participant is
closed in the room, where the key is out of his/her reach.
A social robot capable of moving and understanding hu-
man commands is present in the room. The two possible
ways to get the key are to use the robot either as a physical
tool or a partner to solve the task.

A successful resolution of the proposed challenges in-
volves not only continuous generation of hypotheses and
plans but a great extent of exploration of the task’s action
space. In each case, beyond existing knowledge, the solu-
tion depends on the sensorimotor component and the ability

to notice and make use of new visuospatial features relevant
to the task. These experimental situations testing the ac-
tor’s behavioral flexibility and ability to improvise solutions
with limited available resources have been formalized as
MacGyver planning problems (Sarathy and Scheutz 2018)
in robotics.

Among other existing tools potentially useful for the eval-
uation of joint human-robot creation is the Consensual As-
sessment Technique (Amabile 1982). The technique could
be applied for assessing creative artifacts and the gain in the
creative output between conditions of human-only creation
and creation with a robot4.

Development of educational applications of social
robots to enhance human creativity
An increasing presence of social robots in educational con-
texts is an established trend (Belpaeme et al. 2018a;
Mubin et al. 2013). Studies investigate the educational
effectiveness of social robots as tutors (Belpaeme et al.
2018b; Movellan et al. 2009), peers (Kanda et al. 2004;
Zaga et al. 2015), and novices (Chase et al. 2009;
Tanaka, Cicourel, and Movellan 2007).

In comparison to virtual agents and computer-based tools,
physically present systems have numerous advantages when
it comes to learning (see Kim and Tscholl 2021, also
Li 2015 for review). We also propose that embodied
agents support students’ situated cognition (Wilson 2002)
and learning (Wilson 1993). Situated cognition is coupled
with the properties and affordances of settings in which
learning takes place and uses these elements to reduce the
cognitive workload. Thus, physically present robots have
the potential to support such crucial components of scien-
tific discovery as learning by doing, experimentation, obser-
vation, and data-driven inferences (see Zimmerman 2007
and Klahr, Fay, and Dunbar 1993 for the description of
these components). Active interaction with the environment
and hands-on activities, where reasoning and action go in
parallel, may allow students to search for evidence not only
in the hypothesis space of underlying principles but also in
the experiment space of perceptual cues and patterns. Ac-
cording to Friston et al. (2017) , exploratory behaviour and
active sampling of the world often entail unexpected discov-
eries and may trigger updating learners’ explanatory models.

It seems likely that the potential of this technology would
expand beyond learning core subjects such as mathemat-
ics, reading and science literacy to the development of
transversal skills, e.g., critical thinking, creative problem
solving, and collaboration. Given the expected increase of
robots’ participation in occupational fields, early familiari-
sation with new technology would enable its better accep-
tance and more fluent and effective human-robot collabora-
tion in the future.

Several recent studies explored the possible benefits of
social robots to facilitate creativity in children (Park et al.
2017; Alves-Oliveira et al. 2020; Ali et al. 2021) and
adults (Kahn et al. 2016; Alves-Oliveira et al. 2019). In

4For further discussion of creativity evaluation in computational
co-creative systems see Karimi et al. (2018).
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terms of the activity framework, these interventions fall into
the application of social robots as a tool to enhance human
creative activity. In addition to possible strategies to facil-
itate the human creative process as outlined in the section
devoted to HRI in professional contexts, we expect that so-
cial robots could be particularly valuable in the promotion of
children’s exploration, play, and curiosity, preparing young-
sters to adapt to unforeseen circumstances.

Despite its promising potential, this line of research has
its pitfalls. Using semi-autonomous or fully tele-operated
procedures to enhance creativity with social robots raises the
question of whether an eventual effect should be attributed
to the robot or human operator. Given this validity issue,
interpretation and generalisation of results should be made
with caution.

Amplification of artistic applications of social
robots
In contrast to the use of social robots as instruments for
enhancing the human creative process, researchers started
to explore the application of robots as actors participating
in creative activity and contributing to the emergence of
creative products (Gomez Cubero et al. 2021; Paré 2012;
Bretan and Weinberg 2016; Pan, Kim, and Suzuki 2010).
We expect that in the next 5 years we will see multiple ways
in which the interplay of art and engineering will enrich hu-
man artistic culture. Robotic and human actors performing
on the theatre stage, human-robot musical bands, and collab-
orative drawing may open up new forms of art, creating new
entry points into robotics and art for children and adults.

Existing examples of making art with robots illustrate
moment-to-moment contingency, participatory, and impro-
visational nature of the creative process. Unfolding through
human and robot engagement in shared action, collaborative
performance shapes plans and a common vision of the fi-
nal product. The artistic creative process that arises from
human-robot interaction thus represents thus a collabora-
tive dialogic inquiry between participants of the creative
process—human artists, machines, materials, and mediat-
ing artifacts (Dahlstedt 2012; Ingold 2010). Such phys-
ically situated and distributed cognitive systems that co-
actively exploit and explore affordances and constraints of
their surroundings operationalise creative cognition as cre-
ative thinging (Malafouris 2014), i.e., thinking with and
through materials and things.

Human-robot artistic creations integrating and synthetis-
ing motion, light, and sound will definitely pose questions
of authorship of ‘humbot’ artifacts. Regardless of whether a
social robot could be deemed creative itself and be attributed
authorship for its own creation, it is simply a fact that this
type of technology will demand humans to be more sponta-
neous and inventive. Performing with robots which depend
on sensory input means that no single linear scenario would
be possible. Instead, humans would have to improvise on
the fly, imagine multiple alternative paths, and ultimately,
develop a larger repertoire of possible actions. This aspect
of social robots has the potential to make human-robot co-
creation per se an ideal training for the unexpected.

Use of social robots to emulate the human creative
process
It comes as no surprise that the outlined research directions
will be accompanied by continuous efforts to build agents
capable to create like humans. Models of the human cre-
ative process have been used as inspiration to design cre-
ative behaviour in artificial systems (Augello et al. 2016;
Hélie and Sun 2010; Vigorito and Barto 2008). Whereas
computational models formalize human creativity as a pro-
cess of solving abstract problems in the absence of a func-
tional body, robots have to deal with the physical world
through their sensors and actuators. Although limited by the
so-called curse of dimensionality (Kober, Bagnell, and Pe-
ters 2013, p. 1242 ), physically and socially present robots
afford new and more ecological operationalizations of the
creative process and could thus provide additional insight to
computational models of creativity.

Guckelsberger et al. (2021) have proposed that robots’
sensorimotor capabilities provide an excellent opportunity
to examine how creative cognition may be grounded in per-
ception and action. Inspired by recent research in social
robotics, Lubart et al. (2021) also suggested that ground-
ing of robots knowledge in vision, audition and propriocep-
tion allows to instantiate Ventura’s (2016) highest level of
computational creativity, where being an embodied author
of its sensations a system creates new artifacts based on its
own sensorimotor expertise and ‘life experience’ (see also
Colton and Saunders 2018 and Guckelsberger, Salge, and
Colton 2017 for further discussion of authenticity, inten-
tionality, and intrinsic motivation in CC systems).

Recently, research has started to address how social robots
could demonstrate human-like inventive behaviour in every-
day human scenarios, where resources are scarce, and re-
placement of missing tools is needed (Antunes et al. 2016;
Awaad, Kraetzschmar, and Hertzberg 2015). Proposed cog-
nitive architectures allow us to envision social agents capa-
ble to improvise solutions for missing equipment by trans-
ferring action affordances (Qin, Brawer, and Scassellati
2021; Agostini et al. 2015), discovering new action oppor-
tunities (Nyga et al. 2018), and even creating new tools and
affordances (Nair and Chernova 2020).

These applications of social robots demonstrate their
potential for everyday, little-c creativity (Kaufman and
Beghetto 2009), as measured by the Alternative Uses Task.
Ironically, as the exact cognitive mechanisms underlying un-
usual uses are still unknown (but see Gilhooly et al. 2007
and Matheson and Kenett 2020, 2021), robots could help
psychologists to unveil the role of language, visual percep-
tion, and motor components in performing creative substitu-
tions. The next stage of robots’ developmental progression
towards creativity would be the development of heuristics
permitting agents to choose and evaluate actions based not
only on their utility but also on their prospective novelty.
One possible way of doing so might be the elaboration of
novelty metrics linked to social norms, conventional affor-
dances, and domain standards. Such heuristics estimating
‘deviation from normality’ and potential utility would en-
able robots to predict the effect of their action in terms of a
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potential surprise and value of the final artifact (see Jacob
and Magerko 2018 for some examples of possible heuris-
tics).

Conclusion
This paper has attempted to sketch probable future lines of
inquiry by crossing interdisciplinary borders of computa-
tional creativity, social robotics, and psychology. Imagining
and studying possible futures are important to deal better
with uncertainties and anticipate opportunities before they
emerge and evolve (Broo 2021). We hope that the present
work will further stimulate interdisciplinary research inves-
tigating the power of embodied agents in relation to the eco-
logical, embedded, enactive, and extended nature of creative
cognition.

For centuries, imagination and creativity have been con-
sidered as a divine and mysterious spark in humans. Cur-
rent technological changes allow us to envision a new
technologically-augmented type of creativity, in which the
inspirational spark would come from the technology and
where boundaries between humans and machines would be
blurred. We should not forget, however, about the ironies
of automation. From one point of view, robotization and
increasing human-robot interaction would be the opportu-
nity for humans to offload information and computational
processes, freeing up internal capacity for other cognitive
and probably more creative tasks (Ecutti, Chemero, and Lee
2021). From a competing point of view, decreasing the fre-
quency of practice of critical creative operations (like idea
generation or knowledge retrieval) and outsourcing them to
artificial agents could lead to the loss of human creative ca-
pacities (Bainbridge 1983). In this regard, the outlined ed-
ucational interventions, educational robotics (Gubenko et
al. 2021), and artistic applications of robots could become
critical for preserving human knowledge, flexibility, and the
ability to improvise.
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Abstract

Recent advances in generative machine learning, par-
ticularly in the area of text-to-image synthesis, have
created huge potential for co-creative systems. It is
non-trivial, however, to adapt algorithms intended to
generate images that match a given prompt to suit the
task of effective collaboration with humans. This pa-
per presents initial experimentation towards developing
an agent that can work cooperatively with a human de-
signer in the task of drawing. We do so by utilizing Con-
trastive Language Image Pretraining (CLIP) to guide
the drawing’s semantic meaning on a drawing comple-
tion process, and fidelity terms to enforce geometric
alignment (with what would be the user’s in-progress
sketch). Preliminary results are presented as a proof
of concept, attesting that drawing outputs are both di-
verse and identifiable as matching the provided prompt,
which we interpret as steps towards co-creativity.

Introduction
The traditional conception of the role of a computer within
a creative process is that of a tool: precise, effective, and
unobtrusive. But today’s AI-driven capabilities have started
to bend the barrier between tools and collaborators, as re-
flected on recent studies in Human-Computer Co-Creative
Processes (Kantosalo et al. 2020). In this work, we seek to
test that barrier further, exploring how generative AI models
can be applied to develop co-creative systems that can help
designers sketch. There have been many amazing sketching
systems developed in the last decade (Davis et al. 2016;
Karimi et al. 2018), but several questions remain unan-
swered before those systems could be applied in practice:
Can a co-creative sketching system work towards a user-
specified goal? Can it both respect the user’s progress and
propose modifications when needed? Can it propose small,
diverse steps towards completion rather than one-shot auto-
complete a drawing? We tackle the task of building a co-
creative agent that can answer some of these questions in
the affirmative.

For a co-creative drawing agent to be able to be truly co-
operative in this context, it should not only be able to pick up
on a partial design made by the user, but also to somewhat
grasp a sense of its semantic meaning, and produce an out-
put consistent with the user’s end goal. Until recently, im-

age generation models were only capable of producing out-
puts based on simple, specifically trained conditioning labels
(Mirza and Osindero 2014). But there has been rapid recent
progress in context-agnostic models trained in huge datasets,
that have an ability to translate the meaning of complete sen-
tences into images, such as CLIPDraw (Frans, Soros, and
Witkowski 2021), and Dall-E (Ramesh et al. 2021).

Our goal in this work is to make progress towards systems
with which users can engage in dialogue during creative col-
laboration, fluidly discussing both strategic and tactical as-
pects of their emerging design (Bown et al. 2020).

We present a co-creative drawing model that can complete
a user’s design by taking advantage of CLIPDraw’s ability to
produce drawings aligned with the semantic meaning of the
desired output’s description. To this we add loss terms for
building on a user’s partial sketch and penalising drawing
outside a (user-specified) region (see Figure 1).

Related Work
Our co-drawing model builds on CLIPDraw (Frans, Soros,
and Witkowski 2021), which built on CLIP (Ramesh et al.
2021), which in turn built on ConVIRT (Zhang et al. 2020).

CLIP and ConVIRT
Contrastive training is based on the following idea: let us
consider a batch of (text, image) pairs, {(tn, In)}n=1,...N ,
paired in the sense that the text tn describes the image In.
Then, two functions g and f mapping text and images (re-
spectively) to a latent space RD are built using appropriately
chosen Neural Network (NN) architectures. These functions
are trained to minimize a loss function based on the cosine
distance between the image and the text (and vice versa).

Lc(tk, Ik)
.
= − log

exp ⟨g(tk), f(Ik)⟩/τ∑N
n=1 exp ⟨g(tk), f(In)⟩/τ

,

where ⟨·, ·⟩ denotes the cosine similarity and τ > 0 is a
scale parameter. Finding g and f minimizing Lc essentially
means we are fitting g and f so that tk is mapped closer to Ik
than any other image on the batch. The same is done, using
a complementary loss function, to ensure f(Ik) is closer to
g(tk) than to the mapping of any other text within the batch.
The result is a shared embedding of both images and text
prompts into a space where similarity can be measured be-
tween any combination of either. As soon as it was released,

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

96



Figure 1: Co-Drawing Model schema: Three different losses are computed on three instances of the pipeline, and the set of
Bézier curves x that defines the drawing is optimized with respect to the sum. This ensures parametric similarity with the given
curve set x̄, consistency with the partial drawing h(x̄) and compliance with the semantic meaning g(t̄).

CLIP became the focus of a vital and diverse community
of online artistic exploration of its capabilities. Much of
this exploration was based around generating images from a
GAN that match a particular prompt (Liu and Chilton 2021).

CLIPDraw
Of most interest to our goal of co-creative drawing is the
recent coupling of the CLIP-based semantic loss (i.e. match
to a provided prompt) with a differentiable rasteriser (Li et
al. 2020). The resulting system, CLIPDraw, generates an
image that fits a provided prompt by manipulating a set of
Bézier curves (Frans, Soros, and Witkowski 2021).

Let us denote by B the space of Bézier curves and let
h : X → I be the aforementioned differentiable function
that maps the set of finite subsets of B to the image space.
Then, given a set x of Bézier curves, it is possible to build a
gradient descent optimization method as:

x← x+ η∇x⟨g(t), f ◦ h(x)⟩, (1)

where η > 0 is the learning step.
Put simply, this lets us find a vector drawing that matches

a given text prompt, thus enforcing semantic meaning to our
model’s outputs.

Co-Creative Drawing
Key to co-creative drawing is modifying existing partial
sketches. A first instinct upon seeing how CLIPDraw works
might be to just let it draw over our partially completed
design, since a simple sum over h(x) would preserve the
model’s differentiability. There are two issues with this ap-
proach. Firstly: CLIPDraw can (and often will) simply draw
over the partial drawing, completely disregarding the user’s
design. Secondly, the opposite is also a problem: if the agent
is prevented from making any adjustments to the user’s in-
put, then it becomes inflexible.

With this in mind, we start by formally defining our partial
sketch as a set of Bézier curves x̄ ∈ X , and a text prompt t̄
as a string describing the desired end result of our drawing.
In practice this partial drawing would be something like an
SVG image created by a user.

Curve Fidelity
Let us denote by K0 the number of Bézier curves in x̄ and
by Ka the number of additional curves we are going to allow
the agent to draw. Finally, let x be the variable associated to
the total set of K = K0 +Ka curves in the model. The idea
is that the first K0 curves produced by the method resemble
those of the provided sketch, and we can enforce that by
adding the following term to the cost function:

Lb(x, x̄)
.
=

K0∑

k=1

3∑

m=1

λm∥x̄(m)
k − x

(m)
k ∥2, (2)

where the index m = 1, . . . , 3 represents one of three vari-
able types: color, coordinates or width, and λm > 0 are
regularization parameters, dependant on the type of variable.
More specifically, x(1)

k ∈ RDk is a vector containing the path
coordinates, x(2)

k ∈ [0, 1]4 is a vector with the RGBA com-
ponents of the color of the trace, and x

(3)
k > 0 represents the

width of the trace.
By using this penalisation term, we enforce x to keep the

original traces from the partial sketch. Furthermore, by tun-
ing the λm parameters, we can control the strength of this
constraint, setting large values to strictly maintain the origi-
nal traces, and smaller values to allow the agent to sensibly
move, adjust the width or change the color of the traces.

Drawing within a specified region
Despite the above constraints that enforce similarity on the
curves, our agent might still “choose” to draw over the user’s
partial sketch. To overcome this, we define a region Ω of the
canvas where the agent is allowed to draw, by penalizing im-
age discrepancies outside of it. In practice we envisage that
this could be provided by the user, or potentially suggested
automatically through a process analogous to neural atten-
tion.

Notice we want to penalize discrepancies, but not prohibit
them. Breaking the rules should always be possible during
creative processes, if there is a good reason to do so. To
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Figure 2: On the left, a user’s partial sketch x̄. After that, the outputs h(x̂) obtained with three random initializations of
additional Bézier curves, using the prompt t̄ =“A red chair” and the drawing area Ω set as the top half of the canvas.

Algorithm 1 Co-Creative Drawing
Set xk = x̄k, ∀k = 1, . . . ,K0.
Let xk ∼ U [0, 1], ∀k = K0 + 1, . . . ,K.
Establish a drawing region Ω.
while ∥h(x)− h(x(p))∥2F > δ
x(p) ← x
x← x− η∇xL(x; t̄, x̄)

return h(x)

accomplish this we define an additional cost function as:
Li(x, x̄)

.
= α∥h(x̄)− h(x)∥2L2(Ωc), (3)

where α > 0 is a regularisation parameter, and ∥ · ∥L2(Ωc)

is the L2 norm defined in the complement of the drawing
region Ω.1 Here again, the fidelity of the image outside the
designated drawing area can be enforced (or relaxed) by in-
creasing (or decreasing) the value of α.

Algorithm
Finally, we can add the terms on (2) and (3) to the cosine
distance (see Figure 1) to build our overall cost function as

L(x; t̄, x̄)
.
= −⟨g(t̄), f ◦ h(x)⟩+ Lb(x, x̄) + Li(x, x̄).

The goal is now to find a solution x̂ minimizing L. Even
though differentiable, L is non-convex and hence finding a
global minimum is an intractable problem. Nonetheless, we
have found using a gradient descent approach such as (1)
often yields good results in practice, and hence we propose
to use the method summarised in Algorithm 1.

While the existence of local minima is considered a prob-
lem in most settings, it is the opposite here. A high-quality
solution x̂ within our framework can be understood as one
with a low value L(x̂; t̄, x̄), while a set of diverse solutions
corresponds to a set of elements within different regions of
X . This means that the set of highest-quality diverse solu-
tions is a set of local minimizers, and hence a subset of the
possible convergence points of the proposed algorithm.

Results
Although creativity is a very tricky concept to define, let
alone measure, there is certain consensus on the conjunc-
tion of value/utility/quality and novelty/originality/diversity

1Better, more complex penalisation functions may be feasible
and will be explored in future work.

being a good approximation to assess it (McCormack and
Gambardella 2022). Both dimensions, however, have their
own subjectivity, so we attempt to operationalise them in
ways that make sense for co-creative drawing.

As a first intuitive test of our method, we drew a par-
tial sketch, defined a very simple drawing region, ran Al-
gorithm 1 and inspected the outputs (see Figure 2). These
images were obtained by providing the agent with a sketch
of a stool, and asking it to draw on the top half of the can-
vas to match the description “A red chair”. As a first-order
measure of quality: if you the reader were readily able to
recognise the drawings as red chairs without reading the cap-
tion, then we can attest some subjective standard of quality.
Some scribbles appear in the background, which are a con-
sequence of the original CLIP having been trained mostly
with natural images, with complexly textured backgrounds.
Even ignoring the scribbles, there is also (again, naively)
some degree of diversity present among the four chairs, for
example in their orientations or the height of their backs.

Quality Assessment
As a simple yet robust way of assessing the quality of the
outputs we checked whether CLIP itself recognises the gen-
erated drawings as matching the prompt. CLIP can be used
as a classifier, with 2343 nouns from its corpus as labels.2
Evaluating 100 samples from the tasks in Figs 2 and 3 ac-
count for a 98% recognition rate for the categories “chair”
and “hat”, with a confidence of 69.9% ± 19.6%. This ac-
curacy and confidence (estimated as a softmax probability
over the very large set of labels) is quite encouraging as a
first assessment: our drawings are at least recognisable as
the objects they are supposed to be.

Diversity Assessment
Quantifying diversity is yet another task without a stan-
dardised method, but recent papers (McCormack and Gam-
bardella 2022) aim to measure it using the intermediate lay-
ers of Convolutional Neural Networks (CNNs). It has been
shown that different layers encode geometric properties at
different scales, which can capture the “style” of images
(Ecker, Bethge, and Gatys 2015). Bearing this in mind, we

2Ideally, we would want to use a different NN architecture, but
to the best of our knowledge, CLIP is the most complete domain-
agnostic image classifier currently available.
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User-drawn samples

Agent-drawn samples

Figure 3: On the left, the mean standard variation over each layer’s neuron activations for the 10 tested samples. On the right,
some samples of the hat-design task outputs as completed by the users and the agent.

propose to use the variability of the activation of intermedi-
ate CNN layers as a measure of diversity.

We provided 10 human subjects with the same partial
sketch of a person wearing a hat, and asked them to com-
plete the design as they wish (some samples can be seen in
Figure 3). We then put the images through the CNN pro-
posed in (Simonyan and Zisserman 2014) and got the out-
puts of the five intermediate layers used in Style Transfer.
We computed the standard deviation over the 10 samples
for every neuron, and averaged over every layer, getting five
points of comparison. We then did the same with 10 ran-
domly generated samples from our model. Comparing the
two sets (see Figure 3) shows that our generated samples
have a higher variance. Although we cannot assure how
well these measurements align with our intuitive notion of
diversity, the results do suggest at least comparable, if not
higher than inter-human design diversity in our results. Of
course, this small-scale study has limitations: we neither
asked our human subjects to be diverse nor did we recruit
skilled milliners to design for us.

Conclusions

We have introduced a model intended for a designer to inter-
act with a sketch-generation agent. Preliminary quantitative
results account for the model being capable of producing di-
verse and quality drawings. Qualitatively, the process and its
outputs show potential as a useful fit for co-creative drawing.

The proposed idea is flexible enough to explore the use of
other image generative models as the core of the co-creative
agent. Future work shall also deal with the formalization
and expansion of the introduced experimental setting.
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Abstract
We present a pilot study of an AI-assisted search tool, the
“Design Concept Exploration Graph” (“D-Graph”). It assists
industrial designers in creating an original design-concept
phrase (DCPs) using a ConceptNet knowledge graph and vi-
sualizing them in a 3D graph. A DCP is a combination of
two adjectives that conveys product semantics and aesthet-
ics. The retrieval algorithm helps in finding unique words
by ruling out overused words on the basis of word frequency
from a large text corpus and words that are too similar be-
tween the two in a combination using the cosine similarity
from ConceptNet Numberbatch word embeddings. Our pilot
study with the participants suggested the D-Graph has a po-
tentially positive effect, though we need to improve the UI to
help users adhere to the use of the algorithms in the intended
ways.

Figure 1: Left: character space for “kinetic warmth.” Right:
design derived from “kinetic warmth” (© 2021 Toyota Mo-
tor Sales, U.S.A., Inc.).

Introduction
We present a pilot study of an AI-assisted search tool,
the “Design Concept Exploration Graph” (“D-Graph”). It
assists industrial designers in creating an original design-
concept phrase (DCPs) using a ConceptNet knowledge
graph and visualizing them in a 3D graph. A DCP is a
combination of two adjectives that conveys product seman-
tics and aesthetics. The retrieval algorithm helps in finding
unique words by ruling out overused words on the basis of
word frequency from a large text corpus and words that are
too similar between the two in a combination using the co-
sine similarity from ConceptNet Numberbatch word embed-
dings. Our pilot study with the participants suggested the

D-Graph has a potentially positive effect, though we need to
improve the UI to help users adhere to the use of the algo-
rithms in the intended ways.

Designers are in charge of creating the meanings and
characters attached to their designs and communicating
them with other stakeholders in both visual and verbal
modes (Chiu and Shu 2012; Koch et al. 2019; Kita and Reki-
moto 2018). We define a design-concept phrase (“DCP”)
as a combination of two adjectives that conveys product
aesthetics. For example, “kinetic warm” was created by
the designers at Toyota’s North American design studio for
Concept-i (Fig. 1-right). This unorthodox DCP was created
and communicated using a “character space (CS),”(Fig. 1-
left). A character space explains design concepts in terms of
how and by which attributes they differ and what already ex-
ists or what is to be avoided (Krippendorff 2005). While this
approach is common in design practice, there’s little compu-
tational support for such tasks.

In this study, we focus on two key features: word fre-
quency and cosine similarity between words. Setchi et
al.(2011) demonstrated a term with a low document fre-
quency in a corpus could support richer inspiration and cre-
ativity for designers. Han et al. (2019; 2018) analyzed the
conceptual distances between two ideas expressed in word
combinations and concluded that good design concepts have
a certain distance between two ideas.

Also, among different language models, the concept dis-
tances measured by ConceptNet best agreed with human ex-
perts’ judgment on concept distance(Han et al. 2020). In
D-Graph, we use ConceptNet to measure the cosine similar-
ity of two words. Our method uses it to control the quality
of the combinational adjectives that express the design con-
cepts.

Methods
The D-Graph searches for and filters adjectives that are re-
lated to users’ queries by using a ConceptNet knowledge
graph (Speer, Chin, and Havasi 2017).

The top section of the web UI (Fig. 2) has a design brief
and a search window. The large space below the design brief
is allocated to a “playground,” in which graphs of explored
words are visualized in 3D hub-and-spoke style. When the
user expands the search by clicking words, new clusters are
shown in different colors so that users can visually track-
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Figure 2: D-Graph web UI (experiment). The baseline tool has Merriam-Webster online thesaurus instead of D-Graph in the
playground. All the other UIs are the same for both tools.

back to previous explorations. The lower-right section is a
“word pool” where users can store candidate words for de-
sign concept phrases. Every time the user puts a query in the
search window, clicks on a word on the D-Graph, or drags
& drops words from the D-Graph to the word pool, those
words are stored in the word pool. Finally, the right-middle
section is the CS, which is completed when all four ends on
the axes are defined as w1 through w4. The words on the
CS can be set by dragging & dropping words either from the
word pool or directly from the D-Graph. The upper-right
quadrant, represented by the combination of w1 and w2, is
the target design-concept phrase. All the other quadrants are
contrasting concepts to be used by the users to explain what
are not the target design concepts.

Search and filter algorithms
D-Graph directs users to set words on the CS in a prede-
termined order (w1, w2, w3, then w4). This strategy man-
dates that users first establish the target design concept, rep-
resented by the upper-right quadrant (blue square shown in
Fig.2) defined by w1 and w2, followed by all the other quad-
rants.

D-Graph has two types of search and filter al-
gorithms, SEARCH FOR RELATED WORDS and
SEARCH FOR ANTONYMS . The former gets a new
word w′ from all nodes inside the edge e, using all 33
relations in ConceptNet, except for “Antonym.”. Then,
each new word w′ from the nodes will be filtered in terms
of both the relative word frequency (Freq) of w′ and the
cosine similarity (cosSim) between the query word w and
the new word w′, calculated with ConceptNet Numberbatch
word embeddings. We currently set the threshold at
(.05 ≤ |cosSim| ≤ .5), according to the results by Han et

al. (2020), and (1 ≤ Freq ≤ 50) from several tests. The
latter first gets related words with the former algorithm;
then, for each new word w′, it gets all the nodes in the edge
using the “Antonym” relation. All the results are set as
labels of the start node and end node and the link between
them to render the graph.

Pilot study design
Ten undergraduate/graduate students (mean age of 25.1
years, σ = 4.01), in an industrial design department, par-
ticipated the pilot study. The independent variables were
two different search tools, D-Graph (Fig.2), using the above
mentioned algorithms, and the baseline tool, using Merriam-
Webster online thesaurus instead of D-Graph UI.

The participants were asked to perform the same task
twice with the baseline and experimental tools with different
design briefs in a counterbalanced order. A design brief is
a written description of a project that requires some form of
design, containing a project overview, its objectives, tasks,
target audience, and expected outcomes (Phillips 2004;
Koronis et al. 2018). After reading the brief, the partici-
pants were prompted to start the task. First, they were asked
to find a combination of two words that forms a DCP by
determining w1 and w2; then, they were asked to find the
opposing concept to each of w1 and w2 to generate the CS.
The session was concluded when the user was satisfied with
the design-concept phrase in terms of w1 and w2 and com-
fortable explaining it in contrast to the other three quadrants.
They participated in the experiment online using Playbook
UX, a usability testing platform that enables screen record-
ings. Each participant was given a video instruction and a
practice time window (2-3 min.) to get familiar with the
tools.
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Subjective evaluation A post-task questionnaire with
self-reported evaluations was administered using a 7-point
Likert scale for four measurements: the “breadth” of ex-
ploration that they could perform, the “originality” of the
DCP, the “relevancy” of the DCP to the design brief, and the
“explainability” of the DCP. The participants were asked to
write a short explanation of the DCP (upper-right quadrant
of the CS), in contrast to the ideas expressed in the other
quadrants. “Explainability” was measured by a 7-point Lik-
ert scale on how comfortable they were in explaining the
DCP.

Computational metrics The relative word frequency
(Freq) of both w1 and w2 for each DCP as well as the
cosine similarity (cosSim) between them were calculated
post-hoc. The duration of the task and the word count in the
“word pool,” which indicates how many words the partici-
pant interacted with in the task, were also retrieved. We fur-
ther analyzed how the selected participants interacted with
the words using spatial mapping based on the word embed-
ding.

Qualitative data
All the DCPs and two other words on the CS and the written
explanations were obtained. We also had screen recordings
that shows the sequence of users’ word explorations.

Results and discussion
All the subjective evaluations on the DCPs with D-Graph
were higher than those with the baseline tool, though they
were not significant (Table 1). Table 2 shows all the DCPs
with the participant ID, the tool used, the mean word fre-
quency (meanFreq) of w1 and w2, and the cosine similarity
(cosSim) between them. There were no significant differ-
ences (p = .218) in mean cosSim between the D-Graph
(.246, σ = .195) and the baseline tool (.149, σ = .124).

Table 1: Subjective evaluation results

Ratings (N=10)

Variable Bsln. ( σ ) Exp. ( σ ) p

Breadth Mean 4.7(1.42) 5.9(1.10) 0.126
Medien 5 6

Mode 6 6

Originality Mean 5.1(0.99) 5.4(1.43) 0.591
Medien 5 6

Mode 5 7

Relevancy Mean 5.5(1.51) 6.1(0.99) 0.217
Medien 6 6

Mode 7 7

Explainability Mean 5.4(1.65) 5.9(1.45) 0.427
Medien 6 7

Mode 7 7

Table 2: Design concept phrases generated by participants

P. ID/Tool w1 + w2 M.Freq cosSim

1-A/Exp. “cognizant inclusive” 10.37 0.105
2-A/Exp. “sustainable renewable” 66.74 0.572
3-A/Exp. “honest continuous” 26.15 0.123
4-A/Exp. “futuristic modern” 55.19 0.392
5-A/Exp. “august renewable” 18.99 0.021
7-B/Exp. “economical efficient” 31.64 0.551
8-B/Exp. “affordable neutral” 27.38 0.068
9-B/Exp. “modular disposable” 5.71 0.162
10-B/Exp. “empathy transcendent” 1.45 0.240
11-B/Exp. “utilitarian comfortable” 20.59 0.235
7-A/Bsln. “efficient functional” 45.45 0.382
8-A/Bsln. “good-natured safeness” null null
9-A/Bsln. “adventurous lively” 7.01 0.284
10-A/Bsln. “sustained delightful” 7.41 0.047
11-A/Bsln. “empathetic minimal” 9.55 0.055
1-B/Bsln. “protean companionable” 0.13 0.063
2-B/Bsln. “affordable seamless” 24.26 0.185
3-B/Bsln. “insensible trustful” 0.18 0.200
4-B/Bsln. “compact friendly” 28.24 0.121
5-B/Bsln. “nimble aid” 1.36 0.007

Qualitative results
We will present summaries of two cases in this paper. Fig.
3 shows two cases of the participants’ exploration process.
The words are scatter-plotted according to the ConceptNet
Numberbatch word embeddings, whose dimensionality is
reduced by principal components analysis (PCA).

Case 1-A: “cognizant inclusive” Fig. 3-(a) was created
using a D-Graph with design brief A. It had a cosSim value
of 0.105 and the meanFreq was (10.37). The number of
words in the word pool was 23, and the task duration was
14 minutes and 58 seconds. The words this participant ex-
plored aimed to express “being aware of social issues.”. He
typed the first word, “amiable,” and used the manual search
window instead of clicking the words on the graph until he
found the sixth word, “visionary,”. He opened a new tab
on the browser and used an online thesaurus to find the
adjective form of “utopia” as the system denied it because
“utopia” was not an adjective. He also stated, “desirable for
sure, but that’s given.” When he stored the 16th word in the
word pool, he decided to use “cognizant” and “inclusive”
for the DCP. He used “oblivious” for w3. “Inclusive” on w2

pulled candidates for w4, but it showed only four words, in-
cluding the root node. He tried “micro”, but did not find
anything he liked. Therefore, he went back to “inclusive”
and tried “exclusive,” which gave him 18 new words. Af-
ter examining all words there, chose “selective” for w4. His
own ratings for “originality” and “relevancy” were 4 and 7.

Case 7-B: “economical efficient” Fig. 3-(b) was made
using a D-Graph with design brief B. It had a cosSim value
of 0.551 and the meanFreq was (31.64). The number of
words in the word pool was 6, and the task duration was
7 minutes and 1 second. After reading the design brief,
this participant typed “economical” in the search window,
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Figure 3: Sequence for word exploration in semantic space.
Light blue arrows show searches for DCPs for w1 and w2,
and pink arrows show searches for antonyms for w3 and w4.
Red circles are users’ query inputs in search window. Blue
circles are users’ clicks on words.

which showed five words. After clicking on “efficient”
and “capable,” which pulled another 43 words, he spent 1
minute and 40 seconds rotating the graph, moused-over sev-
eral words to see the definitions, clicked “efficient” and “ca-
pable” twice each, and finally cleared the playground and
typed “economical” again, followed by clicking “efficient.”
Then, he clicked “futile,” but this was apparently accidental
as he deleted “futile” quickly and cleaned up the playground
again. He typed and clicked “efficient” and “capable” for
the third time. Before clicking the next one, “resourceful,”
he carefully examined the definitions of “competent,” “thor-
ough,” and “resourceful.” Then, he spent 20 seconds looking
at the definition of ‘ingenious” and paused another 10 sec-
onds before clicking “ingenious,” followed by “natural” for
15 seconds. He further spent 52 seconds rotating the graph,
clicked “capable” and “resourceful” again, then put “eco-
nomical,” “efficient,” “capable,” and “resourceful” for w1,
w2, w3, and w4, respectively. His own ratings for “original-
ity” and “relevancy” were 6 and 7.

Implications for improvement As described above, the
participant in case 1-A chose w2 from the word pool, so
he did not utilize SEARCH FOR RELATED WORDS . Yet, he
was able to pick two words that were distant enough. He set
w3 and w4 with words from the D-Graph, which were output
according to w1 and w2 using SEARCH FOR ANTONYMS .
This was how we had assumed users would use D-Graph.
However, our video analysis unveiled that there were only
two cases (4-A and 5-A) that utilized the former algorithm
and three cases (1-A, 4-A, and 5-A) that utilized the latter
algorithm to explore the words.

For future development, we will add more clar-
ity on what strategy D-Graph helps the users fol-
low. Some participants pointed out the issues in
the transparency of the search process and the sys-
tem status. For example, it was unclear which of the
two search algorithms, SEARCH FOR RELATED WORDS or
SEARCH FOR ANTONYMS, was running. Another option
is to implement more automation. For instance, extracting
query words from a design brief can be automated. Such
automation would lower the initial barrier to exploration.

Different ways of presenting recommended words should
also be explored, as it was not easy for some users to avoid
cliché words. For example, showing a ranked list of words
according to computational linguistic metrics may be an op-
tion. In addition, we could further automate the process of
concatenating two adjectives in a way that they maintain a
certain distance. Finally, we should be investigating engag-
ing factors (Cherry and Latulipe 2014), which we did not
measure.

Conclusion
We created an AI-assisted interactive tool, D-Graph, which
aims to help industrial designers explore the semantics and
aesthetics of design concepts. We integrated two language-
based methodologies to attack the problem. 1. We imple-
mented an interactive UI that supports users in broadly ex-
ploring words. 2. We implemented search algorithms, uti-
lizing a ConceptNet knowledge graph, that supports users
in creating unique compound phrases using an adjective-
adjective formula. Our pilot study with 10 student partici-
pants did not show significant differences between D-Graph
and the baseline tool, which utilizes a conventional online
thesaurus. Our qualitative analysis found several important
aspects in how users interact with words in lexico-semantic
space when searching for words to create a distinguished de-
sign concept.
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Abstract

Sequence generation models are heavily used in com-
putational creative systems in natural language, music
composition, and other creative domains. One of the
biggest challenges that come with sequence generation
models is that, because they learn from existing
resources, products from these models often exhibit
varying degrees of plagiarism. Papadopoulos, Roy,
and Pachet (2014) have, in previous work, presented
a max-order Markov automaton to avoid plagiarism
in generative sequence models. However, the original
publication presented only the algorithmic pseudocode
without providing a working implementation. In this
replication study, we present a working implementation
of the max-order Markov automaton designed to be
integrated into sequence generation models for avoid-
ing plagiarism. We use our working implementation
to generate new results that verify the efficacy of this
approach to avoiding plagiarism. We illustrate how
the max-order Markov automaton can be integrated
effectively to avoid plagiarism in CC systems using a
lyrical music composition system, Pop*, as an example.
Source code:
https://github.com/aamijani/
Anti-Plagiarism_Constraint_Model

Introduction
Research into the development of generative sequence mod-
els have been foundation to much of the advancements in
computational creativity (CC) across the domains of music
and natural language. As these computationally creative sys-
tems gain more attention from the wider population, it be-
comes crucial for these systems to be aware of and avoid pla-
giarism (i.e., generation of subsequences longer than some
pre-specified length that are copied verbatim from a training
corpus). Most of the computationally creative models learn
from existing resources to produce new outputs. It is there-
fore not uncommon for these models to occasionally exhibit
plagiarism. Besides the obvious negative impacts that pla-
giarism can have on the novelty of generative CC systems,
the problem of plagiarism also raises an ethical dilemma.
The problem of plagiarism in sequence generation models
is an imminent problem that must be addressed if CC is to
broaden its appeal and relevance beyond being merely an
academic pursuit.

Our interest in this study is to replicate the results of
Avoiding Plagiarism in Markov Sequences Generation (Pa-
padopoulos, Roy, and Pachet 2014). The approach presented
in this paper is an effective way to avoid plagiarism. To
our knowledge, no one, including the original author, has
published an open-source implementation of the model that
is available for use. The implementation we present here
has been made publicly available. It is implemented using
generic type variables allowing for new types to be spec-
ified later without need to modify the original codebase.
This facilitates integration with Markov generative systems
in a variety of domains. A strength of Markov generative
systems is that, when combined with constraints (e.g., anti-
plagiarism constraints), they are capable of guaranteeing the
strict enforcement of those constraints.

Much state-of-the-art sequence generation is currently
done both in and out of CC with transformer and LSTM
models. For example, ChordAL (Tan 2019) is a system built
using Bi-LSTMs that composes melodies. DeepJ (Mao,
Shin, and Cottrell 2018) is a generative model that uses
LSTMs and is capable of composing music conditioned on
a specific mixture of composer styles. GLACNet (Kim et
al. 2018) generates visual stories by making use of bi-
directional LSTMs. These models have been found to be
particularly difficult to constrain. One of the more success-
ful attempts has the Anticipation-RNN model (Hadjeres, Pa-
chet, and Nielsen 2017). However, even this model allows
a percentage of generated sequences that do not satisfy con-
straints and thus still does not make guarantees (Hadjeres
and Nielsen 2020).

There have been several Markov generation systems pre-
sented in the CC field. For example, Pop* (Bodily and Ven-
tura 2022) is a music generation Markov model that uses
Twitter as an inspiration to produce music. SMUG (Scirea
et al. 2015) is a system which utilizes Markov chains and
works by using academic papers as an inspiration to com-
pose lyrics and melodies. EMILY (Shihadeh and Ackerman
2020) is a system that aims to create original poems in the
style of renowned poet Emily Dickinson. It makes use of
Markov Chains to produce these poems. LyricJam (Vechto-
mova, Sahu, and Kumar 2021) is another generative system
that uses live instrumental music to generate lyrics. In order
for these and other systems to gain traction beyond merely
academic exercises, they need to avoid plagiarism. The suc-
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cess of these and other generative systems depends on their
ability to avoid plagiarism.

The study done by Papadopoulos, Roy, and Pachet is im-
portant because of how many systems there are that pro-
duce music. Moreover, our published model is generalized
and is able to not only avoid plagiarism in music genera-
tion systems, but also other systems like short-story writ-
ing, slogans, etc. In the paper, (2014) introduce a max-order
Markov automaton in the framework of constraints satisfac-
tion (CSP). This automaton ensures that sequences gener-
ated by a Markov model do not contain subsequences longer
than a specified maximum order. Besides its use for avoiding
plagiarism, this model can also be used to detect plagiarism
in existing artifacts (e.g., rhythms, lyrics, etc.).

Replication
The approach outlined by Papadopoulos, Roy, and Pachet
(2014) is broken into two algorithms which we refer to as
Algorithms 1 and 2. We give a high-level overview of these
algorithms below. Our publicly available implementation of
these two algorithms can be readily applied to generate se-
quences of natural language, music, rhythms, etc. In the
following sections, we illustrate results of our working im-
plementation in two natural language domains.

Automaton
The base model underlying both a Markov and a max-order
Markov model is the finite automaton. A finite automaton
A = {Q,Σ, δ, q0, F} is a 5-tuple with elements defined as
follows:

• Q is a finite non-empty set of states;

• Σ, the alphabet, is a finite non-empty set of symbols;

• q0 ∈ Q is the initial state of the automaton;

• δ : Q × Σ → Q is the transition function which maps a
state to its successors for a given symbol;

• F ⊆ Q is the set of final or accepting states.

Markov Automaton (Algorithm 1)
The Markov Property states that only the present state (in-
dependent of how this state was reached) is the determin-
ing factor for the probability of future states. The output
of the Markov automaton algorithm is an automaton that
recognizes all valid Markovian sequences; i.e., sequences
where any two successive N -grams correspond to a (N+1)-
gram of the training corpus (for a Markov order of N ) (Pa-
padopoulos, Roy, and Pachet 2014). A Markov automaton
maintains the property that for each a ∈ Σ there exists a
unique qa ∈ Q and all transitions in δ transitioning via a
map to the state qa.

Fig. 1 shows the 1st-order Markov automaton constructed
using ‘KALIKIMAKA’ as its input dataset. The strength
of this (intermediate) model is that it accepts valid Markov
strings such as ‘MALI’ and ‘LIMA’. The weakeness of this
model is that it also accepts the full original string ‘KA-
LIKIMAKA’. For the purposes of eliminating plagiarism,
we need to modify the automaton to disallow substrings

Figure 1: A Markov automaton for letters. This automaton
accepts all valid Markov strings that can be generated from
a 1st-order Markov model trained on ‘KALIKIMAKA’. All
nodes are accept nodes.

above a defined length that, albeit valid Markov strings, are
also exact substrings of the training set. Thus our Markov
automaton is the input to our second algorithm.

Max-Order Markov Automaton (Algorithm 2)
Algorithm 2 modifies the Markov automaton to remove from
the set of accepted strings any sequence containing a ‘no-
good’ subsequence, i.e., a sequence above some length L
that appears verbatim in the corpus. This is accomplished by
first creating a trie of all no-goods in which all states but the
ones corresponding to a full no-good are accept states. This
guarantees that a no-good cannot be accepted by the model.
Next edges are added for overlapping prefixes. For example,
if ABCD and BCEF are no-goods, then the prefixes ABC
and BCEF share an overlapping prefix (i.e., BC). Adding
edges for overlapping prefixes ensures that the automaton
will not only reject ABCD and BCEF but also that is will
reject ABCEF, as well. Algorithm 2 uses an adaptation of
the Aho and Corasick (1975) string-matching algorithm to
form these cross-prefix transitions.

Fig. 2 shows the resulting max-order Markov automaton
derived from the Markov automaton in Fig. 1 with L = 4.

Easy reuse in new domains
Our implementation of the max-order Markov automaton
uses generics to allow anti-plagiarism constraints to be read-
ily applied to sequence generation models in any domain.
Whereas our previous examples demonstrated the construc-
tion a max-order Markov automaton for constraining se-
quences of letters, we demonstrate here the application of
our implemented model to constrain sequences of words.
Fig. 3 shows the Markov automaton derived from the train-
ing sequence ‘can you can a can as a canner can can a can’.
A expected, the model accepts valid Markov strings such as
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Figure 2: A max-order Markov automaton for letters. This
automaton accepts the same set of strings as the automaton
in Fig. 1 minus strings of length ≥ 4 that contain exact sub-
strings of (i.e., plagiarize) the training sequence ‘KALIKI-
MAKA’. All nodes are accept nodes.

Figure 3: A Markov automaton for words. This automaton
accepts all valid Markov sequences that can be generated
from a 1st-order Markov model trained on ‘can you can a
can as a canner can can a can’. All nodes are accept nodes.

‘you can can a canner’ and ‘can a canner can you’ as well as
the full original sequence.

Figure 4: A max-order Markov automaton for words. This
automaton accepts the same set of sentences as the automa-
ton in Fig. 3 minus sentences of≥ 4 words that contain exact
phrases from (i.e., plagiarize) the training sequence ‘can you
can a can as a canner can can a can’. All nodes are accept
nodes.

Integrated Visualization Feature
Our implementation of the algorithms for constructing max-
order Markov automata includes a feature allowing graphs
of the finite automata to be visualized at each intermedi-
ate algorithmic step and/or in their final form. This enables
users to better see and understand the process of how the
automata are built and to verify the model’s results. The
feature saves graphs in .dot format.

Applications in CC Systems
Our primary motivation for being able to generate max-
order Markov automata is to incorporate anti-plagiarism
constraints into Pop*, a CC lyrical music composition sys-
tem built using constrained Markov models (Bodily and
Ventura 2022). The model uses Markov models to generate
interdependent harmonic, melodic, rhythmic, and lyrical se-
quences. Like several other generative models (cf. (Fargier
and Vilarem 2004; Papadopoulos et al. 2015)), Pop* defines
and integrates constraints in the form of finite automata. For
example, Fig. 5) illustrates a finite automaton constructed
to enforce a rhyming constraint between the first and fourth
words in a four-word lyrical sequence. Automata such as
these are then compiled with Markov models to probabilis-
tically generate sequences that adhere to constraints.

Computational theory informs us that regular languages
are closed under intersection, and indeed algorithms have
been presented that, given two automata A and B, create a
third automata C, such that the set of sequences accepted
by C is the intersection of the sets accepted by A and B
(Sipser 1996). By combining max-order Markov automata
with the automata already in use to constrain the generation
of Pop*, we immediately inherit the ability to constrain our
compositions against plagiarism—across all aspects of the
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Figure 5: Shown is an automaton designed to enforce a rhyming constraint, ρ, between the first and last positions, X1 and
X4, in the Markov generation of a four-word sentence in the CC music composition system Pop*. Generative systems like
Pop* that define constraints using automata are particularly well-suited for easy integration of max-order Markov automata for
constraining against plagiarism. Figure originally from (Bodily and Ventura 2022).

composition.

Conclusion
We have presented an implementation of an anti-plagiarism
model first presented by Papadopoulos, Roy, and Pachet
(2014). The model works by utilizing a max-order Markov
automaton that only accepts non-plagiaristic sequences
based on a specified corpus. We illustrated through exam-
ples how, through the use of generics, this model can be
applied with constrained sequence generation in novel CC
domains, and highlighted, in particular, its envisioned inte-
gration into a lyrical music composition system. Whether
the goal be to achieve greater novelty or to show increased
respect to the ethics of avoiding plagiarism, the implemented
model we have presented will serve to aid CC practitioners
to achieve greater and more ambitious milestones in the pur-
suit of computational creativity.
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Abstract

Despite clear benefits that would derive from their
development, applications of computational creativity
(CC) in math, science, and logic are heavily underrep-
resented in comparison with more artistic domains. In
this paper, we examine the application of CC in the do-
main of computational complexity theory and identify
several problems in the domain to which CC might be
applied. In particular, we propose and define the task
of creating reductions between NP-complete problems,
the (sub)task of creating gadgets for use in constructing
such reductions, and the task of gamification of reduc-
tions and argue that each of these may be addressed as
interesting, fruitful CC challenge problems.

Introduction
Arguably the greatest achievements in human creativity have
been in the fields of science, mathematics, and technology.
And yet a 2017 review of application domains considered in
computational creativity (CC) found that only 3% of 353 pa-
pers published over the preceding 12 years fell under the cat-
egory of “Math, Science, and Logic” (Loughran and O’Neill
2017). This gap has been frequently mentioned in CC litera-
ture, and efforts have repeatedly been made to highlight the
importance of applying CC in scientific and mathematical
domains (Pease et al. 2019).

Computational complexity theory (CCT) represents a
subfield of theoretical computer science that focuses on the
classification of problems based on resource usage (e.g.,
time and memory) as well as how problems within and be-
tween complexity classes relate to one another. The classi-
fication of problems according to their complexity has pro-
found real-world implications for the types of solutions that
should be pursued for a particular problem and whether such
solutions can be expected to be optimal. Besides providing
mechanisms for proving the complexity of a particular prob-
lem, CCT also provides tools that can facilitate the reuse of
existing algorithms to solve new problems.

In this paper we focus on the particular CCT subtopic of
NP-completeness. Contributions in this subdomain tend to
be impactful because such problems are ubiquitous in the
real world and lie just beyond the grasp of modern com-
puters when it comes to finding optimal solutions. NP-
complete problems tend to take the form of optimization

or decision problems with even minor improvements in
algorithmic performance leading to significant cost sav-
ings in terms of time, energy, money, accuracy, or other
value metrics. For this reason NP-complete problems have
been studied in areas as diverse as advanced manufactur-
ing (e.g., optimization of production lines, route inspec-
tion); computing/data/visualization (e.g., modularity maxi-
mization for graph visualization); homeland and cybersecu-
rity (e.g., assembling an optimal Bitcoin block, cryptogra-
phy); energy policy (e.g., the graph bandwidth problem in
electronic design automation); energy-water (e.g., optimiz-
ing power/water flow across a network); innovative energy
systems (e.g., the formulated energy and content aware ves-
sel throughput maximization problem); and nuclear energy
(e.g., the berth allocation problem as applied to reloading
nuclear core fuel assemblies). The list of NP-complete prob-
lems grows ever longer.

We consider the main goal in this paper to be the fram-
ing and formal articulation of four important open problems
in computational theory as CC problems. These problems
are defined by characteristics that are typical of CC prob-
lems: each requires generation of a creative solution in a
context with relatively well-established definitions of typ-
icality, novelty, intention, and value. Similar to creating
mathematical proofs, these problems are generally difficult
even for trained humans. However, just like mathematical
proofs, there are strategies that humans use that can aid in
articulating a structured, generative process. Prerequisite to
making substantive progress attempting solutions to these
problems, the CC field needs a precise definition of these
problems together with a clear understanding of the evalu-
ative criteria associated with each. In essence, we aim to
open a new potential subdomain of computational creativity
to the CC field—the domain of NP-completeness in CCT—
or, in other words, to bring awareness of the potential impact
that computational creativity could have in a domain that has
hitherto not been considered in the field of CC. We aim not
merely to introduce the subdomain, but to articulate prob-
lems within this domain well enough that CC researchers
will immediately be able to begin to innovate and imple-
ment CC solutions to these problems. Though the domain
deals with theory, the practical implications are immediate
and significant, and we will seek to highlight these as well.
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Computational Complexity Theory
While there are many approaches to treating computation,
we will find it convenient to consider computation from the
perspective of determining set membership as, for example,
is done in (Sipser 2013). Given a set of symbols (alphabet)
Σ, we can define the set of all strings over that alphabet as
Σ∗. We can then define a language A ⊆ Σ∗ as a set of
strings. A language A is decidable if there exists a com-
putable function fA : Σ∗ → {0, 1} such that1

fA(w) =

{
0 ∀w ̸∈ A

1 ∀w ∈ A

and we say that the language of fA is A, L(fA) = A. We can
define computation as the problem of determining whether
some string w ∈ Σ∗ is a member of a particular language A.
For this reason, we use the terms language, decision problem
(or simply problem), and set interchangeably. When speak-
ing of decision problems, a string w being considered for
membership in a set A is called an instance of problem A.
As a running example, we will look at two decision prob-
lems in particular: 3SAT and CLIQUE.

3SAT In logic and computer science, a Boolean literal is
either a variable, called a positive literal, or the negation of
a variable, called a negative literal. A clause is a disjunction
of literals (or a single literal). A Boolean formula is in con-
junctive normal form (CNF) if it is a conjunction of clauses
(or a single clause). A formula ϕ is 3CNF if the formula
is in CNF and each clause in ϕ contains exactly 3 literals.
Given a 3CNF Boolean formula ϕ, the 3SAT problem is to
determine whether ϕ is satisfiable, i.e., whether or not there
exists an assignment to each variable in ϕ such that ϕ evalu-
ates to true. Using ⟨ϕ⟩ to denote the string representation of
ϕ, 3SAT is defined as the following decision problem:

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3CNF formula} (1)

A specific example of an instance of 3SAT is shown in Fig-
ure 2a. Many real-world problems in domains such as ar-
tificial intelligence, circuit design, and automatic theorem
proving are representable as 3SAT instances.

CLIQUE In graph theory, a graph G = (V,E) consists
of a set V = {v0, . . . , vn} of nodes or vertices and a set of
edges E. For directed graphs an edge e = (vi, vj) is an
ordered pair where order indicates the direction of the edge;
for undirected graphs an edge e = {vi, vj} is an unordered
pair. A clique in an undirected graph is defined as a subset
of nodes V ′ ⊆ V for which ∀vi, vj ∈ V ′, {vi, vj} ∈ E.
Given a graph G and an integer k, the CLIQUE problem is
that of determining whether or not there exists a clique in G
of size≥ k. Using ⟨G, k⟩ to denote the string representation
of a G, k pair, CLIQUE is defined as the following decision
problem:

CLIQUE = {⟨G, k⟩ | G contains a clique of size ≥ k}
(2)

1e.g., a Turing machine that halts with 0 on its tape ∀w ̸∈ A
and halts with 1 on its tape ∀w ∈ A.

Figure 1: Does P = NP?. Two different views of some
important computational complexity classes. It is unknown
which view is correct, though most researchers believe P ̸=
NP. If this is the case, several important theoretical ques-
tions about the class NP-complete, with significant, practical
implications, provide interesting potential for CC research.

An instance of the CLIQUE problem is shown in Figure 2b.
The CLIQUE problem has been used to represent instances
of many real-world problems in domains such as social net-
works, bioinformatics, and computational chemistry.

The Theory of NP-completeness
The theory of NP-completeness offers a way to classify de-
cision problems according to their inherent complexity. A
problem is said to be in the class P if it can be decided (i.e.,
solved) by a polynomial-time algorithm.2 A problem is said
to be in the class NP if a solution to the problem (some-
times called a certificate) can be verified to be correct by
a polynomial-time algorithm. Clearly problems that can be
solved in polynomial time can also be verified in polynomial
time, and therefore P ⊆ NP. It is an open question of broad
interest whether P = NP or P ̸= NP (see Figure 1).

The fascination with these two particular complexity
classes stems from the fact that only polynomial-time al-
gorithms can be effectively computed in reasonable time
by classical computers for non-trivially-sized inputs. For
all practical purposes, most computer scientists assume
P ⊂ NP, and this belief is largely perpetuated by the exis-
tence of a third class, NPC, of problems called NP-complete
problems. This is a unique class of NP problems that are
stubbornly resistant to being solvable by polynomial-time
algorithms, and yet no one has been able to prove this bar-
rier actually exists. NP-complete problems are considered
the hardest problems in the class NP. But what makes them
most fascinating is that every NP-complete problem is a
gateway problem: the existence of a polynomial algorithm
for deciding any one of them would mean that the entire
class of languages is decidable in polynomial time. To be
more specific, every NP-complete problem A can be reduced
to every other NP-complete problem B (written A ≤P B)

2A polynomial-time algorithm is an algorithm whose run time
can be bounded with a polynomial function of the size of the input.
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via some polynomial-time reduction algorithm. As a con-
sequence, if one NP-complete problem B is one day dis-
covered to have a polynomial-time solution algorithm, then
by transitivity every other NP-complete problem A can be
solved in polynomial-time by first reducing it in polynomial-
time to B and then using the polynomial-time solver of B to
find a solution to A. This is the basis for proofs of NP-
completeness—a language B is NP-complete if it can be
shown that:

1. B ∈ NP

2. ∀A ∈ NP, A ≤P B

NP-complete problems are ubiquitous in the real-world and
play prominent roles across nearly every field,3 and it is
common for those tasked with solving such problems to use
this approach to prove NP-completeness in order to justify
the use of heuristic or approximation algorithms when solv-
ing such problems. Requirement 1, membership in NP, will
not figure prominently into our arguments here. Require-
ment 2 is traditionally proven via transitivity: if there ex-
ists a polynomial time reduction to B from some language
A already known to be in NPC, then because (by defini-
tion) all problems in NP reduce in polynomial time to A, all
problems in NP reduce in polynomial time to B. In other
words, another way of proving requirement 2 is to prove
∃A ∈ NPC, A ≤P B.4 This idea of a reduction function
(or simply reduction) is formalized as

∃f : Σ∗ → Σ∗, w ∈ A ⇐⇒ f(w) ∈ B (3)

Because NPC is concerned with time-complexity, there is an
additional requirement that the function f is computable in
polynomial time. If this reduction exists, then, because NPC
is an equivalence class (with respect to reciprocal polyno-
mial reducibility), there will also exist a second (distinct)
polynomial-time reduction g:

∃g : Σ∗ → Σ∗, w ∈ B ⇐⇒ g(w) ∈ A (4)

Both reductions play important roles for different reasons.
Given a language B suspected to be NP-complete, a reduc-
tion f from a known NP-complete language A is important
in proving B is NP-complete. But it is the reduction g that
allows existing approximation and solution algorithms for
deciding A to be used to decide B.

For the purposes of illustration, let us imagine that we
have not yet determined whether or not the CLIQUE prob-
lem is NP-complete and that we want to prove that it is.
Let us assume we have shown CLIQUE∈NP (satisfying re-
quirement 1). All that remains is to show a valid reduc-
tion from an existing NP-complete problem, e.g., 3SAT. As
any computational theorist will attest, this is a scenario in

3In fact, it has been suggested that the problem of (computa-
tional) creativity itself is at least NP-hard, and may very likely be
undecidable (Ventura 2014).

4This formulation presents a chicken-and-egg conundrum—
from where do we get the first NPC problem? The conundrum
is resolved with the the Cook-Levin Theorem (Cook 1971), which
established Boolean satisfiability (SAT) as that problem by giving
an elegant proof that ∀A ∈ NP, A ≤P SAT.

which a fair amount of creativity (in the CC sense of the
word) must be employed: finding a valid reduction from one
NP-complete problem to another. Algorithm 1 from (Sipser
2013) gives pseudocode for a reduction 3SAT ≤P CLIQUE,
and Figure 2 shows the output (2b) of Algorithm 1 for the in-
put (2a). In this example, the string w = ⟨ϕ⟩ for ϕ shown in
Figure 2a, and, because there is a satisfying truth assignment
for ϕ (i.e., x = FALSE, y = TRUE), ⟨ϕ⟩ ∈ 3SAT. f(w) =
⟨G, k⟩ for (G, k) shown in Figure 2b, and because there is
a k-clique in G [i.e., (y3, x4, x7)], ⟨G, k⟩ ∈ CLIQUE, as
required.

It is worth pausing to note some details about this re-
duction. Both the 3SAT instance (2a) and the equivalent
CLIQUE instance (2b) have modular elements that are paral-
lel between them. For each clause in the 3SAT instance there
is a corresponding subgrouping of 3 nodes in the CLIQUE
instance (as reflected by the colored highlights). For each
Boolean literal in the 3SAT instance there is a correspond-
ing node in the CLIQUE instance. These modular elements
and groupings are found in every NP-complete problem and
are commonly referred to as gadgets. Identifying both the
quantity and nature of gadgets in an NP-complete problem is
an important first step towards finding a valid reduction be-
cause ultimately a reduction is simply a matter of mapping
the right gadgets (or some creative combination of gadgets)
to one another. In this sense, one can think of NP-complete
reductions as a form of analogical reasoning. Here then is a
second scenario in which creativity must be employed: cre-
ating gadgets for NP-complete problems for use in reduc-
tions.

In addition to proving CLIQUE NP-complete, a reduction
from 3SAT to CLIQUE also has a practical usage: it allows
instances of 3SAT to be solved by existing solution algo-
rithms for CLIQUE.5 This is a remarkable and useful prop-
erty of NP-complete problems that is surprisingly underap-
preciated. In short, rather than having to design, implement,
and compare new solutions every time a new NP-complete
problem B is discovered, one need simply reduce B to an
existing NP-complete problem A and then apply and com-
pare any number of existing solutions to A (or via transitiv-
ity to any other NP-complete problem for which reductions
from A are available). This application of NP-complete re-
ductions for leveraging existing solutions to NP-complete
problems is of significant interest and is a topic we return to
below.

Note finally that the reduction shown in Algorithm 1 is
only one of an infinite number of valid reduction functions
from 3SAT to CLIQUE. In addition, the reduction function
itself is incomplete without an accompanying proof that the
reduction is in fact a valid mapping reduction and that it is a
polynomial-time function.

5Technically solving an NP-complete problem implies finding
an optimal solution, but where such is impractical for NP-complete
problems, the term solve usually refers to the use of heuristic or ap-
proximation algorithms to find good, but nonetheless suboptimal,
solutions in a more tractable time frame.
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Algorithm 1 Reduction from 3SAT to CLIQUE

Require: A 3CNF Boolean expression ϕ
1: procedure REDUCE(ϕ)
2: N ← {λi|λi is the ith instance of literal λ in ϕ}
3: V ← {(λi, νj)|λi, νj ∈ N

and λi, νi are not in the same clause in ϕ
and λ ̸= ν}

4: G← (N,V )
5: k ← the number of clauses in ϕ
6: return G, k

(a) 3SAT instance

(b) CLIQUE instance (k = 3)

Figure 2: 3SAT to CLIQUE reduction. (a) an instance of
the 3SAT problem and (b) equivalent CLIQUE instance to
which the 3SAT instance reduces. Matching clause gadgets
are highlighted with colors. Both the function (Algorithm 1)
that maps the 3SAT instance to the CLIQUE instance as well
as the individual gadgets in the generated CLIQUE instance
represent artifacts resulting from creative processes.

Analogical reasoning
The concept of using a reduction f to compare an instance
of problem A to an equivalent instance of problem B is, in
some sense, a formalization of analogical reasoning: a is to
A as b is to B. Finding f is essentially finding the relation-
ship that makes the analogy valid. While this form of anal-
ogy has not yet been addressed in the CC literature, there has
been work on other forms, including lexical analogy using
WordNet (Hayes, Veale, and Seco 2004); bilingual lexical
analogy using HowNet, an ontology for English and Chinese
(Veale 2006); cross-domain analogical reasoning for im-
proved text generation (Hervás et al. 2006); analogy emerg-
ing as a consequence of concept space exploration (Thorn-
ton 2008); constructing visual analogies of the kind found on

intelligence tests (McGreggor, Kunda, and Goel 2010); ana-
logical reasoning for mathematical creativity (Pease, Guhe,
and Smaill 2010); using analogy for story generation (Zhu
and Nón 2010); an autonomous system for generating ana-
logical comparisons (O’Donoghue and Keane 2012); anal-
ogy to facilitate concept-blending (Besold and Plaza 2015);
and transforming song lyrics using vector-based analogy in
word embeddings (Oliveira 2020).

Four CC Problems in NP-completeness Theory
Having outlined the basic concepts relevant to NP-
completeness, we can now identify four open ques-
tions/problems in this area that are ideally suited for being
addressed by CC systems:

1. Given NP-complete problems A and B, can we create a
valid polynomial-time reduction from A to B?

2. Given an NP-complete problem A, can we define mean-
ingful gadgets for A that would be helpful in creating a
valid polynomial-time reduction to/from A?

3. There are many examples of games/puzzles that are NP-
complete. Given an NP-complete problem A and an NP-
complete game/puzzle G, can we either create a new re-
duction or modify an existing reduction from A to G
such that the reduced game/puzzle instances of G are
fun/engaging?

4. Given an NP-complete problem A, can we create an ef-
ficient, effective polynomial-time heuristic or approxima-
tion algorithm to solve A?

Note that only the last of these proposed artifacts repre-
sents an actual (approximate) solution to an NP-complete
problem. While creating a system that produces algorith-
mic (approximate) solutions to arbitrary NP-complete prob-
lems has not yet been addressed directly in the CC litera-
ture, there has been some work on CC systems/approaches
for producing computer programs to solve arbitrary prob-
lems (Cook, Colton, and Gow 2013; Charnley et al. 2016;
Znidarsic et al. 2016; Colton, Powley, and Cook 2018;
Colton et al. 2019), and, to our knowledge, this is the only
one of the four questions that has been given previous con-
sideration in the CC literature.6 So, although we include
it as an example of a CC problem from the domain of CCT,
we recognize that CC for computer programming is of much
broader interest and in some sense its own subdomain of CC.
And as well it should be; while the first three problems are
well-defined in terms of the typicality constraints they must
satisfy, the intention that they must meet, and the value they
should provide, the creation of arbitrary computer programs
for solving arbitrary problems is much less well-defined. For
these reasons, we will focus the following discussion on the
first three problems and direct the reader to extant literature
that addresses the fourth.

Here we consider each of the first three ques-
tions/problems in more detail. We define each as a decision

6Recently, some work has also been done on the reverse
problem—applying software engineering principles to the problem
of designing CC systems (Glines, Griffith, and Bodily 2021).
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problem and discuss notions of typicality, novelty, intention-
ality, and value in each of the three domains.

Artifact 1: NP-Complete Reduction Algorithms
Given NP-complete problems A and B, can we create a valid
polynomial-time reduction from A to B? This question rep-
resents an open and challenging problem in CCT that essen-
tially presents the set of all valid polynomial-time reductions
as (potentially) creative artifacts. Represented as a decision
problem, this set could be written as

REDUCTIONS ={⟨A,B, f⟩ | A,B ∈ NPC and
f is a polynomial-time
reduction from A to B}

(5)

In order to meet standards of typicality for artifacts in this
domain, a reduction f must meet at least two basic criteria:
first, f must be a valid reduction from A to B—that is, it
must be proven that w ∈ A ⇐⇒ f(w) ∈ B; second, a
reduction must operate in polynomial-time. Besides being
necessary for typicality, a well-formed proof demonstrates
intentionality in the reduction artifact.

In the authors’ personal experience, the creation of a re-
duction function is an iterative process that starts simply
with finding functions that translate a well-formed instance
of problem A into a well-formed instance of problem B fol-
lowed by experimentation and (if experimentation is suc-
cessful) a formal proof. If experimentation is unsuccessful,
the function is revamped. In light of this, even a system that
is capable of translating a well-formed instance of problem
A into a well-formed instance of problem B would possess
significant value as a co-creative agent.

Novelty in this domain is primarily a function of whether
any reduction from A to B has been previously documented.
CCT guarantees that there exists a valid polynomial-time re-
duction between every pair of NP-complete problems. How-
ever, compared to the vast number of reductions that we
know exist, relatively few reductions have been published.
Several efforts have been undertaken to catalog what reduc-
tions have been published. The Redux platform discussed
below represents an effort currently underway to make such
reductions more accessible via Web APIs and a pedagogi-
cal visualization tool. Where a reduction has been published
for a particular A,B pair, novelty can still be measured by
comparing the similarities/differences between the several
reductions that have been presented.

In assessing the value of a particular reduction, there are
a few characteristics worth considering. First, valued reduc-
tions tend to be those which reduce instances of A to simpler
(i.e., smaller) instances of B. For example, if one 3SAT-
CLIQUE reduction algorithm reduces a 3CNF Boolean for-
mula ϕ with k clauses to a graph with 3k nodes and a sec-
ond reduction reduces ϕ to a graph with 4k nodes, we would
value the simpler graph (all else held equal). Second, val-
ued reductions are explainable reductions. Explainability is
a metric that has previously been suggested for assessing
value (Bodily and Ventura 2018).

Artifact 2: NP-Complete Reduction Gadgets
Given an NP-complete problem A, can we define meaning-
ful gadgets for A that would be helpful in creating a valid
polynomial-time reduction to/from A? This question essen-
tially presents the set of all possible gadgets for a problem
as (potentially) creative artifacts. The notion of what defines
a gadget is inherently ambiguous as it varies from one prob-
lem to another and depends on whether the problem is on the
input or output end of the reduction. This is a domain that
will be easier to define as more and more examples of gad-
gets are cataloged. In general, we can think of a gadget t(w)
as a function that, given an instance w of an NP-complete
problem, returns some collection of subunits of w. Repre-
sented as a decision problem, we could write this set as

GADGETS ={⟨A, t⟩ | A ∈ NPC and ∀w ∈ A, t(w)

generates a collection of subunits of w} (6)

We have seen how gadgets are valuable for the role they
play in reductions. However, it is likely that gadgets could
have value in other contexts, as well. For example, con-
sider the goal of designing an algorithm that, given an NP-
complete problem A, generates a greedy heuristic algorithm
to solve A. Many such algorithms consist of little more
than a few nested while loops iterating over what essentially
amount to gadgets (e.g., a greedy heuristic algorithm for
3SAT would likely involve some sort of loop over clauses
with an inner loop over variables within the clause). In gen-
eral, we consider that defining the concept of a gadget for a
particular problem has the potential of being a valuable cre-
ative artifact independent from whatever context in which it
might be used.

With this in mind, intentionality in the definition of gad-
gets could be fixed on their intended use. When gadgets are
intended for use in designing reduction functions, their value
would depend on whether or not they contribute to a valid
reduction. Again, simple gadgets are (all else held equal)
valued over more complex gadgets. Whereas explainabil-
ity serves as a meaningful value metric for reductions, it is
sometimes more difficult to make an argument for this met-
ric with respect to gadget artifacts, though certainly, gadgets
that are intuitive or that do elucidate the construction or in-
terpretation of a reduction will be of high value.

The novelty of a gadget not only depends on the definition
of the gadget itself but also on the context in which it is
used. For a given problem A, different gadgets for A become
useful in reductions to/from different problems so that the
presentation of a particular gadget when constructing a new
reduction to/from a problem B could be considered a form
of novelty.

In general, a typical gadget is some atomic unit of a
problem instance and typically gadgets are exact subse-
quence/subset/subgraph units of an instance.

Artifact 3: NP-Complete Game Instances
Given an NP-complete problem A and an NP-complete
game/puzzle G, can we either create a new reduction or
modify an existing reduction from A to G such that the re-
duced game/puzzle instances of G are fun/engaging? We
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could, of course, consider instead the problem of simply
trying to make game/puzzle instances of an NP-complete
problem A more creative. But again, this is not particu-
larly unique to CCT (many researchers have considered the
challenge of making games more creative). Far more inter-
esting and specific to CCT is consideration of how to am-
plify creativity in games/puzzles that are formed as reduc-
tions from other NP-complete problems. Represented as a
decision problem, we could write this set as

GAME ={⟨A,G, f⟩ | A ∈ NPC and
G ∈ NPC is a game or puzzle
and f is a polynomial-time
reduction from A to G}

(7)

This problem is what initially piqued our interest in ap-
plying CC to CCT: could we take an arbitrary NP-complete
problem from the real world and turn it into a game or puz-
zle that people would find engaging? Human intuition is
remarkably adept at finding good solutions to NP-complete
problems. Unfortunately, people do not typically enjoy solv-
ing Boolean satisfiability or graph theory problems. But
they do like games. If we can render arbitrary NP-complete
problems as fun and engaging games or puzzles then we can
leverage the power of crowd-sourcing to find solutions that
may be better than any computer could come up with (Cu-
sack et al. 2010).

As an example, consider the protein folding game FoldIt
(Cooper et al. 2010). According to its website,

Knowing the structure of a protein is key to under-
standing how it works and to targeting it with drugs.
The number of different ways even a small protein can
fold is astronomical because there are so many degrees
of freedom. Figuring out which of the many, many pos-
sible structures is the best one is NP-complete and is re-
garded as one of the hardest problems in biology today.
Current methods take a lot of money and time, even for
computers. Foldit attempts to predict the structure of a
protein by taking advantage of humans’ puzzle-solving
intuitions and having people play competitively to fold
the best proteins

See Figure 3 for an example screenshot of the game.
Our initial foray into this problem was an attempt to re-

duce the well-known NP-complete travelling salesperson
problem to a popular NP-complete flood fill game called
KAMI. We know from CCT that a reduction exists. How-
ever, despite months of trying, we have yet to devise a
valid solution (much of this time was spent creating and
combining different gadget artifacts from these two prob-
lems). We are aware of a reduction from the shortest com-
mon supersequence problem to flood fill puzzles which pro-
vided some ideas on how gadgets could be created for the
KAMI problem (see Figure 4) (Marchetti and Bodily 2022;
Clifford et al. 2012).

Many games and puzzles have been shown to be NP-
complete including well-known examples such as Battleship
(Sevenster 2004), FreeCell (Helmert 2003), Instant Insanity
(Garey and Johnson 1979), LaserTank (Alexandersson and

Figure 3: FoldIt. FoldIt is a crowd-sourced game for solving
difficult instances of the protein folding problem, an NP-
complete problem from biology, the solutions to which have
implications in understanding protein function (and thus
also for designing medical or other interventions). Screen
shot from the game taken from https://fold.it.

Restadh 2020), Pandemic (Nakai and Takenaga 2012), Ru-
bik’s Cube (Demaine, Eisenstat, and Rudoy 2018) and Su-
doku (Yato and Seta 2003). Because these games are well-
known and fun, they are excellent candidates for reduction
targets from other NP-complete problems.

As far as what defines creativity in this domain, since art
and gaming already enjoy broad treatment in the CC field,
more traditional definitions of novelty, value, typicality and
intentionality can be invoked directly to assess the quality of
this artifact type. Although the definitions of GAME and
REDUCTION are very similars, in the case of REDUC-
TION the focus is on the behavior of creating novel, valid
reductions ab initio. In the case of GAME, we take a valid
reduction for granted and focus on the creativity of the arti-
facts generated from the reduction. One possible approach to
attacking this problem may be related to procedural puzzle
generation (De Kegel and Haahr 2020).

There are two concerns that should be mentioned with
regard to reducing NP-complete problems to CC-enhanced
games. First, most NP-complete games are played with
instances of very limited input sizes. An instance of the
game Battleship, for example, is defined in terms of the size
of the board (typically 10 × 10) and the number of ships
(typically 5). One can easily imagine reductions from ar-
bitrary NP-complete problem instances that could result in
very large game instances (imagine playing Battleship on a
10, 000× 10, 000 board with 5,000 ships), much larger than
human players are used to playing and larger perhaps than
would appeal to many players. This diminishing value with
increasing input size is certainly relevant to considerations
on how CC might be used to attempt to create valuable ar-
tifacts in this space. It is worth noting that the FoldIt game
(Figure 3) is at least one example of an NP-complete game
with non-trivially-sized instances that has seen success.

Second, reduction algorithms tend to be highly prescrip-
tive which could severely limit the variability with which
game instances could be rendered. For example, KAMI has
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(a) (b)

Figure 4: Limitations on creativity in derived KAMI puz-
zles. (a) KAMI is an NP-complete flood fill game whose
puzzles typically allow a wide range of aesthetic expression.
(b) Due to the highly prescriptive nature of reduction algo-
rithms, a KAMI puzzle that is derived via reduction from
an instance of the NP-complete shortest common superse-
quence problem will always necessarily be composed of di-
amond gadgets, like those shown, which significantly con-
strains the ways in which CC could be applied to enhance
the creativity of the puzzle without invalidating the reduc-
tion.

come to be known for its highly aesthetic and creative puz-
zles (e.g., see Figure 4a). However, when we take a different
NP-complete problem, e.g., the shortest common superse-
quence (SCS) problem, and reduce it to KAMI, the result
is always a puzzle consisting of several diamonds (the dia-
mond is a gadget), each consisting of a pattern of concentric
multicolored rings (color is another gadget), all on a com-
mon background canvas color (see Figure 4b). The number,
size, color scheme, and even shape (to some extent) of the
diamonds could change without invalidating the reduction,
but otherwise, all KAMI puzzles generated from a particular
SCS reduction will follow a similar pattern (Clifford et al.
2012). It is possible that other reductions could potentially
produce other patterns. The point being made here is that the
nature of reductions is highly prescriptive and consequently
places some limits on how CC would need to be applied to
enhance the creativity of puzzles derived from NP-complete
reductions in order not to invalidate the reductions.

An Ontology of NP-completeness
CC systems across a spectrum of application domains rely
on knowledge bases of existing artifacts from which they
extract patterns for the creation of new artifacts (Ventura
2017). Though some efforts have been made to create a
knowledge base of NP-complete problems, there does not
exist a well-established resource cataloging NP-complete
problems, reductions, and/or solutions. To this end we have
undertaken to create Redux, an ontological knowledge base
of NP-complete problems, reductions, solutions, and veri-
fiers accessible via a web API7. In addition to the knowledge
base, we also aim to build a pedagogical visualization front
end to the knowledge base. A mockup of the system can be
seen in Figure 5.

7http://redux.aws.cose.isu.edu/

We envision the Redux knowledge base allowing re-
searchers to perform meta-analyses over various aspects of
NP-complete problems in order to gain insights on such
questions as:

• What gadgets have been identified/created before when
reducing to/from a particular NP-complete problem?

• What patterns exist in how gadgets for one problem map
to gadgets for another problem?

• What in general is the relationship between previously
identified gadgets for a particular NP-complete problem
and the formulation of, say, a greedy heuristic solution
algorithm for the problem?

• What additional power or knowledge can be leveraged via
transitivity of the reductions in the knowledge base?

In addition, researchers will be able to directly access NP-
complete problem definitions, example instances, and for-
matting; call reduction algorithms between particular pairs
of NP-complete problems; run solution algorithms for par-
ticular NP-complete problems; and verify proposed solu-
tions for particular NP-complete problem instances. Our
hope is that this knowledge base will spur innovative ideas
and solutions in and around the domain of NP-completeness.

Conclusion
The CC research community has long been interested in
balancing its focus on applications in artistic domains with
more CC applications in the fields of science, mathematics,
and logic. Our purpose in this paper has been to suggest that
computational complexity theory, and NP-completeness in
particular, is a ripe candidate for contributing to this balance.
We have attempted to highlight and provide some definition
to four open CC problems in this domain. We have argued
that progress towards addressing these problems promises to
make significant impacts in the field of CCT, which in turn
promises to make significant impacts in many real-world do-
mains.

In addition we have presented Redux, a nascent ontolog-
ical knowledge base of NP-complete problem definitions,
reductions, and solution algorithms. Our intent is to aug-
ment the knowledge base through crowd-sourcing with the
ultimate goal of providing a comprehensive and accessible
resource on NP-completeness by which CC and other re-
searchers can push forward the boundaries of applied com-
putational complexity research. As a final note, it is worth
mentioning that many of the significant open problems in
applying CC are themselves likely NP-complete (or harder)
problems. And though it is also likely that creativity itself
lies beyond the realm of NP-completeness, advances in CCT
are likely to translate directly into advances in the field of
computational creativity.

Author Contributions
Both authors contributed to all aspects of the work, includ-
ing ideation, narrative/position development and writing.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

118



Figure 5: The Redux application. The tool shown serves as a graphical user interface providing access to a crowd-sourced
knowledge base of NP-complete problems, reduction algorithms, and solution algorithms. Users can select (or add new) prob-
lems. A unique reduction algorithm is required for each unique (ordered) pair of selected problems. Users can contribute new
reduction algorithms. Then for a given instance of the problem on the left [e.g., (nuclear) CORE SHUFFLING], the reduction
algorithm is applied to generate an equivalent instance of the problem on the right (e.g., TRAVELING SALESPERSON). A
solution to one problem instance can also be mapped to the equivalent solution for the equivalent problem instance. Visualiza-
tion of instances with gadgets and/or solutions highlighted is included for pedagogical purposes. The tool highlights the power
of reduction, allowing existing solutions to one problem to be reused to solve new problems. Possible applications of CC in
this context include using CC to create novel reduction algorithms; using CC to propose gadgets for co-creative development
of reduction algorithms; application of CC to aesthetically present reduced problem instances as engaging puzzles pursuant to
crowd-sourcing solutions to NP-complete problems; and using CC to create novel solution algorithms.
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Abstract

Creative problem solving (CPS) is a skill which enables
innovation, often times through repeated exploration of
an agent’s world. In this work, we investigate methods
for life-long creative problem solving (LLCPS), with
the goal of increasing CPS capability over time. We de-
velop two world models to facilitate LLCPS which use
sub-symbolic action and object information to predict
symbolic meta-outcomes of actions. We experiment
with three CPS scenarios run sequentially and in sim-
ulation. Results suggest that LLCPS is possible through
the use of a world model, which can be trained on CPS
exploration trials, and used to guide future CPS explo-
ration.

Introduction
Creative problem solving (CPS) is a skill which enables
adaptation to novel situations, often through innovating on-
the-fly (Gizzi et al., 2020, 2022). A key process in creative
problem solving work is an agent’s exploration with its envi-
ronment, which typically requires many interactions in order
to find a solution to encountered novelty. To date, research
in CPS within the field of artificial intelligence has focused
predominantly on resolving a singular novel task-at-hand.
For example, when a robot needs to figure out how to push
a heavy object, it may explore alternative parameterizations
of a push actions to discovery a strike action. In this cir-
cumstance, the agent will explore until a solution is found.
In doing so, these exploration trials are often “disposed of”
in CPS resolution. These interim exploration episodes typ-
ically contain a large number of agent-environment interac-
tions, which provide a large and fruitful data sample of ex-
perience for the agent to otherwise learn from.

In this paper, we develop a method for enabling life-long
creative problem solving (LLCPS), which uses CPS explo-
ration data to train a world model to increase CPS perfor-
mance over time. The world model is continuously trained
on both a) past CPS exploration trials and b) any past world
interactions. We train two world models (a neural net-
work and a naive Bayes model) with a combination of sub-
symbolic and symbolic data as input, and symbolic data as
the output. In doing so, we are able to direct the agent in its
CPS exploration to avoid those trials which are not likely to
resolve the CPS task, which decreases the total amount of

exploration in CPS over time. We evaluated our approach
in a 3D physics-based simulation environment, over three
consecutive experimental scenarios to observe how CPS per-
formance changes over time, and compared our approach to
three alternative baseline world model choices.

Related Work
Although life-long creative problem solving has not been di-
rectly explored in research, similar lines of work investigate
life-long learning, which develops methods to enable con-
tinual learning over time such that an agent is able to uti-
lize both its past experiences and new knowledge (see Parisi
et al. (2019) for a review). For example, Rao et al. (2019) de-
velop a custom model for continual life-long learning which
leverages a suit of artificial intelligence methods to learn
representations of tasks on the fly without labels or human
intervention. Within the mobile robotics navigation domain,
Kahn et al. (2021) develop a method which gathers data for
off-policy training of a retroactive self-supervised predic-
tive model, centered around environment affordance learn-
ing. Multi-task learning (MTL) is an area within machine
learning that aims to learn a general task model using sam-
ples from multiple tasks as a way to derive shared represen-
tation (Crawshaw, 2020). In doing so, MTL aims to address
the data efficiency issues that are typical in machine learn-
ing for single task learning (STL), to increase performance
in learning – but not necessarily to specifically be used for
novel problem solving. For example, in Kalashnikov et al.
(2021), a generalized multi-task deep reinforcement learn-
ing method called “MT-Opt” is trained off-line, simultane-
ously across multiple robot manipulation tasks. Similarly,
meta-reinforcement learning (MRL) aims to increase per-
formance in general task handling by optimizing adaptation
to new tasks (Yu et al., 2020). For example, in Javed and
White (2019), a meta-level objective is used in MRL to min-
imize catastrophic interference and promote future learning
via naturally sparse representation learning. Unlike MTL,
MRL assumes that all training and testing (novel task) data
is drawn from the same task distribution.

Theoretical Framework
Consider an agent which is able to act in its world through
symbolic planning to as a method for accomplishing tasks.
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Additionally, the agent is able to use perceived sub-symbolic
information about its world in order to learn a world model
to resolve novelty in task failure.

Symbolic Planning
We assume that the robot has a symbolic knowledge base
K, defined as a classical planning problem, where K =
⟨SK,AK, EK,PK⟩, with respective components denoted
S,A, E ,P for brevity. The set S indicates possible world
states, reachable by taking actions on entities (either ma-
nipulable, static, or parts of the agent) in the sets A and E
respectively. Specifically, S = {s1 . . . sn}, E = {e1 . . . ep},
and A = {a1(▽1) . . . am(▽m)},▽i ⊆ E , where the ele-
ments in a ordered list ▽i are considered to be the arguments
of its corresponding action ai. Note that in general, entities
can be physical objects in the environment or the end effec-
tors of the robot, but in this work we only consider physical
manipulable objects in the environment. We define a set of
known predicate descriptors, or fluents, which can be used
to describe entities in the world as F = {f1(▽) . . . fq(▽)}
along with their negations F̂ = { ˆf1(▽) . . . ˆfq(▽)}, where
▽ ⊂ E . Together, the predicate descriptors and their nega-
tions comprise an encompassing set of predicates P =

F ⋃ F̂ which is used by the agent to describe states, enti-
ties, and information about the execution of actions, as is
typical in planning domains. Thus, a given state si ∈ S is
composed of a finite set of predicates Fi ⊂ F which hold
true in world state si. Note, this does not include negation
predicates in F , although these may be deduced by the plan-
ning agent. Moreover, we assume a planning domain def-
inition language (PDDL) representation of actions, where
each action has a set of preconditions and effects, denoted
ρi, pi ∈ P , indicating the predicates which must hold true
before executing an action (preconditions), and those which
are assumed to hold true after executing an action (effects).
Note that the preconditions and effects can include those
negation predicates in F̂ , described earlier.

The agent is able to use the aforementioned information
to act in its world, through planning, to accomplish tasks.
We define a task T in K as T = (K, s0, sg), where s0 is an
initial state, sg is a goal state, and s0, sg ∈ S (recall a state
is composed of a set of fluents which hold true). A plan
π = [a1, . . . a|π|] is a solution to accomplishing task T .

Sub-symbolic-based Learning
Next, we describe the sub-symbolic information known and
perceivable to the agent. For a given symbolic knowledge
base K, we assume that the robot has a corresponding sub-
symbolic knowledge base Ψ, containing low-level action
executors and object feature information (collectively de-
scribed as the tuple (K, Ψ)). Specifically, Ψ = ⟨R, X⟩,
whereR = {r1 . . . r|AK|} denotes a set of action controllers
for the actions in AK, and X = {x1 . . . x|EK|} denotes a
set of feature mappings xi : ei 7→ Rn for the objects in
EK, where n is the size of the input vector (experimen-
tally chosen), discussed in the next paragraph. For every
action in ai ∈ AK, there exists a corresponding action con-
troller ri ∈ R which is able to execute ai with various sub-

Value Description (type) Value Possibilities
encoded action (int) {1,2,3,4}

rate (float) action specific
movementMagnitude (float) action specific

encoded orientation (int) {1,2}
encoded shape (int) {1,2,3}

volume (float) [0.0,∞)
encoded color (float) {1,2,3}

entity vector magnitude (float) [0.0,∞)
unit vector x (float) [0.0,1.0]
unit vector y (float) [0.0,1.0]
unit vector z (float) [0.0,1.0]

Table 1: World modelW input values. Data types and value pos-
sibilities of each feature in our proof-of-concept is shown. Val-
ues which are encoded into numeric values are as follows: action
(1 = push together, 2 = remove from container, 3 =
place in container), orientation (1 = left, 2 = top), shape
(1 = sphere, 2 = box, 3 = cylinder), color (1 = red, 2 = blue, 3 =
green).

symbolic parameterizations. Thus |AK| = |R|. Addition-
ally, for every entity ei ∈ EK, there exists a feature mapping
xi ∈ X which contains sub-symbolic information about en-
tity properties. For every entity list Ej , there exists a list
of feature mappings X̂j which contains the mappings xi of
individual entities in ei ∈ Ej .

A given feature space X has a cardinality n (denoted
|X|n) such that every feature vector mapping xi ∈ X is
represented as a feature vector containing n distinct object
features (thus, |xi| = n). Therefore, for a given knowledge
base Ψ, entities can be described using exactly n feature val-
ues. Furthermore, we assume that the agent is able to per-
ceive the values of a given feature space through visual or
haptic feedback. We assume that the agent starts with all
features abstracted already, and thus, in our proof of con-
cept, we do not require the agent to discover these features.

Forward Model We define a world model for our hybrid
tuple (K, Ψ) as W : (ai, ri,▽i, Xi) 7→ Ω where Ω defines
the static output vector of the world model, which numeri-
cally encodes fluent changes which incur after the mapping
(See Table 2 for our proof-of-concept world model output
choices. Note that the output can be changed to suit the do-
main). The input to the mapping is a given action ai with
parameter settings ri, executed over arguments ▽i with cor-
responding feature vectors Xi (See Table 1 for our proof-
of-concept world model input choices. Note that the input
can be changed to suit the domain). Thus, for any action,
parameter settings to that action, entity arguments to that
action, and corresponding feature mappings or the entity ar-
guments,W is able to predict what fluent states in the world
may change as a result of executing ai on ei with low-level
settings ri and Xi.

Problem Formulation
Given a task T , a planner generates a plan π to accomplish
a goal state sg . The planning agent, containing an accu-
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Value Description Value Possibilities
positive visibility change {0,1}
negative visibility change {0,1}

positive reachability change {0,1}
negative reachability change {0,1}

positive touching change {0,1}
negative touching change {0,1}

Table 2: World model W output values. Our proof-of-concept
output vector Ω is defined by 6 output values, each characterizing
meta-level symbolic changes in the world. A 0 value indicates none
of the meta-level changes (in value description) occurred, whereas
a 1 indicates 1 or more instances of the meta-level change occurred.

rate representation of the world in its symbolic knowledge
base K, is able to successfully execute π, thereby achieving
its goal state sg . We refer to this case as the original sce-
nario. Now, suppose that in the case of novelty, something
about the world changes such that K is no longer sufficient,
but needs to be updated with new information such that K
becomes K′. The agent also must learn a new set of corre-
sponding action controllers RK′ (represented as trajectories
relative to the arguments of the action). We refer to this sce-
nario as the novel scenario. In this novel context, the planner
initially uses K to plan for solving T , once again generating
π. Upon executing π, a plan failure occurs for some action
af ∈ π. At this point, the agent must explore its world to
learn a new knowledge baseK′, providing it with an updated
and accurate representation of the new world, along with its
corresponding set of action controllers RK′ . We define the
learning processL as the process in which an agent can learn
a new knowledge base K′ using exploration method ω, such
that L(K, ω) 7→ K′.

The exploration method ω used by the agent for CPS is a
method which can result in knowledge base expansion. For
example, in previous work, we demonstrate knowledge base
expansion through action discovery (Gizzi et al., 2021a). In
preliminary work, we demonstrate knowledge base expan-
sion via action discovery through trajectory segmentation
(Gizzi et al., 2019). In another case, we demonstrate action
discovery through behavior babbling across action parame-
ter assignments (Gizzi et al., 2021b). In Gizzi et al. (2022),
we provide a comprehensive review of work in CPS which
provide methods for knowledge base expansion through var-
ious exploration methods ω.

Experiments
World Model
We experimented with 2 model types, with each model for-
mulated as multi-label binary classifiers.

Inputs and Outputs The inputs and outputs to our mod-
els are listed in Table 1 and Table 2, respectively. Before
training our models, we performed basic preprocessing on
our data to render the data formats shown in the tables. We
one-hot encoded the categorical features in both the input
(actions, shapes, color, and orientation were encoded as de-
scribed in Table 1), and output (world fluent changes were

encoded to indicate whether they occurred or not, as de-
scribed in Table 2). We also standardized continuous fea-
tures by removing the mean and scaling to unit variance in a
given feature space. Lastly, we split our data into a training
and testing set to prevent over-fitting.

Model 1: Neural Network The first model we tested was
a feed forward neural network (NN), which is a basic artifi-
cial neural networks, where connections between nodes do
not form a cycle. Our NN had 3 hidden layers, 256 neurons
in each hidden layer, a binary cross entropy loss function,
and a decaying learning rate for the CPR scenarios. Af-
ter examining multiple model choices, we determined that a
shallow and narrow neural network was not complex enough
to learn the data but still achieved high binary accuracy since
few actions in the data set affected the agent’s world. Con-
versely, a deep and wide neural network was able to learn
the complexity of the data.

Model 2: Naı̈ve Bayes The next model we tested was a
naı̈ve bayes model (NB). The NB model uses Bayes The-
orem and the assumption that each input variable is inde-
pendent to dramatically simplify calculations. We extended
a binomial naı̈ve bayes model to support multi-label classi-
fication by fitting one classifier per label. Recommending
actions to the agent in CPS when performing exploration is
well suited for a binomial naı̈ve bayes model since the agent
is training on a knowledge base of independent trials and
each trial produces six binary labels.

Measures We developed four measures used to prioritize
exploration trial recommendations by our world models.
That is, given a list of possible exploration trials (where each
trial describes an action to vary with corresponding param-
eter settings, and low level information about the entity ar-
gument to the action – thus describing a world model input
choice), the agent uses its world model to first predict multi-
label binary outputs described in Table 2, and then numeri-
cally quantifies each trial based on the world model output
it render. By using the least destructive measure, the model
orders the list of recommended exploration trials based on
how much a given input changes in it negative reachability
output. Exploration trials which minimize these changes are
prioritized. The most changes measure ranked inputs based
on how many fluent property changes they rendered through
the world model. Thus, inputs that rendered the highest net
value in the sum of the values of Ω were prioritized. The
most positive changes measure prioritized inputs which re-
sulted in the high rank for the sum of positive reachability,
positive touching, and positive visibility outputs. And lastly,
the least negative changes measure prioritized inputs which
resulted in the low rank for the sum of negative reachability,
negative touching, and negative visibility outputs.

Scenarios
We ran a proof-of-concept experiment of our methodology
in PyBullet, which is a 3D physics simulation environment.
The world model of the agent is first trained on input/output
data points (described later), sampled from randomized ac-
tions on randomized entities. After initial training, the robot
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Figure 1: CPS Scenarios. In Scenario 1, the robot has a goal of
pushing an object off the table, into a bucket on the ground. In
Scenario 2, the robot has a goal of placing an item into a container.
In Scenario 3, the robot has a goal of emptying the contents of a
container, which has one object in it.

attempts to solve 3 CPS scenarios sequentially Each experi-
mental scenario in shown in terms of its original and novelty
condition, shown in Figure 1).

Results
In order to evaluated whether the use of a world model in-
creases CPS ability (through decreasing exploration time)
across longitudinal CPS trials, we ran two experiments,
where the world model used in each trial was first trained
on the same 200 data points of randomly generated world
model interactions. In each experiment, we took the aver-
age of four trial runs to calculate average exploration time
for each scenario in the described sequence, along with the
total exploration time for the sequence. We performed this
test for the NN model and the NB model. Additionally, we
performed this test for each of the 4 measures.

In the first experiment, we allowed exploration trials dur-
ing each scenario to be used to train the model over time,
across scenarios. In the second experiment, we reset the
training data back to the original set of 200 data points, and
retrained the model before each scenario. In this way, we
were able to observe whether training on CPS trials was
helpful toward decreasing CPS exploration over time. Note
that each scenario is characteristically different, regarding
the amount of exploration needed to find a solution. For ex-
ample, scenario 1 requires exploration of actions outside of
the original failed plan, or defocused exploration. There-
fore, comparisons were made relative to the corresponding
scenarios of each experiment.

We did not find a significant difference between model
updating versus not model updating in the first experiment.
We believe this may be due to the fact that the data generated
in the randomized trials may have not been a great represen-
tation of normal robot exploration (for example, in many tri-
als, objects fell off of the table before exploration was able
to begin). Moreover, even with accurate exploration, we be-
lieve the training apriori may have biased the agent toward
“nominal problem solving,” which uses different reasoning

Figure 2: Percent change in time for scenario 2 and 3 execution.
Red values show instances where model updating improve perfor-
mance (by reducing exploration time against trials with no model
updating). Thus, in the case where the world model was first
trained a priori, there was a decrease in CPS exploration time in
50% of the measure-model combination choices. In the case where
the world model was not trained a priori, there was a decrease in
CPS exploration time in 81% of the measure-model combination
choices.

than CPS. For this reason, we decided to test how the agent
would perform if there was little aprioiri training.

We performed the same two experiments, where we in-
stead only trained our models on 4 data points (one for each
action, randomly sampled from the original 200 data points).
Results are shown in Figure 2. In this case, we found that
there was a reduction in CPS time between scenario 1 and
2, and between scenario 2 and 3, in 50% and 81% of the
trial combinations for NN and NB, respectively (further de-
scribed in the caption of Figure 2). This shows that up-
dating the NB world model using only CPS exploration
trials is beneficial toward decreasing CPS exploration, as
opposed to not. When executing sequences of consecutive
CPS exploration without model updating in-between scenar-
ios, the agent was still updating its own world model within
the exploration of an individual scenario. Therefore, its pos-
sible that there is still benefit in having a “miniature” world
model for each scenario, not to be used in a long term sense.

Conclusion and Future Work
In this paper, we develop a method for enabling life-long
creative problem solving by training a world model on cre-
ative problem solving exploration data to increase CPS ex-
ploration performance. It was shown that using a naive
Bayes model is useful toward decreasing exploration time
in CPS over time, when trained on CPS data alone. A lim-
itation of our work is that it does not perform CPS over ex-
tensive/complex CPS operational runs. Future work should
consider performing LLCPS over 100 seeds, or more. Sim-
ilar limitations are addressed in Sun (2007). Additionally,
future work should consider using alternative output vectors
for capturing meta-level world changes, and different mea-
sures to rank those output values such that predictions can be
more consistent across scenarios. Lastly, future work should
compare alternative meta-level world models for LLCPS, in-
cluding reinforcement learning-based methods.
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Abstract

The “well-made” surprise is a narrative pattern of set-
ting up and executing a surprise in a way that is gen-
erally perceived as enjoyable and rewarding. It lever-
ages biases in human cognition to manipulate the audi-
ence’s state of belief, and is commonly found in west-
ern culture as early as Aristotle’s Poetics. We propose
a novel framework to model the audience’s beliefs of a
narrative world using approximate Bayesian inference
over Markov Logic Networks. We operationalise three
qualitative attributes of the well-made surprise (consis-
tency, divergence and certainty) as quantitative func-
tions of the outputs of inference. This work follows the
paradigm from computational narrative of operational-
ising qualitative concepts from literary theory in order
to model and generate narratives, either autonomously
or cooperatively with a human author. We demonstrate
the proposed framework on ten short narratives, and test
it with a study on 91 participants. We find that for con-
sistency and divergence, a change in the model’s pre-
diction corresponds with a significant change in the par-
ticipants’ rating. Our results suggest that the proposed
framework may have meaningful predictive power and
potential for future applications to narrative generation,
plot analysis, and computer-aided creativity.

Introduction
Computational narrative is a long-standing research field fo-
cusing on modelling the building blocks of a narrative in a
machine-processable structure, most often with the goal of
analysing existing narratives or generating novel ones (Ky-
bartas and Bidarra 2017; Valls-Vargas, Zhu, and Ontanon
2017). A common paradigm in generational narrative is
to apply some existing algorithmic framework to an oper-
ationalisation of a concept from literary theory, such as sus-
pense (Cheong and Young 2008), surprise (Bae and Young
2014) and conflict (Ware 2002). In contrast, other recent ex-
amples in the field build upon natural language processing
advances using neural networks (Radford et al. 2019) to di-
rectly process and generate natural language narratives (Yao
et al. 2019; Fan, Lewis, and Dauphin 2018) and have gained
public popularity, for instance with the indie game AI Dun-
geon (Hua and Raley 2020). These rely on the ready avail-
ability of large datasets rather than human-encoded models,

solving scalability issues but losing transparency and decod-
ability of the model’s internal workings in doing so.

Tobin (2018) describes the well-made surprise as a com-
mon pattern in western narratives, dating as far back as
the well-made tragedy in Aristotle’s Poetics, from which
they borrow the term. It describes a surprise, or an unex-
pected event or occurrence in a narrative, that is accompa-
nied by an experience of insight, also called an “Aha” expe-
rience (Topolinski and Reber 2010; Skaar and Reber 2020).
In this particular scenario, it is the formation of a new under-
standing of the narrative, associated with suddenness, ease
and fluency of processing, certainty in the new understand-
ing and positive affect, which lead to overall enjoyment of
the surprise.

Tobin’s theory of the well-made surprise deals primarily
with literature and film, but it’s a construct extensible to any
storytelling medium. Thus, for the remainder of this paper
we will not assume any particular medium when referring to
an author (the person or people crafting the narrative and the
surprise), an audience (the person or people experiencing the
narrative) and a text (the artifact through which the narrative
is conveyed from the author to the audience).

Tobin also details a variety of techniques by which an
author may construct a well-made surprise, largely lever-
aging common biases in human cognition (Evans 1989) to
deliberately construct misunderstandings or misinterpreta-
tions about the narrative leading up to the surprise, while
still enabling the “correct” meaning of the text to be recog-
nised and accepted in retrospect. Tobin argues that it is
especially because well-made surprises exploit these biases
that they produce an experience of insight. Examples in-
clude minimising the audience’s attention towards certain
information (Emmott and Alexander 2014) and shifting the
frame of reference from an objective telling of the events
to a character’s impression of them using presupposition
clauses to mask falsehood as truth (Loftus and Zanni 1975;
Bredart and Modolo 1988). Many of these details of the
techniques are specific to a medium, but in general, their in-
tended effect is to manipulate how the audience processes in-
formation and builds a mental model of the narrative, steer-
ing them towards a state in which later events can best de-
liver a satisfying, insightful surprise.

In this work, we investigate the applicability of Tobin’s
theory as a modelling tool in the field of computational cre-
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ativity. We identify three main areas of applications for such
a model:
• Narrative analysis: Improving the understanding of exist-

ing narratives by providing a new analytical lens through
which to model surprises (Valls-Vargas, Zhu, and On-
tanon 2017).

• Computer-aided creativity: Aiding authors in the process
of writing a satisfying plot by identifying features such as
plot holes and well-made surprises (Kapadia et al. 2015),
similarly to how formal methods in software modelling
can aid software developers verify their abstractions (Gut-
tag and Horning 1980).

• Generative narrative evaluation: Evaluating the output of
other narrative generation tools, for example as a search
heuristic or as a validation metric. Tobin (2018, pp. 54-
55) highlights that the pattern of the well-made surprise
is often pleasant to experience even when familiar with
it, which is a very attractive property for narrative gener-
ation, which often struggles with overcoming repetitive-
ness (Alabdulkarim, Li, and Peng 2021).
We believe that there is unexplored potential in the com-

putational modelling of the theory of the well-made surprise.
There exists significant work in modelling surprise and other
related concepts in computational narrative (Bae and Young
2014; Cheong and Young 2008), as well extensive study into
the properties of the “Aha” experience in cognitive psychol-
ogy and neuroscience (Skaar 2019; Skaar and Reber 2020;
Chu and MacGregor 2011), and the theory of the well-made
surprise points out an important link between surprise and
insight. However, no previous work that we are aware of
has attempted to bring all of the above together.

Tobin’s work bridges the disciplines of narrative theory
and cognitive psychology, and in addition doesn’t require
deep familiarity with either field to understand. We com-
bine this with the approach from computational narrative to
operationalise literary theory and cognitive psychology con-
cepts in an effort to bring computer science into the mix and
take the first step towards a novel cross-disciplinary compu-
tational model of surprise.

We study the mental model that the audience builds of the
narrative through the theory of Bayesian probability (Cox
1946; Jaynes, Jaynes, and Bretthorst 2003), focusing on
their knowledge or beliefs about the story world and the
inferences they perform throughout the narrative (McKoon
and Ratcliff 1992; Graesser, Singer, and Trabasso 1994).
From such a model, we aim to operationalise key qualities
of the well-made surprise by expressing them as functions of
the model, based on related ideas from logic and information
theory. We implement a probabilistic framework of the well-
made surprise and implement three such operationalisations,
which we evaluate on a study with 91 participants. We find
that the model’s predictions agree with participant ratings
for two of the three operationalisations, and identify several
strengths and weaknesses of the proposed framework.

Background
The Bayesian theory of probability (Cox 1946; Jaynes,
Jaynes, and Bretthorst 2003) has seen extensive use in com-

puter science as the theoretical basis for probabilistic mod-
els (Russell and Norvig 2010, pp. 510-546), as well as ap-
plications in both cognitive sciences (Griffiths, Kemp, and
Tenenbaum 2008, pp. 85-138) and literary theory (Kukko-
nen 2014). Under the Bayesian framework, probabilities
represent a degree of belief in a hypothesis, with P (x) = 1
representing a certain fact, and P (x) = 0 an impossibil-
ity. As new data is acquired, existing beliefs are updated
using Bayes’ theorem. In the context of experiencing a nar-
rative, new beliefs are added to the model as needed in order
to make sense of the narrative (McKoon and Ratcliff 1992;
Graesser, Singer, and Trabasso 1994), and the resulting
model is a combination of information that the narrative has
provided and of the audience’s own background knowledge.

A Markov Logic Network or MLN (Richardson and
Domingos 2006) is a probabilistic model that encodes a joint
probability distribution over the truth value of all ground
atoms in its domain. Like other Bayesian models it al-
lows for inference, or computing the probability P (A|B)
for some A to be true given some known prior B, both be-
ing logic formulas. While exact inference is intractable in
the general case, efficient approximate inference algorithms
have been developed (Riedel 2005; Geier and Biundo 2011;
Niu et al. 2012; Van den Broeck 2013).

A MLN is defined as a set of weighted first-order logic
statements defined over a finite domain. MLNs afford the
expressive power of first-order logic alongside the ability to
model uncertainty, both in the sense of information that is
varying degrees of plausible rather than absolutely true or
false, and in the sense of contradictory information. We find
these to be valuable properties in the modelling of the well-
made surprise. Partial, uncertain and contradictory informa-
tion is extremely common in surprising narratives, and the
ability to reason about such imperfect information is an im-
portant part of understanding well-made surprises, where an
initially unexpected outcome is made sense of and obvious
in hindsight. In addition, MLNs’ expressive power proves
especially useful due to the exploratory nature of this work,
allowing a wide range of concepts to be modelled.

MLNs can be seen as a template from which a ground
Markov Random Field or MRF (Murphy 2012) can be built.
The ground MRF is a bipartite graph of all ground atoms and
all groundings of all rules, where an edge exists between an
atom and a rule if the atom appears in the rule. This in-
terpretation is especially useful for visualising the structure
of a MLN and the flow of information during inference, as
shown later in this paper.

Literature review
In the field of computational narrative, there are many exam-
ples of systems designed to generate stories guided by some
operationalised narrative concept. Bae and Young (2014)
use AI planning to model flashbacks and foreshadowing
in order to construct surprising narratives with explain-
able causes, and present a methodology to adapt their
model to narrative analysis of surprises. Arinbjarnar (2005;
2008) propose an interactive murder mystery plot genera-
tion engine based on Bayesian networks which combines
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ideas from Propp’s (1968) morphology of the Russian folk-
tale with accepted genre conventions from mystery writers.
Riedl and Bulitko (2012) and Arinbjarnar, Barber, and Ku-
denko (2009) survey a large body of work on interactive nar-
ratives.

Bayesian methods and especially Bayesian networks have
seen extensive use in the modelling of uncertainty and
knowledge, on both real and fictional narratives and on
a very wide variety of topics. These include evidence
in legal cases (Vlek et al. 2013), workplace injury nar-
rative coding (Lehto, Marucci-Wellman, and Corns 2009;
Measure 2014; Taylor et al. 2014), the visual percep-
tion of surprising events while watching television (Itti and
Baldi 2009) and how emotion appraisals are transmitted
across retellings of a story (Breithaupt, Li, and Kruschke
2022). There are many more examples, see Canaj, Biba, and
Kote (2018) for a more thorough survey. Skaar (2019) stud-
ies in detail several aspects of the “Aha” experience using
Bayesian statistics.

While Markov Logic Networks are less prominent in the
literature than Bayesian networks, they have seen several
successful applications. Singla and Mooney (2011) train a
MLN of a plan from observed actions, Ohwatari et al. (2014)
model interpersonal relationships between characters and
Patil et al. (2018) use MLNs to identify characters with mul-
tiple referring aliases.

Applications to interactive narratives are especially rele-
vant to our research, as the algorithmic infrastructure driv-
ing the telling of an interactive narrative can naturally start
closer to the world of logic and Bayesian modelling than
more traditional media, potentially allowing for a smoother
and more direct modelling process. Rowe and Lester (2010)
modelled user knowledge in an interactive narrative using
dynamic Bayesian networks, while Ha et al. (2012) apply
MLN structure learning to their user’s goals based on the
actions they take in a narrative world.

Qualities of the well-made surprise
Tobin (2018, Chapter 5) identifies several qualities that
define the “Aha” experience, and by extension the well-
made surprise, which we elaborate on and adapt to our ap-
proach in the following sections. Their work focuses on
four qualities that are required for an experience of reali-
sation to be the basis of a well-made surprise (suddenness,
certainty/confidence, ease/fluency and pleasure/enjoyment).
We specify and formalise an additional three which are
based on our interpretation of concepts Tobin alludes to
throughout their work (coherence, consistency, and diver-
gence).

Coherence
Coherence is a measure of the logical flow in the surprise.
An incoherent surprise is unrelated to the rest of the narra-
tive and is confusing even in hindsight. “Cheap” twist end-
ings (Marie-Laure Ryan 2009) often fall into this category,
failing to justify their existence in the story world beyond
resolving a plot element or dismissing a contradiction (e.g.
“it was all a dream”, so it doesn’t have to make sense).

Consistency
Consistency is the degree to which to which the surprise is
compatible with the rest of the story leading up to it. A
consistent surprise is plausible given all of the information
presented by the story thus far, and the audience is able to
integrate it into their understanding of the story world with-
out any unexplainable contradictions emerging. Stories of-
ten uphold this by masking contradictions behind a charac-
ter’s subjective impression of events, reframing what origi-
nally appeared as factual to be misguided, misunderstood or
fabricated.

Divergence
Divergence is the magnitude of the knowledge revision
caused by the reveal. A divergent surprise will have deeper,
further reaching implications in the plot, and force the au-
dience to revise their understanding of earlier events. This
extends the notion of how surprising any single event is (i.e.
its probability) with the outcome of the inferences that the
new information triggers in the audience.

Suddenness
Suddenness is the speed at which the audience arrives at a
new understanding after their previous one is revised. A
sudden surprise will cause the audience to revise their un-
derstanding and adopt a new one within a short span of time.

Inevitability
Inevitability is the degree to which the final understanding
is intuitive, satisfying and (in hindsight) obvious, compared
to the initial understanding. This can take on a variety of
shapes, such as a character’s actions being reframed to be
more in line with their motivations, or a previously unimpor-
tant detail (a “Chekhov’s gun”) gaining new meaning. This
is closely related to Tobin’s ease/fluency concept, but we
adopt the term “inevitability” from other parts of their work.
We chose this name to focus on the knowledge and reason-
ing side of the concept (a surprise that can be explained and
reasoned about into a likely occurrence in hindsight), rather
than the psychological idea of cognitive fluency (the quality
of thoughts that are easy to mentally process), although the
latter would be an interesting avenue for future research (Op-
penheimer 2008).

Certainty
Certainty is the degree to which the new understanding ap-
pears as certain and undoubtable, naturally fitting into the
story world in such a way that it answers questions and fills
gaps in knowledge besides the subject of the surprise.

Enjoyment
When the other qualities hold, we expect the surprise to be
enjoyable. Due to the highly subjective nature of the ex-
perience, there is a fine line between accepting the surprise
as insightful and rejecting it as a cheap writing trick. This
becomes more evident the more ambitious the surprise is
at unravelling the audience’s previous understanding. For
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Sentence Encoding

1 Katie just had a very long week at
work.

WorkHard(Katie,Weekdays)

2 One cannot work hard without
working.

¬DoWork(x, t)→ ¬WorkHard(x, t)

3 One is working if they are working
hard.

WorkHard(x, t)→ DoWork(x, t)

4 She couldn’t wait for the weekend,
she had made plans to relax and
watch her favorite tv series.

WantToWatchShows(Katie,Saturday)

5 Being denied a wish can make
someone unhappy

WantToWatchShows(x, t) ∧ ¬WatchShows(x, t)→ Unhappy(x, t)

6 As Saturday morning rolled around,
she woke up to a call from her boss.

Call(Boss,Katie,Saturday)

7 He asked her if she could come over
to work.

AskToAtWork(Boss,Katie,Saturday)

8 One wouldn’t go to work on a Sat-
urday unless their boss asked.

¬AskToAtWork(Boss, y,Saturday)→ ¬AtWork(y,Saturday)

9 If one goes to work, it’s to do work. AtWork(x, t)→ DoWork(x, t)
10 Katie couldn’t work and watch her

shows at the same time.
¬ (DoWork(Katie, t) ∧WatchShows(Katie, t))

11 One cannot be happy and unhappy. ¬ (Happy(x, t) ∧Unhappy(x, t))
12 She happily agreed and had a

great time.
AtWork(Katie,Saturday) ∧Happy(Katie,Saturday)

13 Her boss had noticed how hard ev-
eryone worked last week, and threw
a party at the office.

(WorkHard(x,Weekdays) ∧AtWork(x,Saturday))→ Party(x,Saturday)

14 One doesn’t party and do work. ¬ (Party(x, y) ∧DoWork(x, y))
15 Surprise parties make people happy Party(x, t)→ Happy(x, t)

Table 1: Example encoding of a story. The reveal is in bold. Background rules are in italics.

instance, surprises relying on unreliable narrators that com-
pletely change the perspective of the story from a factual
retelling of events to the fallible perception and interpreta-
tion of a character can have a polarising effect on their audi-
ence.

Proposed model
We view a well-made surprise as composed of three phases:
setup, reveal and explanation. During the setup, the audi-
ence forms an understanding of the story world, which we
call the flawed understanding. Then, the reveal is a sudden,
surprising event which prompts the audience to question the
flawed understanding, and begin forming a new one. The ex-
planation is a final, optional phase in which the story guides
the audience towards an improved understanding of the story
world, which we call the truth understanding.

We model each story as a pair of MLNs, corresponding
to the flawed and truth understandings. To demonstrate our
modelling process, we wrote ten short stories of four to six
sentences each, each story focusing on one of the modelled
qualities. For each story, we wrote two variants, one being
high in the associated quality, and one low. We wrote the
stories such that the difference between the two variants is
as minimal as possible to produce the desired difference in
the associated quality, while also producing as small a differ-

ence as possible in all the other qualities. During the writing
process, we categorised stories as high or low in each quality
using our subjective judgement.

For each story, we identify one sentence as the reveal, ev-
ery sentence preceding it as the setup, and every sentence
(if any) following it as the explanation. We then encoded
each sentence as one or more rules, which are either encod-
ing information stated explicitly in the story, or background
knowledge that we assume the audience will draw from in
order to make sense of the sentence. Rules and atoms are
shared by both the flawed and truth models where possible,
as we will later define functions over shared atoms.

See Table 1 for an example encoding of a story written to
have high certainty. In the story, Katie is hoping to have a
relaxing weekend (4) but is suddenly asked to come to work
(7). The audience might expect her to either not abide the
request (¬AtWork(Katie,Saturday)), or to begrudgingly
do so and be unhappy with the result (due to 5, 9 and 10).
The reveal (12) is unexpected because neither holds (due to
11), and is then explained by referring back to the fact that
Katie worked hard during the week (1).

We run approximate inference over both the truth and
flawed models, using the Alchemy 2 implementation
of MLNs (Kok and Domingos 2005) with the default
MaxWalkSat and Gibbs sampling approximate inference al-
gorithm described by Richardson and Domingos (2006).
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Atoms

1 DoWork(Katie,Weekdays) 7 AtWork(Katie,Saturday)
2 WorkHard(Katie,Weekdays) 8 Happy(Katie,Saturday)
3 AskToGoToWork(Boss,Katie,Saturday) 9 Unhappy(Katie,Saturday)
4 WatchShows(Katie,Saturday) 10 WorkHard(Katie,Saturday)
5 WantToWatchShows(Katie,Saturday) 11 Party(Katie,Saturday)
6 DoWork(Katie,Saturday)

Figure 1: Partial example ground network with reveal (R), divergence blanket (D) and certainty blanket (C) highlighted.
Circles are atoms, squares are rules.

This process approximates sampling from the joint proba-
bility of all possible worlds defined by the model, and for
each ground atom and rule it keeps track of the number of
sampled worlds in which they are true. P (x) is then the out-
put probability of x, defined as the proportion of worlds in
which x is true among all sampled worlds. We define Pf (x)
and Pt(x) to be P (x) in the flawed and truth model respec-
tively.

Operationalisations
From the qualities described earlier in the paper, we opera-
tionalise three: consistency, divergence and certainty. Partial
work for the operationalisation of coherence was completed,
but was not included in the final model. Similarly, inevitabil-
ity and suddenness are out of the scope of the current model
and analysis. Enjoyment involves many subjective factors
to the point that it cannot be expressed simply in terms of
knowledge and belief, and is not modelled in this work.

Consistency
For the scope of this work, we limit our analysis to instances
in which facts directly stated by the narrative contradict each
other, and we operationalise this quality as a satisfiability

check of the conjunction of all the hard rules in the truth
model.

Divergence
We follow an approach similar to Itti and Baldi’s (2009)
“wow” unit of surprise to quantify the total amount of sur-
prise generated by the reveal.

1

|D|
∑

x∈D

KL(Pt(x)∥Pf (x)) (1)

Where KL is the Kullback-Leibler divergence (Kullback and
Leibler 1951). We define the divergence blanket D as the set
of atoms in common to the flawed and truth ground networks
and that are conditionally dependent on the reveal, condi-
tioned on all atoms with known value. In other words, D is
the set of all ground atoms that can be reached starting from
the reveal, traversing any ground rule edge, and stopping at
any atom with known value. D captures the notion of the
chain of reasoning that the audience performs to predict the
reveal. It aims to capture not only how surprising the reveal
is, but also how much this surprise flows backwards through
logical links and prompts revision of previously believed in-
formation.
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Statement Value

Divergence

The story is surprising Positive
The story is not surprising Negative
The story is not predictable Positive
The story is predictable Negative

Consistency

The story doesn’t contradict itself Positive
The story contradicts itself Negative
The story made sense Positive
The story didn’t make sense Negative

Certainty

The ending is satisfying Positive
The ending is not satisfying Negative
The surprise doesn’t feel cheap Positive
The surprise feels cheap Negative

Table 2: Evaluation statements

Answer Positive Negative

Strongly disagree -1.0 1.0
Somewhat disagree -0.5 0.5
Neither agree nor disagree 0.0 0.0
Somewhat agree 0.5 -0.5
Strongly agree 1.0 -1.0

Table 3: Likert scale conversion key

It should be noted that KL(P (x)∥Q(x)) is not defined
when P (x) = 0 and Q(x) ̸= 0, but since we encode hard
rules as an arbitrarily large weight rather than an actually
infinite weight for computation reasons, output probabilities
are never exactly 0 or 1. This has a similar effect to adding
a small prior to all probabilities.

Certainty
Shannon entropy (Shannon 1948) is a commonly used mea-
sure of uncertainty, and we track its overall change across all
modelled information when transitioning from the flawed to
the truth model.

1

|C|
∑

x∈C

H(Pf (x))−H(Pt(x)) (2)

Where H is the Shannon entropy. We define the certainty
blanket C as the set of atoms in common to the flawed and
truth ground networks and that are conditionally dependent
on the reveal in either the flawed or truth ground network,
conditioned on all atoms with known value. This is defined
similarly to D, but note that C ⊆ D, as it includes new in-
formation that the flawed interpretation had no knowledge
of (the audience hadn’t thought of it), but that is still rel-
evant to reasoning about the reveal in retrospect. In Fig-
ure 1, WorkHard(Katie,Weekdays) is not in D since be-
fore knowing about the surprise party, Katie’s hard work
during the week only relates with her desire for a restful

weekend. The same atom is in C since it’s used in the ex-
planation. DoWork(Katie,Weekdays) is in neither, as any
rules leading from it to the reveal first go through known
atoms.

Evaluation
We evaluate our framework with an exploratory study on a
small set of stories, with a total of 91 undergraduate partici-
pants recruited through the Australian National University’s
School of Psychology’s Research Participation Scheme.

In this evaluation, we used a fully within-subjects design,
focusing on factors that made it into the final framework.
We had a 3 (quality: consistency, divergence, certainty) by
2 (variant level: low, high) design. While participants read
a total of 10 stories, we focused our analysis on only 7 of
them, as 3 stories focused on an operationalisation of co-
herence that was not included in the final framework. For
each quality we operationalised, we used multiple stories to
eliminate item specific effects—that is, participants read 3
different stories varying in consistency (low, high). For each
of the 7 stories, participants read a version that was high or
low on a target quality. For example, for consistency, par-
ticipants saw a total of 3 stories, in a high and low level
of consistency. See supplemental materials for how consis-
tency, divergence and certainty were manipulated as high or
low across each story. Each participant was shown all 14
story variants in random order, subject to the restriction that
the two variants (low, high) of the same story were always
presented one after the other, again in random order. After
reading each of the 14 total story versions, participants were
asked to evaluate each story across ratings presented in Ta-
ble 2, as well as rating comprehension of each story. All
ratings were answered on a 5-point Likert scale, which were
converted according to the key in Table 3 and averaged for
each quality. Relatively more positive values as displayed
in Table 4 indicate higher ratings of the key dependant vari-
able (e.g. consistency). Answers associated with low com-
prehension scores (< 0.25) were filtered out as outliers, but
the same significant pattern of results is found with those
outliers included. Note that in Table 4, we limit our analysis
to the key dependant variable of interest—for stories where
we varied consistency, we focus our analysis on consistency
as per Table 4. Note that other values may be of interest for
further analysis, such as interactions between qualities.

Results
For consistency and divergence, a paired-samples two-tailed
t-test showed significant change in the mean of participant
answers between the two variants of a story (p < 0.001), in
the same direction as predicted by the model. For certainty,
the answers showed less marked change in one of the stories
(p = 0.077).

Discussion
The results suggest that the framework has meaningful pre-
dictive power for the modelled qualities, and in general the
approach of using information theoretical functions to model
the well-made surprise shows promise.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

131



Title Variant Predicted Mean Std dev t-value p-value

Consistency

The Macaroni Low 0 −0.5443 0.3968 −7.859 < 0.001
High 1 −0.0016 0.5449

Sarah’s Walk Low 0 −0.6094 0.4857 −13.762 < 0.001
High 1 0.5688 0.522

Catherine at the Beach Low 0 0.0111 0.5935 −4.902 < 0.001
High 1 0.3436 0.4554

Divergence

Emma’s Move Low 0.0083 −0.4253 0.3502 −12.389 < 0.001
High 1.7592 0.3287 0.3804

Jimmy and the Candy Low 0.1484 −0.3657 0.3831 −14.297 < 0.001
High 0.9032 0.4645 0.3101

Certainty

Katie’s Weekend Low 0.0985 −0.3224 0.3669 −6.347 < 0.001
High 0.1094 −0.0015 0.4052

Peter Plays Pool Low 0 −0.2214 0.3241 −1.792 0.077
High 0.1425 −0.1296 0.3244

Table 4: Results of model evaluation. Note that the predicted values are not in the same units as the collected data.

The lack of a common unit of measure between model
output and collected data makes it difficult to quantify its
precision, and a methodology for normalising model outputs
to an accepted scale would greatly improve its verifiability.

The result for the last story under certainty (“Peter Plays
Pool”) may be partially explained by the questions for cer-
tainty being very vague statements about the quality of the
surprise and of the insight experience, so more specific ques-
tions might yield more useful results. This result still high-
lights how subjective the overall quality of a surprise can be,
even for a very short narrative.

Future Work
Future studies should explore further generalisation of the
current findings to more general categories of narratives, es-
pecially longer narratives and existing corpora of real-world
narratives containing well-made surprises. Tobin (2018)
touches upon many literary examples throughout their work
which future research should strive towards being able to
model. The design of future studies should also take into
account the ability to generalise across items. Our study’s
design manipulated each story in an unique way, largely lim-
iting analysis to individual story variation pairs. These ques-
tions could also be examined in a between-subjects design,
where people do not have the relative comparison across
story versions. These are fruitful avenues for future re-
search.

The weakest part of the current framework is match-
ing a model to a narrative. Due to the high flexibility of
MLNs, any narrative (even very short ones) can have a wide
range of subjective encodings, and two very similar models
may produce different outputs. This is a general criticism
often raised towards Bayesian modelling in cognitive sci-
ences (Marcus and Davis 2013; Tauber et al. 2017), and is

a consequence of the combination of model flexibility, sub-
jective human modelling, and outputs that are sensitive to
model formulation. Model consensus procedures such as
those used by Trabasso and Sperry (1985) should be used by
future research using hand-written models. Another option
is to pursue model extraction from questionnaires (Graesser,
Robertson, and Anderson 1981). The approach is still inher-
ently not scalable in the context of open narrative generation,
and is likely better suited to aid in narrative analysis or as a
computer-aided writing tool.

As an alternative to hand-written models, this flexibility
also means that MLNs’ modelling language subsume many
existing structured representations of narratives, and we sug-
gest the development of conversion procedures from existing
narrative models to the proposed framework. In particular,
the operationalised qualities may find use as heuristics to
evaluate the output of generative models which learn their
domain representation from existing data (Li et al. 2013) or
publicly available corpora (Guan, Wang, and Huang 2019;
Swanson and Gordon 2012). Conversely, existing genera-
tive frameworks could be adapted to produce narrative vari-
ations suitable for use in future studies (Porteous et al. 2010;
Piacenza et al. 2011).

It may be possible to extend consistency to a continuous
quantity by adapting a MLN weight learning algorithm, such
as the voted perceptron (Richardson and Domingos 2006) or
the scaled conjugate gradient (Lowd and Domingos 2007).
Since MLN weight training is based around computing the
optimal weights for each rule given a dataset, we may be
able to learn new weights on the samples obtained from in-
ference. Intuitively, conflicting information will cause the
respective rules to be false more often than their original
weights would imply, and thus result a lower trained weight.

Divergence and certainty are defined over a subset of the
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marginals, which varies in size depending on model for-
mulation and verbosity. Furthermore, atoms are included
in the respective blankets if any rule links to them, with
no regard for how important each atom is in the inference
process. Future work could draw from research into re-
call and importance of events (Trabasso and Sperry 1985;
Trabasso and van den Broek 1985) to improve them.

The other qualities that haven’t been operationalised yet
(coherence, suddenness) should also be investigated and
modelled in future work. Some, like inevitability, may ben-
efit from being further decomposed into constituent parts in
order to be more easily modelled.

Conclusions
We presented a novel cross-disciplinary modelling frame-
work for the well-made surprise. The proposed framework
takes the first step in a cross-disciplinary effort to bring the
literary theory of the well-made surprise into the world of
computer science, drawing from the field of cognitive sci-
ence along the way to inform the design of the models and
research direction. We believe the framework to have po-
tential in the field of computational narrative and creativity,
and identify three main areas of promising application as
narrative analysis, computer-aided creativity and generative
narrative evaluation. We supported our claims with a pilot
study, and examined ways in which the framework may be
improved and further developed.

Author Contributions
Patrick Chieppe was responsible for writing the manuscript
and all other research work not otherwise attributed to the
other authors below.

Penny Sweetser advised on the overall course of research
and writing, provided frequent feedback and considerably
helped shape the direction of this work.

Eryn Newman contributed to the evaluation design and
provided initial feedback on the manuscript.

Acknowledgements
This research is supported by an Australian Government Re-
search Training Program (RTP) Scholarship.

Supplementary material
Supplementary material including the stories, models, sur-
vey and dataset are available at:
https://github.com/Palladinium/iccc22

References
Alabdulkarim, A.; Li, S.; and Peng, X. 2021. Automatic
Story Generation: Challenges and Attempts. In Proceedings
of the Third Workshop on Narrative Understanding, 72–83.
Stroudsburg, PA, USA: Association for Computational Lin-
guistics.
Arinbjarnar, M.; Barber, H.; and Kudenko, D. 2009. A
critical review of interactive drama systems. In AISB 2009
Symposium. AI and Games.

Arinbjarnar, M. 2005. Murder She Programmed: Dynamic
Plot Generating Engine for Murder Mystery Games. Ph.D.
Dissertation, Reykjavı́k University.
Arinbjarnar, M. 2008. Dynamic Plot Generating Engine.
Proceedings of the Workshop on Integrating Technologies
for Interactive Stories (INTETAIN 2008).
Bae, B. C., and Young, R. M. 2014. A computational model
of narrative generation for surprise arousal. IEEE Trans-
actions on Computational Intelligence and AI in Games
6(2):131–143.
Bredart, S., and Modolo, K. 1988. Moses strikes again: Fo-
calization effect on a semantic illusion. Acta Psychologica
67(2):135–144.
Breithaupt, F.; Li, B.; and Kruschke, J. K. 2022. Serial
reproduction of narratives preserves emotional appraisals.
Cognition and Emotion 1–21.
Canaj, E.; Biba, M.; and Kote, N. 2018. Bayesian Networks:
A State-Of-The-Art Survey. CEUR Workshop Proceedings
2280:31–40.
Cheong, Y. G., and Young, R. M. 2008. Narrative generation
for suspense: Modeling and evaluation. Lecture Notes in
Computer Science 5334 LNCS:144–155.
Chu, Y., and MacGregor, J. N. 2011. Human Performance
on Insight Problem Solving: A Review. The Journal of
Problem Solving 3(2):119–150.
Cox, R. T. 1946. Probability, Frequency and Reasonable
Expectation. American Journal of Physics 14(1):1–13.
Emmott, C., and Alexander, M. 2014. Foregrounding, bury-
ing and plot construction. In Stockwell, P., and Whiteley,
S., eds., The Cambridge Handbook of Stylistics. Cambridge:
Cambridge University Press. 329–343.
Evans, J. S. B. T. 1989. Bias in human reasoning: Causes
and consequences. Essays in cognitive psychology. Hills-
dale, NJ, US: Lawrence Erlbaum Associates, Inc.
Fan, A.; Lewis, M.; and Dauphin, Y. 2018. Hi-
erarchical Neural Story Generation. arXiv preprint
arXiv:1805.048331.
Geier, T., and Biundo, S. 2011. Approximate online infer-
ence for dynamic Markov logic networks. Proceedings - In-
ternational Conference on Tools with Artificial Intelligence,
ICTAI 764–768.
Graesser, A. C.; Robertson, S. P.; and Anderson, P. A.
1981. Incorporating inferences in narrative representations:
A study of how and why. Cognitive Psychology 13(1):1–26.
Graesser, A. C.; Singer, M.; and Trabasso, T. 1994. Con-
structing inferences during narrative text comprehension.
Psychological Review 101(3):371–395.
Griffiths, T. L.; Kemp, C.; and Tenenbaum, J. B. 2008.
Bayesian models of cognition. Wiley Interdisciplinary Re-
views: Cognitive Science 1(6):811–823.
Guan, J.; Wang, Y.; and Huang, M. 2019. Story end-
ing generation with incremental encoding and commonsense
knowledge. Proceedings of the AAAI Conference on Artifi-
cial Intelligence1 33(1):6473–6480.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

133



Guttag, J., and Horning, J. J. 1980. Formal specifica-
tion as a design tool. In Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages - POPL ’80, 251–261. New York, New
York, USA: ACM Press.
Ha, E. Y.; Rowe, J. P.; Mott, B. W.; and Lester, J. C. 2012.
Goal Recognition with Markov Logic Networks for Player-
Adaptive Games. Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence 2113–2119.
Hua, M., and Raley, R. 2020. Playing with unicorns: AI
dungeon and citizen NLP. Digital Humanities Quarterly
14(4):1–27.
Itti, L., and Baldi, P. 2009. Bayesian surprise attracts human
attention. Vision Research 49(10):1295–1306.
Jaynes, E. T.; Jaynes, E. T. J.; and Bretthorst, G. L. 2003.
Probability Theory: The Logic of Science. Cambridge Uni-
versity Press.
Kapadia, M.; Falk, J.; Zünd, F.; Marti, M.; Sumner, R. W.;
and Gross, M. 2015. Computer-assisted authoring of in-
teractive narratives. Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, i3D 2015 85–92.
Kok, S., and Domingos, P. 2005. Learning the Structure of
Markov Logic Networks. In Proceedings of the 22nd Inter-
national Conference on Machine Learning, 441–448.
Kukkonen, K. 2014. Bayesian narrative: Probability, plot
and the shape of the fictional world. Anglia 132(4):720–739.
Kullback, S., and Leibler, R. A. 1951. On Information
and Sufficiency. The Annals of Mathematical Statistics
22(1):79–86.
Kybartas, B., and Bidarra, R. 2017. A Survey on Story Gen-
eration Techniques for Authoring Computational Narratives.
IEEE Transactions on Computational Intelligence and AI in
Games 9(3):239–253.
Lehto, M.; Marucci-Wellman, H.; and Corns, H. 2009.
Bayesian methods: A useful tool for classifying injury nar-
ratives into cause groups. Injury Prevention 15(4):259–265.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story generation with crowdsourced plot graphs. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 27, 598–604.
Loftus, E. F., and Zanni, G. 1975. Eyewitness testimony:
The influence of the wording of a question. Bulletin of the
Psychonomic Society 5(1):86–88.
Lowd, D., and Domingos, P. 2007. Efficient weight learn-
ing for Markov logic networks. Proceedings of the Eleventh
European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD 2007) 200–211.
Marcus, G. F., and Davis, E. 2013. How Robust Are Prob-
abilistic Models of Higher-Level Cognition? Psychological
Science 24(12):2351–2360.
Marie-Laure Ryan. 2009. Cheap Plot Tricks, Plot Holes,
and Narrative Design. Narrative 17(1):56–75.
McKoon, G., and Ratcliff, R. 1992. Inference during read-
ing. Psychological Review 99(3):440–466.

Measure, A. 2014. Automated Coding of Worker Injury
Narratives. Joint Statistical Meetings 2124–2133.
Murphy, K. P. 2012. Undirected Graphical Models (Markov
Random Fields). In Machine Learning: A Probabilistic Per-
spective. MIT Press. chapter 19, 661–705.
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Julia Siekiera1, Marius Köppel2, Edwin Simpson3,4, Kevin Stowe4, Iryna Gurevych4, Stefan Kramer1

1Dept. of Computer Science and 2Institute for Nuclear Physics, Johannes Gutenberg-Universität Mainz,
{siekiera,mkoeppel}@uni-mainz.de, kramer@informatik.uni-mainz.de,

3Dept. of Computer Science, University of Bristol, edwin.simpson@bris.ac.uk,
4Ubiquitous Knowledge Processing Lab, Technische Universität Darmstadt

https://www.informatik.tu-darmstadt.de/ukp

Abstract

The ability to rank creative natural language provides an im-
portant general tool for downstream language understanding
and generation. However, current deep ranking models require
substantial amounts of labeled data that are difficult and expen-
sive to obtain for new domains, languages and creative charac-
teristics. A recent neural approach, DirectRanker, reduces the
amount of training data needed but has not previously been
used to rank creative text. We therefore adapt DirectRanker
to provide a new deep model for ranking creative language
with small numbers of training instances, and compare it with
a Bayesian approach, Gaussian process preference learning
(GPPL), which was previously shown to work well with sparse
data. Our experiments with short creative language texts show
the effectiveness of DirectRanker even with small training
datasets. Combining DirectRanker with GPPL outperforms
the previous state of the art on humor and metaphor novelty
tasks, increasing Spearman’s ρ by 25% and 29% on average.
Furthermore, we provide a possible application to validate
jokes in the process of creativity generation.

Introduction
To process or evaluate creative language, natural language
processing systems need to recognise figurative and hu-
morous expressions, so that they do not interpret jokes or
metaphors literally, and can gauge different aspects of cre-
ativity. The simple binary recognition of figurative or humor-
ous language is not sufficient, as different examples require
varying degrees of creativity, and hence different kinds of
processing. Consider the following metaphors:
• This view has been attacked on the grounds that it...
• She attacked the sandwiches like a starving bear.
In both examples, the verb ‘attack’ strays from the literal
meaning of a military offensive, but the first usage is very
conventional, while the second appears much more novel and
metaphoric. Other properties of creative language, such as
humor, have similar gradations, which motivates methods for
ranking sentences according to these properties.

The process of creativity is highly complex and non-
trivial to automate, but creative writers may benefit from
automated tools. As the comedy writer Charlie Skelton
said: to begin with, we must ask: what is the metric for
a “successful” joke? ...Is it one that makes the most peo-
ple laugh, or the right people laugh, or its own creator

laugh? (Skelton 2021), the success of a joke is strongly
cultural-based. He also describes the creative process of
a professional comedy writer creating a joke: a joke can
be judged, and just as many checkboxes to tick on its jour-
ney from the writer’s mind to the audience’s ears. In the
setup of the Componential Model of Creativity (Press 2017;
Press 2011) this can be seen as the response validation and
communication step. To help with this step, a ranking model
could provide an automated evaluation method to help a com-
edy writer answer the question: “Is this joke the one that
makes the most people laugh?”. Ranking models trained
with data annotated from various cultural backgrounds could
also give insights into how they may perceive different jokes.

To obtain training data for a ranking model, annotators
could assign scores to individual examples, but inconsisten-
cies can arise between annotators and across the labels of
a single annotator over time. We therefore turn to pairwise
comparisons between examples, which simplify the anno-
tators’ task and avoid the need to calibrate their scores. A
ranker can then derive the entire ranking from pairwise labels.
Considering the cost of annotating data for different domains,
languages and aspects of creativity, we need a ranker that
can be trained on datasets with a small number of examples
and sparse pairwise labels. For ranking creative language,
Simpson and others (2019) adopted Gaussian process prefer-
ence learning (GPPL), a Bayesian approach that uses word
embeddings and linguistic features and can cope with sparse
and noisy pairwise labels. However, it is a shallow model that
relies on predetermined features to represent each example.

In contrast, neural network architectures can learn repre-
sentations directly from pairwise comparisons, but demand a
higher quantity of training labels. A recent method, Direct-
Ranker (Köppel and others 2019) improves label efficiency
for document ranking by fulfilling the requirements of a to-
tal quasiorder in the model architecture, which results in
faster convergence than other neural network ranking ap-
proaches, as this order does not have to be learned. This
paper adapts DirectRanker to text ranking for the first time,
setting a new state of the art for humor and metaphor nov-
elty, showing that even with limited data, text ranking can
benefit from deep representation learning. Our experiments
show that combining Bayesian and neural approaches us-
ing stacking can improve further ranking quality. While
we find a clear benefit to BERT embeddings (Devlin and
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Figure 1: The adapted DirectRanker architecture. Embed-
dings are fed into the parameter sharing networks nn1 and
nn2 to generate representations (feature part). For datasets
containing focus word information, we add parameter sharing
networks nnfocus1 and nnfocus2 . The (appended) represen-
tations are subtracted and fed into the ranking part (in red)
with output neuron o1 that has no bias and tanh as activation.

others 2018) for humor, current embedding methods have
difficulty in modelling metaphors. To support the evalua-
tion of creative content, we make our software available at
https://zenodo.org/record/6275546.

Related Work
Algorithms solving the ranking problem can be divided into
three categories. Pointwise rankers assign a score to each
document (Cooper and others 1992). Pairwise models pre-
dict which document is more relevant out of two for a given
query (Köppel and others 2019). Listwise algorithms opti-
mise a loss function that considers the whole ordered list
of documents (Cao and others 2007). Previous research
on document ranking combined BERT (Devlin and others
2018) with different learning-to-rank methods of all three
categories. While Han and others (2020) and Qiao and oth-
ers (2019) embed concatenated queries and documents with
BERT and fine-tune ranking performance using an arbitrary
artificial neural network ranker, Nogueira and others (2019)
introduce a multi stage pipeline containing a pointwise and
a pairwise BERT ranker to trade off ranking quality against
latency. However, these approaches are evaluated neither for
small training data scenarios nor on the difficult task of cre-
ative language and lack the label-efficient learning property
that DirectRanker introduces. In the past, DirectRanker was
used for ranking multilingual BERT models (Chen and Ritter
2020), but the approach ranks the models themselves rather
than text documents, which we address here.

DirectRanker for Text Ranking
DirectRanker, shown in Figure 1, consists of a feature part,
which learns a low-dimensional latent representation of the
input documents, and a ranking part, which receives the
latent representations for a pair of examples and predicts a
pairwise label. The ranking part is used to train the model
from pairwise labels, but can also be used after training to
predict the degree of creativity for any arbitrary text.

To adjust the DirectRanker to text ranking, we include
dropout layers and batch normalization in the networks nn1
and nn2 to reduce overfitting. For some creative language
tasks such as metaphor novelty prediction, the aim is to evalu-
ate the use of a specific word or phrase within a larger context.

Hence we need to represent both the word or phrase (hence-
forth the focus word) and the sentence that contains it. During
initial experiments, we found that transforming the sentence
and focus word together in nn1 and nn2 leads to unequal
weighting of both information sources in the feature part,
as the two feature vectors differ in length and in their most
extreme values. We therefore add the networks nnfocus1
and nnfocus2 to the feature part to process the focus words
separately from their context. This facilitates training as
the model is able to weight the compressed sentence and
focus word information in the less complex ranking part.
The results of both the sentence network and the focus word
network are concatenated and passed to the ranking part.

The ranking function is given by o1px1, x2q “
τ

´
w

´ pu1,uf1
q´pu2,uf2

q
2

¯¯
, where u1 “ nn1px1q and u2 “

nn2px2q compress the input feature vectors x1 and x2 to
latent representations u1 and u2, uf1 and uf2 are latent rep-
resentations for the focus words computed by nnfocus1 and
nnfocus2 , w represents the multilayer perceptron ranking
weights for the last neuron and τ is an antisymmetric sign
conserving activation. The loss function remains the same
as in the original DirectRanker paper: Lrankp∆y, x1, x2q “
p∆y ´ o1px1, x2qq2, where ∆y is the gold pairwise label
in the training set. Beside the changes of the feature part,
we included the possibility to change the ranking part to
a Gaussian Process layer using a Matérn kernel, enabling
a direct combination with the ideas of the GPPL model.
Therefore, the original ranking function can be replaced
with ppx1 ą x2q “ Φ

´
u1´u2?

2σ2

¯
for the ranking part, where

x1 ą x2 indicates that instance x1 was labeled as preferred
to x2, Φ is the probit function, and σ2 is a variance parameter.

Text Representation We investigate three text representa-
tions. First we choose mean word2vec embeddings (MWE)
trained on part of Google News (Mikolov and others 2013) to
directly compare the findings of Simpson and others (2019)
with the DirectRanker. However, word2vec embeddings have
the disadvantage that they assign a single, fixed represen-
tation for each word, even though it may take on different
meanings in different contexts, particularly with regard to
creative language. To address this, we fine-tune BERT with
DirectRanker to produced contextual word embeddings, and
again take the mean to represent the whole sentence. To
better capture the meaning of a whole sentence, we apply
sentence transformers (Reimers and Gurevych 2019) to gen-
erate sentence embeddings (SEs). In contrast to MWEs,
sentence transformers learn how to compose individual con-
textual word embeddings and assign sentences with similar
meanings close representations in the vector space.

Datasets
We explore GPPL and DirectRanker on two datasets in-
cluding different types of creative language. The humor
dataset (Simpson and others 2019) is an extension of Miller
and others (2017), which contains 4030 samples with various
degrees of humorousness, with an average sentence length
of 11 words. The humorous examples can be grouped into
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Figure 2: Mean results with different training set sizes. Humor results are shown in the top row, Metaphor results in the bottom
row. Each plot shows different splits of the datasets. The different embeddings used by the models are marked on the x-axis.
The Stacking method has the possibility to use both SE and MWE. We show Spearman’s ρ against the gold score. For better
visibility we excluded the result for BERT with focus word embeddings for 10% Metaphor (Spearman’s ρ of -0.03) and we
added different x-axis offset for the models. A detailed table of the displayed data can be found in Table 1.

homographic and heterographic puns containing purely ver-
bal humor while the non-humorous section contains proverbs
and aphorisms. The metaphor dataset (Do Dinh and others
2018) contains 72816 examples from the VU Amsterdam
Metaphor Corpus (Steen and others 2010) that have been
annotated for metaphor novelty, including metaphors in four
genres: news, fiction, conversation transcripts, and academic
texts. Each example consists of a sentence and a labeled
focus word. Both datasets were labeled using crowdsourcing.
For the humor dataset, every instance was selected for 14
random pairwise comparisons and each pair was labeled by 5
different annotators. For the metaphor dataset, each instance
was included in 6 random tuples, each containing 4 instances.
Each tuple was labeled by 3 annotators, who selected the
most novel and most conventionalised examples from each
tuple. We did not survey the background of the annotators,
other than to check that they are proficient in English. We
generate pairwise labels between the most novel and most
conventionalised samples in each tuple, following Simpson
and others (2019). The resulting pairwise comparisons are
labeled 1.55 times on average and each instance is present in
8.6 pairs on average.

Experimental Setup
We evaluate our experiments using 4 internal folds for finding
the best hyperparameters and 3 external folds for evaluation.
To examine the ranking performance on sparse data, we also
experiment with artificially reducing training set sizes. For
this purpose, we randomly select 60%, 33%, 20% and 10%
of the example IDs and train on only the pairs where both ex-
amples are in our selection. The remaining samples are used
in the test set to counteract the model variation for smaller
training sets. The DirectRanker feature part is a 4-layer fully-
connected network with 2k, 500, 64 and 7 neurons in each
layer. To evaluate the effect of the Gaussian Process layer in
the ranking part, we run the experiments on the humor dataset
two times, once with and once without the Gaussian Process
layer. Code from Simpson and others (2019) was used to train

and obtain predictions from GPPL using a Matérn 3
2 kernel.

To improve the overall ranking performance, we combine
the predictions of GPPL and the DirectRanker with stacking,
using a linear regression model to weight the predictions of
the two models. To generate SEs, we use the pretrained ’bert-
base-nli-stsb-mean-tokens’ model. We use ’bert-base-cased’
for fine-tuning BERT with the DirectRanker and reuse the
resulting embeddings with GPPL. The methods are evalu-
ated by computing the linear rank correlation between the
prediction and the gold standard with Spearman’s ρ.

Results of Method Comparison
The results are shown in Figure 2. As a baseline, we include
BERT regression models fine-tuned directly on the rankings
in the training sets (indicated in Figure 2 with a gold x as
BERT-Base). For the metaphor data, we extend the BERT
regression model to incorporate the word2vec embedding of
the focus word as a further input (indicated in Figure 2 with
the green4). In all cases, both BERT regression and the state-
of-the-art GPPL are out-performed by either DirectRanker
and Stacking. We highlighted the best model by adding a
horizontal line annotated with the Spearman’s ρ value and
removing the filling. The standard deviation ranges from
0.016 for 60% to 0.038 for 10% on Humor and from 0.006
for 60% to 0.043 for 10% on Metaphor dataset.

On the humor dataset, the BERT baseline performs well
in the 60% case as it is able to classify the less relevant doc-
uments better. However, the baseline is not suitable for sce-
narios with less data, in which the pairwise models achieve
significantly better results. On Humor, GPPL outperforms
the DirectRanker on almost all training set sizes and text rep-
resentations except for BERT and 60%. The 60% case with
SE was the only one where the Gaussian Process layer in
the ranking part (DR-GPPL) outperforms the normal Direct-
Ranker approach. Both GPPL and the DirectRanker benefit
most from BERT, but the DirectRanker particularly bene-
fits from the pretrained BERT with small training sets. By
combining GPPL and DirectRanker, both with BERT, stack-
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Humor Metaphor
60% 33% 20% 10% 60% 33% 20% 10%

Bert Baseline 0.62 0.44 0.20 0.12 0.38 0.35 0.28 0.20
Bert + Focus Word - 0.53 0.47 0.39 -0.03
GPPL MWE 0.54 0.53 0.47 0.41 0.58 0.55 0.51 0.35
DirectRanker MWE 0.54 0.50 0.44 0.30 0.64 0.60 0.52 0.37
DR-GPPL SE 0.62 0.56 0.45 0.42 -
DR-GPPL MWE 0.56 0.51 0.40 0.37 -
Stacking MWE/MWE 0.58 0.56 0.51 0.41 0.68 0.64 0.61 0.53
Stacking BERT/BERT 0.68 0.64 0.59 0.53 0.68 0.56 0.49 0.35
Stacking SE/SE 0.61 0.59 0.53 0.43 0.69 0.64 0.56 0.39
Stacking SE/MWE 0.61 0.60 0.56 0.46 0.69 0.63 0.58 0.43
GPPL IMWE 0.58 0.55 0.47 0.43 0.59 0.55 0.48 0.29
GPPL I BERT 0.65 0.63 0.57 0.48 0.67 0.56 0.49 0.35
GPPL I SE 0.59 0.58 0.53 0.46 0.62 0.56 0.48 0.34
DirectRanker IMWE 0.55 0.52 0.46 0.35 0.67 0.63 0.60 0.53
DirectRanker I BERT 0.68 0.63 0.58 0.52 0.67 0.54 0.42 0.35
DirectRanker I SE 0.62 0.57 0.51 0.42 0.68 0.63 0.58 0.49
Stacking Focus Word - 0.68 0.65 0.62 0.57
GPPL I Focus Word - 0.60 0.56 0.48 0.40
DirectRanker I Focus Word - 0.68 0.65 0.62 0.57

Table 1: Mean results with different training set sizes on the
two datasets. We show Spearman’s ρ against the gold score.
The I indicates that the model’s mean score of the 4-fold
cross-validation ensemble is evaluated (see the end of Section
Stacking. For stacking we first name the embeddings used
for GPPL and then for DirectRanker.

ing is able to improve the individual performances across
all training set sizes. A similar improvement is shown for
other stacking setups, for example with GPPL on SEs and
DirectRanker on MWEs (Stacking SE/MWE).

On the metaphor dataset the models’ behavior changes.
The BERT baseline is not able to reach competitive results in
any training scenario and the BERT embeddings do not con-
sistently improve over other embeddings, supporting previous
results where BERT underperforms on metaphor tasks (Mao,
Lin, and Guerin 2019). DirectRanker outperforms GPPL on
most combinations, especially on smaller training sets. For
instance, DirectRanker outperforms GPPL with MWE and
SE, including for 10% and 20% datasets, showing its suitabil-
ity for small datasets. In most settings, stacking maintains
or slightly exceeds the ranking performance in each combi-
nation. In the 20% and 10% case, stacking falls below the
maximum individual performance on the SEs as GPPL over-
fits on the validation set. This might be an effect of learning
with SEs on a small training and validation set so that they
are not representative of the test set. For metaphor novelty,
the models trained on only the word2vec focus word embed-
ding outperform those that are also trained with sentence
representations with 33% - 10% training data. Furthermore,
neither GPPL nor DirectRanker are able to extract much
useful information from the sentences alone. With SEs in
the 60% case, DirectRanker and GPPL reach a Spearman’s
ρ of 0.64 and 0.58, respectively. While this may reflect a
limitation of the sentence representations, it is also possible
that the annotators who produced the gold standard fixated
too strongly on the focus words.

Conclusion
In this work we investigated a pairwise ranking approach for
creative language based on adapting a recent neural archi-
tecture, DirectRanker, that can learn efficiently from small
training sets. We combined it with a Bayesian model, GPPL,

and evaluated the behavior of all models on the tasks of pre-
dicting humorousness and metaphor novelty with different
text representations. Despite the expectation that neural net-
works suffer from overfitting on small datasets, DirectRanker
was able keep up with or even improve on GPPL. The pro-
posed stacking approach clearly outperforms state-of-the-art
results and is a powerful tool for language tasks with a lim-
ited number of training documents. On the humor dataset we
showed a substantial ranking improvement over pretrained
embeddings by fine-tuning BERT with the DirectRanker ar-
chitecture. Due to the heavy reliance on the focus word
information, this was less effective for the metaphor dataset,
where the best results were achieved using only the focus
words’ word2vec embeddings. Resent work showed that us-
ing the integration of constructional semantics and conceptual
metaphor showed better generalizations across metaphoric
and non-metaphoric language (Sullivan 2016). While others
provided alternatives to the representation of contextual in-
formation, such as the cultural context (Cabezas-Garcı́a and
Reimerink 2022). Using these different approaches could be
beneficial for providing better representations for metaphor.

A possible application, in the context of joke generation, is
the evaluation of creative content. The ranked sentences can
help to evaluate jokes and quantify whether they are funny
for a majority of people. Nevertheless, this method comes
with limitations since it is not aware of any context the joke
was made. To see this, consider this cherry-picked example
of a joke which was ranked high: “I do a lot of spreadsheets
in the office so you can say I’m excelling at work.” While
the model was able to characterize that this sentence is a pun,
the context in which this joke is funny was never present.
To understand the joke, one needs to know that working in
the office often means working with Excel. This knowledge
is not present to everyone and would only be understand
in the current time, when Microsoft products are widely
used. In further work the model can be used to compare
the views of people from different cultural backgrounds on
particular kinds of humour or metaphor. Our results show that
further work is required to develop better representations of
context, particularly for evaluating metaphors. Our analysis
considered a relatively narrow type of humor – puns – which
we will expand upon in future work. Another important
direction is to develop suitable representations for longer
texts where sentence embeddings may be less representative
of creative language characteristics.
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Abstract
Creative problem-solving in humans often involves real-
world experimentation and observation of outcomes that then
leads to the discovery of solutions or possibly further exper-
iments. Yet, most work on creative problem-solving in AI
has focused on solely mental processes like variants of search
and reasoning for finding solutions. In this position paper, we
propose a novel algorithmic framework called BIPLEX that
is closer to how humans solve problems creatively in that
it involves hypothesis generation, experimentation, and out-
come observation as part of the search for solutions. We in-
troduce BIPLEX through various examples in a baking do-
main that demonstrate important features of the framework,
including its representation of objects in terms of proper-
ties, as well its ability to interleave planning for experimenta-
tion and outcome evaluation when execution impasses are de-
tected, which can lead to novel solution paths. We argue that
these features are essentially required for solving problems
that cannot be solved by search alone and thus most existing
creative problem-solving approaches.

Introduction
Suppose you need to tighten a screw but do not have a screw-
driver. Among the available objects you can use are a coin
and pliers. After short reflection, you grip the coin with
the pliers turning the “pliers-cum-coin” combination into
a makeshift screwdriver. Psychologists call this “creative
problem-solving” (Maier 1930).

While this solution might have been easy for you, it would
have been much more difficult for a novice or a child, and
practically impossible for current state-of-the-art AI sys-
tems. There several reasons for this difficulty. For one, an
agent would need to determine the relevant properties of a
screwdriver that makes it the appropriate tool to operate on
screws: that it has a flat tip that fits into the screw’s slot, and
that the fit is tight enough so that if the screw driver were
rotated, the screw would rotate with it, in addition to not-
ing that a rotational downward movement is needed with a
certain amount of force and that the screwdriver provide a
handle that makes gripping it and applying the force easier.
This analysis of the properties of the screwdriver can then
guide the search for objects and their properties that could
be used as a substitute. While one important insight is to
notice that the coin has the property of fitting tightly into the
slot, it does not have the property of providing enough of a

grip to apply the necessary forces to generate the required
rotational movement. The additional insight then is that the
pliers which has a much better handle can be used to grip
the coin tightly and thus establish a rigid connection so that
when the pliers is turned and push downward, the coin is
equally turned and pushed downward, turning the screw.

From the example it should be apparent why current sys-
tems cannot perform such feats: they would have to integrate
detailed perception and affordance inferences with common
sense knowledge, property-based analysis and planning, hy-
pothetical reasoning and simulation, and potentially exper-
imentation and on-the-fly learning (e.g., how to best grip
the coin). While providing a system that can do all of the
above is unrealistic at this point, we can nevertheless make
progress by focusing on important constituents of such as
system. This is what we set out to do for this position paper,
namely take a fresh look a planning for crafting objects like
make-shift tools based on object properties.

We will introduce a novel planner called BIPLEX which
has several important properties for this type of creative
problem-solving: (1) it represents objects in terms of their
properties and affordances, and can thus (2) handle unknown
objects to the extent that it can capture them in terms of
known properties, and most importantly, it can plan to craft
novel objects based on property requirements. We demon-
strate how BIPLEX can handle goals involving the crafting
of novel objects based on property specifications. While for
most planners a direct comparison to BIPLEX is not possi-
ble (because they cannot handle properties or unknown ob-
jects), we sketch out how even for goals that regular plan-
ners like Fast-Forward (FF) (Hoffmann 2001) can handle,
BIPLEX can lead to significant speedups. Finally, we con-
clude by discussing some limitations of BIPLEX as well as
future research questions in creative problem-solving.

Background and Related Work
Problem solving in humans typically involves deliberate
and conscious processing that advances a solution step by
step. Insight, on the other hand, is believed to involve
a “sudden” and unexpected emergence of an obvious so-
lution or strategy sometimes accompanied by an affective
“Aha!” experience which is why solvers often find it diffi-
cult to consciously explain how they generated a solution
in a sequential manner. MacGregor et al. proposed the

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

141



Criterion for Satisfactory Progress Theory (CSPT), which
is based on Newell and Simon’s original notion of prob-
lem solving as being a heuristic search through the prob-
lem space (MacGregor, Ormerod, and Chronicle 2001).
The key aspect of CSPT is that the solver is continually
monitoring their progress with some set of criteria. Im-
passes arise when there is a criterion failure, at which point
the solver tries non-maximal but promising states. Ohls-
son et al.’s Representational Change Theory (RCT), on the
other hand, suggests that impasses occur when the goal
state is not reachable from an initial problem representa-
tion (which may have been generated through unconscious
spreading activation) (Ohlsson 1992). To overcome an
impasse, the solver needs to restructure the problem rep-
resentation through (1) elaboration (noticing new features
of a problem), (2) reencoding (fixing mistaken or incom-
plete representations of the problem), and (3) changing con-
straints (believed to involve two sub-processes of constraint
relaxation and chunk-decomposition). Ollinger’s extended
RCT is a dynamic and iterative or recursive process that
involves repeated instances of search, impasse and repre-
sentational change (Oellinger, Jones, and Knoblich 2014;
Oellinger et al. 2017): a solver first forms a problem rep-
resentation and begins searching for solutions; when an im-
passe is encountered because no solution can be found, the
solver must restructure or change the problem representation
and once again search for a solution, thus combining heuris-
tic searches, hill climbing and progress monitoring with cre-
ative mechanisms of constraint relaxation and chunk decom-
position to enable restructuring.

Another related theory of creative problem solving views
insight as the retrieval of an analogy from long-term memory
using spreading activation (Langley and Jones 1988). This
view depends on having sufficient prior experience and thus
knowledge encoded such that an analogical mapping can be
established.

Different from the above proposals, we are making the
core claim that creative problem solving is not just a mental
exercise, one that can be approached with “searching” some
problem space alone, but that is essentially involves experi-
mentation when impasses due to knowledge limitations are
reached (e.g., when no plan for goal accomplishment can
be found or when the execution of a plan fails with no ex-
planation for what went wrong). Only through formulating
hypotheses that lead to new experiments and observation of
the outcome of these experiments is it possible for an agent
to augment its knowledge base with novel facts about ob-
jects, their properties, and their affordances, which, in turn
can be used by the planner to find different routes to the goal
states.

The view that creative problem solving requires the exten-
sion of one’s concepts has be echoed recently by (Gizzi et
al. 2020) who define creative problem solving as “the pro-
cess by which the agent discovers new concepts that were
not in the initial conceptual space of the agent, allowing it
to accomplish a previously impossible goal.” Yet, their pro-
posal only involves combinatorial methods (combining ex-
isting concepts), transformational methods (changing con-
ceptual representations), and exploratory methods (search-

ing the concept space). As we will show below, these meth-
ods are insufficient for discovering solutions to even simple
problems without experimentation.

(Freedman et al. 2020) use analogical reasoning to find a
substitution for a missing resource that is needed in a plan
that accomplishes the goal. However, all knowledge about
potential resource substitution candidates needs to be pro-
vided to the planner in order to accomplish the reasoning,
there is no discovery of potential resource candidates in-
volved. Analogical reasoning is solely used to find candi-
dates that are close in property structure. In contrast, our
approach hypothesizes potential substitutions based on com-
mon properties (which could be based on analogical reason-
ing as well) and devises experiments to test whether they, in
fact, have the desired properties. Consequently, it does not
require advance knowledge about all possible substitutions
but it can discover them.

The approach closest to our approach of planning exper-
iments to learn more about the domain is (Lamanna et al.
2021) which attempts to learn the actions and thus operators
in a planning domain under certain assumptions about the
structure of pre- and post-conditions in a deterministic set-
ting. The algorithm starts with a set of given operators but
without any knowledge about their pre- and post-conditions
and systematically performs experiments to determine the
exact conditions. This is done by initially starting with a set
of pre-conditions consisting of all atoms that can be formed
using a set of variables and predicates and an empty set of
post-conditions for all operators, observing the outcome of
performing an applicable operator in the current state and
updating the pre- and post-conditions based on what is true
in the predecessor and the successor states. However, their
learning algorithm does not deal with transformative actions
that change the objects in the planning domain, nor does it
deal with property representations of objects in pre- or post-
conditions, and hence cannot learn object substitutions in
actions as it requires constants denoting all objects ahead of
time. Moreover, since the goal is to learn the complete do-
main model, it does so without any particular preference for
a given operator or particular state; all that matters is that
the planner pick a state to explore that could potentially re-
fine the pre- and post-conditions and as long as such states
exist that the planner can get to using a finite state machine
model of the domain it has learned so far that has a state
size exponential in the number of facts, i.e., grounded pred-
icates – clearly that latter makes this approach intractable
for domains with a large number of objects. In contrast, our
approach explores only those actions that could advance its
goal to produce objects that are not available and thus does
is not impacted by large numbers of objects in the domain.

Another related experimentation system implemented on
a robot focuses on finding matching objects that can be used
for creating tools based on a set of given reference tools
(Nair et al. 2019). While this approach does not discover
the tool per se or infers properties of tools needed, it demon-
strates how an embodied agent could use its perceptual ap-
paratus to determine properties of objects that are similar
enough to desired properties, use those objects to assem-
ble tools and evaluate those tools on actions that use them.
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As such, our planner would be synergistic with the robot
system in that it would provide the robot with tool prop-
erties that the robot can then assemble and evaluate, i.e.,
the robot would function as the experimenter carrying out
the actions proposed by our planner in order to determine
whether the resulting objects have the desired properties.
More recently, there have been advances, in the robotics
domain, for finding object substitutions based on properties
(Fitzgerald, Goel, and Thomaz 2021). This work proposes
the use of constraints (tool shape, segments, and visual fea-
tures) that will be useful in exploring and evaluating other
potential tool candidates. The approach suggests the discov-
ery of new tools, however, what is missing then is building
on this knowledge to compose and construct new tools using
available resources.

The general idea of learning domain knowledge through
experimentation is not new, and certainly not being claimed
as such in this paper. Early work in the symbolic AI lit-
erature explored how agents can adjust and improve their
symbolic models through experimentation. Gill proposed a
method for learning by experimentation in which the agent
can improve its domain knowledge by finding missing op-
erators (Gil 1994). The agent is able design experiments
at the symbolic level based on observing the symbolic flu-
ent states and comparing against an operator’s preconditions
and effects. Other approaches (to name a few: (Shen 1989;
Shen and Simon 1989; Mitchell, Keller, and Kedar-Cabelli
1986; Yang, Wu, and Jiang 2007; Aineto, Jiménez, and
Onaindia 2019; Cresswell, McCluskey, and West 2013;
Hogg, Kuter, and Munoz-Avila 2010; Sussman 1973)), com-
prising a significant body of literature, have explored learn-
ing from experimentation, recovering from planning fail-
ures, refining domain models, and open-world planning. Re-
cently, (Musliner et al. 2021) proposed a planning system
capable of hypothesis generation, model-modification and
evaluation using a library of domain-independent heuristics
useful to help agents accommodate novelties in the environ-
ment. What is missing from these approaches is a solution
for handling transformative actions (like object construction
or crafting) where new object types are generated during ex-
ecution, which are then needed to solve the problem at hand.
As we saw in the coin-plier example presented earlier, and as
we will demonstrate in the rest of the paper, selecting object
substitutions, composing them together to generate entirely
new types of objects and reasoning about these compositions
to re-plan and revise execution is needed for creative prob-
lem solving.

Introducing BIPLEX
In this section we introduce our novel BIPLEX (bind types,
plan and execute) approach to creative problem-solving.1
Rather than starting with abstract principles, we will mo-
tivate its core ideas and ways to solve problems by work-
ing through examples in a baking domain. We selected the
baking domain because it is a familiar domain with a com-
bination of navigation, manipulation and transformative ac-

1BIPLEX has been fully implemented and the code can be found
at: https://github.com/vasanthsarathy/biplex

tions involving mixing items to produce new products, thus
allowing ample room for creativity through creating novel
products and resourceful substitution of unavailable items.
Tracing through the operation of BIPLEX then will show the
synergistic effects of (1) open-world property-based plan-
ning and (2) experimentation through plan execution with
subsequent (3) rule learning, plan refinement and replanning
based on the outcome of hypothesized experiments. In ad-
dition to highlighting the involved principles, we will also
point the technically interested reader to place in the pseudo-
code that accomplish the various steps in the process.

We start with a departure from the classical planning
framework in how we represent objects by allowing object
definitions in terms of functional and material properties (the
reason for this will become clear in a bit). In the baking do-
main this means that we will describe the various baking in-
gredients such as eggs, egg whites, sugar, flour, etc. as well
as utensils such as bowls, spoons, frying pans, etc. in terms
of their defining properties (but critically without attempt-
ing to give sufficient conditions, only necessary ones for
the baking domain). For example, we might describe “egg
yolks” as “yellow and liquid and containing fatty acids” and
“egg whites” as “transparent and liquid and containing pro-
tein” (leaving out the color as they are transparent).2 Sim-
ilarly, we might describe actions in terms of pre-conditions
ensuring applicability, action signature (i.e., the action to-
gether with its arguments), and the expected post-conditions
when execution succeeds.3

Now consider a goal for the agent to make egg batter,
an important step in pancake-making. Egg batter, in our
environment is a class of objects of type yftl.4 Unlike
most classical planners, BIPLEX allows for specifying lifted-
goals5 of the form (have ?x-yftl), with variable and
type declaration. Such a goal can be satisfied if there exists
a literal in the current state that evaluates to true, where the
literal’s name unifies to the name of the goal and the literals
argument is a constant that has the same type or subtype6

as that specified in the goal. Most classical planners require
a grounded goal, which means, the agent would need to in-
stantiate the constant associated with a desired type, which,
in turn, means the agent would need to, apriori, instantiate
all the types it might be able to craft, in case, it will later
need to plan to craft one of those. This becomes intractable
very quickly, once one realizes that in many real-world set-
tings, there are many instances of each object type – many
tomatoes, many teaspoons of sugar, etc. We will explore
various cases, each of increasing difficulty to describe some
of the capabilities of BIPLEX .

2We can represent each property with a single character, e.g.,
“y” for yellow and “t” for protein and “f” for fatty acids

3This is generally how domains are represented in classical AI
planning.

4A “type” in our formulation is merely a sequence of characters,
each specifying a property.

5“lifted” here means goals that do not have grounded constants
in their terms, but instead have variables

6Subtypes might be represented as a type hierarchy provided to
planners to facilitate variable binding
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Problem-Solving with Transformative Actions
Consider the goal, (have ?x-yftl) corresponding to egg
batter. Let us assume that the BIPLEX agent has all the re-
sources it needs to make egg batter yftl. That is, it has the
domain specification7 that contains several navigation and
manipulation actions along with several transformative ac-
tions like the following (variables start with a “?” and itali-
cized, types are in bold, action names are in bold and italic):
(:action mixeggbatter1

:parameters (?y - yftl ?x1 - yfl ?x2 - tl ?x3 - wl

?z - rmc)

:precondition (and (have ?x1) (have ?x2) (have ?x3)

(have ?z))

:effect (and (have ?y) (not (have ?x1))

(not (have ?x2)) (not (have ?x3)) ))

This action mixeggbatter1 requires the agent to have in-
gredients of type yfl (egg yolk), tl (egg white), wl (milk),
and an object of rmc (bowl) to mix the ingredients. At the
completion of then action, the ingredients are consumed (ex-
cept the bowl) and the agent is left with an egg batter object
yftl. This action is a “transformative action” in the sense
that a new object type is created and some ingredients are
consumed and cease to exist as objects in the problem space.
The agent may need to sequence a plan to find and collect
these ingredients and therefore must interleave navigation
and manipulation with mixing or crafting. To achieve this
goal with a state-of-the-art classical planner (like FF (Hoff-
mann 2001)), we would need to instantiate all constructable
objects, which in this case includes generating a constant
symbol for the egg batter. An FF agent would need to also
ground the goal to this constant object, and then proceed to
generating a complete plan before it can begin any execu-
tion. The FF agent, thus begins with an domain specifica-
tion and a problem specification8 with all possible constants
of all possible types and a grounded goal. In most classi-
cal offline planning scenarios, execution does not begin until
the FF agent has ground all the variables from all the types,
completed planning and produced a plan.

Like the FF agent, the BIPLEX agent is also given a do-
main (action schema) specification containing navigation,
manipulation and transformative actions. However, unlike
the FF agent, the BIPLEX agent is not given a complete prob-
lem specification. Instead, we embed the agent in an envi-
ronment allowing it to plan and execute in an interleaved
manner. The agent scans the environment and observes ob-
jects present in the current initial state along with their re-
spective types. Note, the agent cannot observe objects with
types that have not yet been generated by transformative
actions. So, initially, the BIPLEX agent does not observe
eggbatter1 as it does not yet exist. In addition to a do-
main specification, the BIPLEX agent is also provided a lifted
goal (have ?x-yftl).

From the domain specification, the BIPLEX agent gen-
erates (1) a stripped-down domain specification, and (2) a
tree with nodes representing inputs and outputs of the trans-
formative action and nodes representing the name of the

7This is a PDDL 1.2 representation of an action schema usually
contained in a domain.pddl file that is provided to a planner.

8Also provided to the planner as a problem.pddl file

transformative actions. The stripped-down action schema
contains all the transformative action schemas, but stripped-
down to only contain their output types, any preconditions,
and any types that the agent believes will not be trans-
formed by the action. For example, the mixeggbatter1 will
be stripped-down to hyp-mixeggbatter19 :

(:action hyp-mixeggbatter1
:parameters (?y - yftl ?z - rmc)
:precondition (and (have ?z))
:effect (and (have ?y) )

The BIPLEX agent first grounds the lifted-goal with
a gensym, a hypothetical constant symbol (e.g., (have
hyp-yftl-a9b88541)), and then generates a problem
specification based on information it can observe from the
initial state. It then attempts to generate a “plan sketch”
using the stripped-down domain specification and problem
specification (line 12, Algorithm 1). The agent can do this
at very low computational cost as the stripped transforma-
tive actions have far fewer parameters and no precondi-
tions. Moreover, using the stripped-down domain allows BI-
PLEX to reason about transformative actions that have ingre-
dients that themselves are products of other transformative
actions. Without any preconditions, BIPLEX can essentially
generate a list of resources and intermediate products it will
need, a shopping list of sorts, if you will. If the plan sketch
does not contain any stripped-down actions or any hypothet-
ical constant symbol names, the BIPLEX agent simply exe-
cutes the plan (lines 14-16, Algorithm 1). This occurs when
the actions are primarily navigational or involve manipula-
tion. If, however, the plan contains hypothetical symbols or
transformative actions, it will turn to the crafting tree to con-
struct the types it needs (lines 25-35, Algorithm 1). Instead
of having to apriori generate all the constants for all possible
types as is required for FF, BIPLEX only generates symbols
for types as and when it needs them. At the crafting tree,
it finds the type that it needs to construct, then traverses the
crafting tree to find the associated transformative action and
its linked input ingredients.

BIPLEX uses two operations – PROVE (Algorithm 2) and
GROUND (Algorithm 3) – to bind types to ground con-
stants as it traverses the crafting tree. In our running ex-
ample, the BIPLEX agent will find a plan-sketch (Algo-
rithm 1): (pickup bowl1)10 and then (hyp-mixeggbatter1
hyp-yftl-a9b88541 bowl1).11 This two-step plan-
sketch cannot be executed as there are hypothetical con-
stants as well as stripped-down actions. The agent will at-
tempt to “prove” the existence of an object of type yftl
by “grounding” any action that is a predecessor to type
yftl in the crafting tree, namely any action that con-
structs yftl (line 2, Algorithm2). In this example, we

9We adopt the convention of representing stripped-down action
names with the prefix “hyp-”

10We use LISP notation as is customary in AI planning for rep-
resenting actions with action name followed by parameters within
a list

11As part of Stanford’s MOLGEN project, Mark Stefik echoed
the idea of generating relevant “skeletal plans and then refining
them” (Stefik 1981).
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only have one action mixeggbatter1, and so the agent will
attempt to “ground” it. Grounding an action in the craft-
ing tree involves (recursively) proving all of its predeces-
sor types (lines 2-10, Algorithm 3). Here, the action has
several predecessor types (which are the input ingredients
to the mix action) including yfl (egg yolk), wl (milk)
and tl (egg white). For each of these resources, BI-
PLEX will interleave planning and execution to first ac-
quire milk by planning and executing (gofromto bowl1
milk2), (pickup milk2), and then planning and execut-
ing (gofromto milk2 yolk2), (pickup yolk2), and then
(gofromto yolk2 eggwhite2), (pickup eggwhite2).
As it acquires each ingredient it proves the corresponding
type node in the crafting tree. Upon proving all the prede-
cessor nodes of the action, the BIPLEX agent then is ready
to perform the transformative mix action itself (lines 11-
26, Algorithm 3). To do so, it generates a new domain
specification containing the navigation and manipulation ac-
tions along with a single, fully specified transformative ac-
tion, which in this case is mixeggbatter1. The agent gen-
erates a new planning problem specification with the goal
of (have ?x-yftl). Remember, the agent still needs a
bowl, which it will acquire next. Upon completion of this
plan, a new constant appears in the agent’s observations
(eggbatter1) and several other constants disappear. We
perform some bookkeeping to replace the hypothetical sym-
bol for eggbatter with the one from the environment, as well
as removing objects that were consumed. We maintain a
strict separation of the agent and the environment, so the
agent does not know about an object unless it is perceivable
in the environment.

The approach of breaking down the problem is more in-
tuitive, allowing for not only easier debugging, but also sig-
nificantly faster performance. This is the case, because each
planning instance during grounding only contains a single
transformative action along with other navigational and ma-
nipulation actions. Moreover, only those types are instanti-
ated that are needed per the crafting tree.

Next we will explore the benefit of representing classes
of objects or types as a conjunction of properties. We have
alluded to this earlier that creative problem-solving involves
reasoning about object properties themselves. We will next
discuss how this reasoning process can be computational-
ized.

Creative Problem-Solving with Hypothesis
Generation and Testing
Thus far, we have shown that BIPLEX can solve problems
that classical planners can also solve, but BIPLEX solves
them faster and is able to handle transformative actions as
well as lifted specifications more naturally. We now turn to
discussing how BIPLEX is also creative. Continuing with our
running example, consider what happens if there is no egg
yolk. Classical planning systems like FF would fail as no
plan exists given the domain and problem – without yolk, the
agent cannot make egg batter. Using findings from human
problem-solving we propose that the agent should consider
other objects with similar, possibly overlapping properties.
We operationalize this creative mechanism as follows.

In addition to PROVE and GROUND, BIPLEX agents have
the ability to PLAY that is, “hypothesize” and “test” resource
substitution ideas. At the core of this capability is the abil-
ity to track object properties. The key idea here is that the
BIPLEX agent is able to compose available types to generate
ideas for new novel types. The agent does not know, apriori,
if these combinations will work or even if relevant proper-
ties will persist after combination. The best an agent can do
is assume that certain properties exist and experiment and
make discoveries. Based on the result of the experiment, the
agent is able to gain additional knowledge with which to de-
rive improved future hypotheses. We will now walk through
an example of how the BIPLEX agent accomplishes this task.

First, consider simpler goal of having a egg yolk (have
?x-yfl) when there isn’t any available in the environ-
ment. Moreover, there is no transformative action available
to make egg yolk. As noted earlier, BIPLEX will first try
to generate a plan-sketch using the stripped-down domain
specification (Algorithm 1). However, the planner will fail,
as we might expect. Upon failure, BIPLEX will enter “cre-
ative mode” and first attempt to hypothesize different ways
it can compose together objects (lines 18-24, Algorithm 1).
BIPLEX does this by generating a set of available interesting
types. This is a set of types, where each type (which is rep-
resented as a conjunction of properties) intersects with the
target type yftl in terms of properties. Thus, if the envi-
ronment contained the following objects: milk wl, water l,
yogurt wftl, applesauce yf then these would all be inter-
secting types as they contain one or more properties that are
also properties in our target type yftl. BIPLEX then gener-
ates a power set of these intersecting types (line 1, Algorithm
4). Each element of the power set represents a possible com-
position of multiple types that, in theory, could be combined
to generate the target type. BIPLEX also filters this power set
to only include those elements that when combined possess
all the properties of the target type. Thus, yogurt and apple-
sauce together have at least the properties y-f-l, and so are
included. However, yogurt and water together do not have
the property “y”, so this composition is not included in the
power set. This filtered power set is a complete set of hy-
potheses available to the BIPLEX agent to experiment with.

For each hypothesis in the set of candidate hypotheses,
BIPLEX generates a novel (generic) action (let’s call it mix1)
that is intended to serve as a generic template with which to
allow the agent to try to mix objects. not sure how to do this
generally. The agent uses this template to generate a domain
and problem specifications to allow it to plan and execute
the particular experiment (lines 10-12, Algorithm 4). Upon
completion, BIPLEX reviews the new state and compares it
against the previous state. It declares the experiment a suc-
cess if the new state contains an object of a novel type that
did not exist in the prior state. To compare states, the agent
inspects the type signature (conjunction of properties) of this
novel type to ensure that it possesses all the desired proper-
ties of its target type yfl.12 If so, the hypothesis-testing

12It is worth noting that we are assuming that the agent can ob-
serve all the types be it directly or indirectly via inference or mea-
surement instruments.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

145



phase is declared complete, and the agent returns to generat-
ing plan-sketches followed by planning, crafting and execu-
tion as described earlier. When the agent discovers the new
type, it does not yet know if this will be all it needs for the
rest of the plan. If it encounters another impasse (say a miss-
ing resource), it will revisit hypothesis-testing then to trou-
bleshoot and make new discoveries. Now, if after perform-
ing the experiment, the agent does not observe a state change
(i.e., no new types were constructed), the agent will try the
next hypothesis. If none of the hypotheses work, the agent
will give up and end problem solving. It is conceivable, al-
though we have not implemented this capability, this may be
when and where the agent will need to discover or consider a
new property of the environment. Human creative problem-
solving involves this capability, and often solutions to in-
sight problems are found when a property is found to be rel-
evant, but previously thought to be irrelevant (Sarathy 2018;
Sarathy and Scheutz 2018). The classic example of this is
the three-bulb insight problem in which the solver must dis-
cover an unexpected property of the light bulb to solve it.

Thus, in our example of having egg yolk, the agent found
79 hypotheses, tested two of them before it found one that
works. First it considered combining yogurt wftl and oil
ly. While these two when combined possess all the proper-
ties of egg yolk yfl, when tested, there is no observed state
change. The reason for this is that in our testing environ-
ment, we did not encode any new type for combining these
two elements. The agent was not told this apriori, but instead
discovered it during hypothesis testing. The next hypothesis
the agent tried was to combine yogurt wftlwith applesauce
yf. When tested, the BIPLEX agent discovered that it pro-
duces a new type, ylft, which is really a wet batter without
any eggs. The agent declares success here because ylft
contains the properties “y”, “f” and “l”, which was what de-
fined egg yolk, the target type. Now, clearly this is not the
same as egg yolk and it might seem a bit strange to call this a
success, however, it is worth noting that in this example, we
did not equip the environment with any dynamics for mak-
ing egg-yolk. So, the agent found the best answer with the
resources it had on hand. What is particularly interesting
about this new type ylft is that it contains the same prop-
erties (in a different order) as egg batter. The agent might
have discovered this as a substitute for egg batter if it were
planning to make pancakes and not just egg yolks, is that
this new type allows it to skip the step of making egg batter
and move to the other steps of pancake making. This would
simplify the agent’s planning and execution as it would not
need to seek out and acquire all the other ingredients for
making egg batter as it already has what it needs, a discov-
ery it made while making something else, namely egg-yolk.
We next discuss how the agent might creatively make egg
batter with no egg-yolk if it did not make this discovery.

Consider the goal of having egg batter (have
?x-yftl), as we discussed previously. Unlike when
we trying to make egg yolk, here, the initial attempt at
generating plan-sketch will not fail. The agent will generate
a plan-sketch: (pickup bowl1), (hyp-mixeggbatter1
hyp-yftl-ac7adcdf). Realizing it needs to construct
an object of type yftl, it will search the crafting tree.

The crafting tree indeed has a node for egg batter, which
it will traverse and identify the ingredients needed, the
first of which is milk wl. The agent will then plan and
execute to go and get milk. Once it does that the next
ingredient for the agent is to acquire egg yolk yfl. As
we mentioned above, since there is no egg yolk, the agent
will enter creative mode, generate hypotheses (79), try and
experiment until it finds one that works. Let’s say the one
it finds is combining water l and applesauce yf to thereby
generate diluted applesauce lyf. At this point, we know
that diluted applesauce is not the same as egg yolk and
is only potentially a viable substitute for it in egg batter.
But, the agent marches on and continues the process of
making egg batter and plans and acquires egg whites tl.
Once it has “proved” all the ingredients or predecessors to
the action node mixeggbatter1, it is ready to “ground” the
action, and “prove” the type yftl for egg batter. However,
this plan will fail because it cannot make egg batter with
diluted apple sauce. At this point, the BIPLEX agent
once again enters creative mode to find a substitute for egg
batter. Amongst the many hypotheses, one that works is
one that requires the use of the newly created diluted apple
sauce to make non-egg egg batter ylft. The agent then
declares success in making a substitute and ends problem
solving. Again, this may not be a viable substitute for
downstream use, but in this particular instance of making
no-egg-yolk-pancakes, this substitute works just fine.

Thus far we have discussed creative resource substitu-
tion, when an agent is attempting to acquire a known type,
say egg batter or egg yolk. These are types listed in the
agent’s own domain, and types for which the agent has do-
main knowledge about the types of actions that can per-
formed with them and the fluents that apply to them. How-
ever, the approach underlying BIPLEX can be used to pur-
sue previously unknown goals. For example, if the agent is
tasked with making diluted applesauce lyf or even making
no-egg-yolk egg batter ylft or no-egg-yolk egg pancake
vaftuy. The planning, execution, constructing, hypothesis
generation and testing proceeds just as described before.

It should now be clear why we need to use properties to
represent object types instead of using those types them-
selves, or at the very least properties in additions to types;
for without explicit property representation we would not
be able to formulate the kinds of hypotheses we need in or-
der to handle novel situation and learn substitutions through
experimentation. It will also not be able to find plans that ul-
timately require the creation of novel objects or substances.

Discussion and Limitations
As we discussed earlier, most existing work, particularly
in AI, approaches creativity and creative problem-solving
as a mental search problem for possibilities and associa-
tions. This view, however, neglects the critical role of real-
world experimentation and its potential for gaining insight
from observations during the experimentation process. As
(Sarathy 2018) has noted, there is evidence in human neu-
roscientific studies that the environment, and the human’s
interaction with the environment is crucial to the creative

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

146



Algorithm 1: SKETCH()
Input: goals {global variable}
Input: completed {global variable}
1: while ∃ goals do
2: goal← goals.pop()
3: if goal ∈ s0 then
4: completed.append(goal)
5: return True, s0
6: end if
7: if goal ∈ completed then
8: return True, s0
9: end if

10: objects← observe-objects()
11: P ← construct-problem(goal, s0, objects)
12: π ← plan(Σ∗,P)
13: O∗ ← is-executable(π)
14: if π ̸= ∅ and O∗ = ∅ then
15: completed.append(goal)
16: return execute(π)
17: end if
18: if π = ∅ then
19: status, s1 ← play(goal)
20: if status = False then
21: return False, s0
22: end if
23: return True, s1
24: end if
25: if O∗ ̸= ∅ then
26: objects← get-objects-to-construct(O∗)
27: for object ∈ objects do
28: type← get-type(object)
29: status, s1 ← PROVE(type)
30: if status = False then
31: return False, s0
32: end if
33: end for
34: return True, s1
35: end if
36: return False, s0
37: end while
38: return True

process. For new knowledge needs to enter the mind some-
where and we claim that this interaction with environment
must be interleaved with mental search and reasoning pro-
cesses. Moreover, there is a mutually-supportive aspect
of this relationship between environmental experimentation
and mental search, whereby when the agent notices some-
thing interesting in the environment, it may trigger new men-
tal search and reasoning processes that can lead to new ex-
periments to further understand the observation, and so on.

The BIPLEX approach to planning is thus different from
most existing planning approaches that rely solely on
grounding action schemas to every object provided in a
problem instance and finding a path in the search space to
the goal. Although BIPLEX calls a planner as part of its op-
eration, the planning is limited to small instances enabling
BIPLEX to handle large problem instances with a large num-
ber of objects. Creativity in the real-world involves the abil-
ity to reason about large number of possible objects, ill-

Algorithm 2: PROVE(type)
Input: type {An object type}
Input: tree {global variable}
1: s0 ← observe()
2: actions← get-predecessors(tree, type)
3: if actions = ∅ then
4: return False, s0
5: end if
6: while actions ̸= ∅ do
7: action← actions.pop()
8: status, s1 ← GROUND(action)
9: if status = True then

10: return True, s1
11: end if
12: end while
13: return False, s0

Algorithm 3: GROUND(action)
Input: action {An action name}
Input: tree {global variable}
Input: grounded {global variable}
1: types← get-predecessors(tree, action)
2: for type in types do
3: s0 ← observe()
4: goal← construct-goal-literal(type)
5: goals.push(goal)
6: status, s1 ← SKETCH()
7: if status = False then
8: return False, s0
9: end if

10: end for
11: if action /∈ grounded then
12: grounded.append(action)
13: Σ← create-domain(Σ−, action, tree)
14: type← get-successoraction, tree
15: goal← construct-goal-literal(type)
16: status, s1 ← plan-and-execute(goal,Σ)
17: if status = True then
18: goals.push(goal)
19: return SKETCH()
20: end if
21: status, s1 ← PLAY(goal)
22: if status = True then
23: return True, s1
24: end if
25: return False, s0
26: end if
27: return True, s1

defined problem statements and partial knowledge. These
real-world conditions prevent standard planners from being
easily applied in creative settings. Here, we suggest that
BIPLEX can serve as a “wrapper” over fast state-of-the-art
planners, one that can handle these real-world constraints
more effectively. Moreover, it is unclear how BIPLEX should
decide which properties are relevant to a particular prob-
lem instance. BIPLEX was designed with “fluidity” in mind,
which can be seen in how it dynamically defines and rede-
fines new problem instances as it approaches its goal. This
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Algorithm 4: PLAY(goal)
Input: goal
1: combinations← get-intersecting-properties(goal)
2: hypotheses← ∅
3: for comb ∈ combinations do
4: if goal.type ⊆ comb then
5: tree← make-tree(comb, goal)
6: hypotheses.append(tree)
7: end if
8: end for
9: s0 ← observe()

10: for hypo in hypotheses do
11: Σ← create-domain(Σ−,generic,hypo)
12: status, s1 ← plan-and-execute(goal,Σ
13: if status = True then
14: if s0

type
= s1 then

15: continue
16: else
17: completed.append(goal)
18: return True, s1
19: end if
20: end if
21: end for
22: return False, s1

fluidity, however, has many dimensions beyond what we
have already shown: from selection of properties, granular-
ity of representations, and selection of relevant objects to
consider. In future work, we intend to study other dimen-
sions of fluidity as we believe it can help lower complexity
by reducing the particular problem instances for an underly-
ing planner.

A limitation of the current approach is that the agent tries
each hypothesis independent of any prior attempts. It is rea-
sonable to expect that the agent should “learn” from each
experiment and only try hypotheses that are likely to pro-
duce new information. (Lamanna et al. 2021) discuss the
value of this idea in their online planner that learns a plan-
ning domain during execution. One avenue for future work
is to consider how the agent could learn from an experience
and use this knowledge in a different problem. We are not
advocating that creative problem-solving be fully-unguided
exploration. Instead, BIPLEX relies on a predefined set of
relevant properties over which the object types are defined,
and the agent itself is goal-directed, in that we have provided
a planning goal that they agent must reach. We intend to ex-
plore, in future work, different strategies for guided exper-
imentation, hypothesis generation, and representations for
learned and acquired knowledge.

Another limitation is that BIPLEX executes each viable
hypothesis until it finds one that works. However, there may
be other constraints (such as cost, time, availability of ma-
terials, normative and ethical ones) that limit what is doable
and acceptable to experiment with for the agent. In some
cases it may thus be prudent to put a human in the loop and
allow BIPLEX to suggest new ideas and give the human final
decision-making authority as to whether to test a hypothesis
or not, especially if it is likely that the human or even another
agent might already know what will happen. In collabora-

tive settings, the agent may essentially be able to eliminate
hypotheses without even trying them.

BIPLEX generates hypotheses when it must construct
novel types or when it needs to find a substitute to a known
type and it declares success in its hypothesis testing when
it finds a type that has all the desired properties of its tar-
get type. At this point, BIPLEX does not know if the newly
found type will work for the rest of its plan. It is thus possi-
ble that somewhere downstream an action fails as a result of
not having found the right substitute here. In such a case, BI-
PLEX should backtrack and revisit other successful hypothe-
ses, which is currently not implemented.

Finally, BIPLEX assumes, during hypothesis generation,
that a target type must be formed with a combination of other
types that have intersecting properties. However, it is pos-
sible that non-intersecting types produce novel types. Take
for example, combining salt and ice: salt is of type solid-
granular-white and ice is of type solid-cold. When com-
bined, salt melts the ice to produce water which is not a
solid, does not contain granules, is not white and presum-
ably is less cold than ice. So, if the target object is water
of type clear-liquid, BIPLEX would not combine these two.
Clearly, the possibility of combining known types to yield
potentially novel types is an important direction for future
work as it will allow the agent to expand its conceptual basis
(and, of course, is it yet another interesting question of how
the agent would be able to recognize the new type).

Conclusion
In this position we introduced the BIPLEX framework,
a novel approach for creative problem-solving that uses
property-based representations of objects to enable plan-
ning with transformative actions and object substitution in
a tightly integrated hypothesis generation, experimentation,
observation, and adaptation loop. By planning experiments
and performing them to utilizing observations of their out-
comes in the planning process, BIPLEX offers an approach
for problem solving that goes beyond mere search-based
methods and more closely mimics the process of scientific
discovery which essentially involves experiments in the real
world to try out theoretical predictions and confirm or reject
hypotheses. In a next steps, we plan to evaluate the perfor-
mance of BIPLEX and compare it to state-of-the-art planners
to demonstrate that it can better handle large numbers of ob-
jects due to its property-based representations and that it can
solve problems that other planners cannot solve due its abil-
ity to perform experiments.
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Abstract

We explore how the aesthetic lens of computational cre-
ativity can be used to aid in the development of ethical
principles for artificial intelligence systems, and their
application to real-world domains in which computers
are expected to make reasoned, ethical judgments. In
particular, we bridge two recent ICCC papers, one about
how creative computers can design ethical principles,
and one that uses algorithmic information theory as one
component of the aesthetic value of the artifact. Our
finding is that computational creativity ideas can enable
the creation of novel ethical principles, but that the use
of novelty, value and typicality measures in this space is
quite challenging, and in particular, the algorithmic in-
formation theory objectives do not map smoothly to the
goal of building fast ethical systems of provably high
quality. We conclude with suggestions for making our
approach usable in practice.

Introduction
AI systems, particularly those that inhabit the physical real
world, make ethical decisions in response to either con-
structed dilemmas or ordinary scenarios all the time. This
happens when they decide how to respond to human or other
actors in need of help, but it also happens when a stock-
picking robot decides which companies to invest in, or when
an algorithm chooses which candidate to offer a job to, or
(perhaps more) when the algorithm identifies which personal
traits to look for in a successful candidate.

The all-pervasive nature of these ethical choices has
caused “ethical AI” to become one of the current most ac-
tive areas of research, teaching and progress in the area,
with entire conferences devoted to engendering fairness (by
multiple definitions), identifying properties of fair systems
that are mutually incompatible, and reporting on situations
in which an AI produces outcomes that are unfair, as when
they make decisions that either confirm or exacerbate ex-
isting inequities, or when decisions are made by an AI for
reasons that seem arbitrary. As such, concerns about train-
ing data bias, explainability, or the presence or absence of
proxy variables that can be used to substitute for variables
upon which discrimination is forbidden (such as height be-
ing a proxy for gender, or postal address as a proxy for race
or income level) have also become major topics of research.

We argue in this paper that computational creativity (CC)
has a message for AI ethics as well, but our focus is in
fact that CC can produce ethical systems whose principles
are themselves presented in a more aesthetic or satisfying
way, and that the constrained exploration found in most CC
systems can produce diverse systems of ethical principles,
rather than reinforcing existing models for how robots or
AI systems should interact with the world. Our argument
bridges two recent ICCC papers: a paper by Ventura and
Gates, which argues that considering AI systems as creative
agents whose output artifacts are behavioral choices admits
a natural approach for imposing ethics as an aesthetic fil-
ter on that behavior (2018); and the algorithmic information
theory-based approach of Mondol and Brown, which seeks
to use measures from that theory (basically, a few concepts
from advanced Kolmogorov complexity) as indicia of high
novelty and value (2021). A challenge with both of these
papers is that they do not offer practical implementations.

Ventura and Gates consider the problem of ethical AI be-
havior on two levels. First, they propose a base-level sys-
tem which considers potential behavioral choices and evalu-
ates those choices via the lens of a normative ethics, which
acts as an aesthetic and imposes ethical notions of novelty
and value. They examine various classical normative ethical
philosophies as possible behavioral aesthetics and conclude
that the choice of which normative ethics should be used is
a fraught one. In the most far-reaching part of their paper,
they suggest building a meta-level creative system that cre-
ates abstract ethical principle sets and then focus on how
to evaluate the ethical appropriateness of these meta-level
artifacts, taking into consideration (meta-level) aesthetic no-
tions such as novelty, utility, fairness, generalizability and
comprehensibility.

Mondol and Brown also focus on quality and novelty, but
their approach is much more abstract. For value, they indi-
cate that an object is of high quality if it represents the output
of a significant amount of computational effort (so called
logical depth) or if it is an arbitrary member of a set de-
scribed by a quite long program (also called sophistication).
Objects with high logical depth are compressible; that is,
they can be summarized with a very short program, but the
program takes a lot of time to reconstruct the original object.
Highly sophisticated objects are unusual, in that they show
a large amount of internal structure, but describing that in-
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ternal structure still requires substantially long descriptions;
they are not just routine repetitions. Both of these measures
are uncomputable. Another challenge is that if one is given
a short, slow program that generates an object S, that alone
is not proof that S is actually logically deep—another short
program may also generate S, but do so in speedy run time,
thereby demonstrating that S is in fact shallower than pro-
posed. Similarly, just because there exists a long program
for which S is a typical output (which might suggest that S
is sophisticated) does not mean that there is not also a much
shorter program that will also generate S as a typical output.

In the rest of this paper, we look into some of the proper-
ties of good ethical systems from the point of computational
creativity, and explore ways in which Mondol and Brown’s
models of novelty and value can enter into the project of gen-
erating, comparing and evaluating ethical systems. We look
into some of the contexts in which these systems might be
used, and how creativity enters into the process of making
ethical decisions as well. We explore how aesthetic judg-
ments must be constrained here as well—just as a sonnet-
generation system must create outputs that follow the rules
and constraints of a proper sonnet, a system that builds eth-
ical models must avoid horrifying outputs that may initially
appear aesthetically pleasing.

Our approach is still theoretical—algorithmic information
theory builds a collection of potentially theoretically sound,
but fundamentally impractical, assessment tools for explor-
ing the quality of objects like legal codes or computational
systems, and designing algorithms to creatively explore the
space of possible ethical systems will require a better sense
of how to encapsulate both ethical systems and the dilemmas
they face in a computational fashion. However, the combi-
nation of these two approaches offers the possibility of in-
corporating aesthetics and ethics into a common framework,
and developing a better understanding for how beauty and
judgement can work together. That said, there are key ele-
ments missing from “purely computational” frameworks—
an aesthetics for ethics must also include a discussion of
outcomes of ethical decisions, not just an analysis of their
computational complexity and sophistication.

Two types of ethical system
Ethical decisions are made by computers or robots (or hu-
mans!) in response to specific situations. Here, we give two
different formalisms for quite different scenarios in which
agents make these decisions and describe how aesthetics can
enter into the evaluation of this process. These two scenar-
ios correspond to a large degree with the two levels of ethical
CC agent treated by Ventura and Gates: the first considers
the primary artifact to be a behavior (though we will see that
this, in fact, may not actually be the locus of the creativity);
the second considers the primary artifact to be analysis and
judgement about behavior.

First, consider an agent residing in the real world. As a
result of the state of that world, one piece of the process that
decides what action the agent will take might be ethical—in
response to a situation S, the ethical system P must quickly
compute the best behavior b∗ for the agent to perform. Or,
P might generate a ranked list of behaviors (b1, b2, . . . , bn),

which information the agent uses in deciding what step to
take next. In addition, each behavior may include a for-
mal analysis A of why it makes a good choice. The key
concern in this frame, though, is not interpretability; it is
efficiency—for real-time decision-making, the system must
compute (b∗, A) = P (S) within a time bound t, or the de-
cision will become moot. Nonetheless, for analysis of deci-
sions that have been made by P , it is essential that its deci-
sions are given along with some traceable analysis of where
the decision b∗ came from. Since P is fast, this can in theory
be just a computation trace, which may be substantially un-
clear due to either deliberate or accidental obfuscation. Or,
despite the fact that b∗ must be computed quickly, it is possi-
ble that A may be computed reflectively and therefore much
more slowly; indeed, many human justifications, both ethi-
cal and otherwise, may be computed this way as well (Bem
1972).

Whether or not A is interpretable and whether it is com-
puted in real-time or post-hoc, it is arguably a much more
significant output of P than is b∗, both from a creativity and
from an ethical standpoint, especially if the set B of pos-
sible behaviors is well-defined and finite.1 Nevertheless, in
this instance, the agent can not be considered to be making
deep ethical decisions, because it does not have time to do
so; rather, it is quickly deciding how a (presumably) previ-
ously well-defined ethics P applies in situation S.

Second, consider the phenomenon of using legal codes to
resolve disputes or trials. Here, there are two levels to the
process: in the first, lawmakers must draft the law code C
to be used as a basis for decisions. Traditional law codes, of
course, are written in ambiguous natural language, and sur-
rounding a code C will be existing jurisprudence and com-
mentary C ′ upon which decisions can be easily hung.

Next, to respond to a dispute D, the judge must use rea-
soning based on the current law code C to produce an ex-
plainable outcome O for dispute D, such as a guilty verdict
or a decision about financial damages (presumably from a
well-defined and limited set O of possibilities), as well as
a justification J for that outcome. As before, because O is
(usually) a finite set, the justification J is the more creative
task, as is building the way in which J comes from the law
code and interpretations being used.

Both creative steps in this process are interesting from a
computational creativity perspective: drafting C and draft-
ing commentaries C ′ allows for one to explore questions of
novelty and its appropriateness in a constrained space (we
would not want to accidentally legalize murder as a “novel”
innovation!), while at the same time, the choice of law code
can enable simpler reasoning or force more complex reason-
ing in cases wherein the evidence of a particular case D is
not well situated within the code C. As such, the “creativ-
ity” (particularly in the sense of novelty and value, but also
in the sense of expressivity and conceptualization) of one
choice of C or C ′ can have impacts on that of the other, and

1Classic ethical dilemmas, such as the well-known family of
trolley problems, offer an agent two choices; which choice is made
is never the point of proposing the dilemma, rather it is to elicit a
justification for choosing that behavior (Thomson 2014).
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they both have effects on O.
The difference between a law code C and commentary C ′

matters because law codes ought to be interpretable under a
wide variety of situations, and in new contexts; for exam-
ple, anti-discrimination law might not directly cite newly-
protected groups, but expert commentary might offer argu-
ments under an existing code that could be adapted to other
groups than those previously identified.

We go into more detail about this mode below, but in this
frame, an ethical decision process P is the creation (either
in natural language, or in an interpretable format) of the pair
(O, J) = P (C,C ′, D).

Ethical decisions and quick actions
Many ethical dilemmas must be solved very quickly as part
of an agent’s participation in the world: should the agent
interfere in an argument, call out a colleague for sexist be-
haviour, apply for an open job, choose one candidate for
a job over another, and so on. So-called “trolley prob-
lems” (Thomson 2014), in which an agent must make a de-
cision that will have negative consequences regardless of the
choice made, also fit in this framework. These ethical dilem-
mas are encapsulated by a short description of the scenario
and a straightforward decision that the agent has to make
about the action it will take; perhaps this comes along with a
predicted probability distribution over the states of the world
that can result from the decision.

This formulation can easily turn into a Partially-
observable Markov Decision Process (POMDP) if one sim-
ply optimizes expected long-term utility of the local deci-
sion at each step (Kaelbling, Littman, and Cassandra 1998).
To avoid this potentially worrisome outcome, we note some
ways in which this framing differs from the POMDP model.

First, the computational power of the agent may be re-
stricted to the extent that solving a full POMDP may simply
not be possible; at each step, there may be too many possible
outcomes to choose from to do a full calculation of expected
long-term utility, for example. Fundamentally, the decision
maker operates in a position of bounded resources: it can-
not fully model other actors in the situation, it may not have
a proper description of the immediate probability distribu-
tion (let alone the long-term outcomes of choices) resulting
from the decision it is making, and the limits on its com-
putation may restrict the functions it can optimize. This is
essentially the same argument used as one explanation for
“non-rational” human behavior (Simon 1955).

Second, even the utility itself is not an easily-defined
function. Instead, the agent itself will learn its utility func-
tion by assessing the outcomes of situations, both those that
result from its own decisions, and those it is shown while
it is being trained. As a result, it is even possible that this
utility function will be time-dependent.

In this framework, computational creativity mostly enters
into the design of the agent’s ethical system itself and the
assessment of its qualities. In particular, we look for aes-
thetic qualities in the way in which the agent responds to
situations (both those found in training data and those found
in its own experiences): can the agent’s decision-making be
said to model principles, can it be summarized in a way that

generalizes from pre-existing data, and can it be expressed in
a compact and easily computed way? A high-quality system
should also be unaffected by irrelevant changes in the input,
which in fact will allow it to operate with more efficiency.
We also look to novelty: does the summarization algorithm
function differently from previous algorithms despite gener-
alizing the same data? One way to see this, consistent with
Mondol and Brown, is to say that the algorithm derived to do
fast ethical decision-making is not “typical” of existing al-
gorithms of that sort—knowing how those algorithms work
will not offer much assistance in compressing the descrip-
tion of a new ethical decision-making approach.

These aesthetic principles of parsimony, generalizability,
consistency and (perhaps to a somewhat lesser extent) nov-
elty are what we view as core ideas of a speedy ethical sys-
tem. Can they be adapted to an algorithmic information the-
ory model of value?

Legal decisions
Law codes have existed for millennia. Historically, they be-
gan largely as criminal codes, identifying behaviours not
permitted for residents of a city or nation and the conse-
quences thereof; over time, they expanded to much larger
codes accommodating trade issues, family law and so on.
At various times, magistrates and judges are given the task
of applying existing legal codes to evidence coming from
specific cases; they must build arguments based on the case,
the law codes, and previous cases and their commentaries.
Having humans do this work requires huge effort and ex-
pense: legal scholars must be trained to build and present
arguments, and judges must use enormous law libraries full
of precedents and commentary to adapt their jurisprudence
to the situations of a contemporary dilemma.

We view this process as a set of creative tasks. In fact,
from an aesthetic point of view, there are three quite different
tasks that occur when one uses a law code to resolve a case.
The first is the codification of the relevant law code itself—
summarizing a collection of arguments, traditions and cus-
toms into a short natural language formulation.

The second aesthetic task is perhaps less obvious: how to
present the information of a case. If the case is presented in
a way that is true, but which obscures the way in which the
law attaches to the details of the case, it can require much
argumentation to be built in order to properly describe the
decision (O, J) that best resolves the dilemma.

And the third aesthetic task is the one that is perhaps most
interesting, and which can be assessed in a variety of ways:
the process by which a judge (computational or human or a
combination of the two) can build from a legal code C and
commentary system C ′, and from the evidence of a case D
to an outcome O with a justification J . If judgment is to be
made by a computer, then the task is in a sense one of using
existing arguments from C ′, together with rules from C, ap-
plied to case D to create the decision pair (O, J). If (O, J)
is easily derived from the evidence and the legal informa-
tion, then we can say that the bulk of the effort in the case
was already done in the creation of those processes (and in
the training of the computational judge). If, instead, much
hair-splitting must be done in the task of interpreting the ev-
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idence of the case, then we can say that the code was not
well-matched to the evidence.

This offers one of our most tantalizing realizations:
namely, that the computational task of coming up with judg-
ments can be seen as finding an efficient function that maps
evidence D onto judgments J by filling in details from J
quickly. If the decision J is easily created from D, given
(C,C ′) as a legal code and advice, then (C,C ′, D) is a
good set of evidence and laws for the case. In particular,
we can say that knowing C ′ can help us resolve the case
more straightforwardly.

To make this more formal, consider a collection of evi-
dence D. Suppose there is a small set of possible outcomes
O defined by the legal code C for cases of the type of D. In
order to resolve the case, we must come up with the O ∈ O
that best represents how D interacts with (C,C ′), and the
explanation J that requires the least extra computation on
top of what has already happened in the creation of (C,C ′).

Creating an ethical decision process, then, consists of
choosing a good decision-maker P , but also “priming the
pump” by ensuring that P is well adapted to the law code
C; in particular, P should be able to come up with verdicts
for most cases quickly, and the pair (O, J) should be eas-
ily computed (at least for most cases) given the input data
(C,C ′, D). In the language of Kolmogorov complexity, this
corresponds to saying that the conditional Kolmogorov com-
plexity of the decision (O, J) is small, given (C,C ′, D).

In particular, we note that a legal code that requires us
to build long, involved judgments for simple cases, or for
which small changes to the evidence could force us into a
completely different set of valid justifications, is not a good
one. Rather, for most cases, the mapping from D to the pair
(O, J) needs to be efficient; that is, the legal code is pre-
primed to make fast, straightforward decisions.

Novelty and value in the context of ethics
Adapting traditional creativity measures to ethical systems
and their products is a challenge. In particular, one princi-
ple that might be considered desirable in an ethical system
is respect for precedent and tradition, which pushes these
systems in a direction that moves away from novelty. Obvi-
ously, we still can look for new ways of reconsidering eth-
ical dilemmas (either new ones or pre-existing ones), in the
service of discovering a better way of improving people’s
lives, or in terms of mutually explaining a large number of
compatible decisions. In this sense, the novelty of an ethical
system is about the arguments it generates. As to value, the
quality of an ethical system depends not only on the osten-
sible beauty of its philosophical tenets but also on objective
observers’ agreement with the decisions the system makes.

And of course, for scenarios in which the output of an eth-
ical system is an argument or a legal code or a text decision,
one can look at the overall quality of the text drafting, but of
course, there is no value in a beautiful argument that creates
a monstrous conclusion. In this sense, creativity may not al-
ways serve good outcomes, as when terrorists design novel
forms of sabotage (Cropley, Kaufman, and Cropley 2008).

We can also look for some quality measures that are sim-
ilar to those used by Mondol and Brown, which seek to

encapsulate a collection of compatible ideas in a highly-
compressible form with little internal redundancy. If gener-
alizing these ideas can be done with a lot of effort, resulting
in a short program that compresses the initial representation
well, then this can be another indication of the value of the
ethical system. Obviously, arguing about brevity alone is
insufficient—an ethical system of the “kill all who oppose
us” variety is clearly not a wise one despite its simplicity;
rather, it is clear that wise ethics requires evidence of non-
trivial thought from humans, or for computers, evidence of
substantial computation.

Complexity-theoretic notions of aesthetic
Here we give a short introduction to the algorithmic in-
formation theory concepts Mondol and Brown use in their
study of aesthetics. They use both sophistication and logical
depth as measures of quality; we here focus on the simpler
of these, which is logical depth. We also briefly summarize
their approaches to novelty and typicality in non-technical
language.

Basic Kolmogorov complexity concepts
A string s over a finite alphabet has Kolmogorov complex-
ity KU (s) when this quantity is the length of the shortest
input to a universal Turing machine U upon which U halts
with the string s on its output tape. When U represents a
programming language, KU (s) is the length of the short-
est program in that language whose output is s; normally,
we ignore the universal machine U and just speak of K(s).
There are a number of details about U that are also neces-
sary (such as its accepting only a prefix-free language); we
refer the reader to Li and Vitányi (2019) for full details.

The quantity K(s) is uncomputable. In reasonable pro-
gramming languages U , KU (s) ≤ |s|+ c for some constant
c, since one can just write a program that prints out the sym-
bols of s one-by-one. In general, K(s) represents an opti-
mal compression of the information found in s. The value
of K(s) is not correlated with the usefulness of s. A random
string has K(s) ≈ |s|, which is high. The string 1n of n con-
secutive 1’s has K(s) ≤ log n + c, since we can just write
down the binary representation of the value n and then spit
out that many 1s; this is a very low value of K(s). (Certain
values of n can be compressed far smaller than log n; for
these strings, K(s) ≪ log n.) And a string s of k random
bits followed by n−k 1’s will have K(s) ≈ k+log(n−k),
which can take any value between log n and n. Knowing
(just) the Kolmogorov complexity gives no way of distin-
guishing “useful” strings or “creative” strings from others.

Logical depth as value
Instead, Mondol and Brown move to estimate the value of a
string s by its logical depth (Bennett 1988), the run time
needed by short programs that compute s. Specifically,
given a slip constant c,

dU,c(s) = min
P :U(P )=s,|P |≤K(s)+c

time(U(P ))

that is, it is the minimum runtime of a program which gen-
erates s and whose length is within c of K(s); again, both
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U and c are often elided when they do not make the situ-
ation clearer. For simple strings, like those mentioned in
the previous paragraph, d(s) = O(|s|), because a PRINT
program—in the case of the random string—and a linear-
time FOR loop—in the case of the repeated symbol—will
suffice to generate such strings (a simple combination of the
two approaches suffices for the combination string). By con-
trast, a string s that contains the first n bits of a numerical
constant that is hard to compute may be produced by a pro-
gram whose length is a constant (plus a representation of the
value n) but which takes a very long time to run; these are
the logically deep strings. A short, slow program P whose
output is a logically deep string s compresses that string very
well, but an outside observer who does not have all the time
needed for P to run will not be able to verify that it has a
short program even if P is provided.

The overwhelming majority of strings are not even com-
pressible, let alone logically deep (Li and Vitányi 2019).
Mondol and Brown offer logical depth as one piece of ev-
idence of the aesthetic value of a string; they propose that
if a string is the output of a substantial, interesting piece of
computation (or thought), then it is inherently valuable. One
other component of this thesis is that as the length of s gets
substantial, its availability to be compressed also grows; in
particular, if s is the first n bits of a hard-to-produce con-
stant, but the short, slow programs to produce that constant
are longer than n bits long, then s is not logically deep—
its shortest representation might in fact just be the program
PRINTs. As such, logical depth is only meaningful as a
function of long strings. By contrast, for long strings that
come from repeated samples from a logically-deep creator,
as the supply of these samples grows, the potential for find-
ing repeated patterns and structures in those samples in-
creases, and thus so may the possibility of actually finding
a good compression method for such strings, including one
that might require more complex algorithms than just “re-
peat this pattern k times”. Logical depth is a property of the
string s, but the evidence for it is the short, slow program
that generates the string. Given such a program P , we can
confirm that the string is deep by running all programs of
length at most |P | for the time that P takes to generate s
to see if any of them can produce s in less time, but this is
impractical (indeed, so might be running P itself).

Using logical depth as a proxy for the value of an object
raises a number of concerns, not the least of which is that
it does not constrain the object to be properly a member of
the class it needs to belong to; the text of a book might be
logically deep, but if it is a brilliant mathematical text writ-
ten in German, it is still not a high-quality English novel.
Part of our goal with this paper is to consider this question
of constraints—if suitably constrained by precedent, genre
and custom, can logical depth serve as a proxy for value? A
logically-deep legal code summarizes a large collection of
cases in a very tight package, and the added information and
computation needed to resolve dilemmas can be small; by
contrast, an arbitrary legal code will either be trivial because
it is simple, or trivial because it is random.

Conditional Kolmogorov complexity as novelty
Kolmogorov complexity also offers the possibility of identi-
fying whether a new creative product is truly novel: an ob-
ject is novel if knowing other members of its class offers
little information about the new object. To make this for-
mal, the conditional Kolmogorov complexity of s given t,
K(s|t), is the minimum length of a program which, when
given t on its input tape, generates s on its output tape and
halts. If s = t, the program just copies its input tape to
its output tape, so the program is of constant length; if s
and t are unrelated, then the program just ignores t, and
K(s|t) = K(s). A simple generalization allows the iden-
tification of K(s|T ), where T is a set of objects. Of course,
conditional Kolmogorov complexity is just as uncomputable
as ordinary Kolmogorov complexity.

Given a collection of objects T = {t1, . . . , tn}, Mondol
and Brown argue that if K(s) ≈ K(s|T ), then s is novel
with respect to T : the items in T do not help in describing
s. Of course, this idea of novelty will be represented as a
spectrum; for example, in practice, any English text will help
to some degree in compressing any other English text, even
if they are not from the same genre at all. Ens and Pasquier
(2018) and Takamoto et al. (2016), among other authors,
have used this measure to cluster items and identify their
style, using general compressors to approximate conditional
and absolute Kolmogorov complexity.

Models as typicality
One could use the opposite of novelty to model typicality,
but Mondol and Brown instead use the concept of a model:
given a set T = {t1, . . . , tn} of objects, we can build a
program PT , which, when run on given inputs {r1, . . . , rn}
generates the items of T , with PT (ri) = ti for all i. This is
called a model of T . Models are a restricted class of Turing
machines; one variety of restrictions requires T to be a com-
putable set and PT to be a Turing machine that halts on all
inputs.

If the model is a good one, then for all i, |P | + |ri| ≈
K(ti), and the members of T are considered typical for P .
A new object s is also a typical member of the class if there
exists a good model Q of T ∪ {s} such that |P | ≈ |Q|;
that is, learning about the existence of s does not make us
have to do much more to accommodate it. A simple exam-
ple of this phenomenon is that the program PRINT(), which
on input r prints r, is a good model for random strings,
but a highly repetitive string s would not be “typical” for
that class, as PRINT() is a bad model for such strings, since
K(s) ≪ |s| + c. In algorithmic information theory, this
framing may also give a probability distribution over mem-
bers of the class of outputs of P (Li and Vitányi 2019), and
can be used to model properties of the overall class, assum-
ing one has a good model.

Domain-agnostic vs. domain-specific aesthetic
The complexity-theoretic aesthetic measures proposed by
Mondol and Brown are domain-agnostic. That is, they are
concerned with abstract notions of complexity that are inde-
pendent of the domain to which they are applied, and thus
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they can in principle be applied to any domain—one can
imagine encoding a joke, a recipe, a piece of music, a math-
ematical theorem, a drug design or a legal code as a string
and then using logical depth as an abstract measure of its
value. However, as elegant as this is, it clearly does not cap-
ture everything there is say about value, when it comes to
jokes, recipes, music, theorems, drug design and legal codes.
In particular, it does not consider domain-specific notions of
aesthetic, which do not generalize across domains—jokes
should be funny, recipes delicious, music catchy, theorems
influential, drug designs effective and legal codes fair.

While there may be general debate about whether creativ-
ity is itself domain-agnostic or domain-specific, we argue
that it is both, at least as far as aesthetics is concerned.2
This means that it is critical to determine how to integrate
the domain-agnostic with the domain-specific for a unified
theory of aesthetic—how do we ground abstract notions of
complexity in a specific domain? Specifically here, how do
we do so in the context of ethical decision making? One way
to think about this is that the domain-specific aesthetics nat-
urally constrain the space of possibilities (it may not be ac-
ceptable to choose murder as a conflict resolution, no matter
how sophisticated the argument supporting it); within that
constrained space, domain-agnostic aesthetics can be used
to drive the search. Another paradigm may be that of multi-
objective optimization, in which an agent attempts to sat-
isfy (or satisfice) both the domain-agnostic and the domain-
specific aesthetic measures.

Complexity-theoretic-based aesthetic in ethics

There are significant challenges with using the Mondol and
Brown framework for identifying the quality of a creative
artifact. First, and perhaps most distressingly, all measures
used in their paper are uncomputable. Moreover, while their
novelty metrics are largely just based on conditional Kol-
mogorov complexity between an object and others from an
inspiring set, and can at least be estimated using standard
compression algorithms like Lempel-Ziv (Ens and Pasquier
2018), the measures they identify for estimating the value of
an object s largely relate to the internal complexity of that
object; the only evidence of logical depth or sophistication
is the creation of a slow short program whose output is s or
a large model that generates s (as well as other objects) as a
typical output.

As such, using computational complexity in any aesthetic
scenario presents serious difficulties. However, this key
challenge, ironically, is one of the strongest arguments in
favour of the approach in the ethical domain: it recovers a
fallacy often found in real human reasoning.

2We hypothesize that this principle applies to creative process
as well. That is, we hypothesize that there exists an abstract “core”
creativity algorithm that is domain-agnostic and that can be spe-
cialized in domain-specific ways, rather like the notion of inheri-
tance in object-oriented programming. However, we do not present
arguments supporting that position here.

Charlatans and seemingly random decisions

A real annoyance, both in the real world and in computa-
tional artifacts, is claims that an object is serious and signif-
icant, when in fact it is arbitrary or random or trivial. This
“The Emperor Has No Clothes” phenomenon is a serious
risk of Mondol and Brown’s formulation of value as sophis-
tication or logical depth. For example, if P is a short pro-
gram that first churns for 2|P | useless steps, and then runs a
very fast, very short, program P ′ whose output is a string x,
then x will appear to be of high logical depth if we do not
know about the program P ′. Because in general it is impos-
sible to know about the effects of a program without running
it, programs of this sort are undetectable; indeed, as with the
classic parable of the pot roast (in which a cook cuts off the
ends of a beef roast before baking it for no reason other than
that their parent did the same thing for a pan too small to
hold a full roast) (Brunvand 1990), useless work might well
be done by a contemporary reasoner because it arose in a
benign former context and has never been discarded.

In our ethics framework, when the Emperor has no
clothes, one of the objects under study for its aesthetic sig-
nificance is assessed as having high logical depth or sophis-
tication, by virtue of the long amount of research, study and
preparation that has gone into its creation. But if that time
has been wasted (by building circular logic, or by producing
endless rehashing of the same case, for example, or by sim-
ply running a slow algorithm when a fast one might exist),
the legal code C, or the decision outcome (O, J) may appear
to be deep while not in fact being deep. (We note that de-
tecting this scenario is difficult. For example, imagine if our
standard for whether a string is logically deep or not is con-
nected to polynomial runtimes. Then, if P = NP, there exists
a fast compression algorithm for the binary string sn that in-
dexes graphs in a natural order G1, G2, . . . , Gn and has a 1
in position i iff graph Gi is Hamiltonian, which means that
sn is not logically deep; however, if P ̸= NP, then no such
fast compression algorithm exists, and sn is logically deep.)

A different version of this problem occurs when the ob-
ject under study was developed by a deliberately misleading
agent. Here, the legal code C appears to be logically deep or
of high sophistication: for example, we might even be able
to run the short, slow program and create C with it. Such
a program may still engage in some useless reasoning along
the way of forming C, inserted by a charlatan who wants to
make the code appear more serious than it actually is. Un-
fortunately, since in general it is hard (or uncomputable) to
examine code for shorter or more efficient equivalents, it is
also likely difficult to detect whether we have been deceived
by a system that appears more complex than it actually is.

A similar problem arises when an extraordinary amount
of detailed effort goes into planning how a system will re-
spond to improbable scenarios. The object is legitimately
logically deep and offers detailed guidance for how to han-
dle the rare situation, summarizing challenging reasoning
in a short package. Unfortunately, despite this potentially
significant piece of work having been done, the author has
hung it on a useless hanger. This situation is perhaps anal-
ogous to theological reasoning about the number of angels
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that can dance on the head of a pin—if this never observably
happens, the system of reasoning is, in the domain-agnostic
sense of Kolmogorov complexity, beautiful, yet useless.

Elegant is different than good
In addition to the concerns about seemingly random deci-
sions, nothing stops an ethical system from being funda-
mentally monstrous except for external constraints pushing
the decisions of that ethical system away from those terri-
ble outcomes. In the previous subsection, we considered the
case where a system appears sophisticated or logically deep,
but is in fact not. However, one can also deploy algorithmic-
information theoretic ethics in ways that are logically deep,
but where the logical depth yields unhelpful results. For
example, imagine a procedure P designed to decide cases
about slavery, and outcomes of disputes involving enslaved
people. If P is trained on a collection of cases and laws
that start out with the presumption that slavery is valid, it
might develop into a highly compressed program that en-
capsulates those cases and laws in an efficient framework.
It might even use sophisticated reasoning to assert that one
set of slaves should be freed and another subject to further
bondage, generalizing from data about their cases and about
existing similar cases. As such, P could appear to be typical
and of high quality.

Further, P might not be like existing ethical systems in
how it works, indicating that it is also of high novelty, in
that knowing P does not given much help in building other
pre-existing legal interpretation systems. However, none
of these metrics—novelty, value, or typicality—pushes P
to question the overarching unacceptability of the frame in
which it operates. That is, P may be able to simplify, cod-
ify, and regularize the cases it decides, but if it starts with
the requirement that it maintain the status quo, it may sim-
ply build a better evil system. It is unsurprising that this
danger exists—it exists precisely due to the dichotomy of
domain-agnostic vs. domain-specific notions of aesthetic.

Small changes with big differences
Another unexpected problem with the domain-agnostic
measures of value and novelty is that they can push the sys-
tem to make tiny changes to its texts that may have dramatic
overall impacts. For example, suppose that C is a crimi-
nal code that identifies the sentences for violating various
laws; for simplicity, suppose that C1 is a function that maps
a crime c to days in jail C1(c). The code C1 is essentially
equivalent in complexity to another code C2 that assigns the
same number of weeks in jail to c as C1 assigns days. (That
is, C2(c) = 7C1(c) for all c.) Yet these are fundamentally
different. Similarly, and more alarmingly, imagine that C1

is a civil code that describes how to identify which party
legally owns a piece of property under dispute between two
parties. If C2 is a new civil code that results in exactly the
reverse outcomes to that of C1, then both C1 and C2 are es-
sentially equal in all measures of complexity, just as a pho-
tograph and its inverse are.

The only way to avoid this problem is via precedent—we
must prime the pump with existing case law, and only ac-
cept legal codes that are consistent with existing decisions.

But this leaves us in the position we were hoping to avoid—
novelty comes not through generalizing from existing situa-
tions, but by intentionally moving away from what is known.

Not all bad news
This litany of negative news about Kolmogorov complexity-
based aesthetic might suggest that the whole endeavour is
hopeless, but that is not the case. The fundamental idea still
appears sound: a short legal code, or a simple, fast ethical
system, which summarizes a large amount of case law in a
small, efficiently-presented package, and which allows for
the fast resolution of simple cases and a complex reasoning
process in difficult cases, is exactly what is needed.

To be more specific, consider a legal question (C,C ′, D).
If D is easily resolved, it should be the case that
K((O, J)|(C,C ′, D)) should be small—that is, it should be
possible to efficiently fill in the details of a proper judgment
given the legal code and commentary, with very little extra
information. Creating this extra information is, ultimately,
the task of the judge, and the key observation is that if D
is a typical case for (C,C ′), this work of finding a good
resolution for it should be efficient. By contrast, if D is an
odd edge case, then the judge must perform substantial com-
putation, creating much new information, in computing the
outcome (O, J) of the dispute.

Fundamentally, then, an aesthetically appealing ethical
system, particularly in our second frame, consists of a con-
cise representation of complex ethical principles with an
algorithm for quickly mapping them onto resolutions for
dilemmas that commonly arise. Further, novelty search
should enable the discovery of both algorithms and prin-
ciples that, while they encapsulate similar information to
those pre-existing, nonetheless use different methods; that
is, knowing about existing algorithms should offer minimal
capacity to predict a new approach.

Building an ethical system
As in Ventura and Gates, now comes the rub: how do we
develop a system whose output is novel, valuable, consis-
tent, transparent, and non-trivial? In no small part because of
the challenges described in the previous section, we largely
leave this question for future work and analysis.

As one possible avenue of exploration, as briefly sug-
gested by Ventura and Gates, it may be possible to perform
large-scale statistical simulations involving agents making
decisions using the ethical system under scrutiny. Serendip-
itously, this is possible exactly because the agents are com-
putational rather than human, and, interestingly, this empir-
ical approach could apply to estimating both the domain-
agnostic, information-theoretic aspects of aesthetic as well
as the domain-specific, ethics-based aspects. For the for-
mer, one may be able to use statistical simulations to esti-
mate information-theoretic measures similar to how Soler-
Toscano et al. empirically estimate the algorithmic prob-
ability of short strings (2014). For the latter, such simu-
lations may be used to estimate the likelihood of various
individual outcomes, to perform differential analysis, or to
model large-scale social outcomes, facilitating a compre-
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hensive/empirical description of the system in terms of its
effects.

For example, considering the case of real-time ethical
decision making, we might construct a simulation of self-
driving vehicles encountering ethically challenging scenar-
ios. 3 Driving agents could be equipped with varying ethics
systems and large-scale simulations could result in statistical
measures of global or local utility (e.g., to estimate fairness).
Or, agent behavior patterns could be analyzed for complex-
ity as in (Zenil, Marshall, and Tegnér 2015) (e.g., to estimate
logical depth).

For the case of making legal decisions, many of the same
kinds of ideas might be applied. For example, a system for
drafting traffic laws might hypothesize a traffic code and
then perform simulations of varying traffic scenarios gov-
erned by that code to verify its generality, its clarity or its
fairness statistically. Or, perhaps the complexity of the sim-
ulation may act as a proxy for the complexity of the code, in
the information-theoretic sense.

The the main difference between the two scenarios is the
perspective from which simulations are being run and who is
making use of them for what: in the first case, if we are using
simulations to evaluate something about the ethical system,
it is because we are designing the system and wonder about
its utility for the agent; in the second case, the agent itself is
constructing the ethical system and is using the simulations
as a part of its creative process.

Aesthetics of creating ethical systems
We have identified the creation of ethical systems as a fun-
damentally creative task, and considered the aesthetics of
this task under two quite different formulations: building
fast algorithms that find solutions to ethical dilemmas (as
well as explanations for those solutions), and building slow
algorithms that reason using law codes to find the correct an-
swer to a serious case, and offer detailed reasoning to justify
their decisions. We have suggested that aesthetic judgments
appear at multiple steps in this process, and in particular,
that good design of legal codes can enable efficient decision
making and more transparent reasoning.

We also briefly discussed the actual process of searching
for such ethical principles. A key issue is that they must
not be assessed solely on the basis of novelty, typicality
and value as measured by (domain-agnostic) complexity, but
(domain specific) characteristics such as fairness and real-
world suitability must also be considered; failing to account
for the latter creates the possibility of developing ostensi-
bly beautiful philosophical models that are monstrous in the
real world. While complexity-theoretic-based aesthetics can
play a role in the development of ethical systems, these sys-
tems must still generalize from the decisions of extant judg-
ment systems and case law, and they must display straight-
forward properties (such as consistency, explainability and
generalizability) that are found in real-world systems.

Interestingly, this multiple-step process of looking for eth-
ical answers, and then looking for ethical systems, suggests

3For example, something like this: https://www.
moralmachine.net

that we could also go out one further level, to the aesthetic
analysis of the procedure with which we search for ethical
systems. That is, we can have an aesthetics of ethical deci-
sions and an aesthetics of ethical systems, but we can also
assess the aesthetic value of the process of building systems
that build ethical systems. Much as with the existing dilem-
mas of this paper, incorporating novelty, value, typicality
and feasibility into such an assessment will likely not be an
easy task.

Conclusions
In this work, we have looked at the question of ethical deci-
sion making and the design of ethical frameworks, to see if
computational creativity offers different advice for this pro-
cess than do other existing frameworks. We used the frame
of Ventura and Gates, who first proposed this aesthetic un-
derstanding of the process of finding good ethical principles,
and combined it with the domain-agnostic aesthetic value
measures of Mondol and Brown, which focus on conditional
computational complexity and efficiency of summarization
as measures of novelty and value. We argue that we might
use such an approach to aesthetics on both the process of
making ethical decisions and the process of designing eth-
ical systems, but in practice the challenges with comput-
ing these measures, and the potential that a decision maker
might build something ostensibly aesthetically beautiful, but
in practice monstrous, still remain. Putting this whole ap-
proach into practice will require much further work.

We note, finally, that while our motivation for consider-
ing these questions has been the question of developing eth-
ical systems and the computational creativity of this ques-
tion, there is ultimately nothing fundamentally ethics-based
about many of our arguments; the same types of arguments
likely hold for developing computationally creative systems
that parent children or train pets, that make theological ar-
guments, or that otherwise generalize reasoning from a large
case set, or make quick decisions. We look forward to both
generalizing these results and finding ways to make them
more practical.
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Abstract

Should we pursue a state-of-the-art in Computational
Creativity? The activity of ‘SOTA-chasing’, or work-
ing towards beating performance standards achieved
by the current state of the art, is typical in many re-
search disciplines relevant to computational creativity
such as Machine Learning or Natural Language Gener-
ation (SOTA). Computational Creativity (CC) research
does not typically engage with SOTA-type benchmarks.
Consequently, it becomes harder to objectively identify
high-performing systems in a creative domain (area of
creative application), despite our research efforts build-
ing significant bodies of work in several domains. This
paper critically engages with the use of SOTA in other
related disciplines and explores the idea of working
with SOTA-based evaluation in CC. The paper offers
recommendations for (careful) use of SOTA to invigo-
rate and direct CC progress.

Introduction
Should we pursue a state-of-the-art in Computational Cre-
ativity? In many AI disciplines related to computational cre-
ativity, typical research practice includes some evaluation
experiments to compare research results to a ground truth
set of results derived from some comparable benchmark or
leading system in the same research area, referred to as the
current state-of-the-art (SOTA). In Computational Creativ-
ity, for various reasons, the idea of a SOTA has frequently
been dismissed as irrelevant and/or unachievable, despite
our research efforts building significant bodies of work in
several domains (areas of creative application). The conse-
quence is that it becomes harder to identify which are the
leading systems in a creative domain, in terms of inspira-
tion or in terms of representing the bar that has been set for
achievements and knowledge advances in computational ap-
proaches to creativity in these domains.

SOTA and its use in AI research
SOTA stands for State Of The Art, and refers to some lead-
ing benchmark or system for a particular task. In many AI
disciplines relevant to computational creativity, such as Ma-
chine Learning or Natural Language Generation, it is typ-
ical to perform at least some evaluation in comparison to
a ground truth baseline or set of results derived from the

current state-of-the-art (SOTA) for that research task. This
has become standard practice, to the extent that the acronym
SOTA has become a recognised noun in AI research vocabu-
lary. SOTA is typically measured objectively, either numer-
ically or as a percentage, via metrics that have come to be
recognised as appropriate for that task. Common metrics in-
clude accuracy and specificity, statistical tests, or F-scores
(a combinatory measure of precision and recall).

What has also become standard practice in such disci-
plines is the activity of ‘SOTA-chasing’, or trying to better
the performance of the current state of the art. This is typi-
cally encouraged. The guidelines for the International Joint
Conference in Artificial Intelligence (IJCAI), a leading AI
conference,1 refer its reviewers to guidance (Blockeel and
Davis 2022) that asks reviewers to evaluate experiments in
a paper based on various criteria such as “‘Are competitors
SOTA? Are all competitors chosen? If not, how have they
been selected? Are the conclusions aligned with this selec-
tion? ... this information is relevant for assessing how con-
vincing the experimental results are” (Blockeel and Davis
2022, slide 41).

Historical perceptions of SOTA in CC
Computational Creativity is not a discipline where we tend
to record or measure any state-of-the-art. Within the field,
objective evaluation metrics based on the product of a cre-
ative system such as Ritchie’s empirical criteria (Ritchie
2007), once quite popular, are now not used very often. Such
objective evaluation was criticised for only evaluating the
product of creative systems, ignoring the process by which
they operated (Colton 2008), and other of the Four Ps of
creativity (Jordanous 2016) (Producer, Press, Product, Pro-
cess). Ritchie’s criteria also required some agreement on
domain-appropriate choices of threshold values and param-
eters for the criteria. However we have seen Ritchie’s crite-
ria deployed with some success for comparative evaluation
in the areas of narrative generation (Pereira et al. 2005) and
music improvisation (Jordanous 2012).

Other generic evaluation metrics or frameworks exist such
as FACE (Pease and Colton 2011) and the Creative Tripod
(Colton 2008), or domain-specific evaluation metrics such
as O’Donoghue’s statistical tests for analogies (O’Donoghue

1https://ijcai-22.org/faqs/
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2007). These tend to be implemented using subjective
judgements, difficult to replicate consistently for compari-
son over time due to possible variability in human opinion.

SOTA: Meaningless numbers?
If we did try to deploy some sort of objective metric for
evaluation in CC, what would the measurements actually
represent? Wouldn’t numeric measurements or percentages
be meaningless? Not necessarily. Objective metrics have
been proposed that could be used for comparative evalu-
ation against some established baseline, such as the work
by Bossou and Ackerman (2021), or the (to-date, unused)
IDEA model (Pease and Colton 2011) and previous tests
proposed by Pease, Winterstein, and Colton (2001). It is
also not impossible to consider ways in which methods such
as FACE and the Creative Tripod could be operationalised in
objective metrics. The SPECS evaluation methodology (Jor-
danous 2012) also opens up ways for evaluative tests to be
defined relative to a definition of creativity, which could be
defined objectively. We have seen specific uses of evaluation
metrics defined for particular domains (areas of creativity),
such as the use of scores for story plots (Pérez y Pérez 2014).

Comparative evaluation as a blunt tool in CC?
What does it mean to measure or compare one system
against each other? It seems unrealistic to pursue the de-
vising of universal SOTA benchmarks that might cover all
different types of creative systems. But that should not stop
us in our tracks. Fields such as Machine Learning use SOTA
benchmarks to compare applications or algorithms that work
on roughly the same task, that can be directly compared.

Do we have enough effort in particular applications of cre-
ativity to have a meaningful domain-specific SOTA bench-
mark for that area? While we have seen arguments for (and
evidence of) comparative evaluation being useful to measure
progress (Jordanous 2012, e.g.), a common feeling in ear-
lier days in CC was that it does not make sense to evaluate
systems against each other, as we did not have enough com-
parable systems to establish a state of the art. CC has now
reached a stage, however, where there are various applica-
tion domains that are well represented in terms of different
systems (Loughran and O’Neill 2017).

A more subjective objection might be that it feels to some
extent inappropriate to have a system identified as best-
performing in a specific domain of creativity, due to the wide
variety of ways in which creative systems can excel even if
performing comparable tasks. (We should acknowledge that
this has not stopped the existence of human-equivalent com-
petitions of the ‘best’ artist, or story-teller, or idea generator,
for example, nor the monetary valuing of creative outputs.)

But without recognising the achievements of some sys-
tems as superior to others, how can we hope to learn from
the systems that do outperform others? Let us consider the
potential benefits of some kind of SOTA-based evaluation.

Potential benefits of SOTA evaluation
If we could use SOTA-based evaluation in CC, would the
field benefit? In other words, if we could establish met-

rics that captured a state-of-the-art baseline in various do-
mains that are well-covered by Computational Creativity re-
search, such as narrative generation, visual art generation,
or music composition, then what would we gain from test-
ing new systems in those domains against the current state-
of-the-art? Learning from other disciplines that use SOTA,
we could have tangible ways to measure progress in partic-
ular research domains (Lewis and Crews 1985). This might
help computational creativity research venues to establish
greater credibility within more general AI conferences such
as IJCAI, ECAI, AAAI and so on, where our typical papers
may not currently be seen as containing enough rigour due
to lack of comparative experiments against a SOTA. Perhaps
more importantly, if we could establish SOTA for a partic-
ular CC domain, then this would be transferable to those
working outside of the direct CC community. Looking at
conferences in the remit of computational creativity such as
ISMIR (music) or ACL (language), it is still possible to have
papers accepted with ‘hand-wavy’ justifications of a system
being considered creative with little or no rigorous evalua-
tion of that claim of creativity; because (within my own sub-
jective experience) there is little adoption of CC’s creativity
evaluation metrics outside of the CC field itself.

Does ‘SOTA-chasing’ give us a clearer idea of the best
current systems in a particular area? And when a new sys-
tem represents a significant advance? After all, our current
ways of identifying the current state of the art are subjective,
hence vulnerable to misinterpretation and bias.

There is of course significant pressure to get appropriate
metrics of strong performances in a creative domain. Pursu-
ing a SOTA benchmark for a domain could help us establish
objective metrics for evaluation, available for reuse to com-
pare systems (typically considered good practice in terms of
establishing how systems represent advances in knowledge).

Potential risks of SOTA evaluation
Use of SOTA evaluation in AI/ML areas is common, and
accompanying this is the risk of getting only minor incre-
mental advances - where papers could be considered ready
to publish if they advance SOTA by a minuscule percentage.
At the other end of this extreme, we are a field which typ-
ically encourages innovation in method and approach even
if there is not a tangible effect on results; we do not want to
be in the situation where a system that does not beat SOTA
becomes almost unpublishable.

‘SOTA-chasing’ as a research activity has been criticised
by some (Church and Kordoni 2022; Koch et al. 2021).
One criticism of particular relevance to CC is the question of
what approach to take if we do not have a direct or obvious-
fit metric to use. There is no one ‘test for creativity’. In
this circumstance, we can examine what another similar field
does. Thanks to the likes of the GPT-* transformer systems
et al, deep learning-based text generation has seen phenome-
nal progress over the past few years. Typically, such systems
need to evaluate output at scale, with large data output to
evaluate that needs automated metrics. Lacking a specific
automatable metric for evaluating generated text (a prob-
lem familiar to those working with creative language gen-
eration), it is common to see the machine translation metric
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BLEU used as a proxy for evaluating the success of a sys-
tem in learning from some input data to generate some out-
put data. In other words, such a metric is considered to be
an approximate evaluation of success: ‘good enough’ to be
adopted in order to facilitate progress.

What happens if we use the wrong metrics, or fail to
evolve or adapt our metrics over time as needed? The re-
liability of experimental research depends heavily on how
research findings are derived from scientific experiments
(Ioannidis 2005). Does research go in the wrong direction?
Taking our example of transformers research, only time will
tell, but the phenomenal progress over the past few years
seems to suggest that the adoption of a ‘good enough’ proxy
metric has been helpful in allowing research to progress. In
such situations, community self-awareness of the metric’s
status as a proxy, not a direct measurement, is critical.

Recommendations for use of SOTA in CC
Would SOTA chasing be enough to replace other evaluation?
No, probably not, particularly as this would reverse progress
in creativity evaluation and risk us forgetting what we have
learned about evaluating our creative systems (see the His-
torical Perceptions discussion above). But it could comple-
ment what we are already doing.

We should acknowledge that even in disciplines where
SOTA-based evaluation has come to be typical, it is not
mandatory for research success and such research communi-
ties do not always advocate for experiments referencing and
comparing to SOTA. Although, as remarked above, the IJ-
CAI conference refers reviewers to recommendations (Bloc-
keel and Davis 2022) to check if experiments compare a
piece of work against SOTA, the same guidance also states
what to do if you are reviewing a paper where there is:

“ “No experimental comparison to SOTA”. Ask your-
self: is it needed?

• In 95% of cases: yes. But be aware of that 5%.
• e.g.: theoretically very innovative work, novel in-

sights, ... may be valuable even if an implementa-
tion or experimental comparison is not possible at
this time”

(Blockeel and Davis 2022, slide 39)
The Historical perceptions section above reflects on how

we could implement SOTA metrics in ways which do not fo-
cus just on measurable aspects of creative output, but which
measure process and other Four P perspectives. In some
contexts, a SOTA benchmark would be establishable with
current metrics (fine-tuned towards some objective metric,
as discussed above). In fact, it could be argued that this has
already happened in the context of poetry evaluation (Pereira
et al. 2005). We could delve into the statistical and empiri-
cal measurements and tests common in AI and data science,
and see what could be used, as for example in O’Donoghue
(2007). There are other measures of subjective concepts that
we could learn from and perhaps re-appropriate for SOTA
metrics, for example, Seth’s measure of autonomy and emer-
gency (Seth 2010).

Proposal: CC-eval competition
In research areas such as music Informatics, NLP, and mul-
timedia computing, as well as (even closer to home for CC)
procedural content generation, research progress is aided by
evaluation against benchmarks, as part of regular (typically
annual) competitions. See for example:
• MIREX (music)
https://www.music-ir.org/mirex/

• SemEval (NLP)
https://semeval.github.io/

• MediaEval.org (multimedia computing)
http://www.multimediaeval.org/

• GDMC - Generative Design in Minecraft (PCG)
http://gendesignmc.engineering.nyu.edu/

– (and GDMC’s Chronicle for games narratives)
Does CC need a CC-eval competition like MIREX, Se-

mEval, and so on? We have in the past seen curated ex-
hibitions in past ICCCs, so we have an established vehicle
within which to host such an event each year. And let it be
remembered that we do already do competitions, or at least
those of us working in PCG do. The GDMC competition
has seen considerable growth in the few years it has been
operating, acting as a high visibility route into established
and well-defined PCG challenges. Treating GDMC as a test
case, it’s important to recognise that the use of metrics based
on human judgement requires a lot of effort on the part of
judges. This has led to exciting work with GDMC organis-
ers exploring automatable metrics (Hervé and Salge 2021)

How could a CC-eval competition work? This could fol-
low a MIREX-like model of proposed tasks each year, many
of which may re-occur from year to year. In this model, the
task proposers also propose evaluation metrics that are ap-
plied to all entries (and any ‘inspiring set’/training data).

Such a competition could provoke interest in pre-defined
tasks (as GDMC and SemEval/MediaEval/MIREX do), with
potential benefits of attracting new researchers and also
keeping established researchers engaged (and challenged by
the ‘new kids on the block’!) Such competitions have seen
their tasks form the basis of student projects at undergradu-
ate level and above. They have been useful for community
spirit building and the establishment of GroundTruth metrics
by those working directly in a creative domain who feel con-
fident enough to propose and run the task that year. Metrics
could be examined and used every year that a task runs.

This proposal comes with downsides, of course. We
would need to tackle many challenges outlined in this paper,
particularly if proposing a task. Initial task metrics would
require some very careful thinking, ideally crowdsourcing
via experts in that CC domain. For subjective evaluation
metrics, could we get enough commitment from judges?
MIREX have in the past struggled with this, for example.
There would be considerable obstacles in terms of set-up
effort, time commitment, organisational infrastructure and
reliance on volunteers, at a time when many of us are ex-
hausted and burnt-out from pandemic related uncertainties
and workloads. But perhaps this would help us come to-
gether to reinvigorate that part of our community spirit that
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is so hard to replicate if not meeting every year in person, as
well as create an exciting entry point for newcomers?

Conclusions
The field of Computational Creativity has thus far resisted
the idea of establishing and bettering a current state-of-the-
art target for specific domains. SOTA-chasing has become
the norm in various sub-fields of AI such as Machine Learn-
ing (ML) or Natural language Generation (NLG). As com-
mented above, recent advances in NLG provide an example
of the remarkable progress that can be facilitated through us-
ing SOTA benchmarks for targeted improvement, even when
metrics are not as clearly identifiable as in tasks which can
be measured using statistical or information-theoretic mea-
sures.

My argument in this paper is that meeting or beating
SOTA in CC is not the requirement it is billed to be in ML,
and it also is not the devil it could sometimes be perceived to
be in CC. I suggest CC research has reached a point of matu-
rity where we can start doing it, to help us track progress in
each creative domain that we have built up a body of work
in. This will help build the field, as long as we can learn
from those in related disciplines and avoid weakening our re-
search due to falling into the traps identified by Goodhart’s
law - “when a measure becomes a target, it ceases to be a
good measure” (Oxford Reference retrieved May 2022).2

There are many pitfalls to be aware of. What I pro-
pose here should not replace more substantial evaluation, but
could complement it. Pursuit of SOTA metrics could help
us in the pursuit of evaluation metrics, as well as adding a
new way to target and track progress and even help build
our community further. I posed a possible route forward of
a CC-Eval competition, as a Grand Challenge for CC, in-
spired by the likes of MIREX and SemEval (but I should
stress this is one of many possible routes forward).

We should acknowledge that metrics for measuring SOTA
in a creative domain may need to change over time, to avoid
the criticism that credibility of a scientific field of research
is weakened by lack of flexibility for that field to self-correct
(Ioannidis 2012). As one reviewer of this paper commented,
we also need to be familiar the meanings and intentions be-
hind the metrics we use, to critically appreciate the levels of
meaningfulness and informativeness of results.

Our research community (and domain sub-communities)
contain enough domain expertise to recognise and collec-
tively establish the most appropriate metrics for a creative
application area. As a community, we have a history
of engaging enthusiastically with self-reflection and self-
correction (see for example the paper types in the Short
Paper call for this conference). We also have a history of
considering evaluation of creativity deeply, including met-
rics for meta-evaluation that we could apply to our tests for
SOTA benchmarks (Jordanous 2014).

2The excellent comments from the anonymous reviewers, in-
cluding the reference to Goodhart’s law, demonstrate how CC re-
searchers can - and do - engage very productively with this debate,
even if one does not agree with the arguments I present here.

What we do need, to progress this further, is for people
working in specific areas of computational creativity to pro-
pose, use, evolve and convalesce onto some SOTA metrics
for those areas. These metrics do not need to be perfect; we
know this is pretty much impossible in many creative do-
mains. However careful choosing of ‘good-enough’ metrics
as a proxy for that creative area - as the text generation com-
munity have done - opens doors for tracking and furthering
progress in various domains of Computational Creativity.
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Abstract 

AI large language models have (co-)produced amazing 

written works from newspaper articles to novels and 

poetry. These works meet the standards of the standard 

definition of creativity: being original and useful, and 

sometimes even the additional element of surprise. But 

can a large language model designed to predict the next 

text fragment provide creative, out-of-the-box, responses 

that still solve the problem at hand? We put Open AI’s 

generative natural language model, GPT-3, to the test. 

Can it provide creative solutions to one of the most 

commonly used tests in creativity research? We assessed 

GPT-3’s creativity on Guilford’s Alternative Uses Test 

(AUT) and compared its performance to previously 

collected human responses on expert ratings of 

originality, usefulness and surprise of responses, 

flexibility of each set of ideas as well as an automated 

method to measure creativity based on the semantic 

distance between a response and the AUT object in 

question. Our results show that -on the whole- humans 

currently outperform GPT-3 when it comes to creative 

output. But, we believe it is only a matter of time before 

GPT-3 catches up on this particular task. We discuss 

what this work reveals about human and AI creativity, 

creativity testing and our definition of creativity.  

 Introduction 

A New York Times magazine headline (April, 2022) states 

“OpenAI’s GPT-3 and other neural nets can now write 

original prose with mind-boggling fluency…”. Reactions to 

this on Twitter and in blogposts vary, but many converge on 

the sobering belief that large language models (LLMs) are 

somewhat of a hype and err on the side of ‘stochastic 

parrots’, a reference to the computational linguists Bender 

et al. (2021) comments on the uses and dangers of large 

language models. We could easily take this a stretch further 

and argue LLMs have not achieved general artificial 

intelligence (Mitchell, 2021; van der Maas, Snoek and 

Stevenson, 2021), much less “truly” creative artificial 

creativity.  

 In daily life, such LLMs, and GPT-3 in particular, have 

proved very useful in (co-)creating phenomenal works: 

newspaper articles (e.g., GPT-3, 2020), novels (e.g., Green, 

2020), and poetry (e.g., Aalho, 2021). The first author even 

has students who have admitted to using LLMs to help write 

their theses. These works meet the criteria of the standard 

definition of creativity: being original and useful, and 

sometimes even the additional element of surprise (Runco 

and Jaeger, 2012). But, how much creative thinking can be 

attributed to such LLMs? Can such large language models 

really produce the creative insights that humans are capable 

of? 

 In this study we put one particular LLM’s creativity to the 

test, OpenAI’s GPT-3 (Brown et al., 2020). We compare its 

performance to that of humans on the popular Alternative 

Uses Test (AUT, Guilford, 1967). On the AUT people are 

asked to produce as many original uses for an everyday 

object as possible (e.g., a ‘brick’ can be used as a 

‘paperweight’ or ‘to break a window’). Responses to the 

AUT are generally scored in terms of quality, such as the 

originality and utility of each generated idea, often rated by 

two or more experts using the Consensual Assessment 

Technique (Baer and McKool, 2009).  In this study, we 

examine these two quality dimensions, where there is 

generally a trade-off between originality and utility 

(Rietzchel, Nijstad and Stroebe, 2019, as well as the surprise 

elicited by AUT responses as suggested by Boden (2004) 

and Simonton (2018). Surprise, where a response violates 

expectations and elicits interest, may be of particular interest 

when examining AI creativity in the context of LLMs. 

Given that LLMs are trained on nearly all the text on the 

Internet to -in essence- predict a text fragment given only 

the surrounding text, it would seem difficult for an LLM to 

generate a surprising, out-of-context response to the creative 

uses question. 

 A more recent method of gauging how creative a response 

is, is to measure the semantic distance of the response from 

the AUT object, a process automated with the SemDis 

software (Beaty and Johnson, 2021). SemDis measures are 

related to expert ratings of creativity and can be used as a 

proxy for creativity scoring (Beaty and Johnson, 2021).  

 Another method of analyzing a set of responses is focused 

more on the response process (Nijstad et al., 2010). Do most 

responses come from one conceptual space (e.g., using a 

brick as a paperweight, doorstop and bookend; so, to hold 

things in place)? Or is the response pattern more flexible, 

where numerous conceptual spaces are traversed (e.g., using 

a brick as a paperweight, sidewalk chalk and hot water 

bottle)? Hass (2017) found that whereas people often 
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respond in clusters on semantic fluency tasks, such as listing 

as many animals as they can within a minute (e.g., naming 

pets, then naming farm animals, then zoo animals, etc.), 

people tend to use a more flexible strategy on the AUT. With 

GPT-3 being a predictive model, will it show a similar 

flexible response pattern?  

 To our knowledge this study represents the first 

systematic psychological assessment of a LLM’s creativity. 

We compare how humans and GPT-3 score in terms of 

expert ratings of originality, usefulness and surprise of 

responses, automated semantic distance scoring  as a proxy 

for creativity, and more holistically examine the flexibility 

of responses within a response set.  

Methods 

Sample 

The human sample comprised of previously collected data 

of 823 responses from 42 students from the University of 

Amsterdam. Only data from students fluent in Dutch, the 

language of the study, were invited to participate. Written 

informed consent for participation was obtained and 

participants received study credits for participation. The 

data collection and subsequent re-use of the data was 

approved by our Psychology Department’s Ethical Review 

Board (ERB number 6990).  

The GPT-3 sample comprised of 144 runs of the AUT using 

the instructions and parameter settings described under 

Materials and Procedure.  

Materials 

Alternative Uses Task for humans 

We used a computerized version of the Alternative Uses 

Test (AUT; Guilford, 1967). Participants were given the 

name of an object and instructed to “Think of as many 

creative uses for” the object as possible within a two minute 

period. In this study we use the data from the “Book”, 

“Fork”, and “Tin Can” objects. Participants were instructed 

to “Type each solution in the text box below and press Enter 

to add it to the list.”. The solutions remained on the screen 

until the time limit was reached. 

Alternative Uses Task for GPT-3 

We used Open AI’s API to request responses from GPT-3 

for each of the same objects administered to humans: 

“Book”, “Fork”, and “Tin Can”.  

 Before collecting GPT-3’s AUT data for this study, we 

conducted two Monte Carlo experiments to determine: (1) 

which GPT-3 engine performed best on the AUT and (2) 

which prompt and parameter settings let to the most valid 

responses (i.e. responses that answered the question, did not 

contain nonsense) and provided the highest snapshot 

creativity scores (Silvia et. al., 2008). See osf.io/vmk3c/ for 

the code, data and results of our optimization studies.  

 Based on these results we administered the AUT to GPT-

3’s davinci-002 engine as follows. The instruction was: 

“What are some creative uses for a [book|fork|tin can]? The 

goal is to come up with creative ideas, which are ideas that 

strike people as clever, unusual, interesting, uncommon, 

humorous, innovative, or different. List [9|10] creative uses 

for a [book|fork|tin can].” The most important parameter 

settings that differed from the default were the temperature 

(sampled from range .65 - .80), the frequency penalty (set to 

1), and the presence penalty (also set to 1). We collected 820 

responses from GPT-3 over two sessions. 

Procedure 

Before we could score the responses we needed to make  

sure the judges could not easily distinguish between human 

and GPT-3 responses. First, we translated the 823 Dutch 

language human responses to English so that all responses 

were in the same language. Second, we removed 

characteristic punctuation from the GPT-3 data (e.g., 

numbered responses, period at the end of each line). Third, 

we systematically removed common phrases such as “Use a 

{object} to”, “A {object} can be used to make”, which is a 

step we usually take to make the rating of responses easier 

for human judges, which also happened to occur more often 

in the GPT-3 data.   

 After ensuring that GPT-3 and human responses were  

indistinguishable in all regards except main content, two 

trained judges rated each response on originality, utility, and 

surprise using a 5-point scale (from 1 = “not original | useful 

| surprising” to 5 = “highly original | useful | surprising”) 

according to pre-specified scoring protocols. Judges were 

blinded to whether or not the responses stemmed from 

humans or GPT-3. The inter-rater agreement (assessed for 

approximately 10% of the 1656 responses) was ICC=.57 for 

originality, .68 for utility and .67 for surprise, which is 

considered fair to good. After removing invalid and 

incomplete responses (which were also excluded from 

analyses), the ICC’s were .78 for originality, .70 for utility 

and .79 for surprise, which is considered good to excellent.  

 We computed the semantic distance (i.e., 1 – cosine 

similarity) between the vector embeddings for each 

response and the AUT object in question, which serves as a 

proxy for creativity (Beaty and Johnson, 2021), using the 

spaCy library and en_core_web_lg semantic space.  

 We also computed the flexibility of a response set. This 

was done by categorizing each response into one or more 

pre-defined categories and then dividing the number of 

categories in a response set by the number of responses in 

total in the  response set. For example, if five responses were 

given to the AUT fork and each of these responses fell under 

the categories of “utensil” or “make music”, then the 

resulting flexibility score would be 2 categories / 5 

responses = 0.4 Three trained judges categorized the 

responses (one judge per object), by assigning each response 

to one or more pre-defined categories.  
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 All data, code, Dutch to English translations, data 

cleaning steps, rating protocols, and categorization 

protocols are available on the Open Science Foundation 

website for this project: http://osf.io/vmk3c/.  

Results 

In total, after data cleaning, we analyzed 774 responses from 

42 humans and 781 responses from 144 GPT-3 runs. All 

data and analysis code can be found on http://osf.io/vmk3c/. 

1. Use a tin can as a mirror 
2. to create toys 
3. to create jewelry 
4. as wallpaper as long as you 

stick enough next to each other 
5. to throw 
6. as a knife 
7. as a key ring with the clip 

from the can 
8. As a rattle with the clip in tin 
9. as art 
10. As a reminder of Andy 

Warhol 

1. Plant a herb garden in tin 

cans 
2. Make a wind chime out of 

tin cans and beads 
3. as candle holders for an 

outdoor party 
4. Create a mini Zen garden 

in a tin can 
5. Make a robot out of 

recycled materials, including 

tin cans 
6. Turn a tin can into a night 

light 

Figure 1. Two sets of responses to the AUT “Tin Can” task. Can 

you guess which one was given by a human and which one by 

GPT-3?1  

Do humans or GPT-3 provide more original, useful or 

surprising responses? 

We used hierarchical regression models to predict 

originality, utility and surprise ratings and the semantic 

distance scores at the response level, while accounting for 

correlations between responses within a person or a GPT-3 

run. The predictors were a human versus GPT-3 contrast 

plus the AUT object (3 levels). 

 As can be seen in Figures 2, 3 and 4, our results showed 

that humans had higher originality (β=.17, SE = .06, z = 

2.91, p = .004) and surprise (β=.14, SE = .07, z = 1.96, p 

= .050) ratings as well as larger semantic distance scores 

(β= .10, SE = . 02, z = 5.45, p<.001) than GPT-3. Whereas 

GPT-3 had higher utility ratings (β=-.55, SE = .06, z = -8.52, 

p<.001), see Figure 5. In both groups, originality and utility 

were negatively correlated (r = -.56 for humans and r = -.61 

for GPT-3).  

Do humans or GPT-3 show more flexibility in their 

response patterns? 

We computed flexibility scores for both humans and GPT-3 

on the AUT tin can data. Humans had, on average, higher 

flexibility scores (F(1, 85) = 5.53, p = .021). However, as 

can be seen in Figure 6, GPT-3’s flexibility scores show 

greater variance. GPT-3’s flexibility scores were not related 

to temperature (r = .04, p = .80). 

                                                 

1
 In Figure 1, the human responses are on the left and GPT-3’s 

responses are on the right. 

 

Figure 2. Human versus GPT-3 originality ratings. Human 

responses are rated to be more original.  

 

Figure 3. Human versus GPT-3 surprise ratings. Human responses 

are rated to be more surprising, but it’s a close call.  

 

Figure 4. Human versus GPT-3 on semantic distance between 

response and AUT object embeddings, a proxy for creativity.  
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Figure 5. Human versus GPT-3 utility ratings. GPT-3 responses are 

rated to be more useful.  

 

Figure 6. Human versus GPT-3 flexibility scores. Humans have a 

higher mean flexibility score, but GPT-3’s scores show greater 

variance.  

Discussion 

This study aimed to put GPT-3 creativity to the test using 

the popular Alternative Uses Test (AUT, Guilford, 1967), 

where participants have to come up with creative uses for an 

everyday object. We compared a group of psychology 

students’ performance to different runs with GPT-3 using 

the criteria creativity researchers generally assess on the 

AUT: the originality and usefulness of responses, as well as 

the often discounted component, surprise. Human responses 

were rated higher on originality and surprise. Similarly, the 

semantic distance scores between the AUT object and a 

response, which can be considered a proxy for creativity 

(Beaty and Johnson, 2021), were greater for human 

responses. However, GPT-3’s responses were rated as more 

useful. In both groups, the originality-utility trade-off was 

apparent. In general, originality weighs in more when 

assessing creativity (Diedrich et al., 2015), so in this case 

the human responses would be considered more creative.  

 We also compared how flexible the response sets of 

humans and GPT-3 were, where flexibility was computed 

by dividing the number of categories present in the response 

set by the total number of responses. So, if a response set 

contained five responses stemming from three categories 

then the flexibility score was 3/5. Humans had higher 

flexibility scores, but there was greater variance in GPT-3 

flexibility scores. It is unclear why GPT-3’s flexibility 

scores are more variable; it is not a function of the 

temperature. We leave a more thorough investigation of the 

flexibility of responses for future work. 
 The main limitation of our study is the question of 

whether the Alternative Uses Task, a divergent thinking 

task, even measures creativity (Runco, 2008; Stevenson, 

Baas and van der Maas, 2020). Even assuming that it only 

measures one aspect of creativity, we believe that 

comparing AI and human performance can provide us with 

unique insights into what creativity is and how to best 

measure it.  

 Another limitation is that our Monte Carlo experiments to 

determine the best combination of instructions and 

parameters for GPT-3 to provide optimal creative responses 

were not as fine-grained as we would have liked. And, on 

the other hand, when we administered the Remote 

Associates Test (Mednick, 1968) and various creative 

insight problems (e.g., the egg problem, Sternberg and 

Davidson, 1982) we received responses that seemed to have 

been taken verbatim from journal articles or manuals. It 

appears likely that many creativity tests were present in 

GPT-3’s training data. 

 A final limitation concerns our human sample, not only is 

it small, limited to college students, but it also consisted of 

native Dutch speakers. So, the results of this pilot study do 

not necessarily generalize to most humans. Also, in order to 

better compare GPT-3’s responses to those of our human 

sample we had to translate the Dutch responses to English 

before scoring and analyzing the data. Some creative 

subtleties may have been lost in translation. Furthermore, 

humans received only minimal instructions, whereas we 

optimized instructions and parameters for GPT-3. Was it a 

fair fight? In future work we plan to administer the AUT and 

other newly developed creativity tasks with optimal 

instructions for both humans and AI and collect data in the 

same language.  

 At this point in time, we can conclude that GPT-3’s 

performance on the AUT is not as creative as this sample of 

psychology students. But, at the same time GPT-3’s 

performance is impressive and in many cases appears 

human-like. A Turing test is a logical next step in this line 

of research. We can imagine a future in which GPT-3 and 

other generative LLMs responses cannot be distinguished 

from humans, although the creative process will be 

different. This is where the question arises as to the role of 

process in defining what is creative and what is not; we 

agree with Boden (2004) and Simonton (2018), that the 

process matters, e.g., a brute-force process is not creative, 

but what is? We hope that this continued line of work will 

provide insight into what it means to be creative, and 

perhaps even what it means to be human. 

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

167



References 

Aalho, J., 2021. Aum Golly – poems on humanity by an 

artificial intelligence. https://aumgolly.fi/english/  

Baer, J. and McKool, S.S., 2009. Assessing creativity using 

the consensual assessment technique. In Handbook of 

research on assessment technologies, methods, and 

applications in higher education (pp. 65-77). IGI Global. 

Beaty, R.E. and Johnson, D.R., 2021. Automating creativity 

assessment with SemDis: An open platform for computing 

semantic distance. Behavior research methods, 53(2):757-

780. 

Bender, E.M., Gebru, T., McMillan-Major, A. and Mitchell, 

S., 2021, March. On the Dangers of Stochastic Parrots: Can 

Language Models Be Too Big?. In Proceedings of the 2021 

ACM Conference on Fairness, Accountability, and 

Transparency. 610-623. https://doi.org/10.1145/3442188. 

3445922  

Boden, M. 2004. The creative mind: Myths and 

mechanisms. Routledge. 

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., 

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., 

Askell, A. and Agarwal, S., 2020. Language models are few-

shot learners. Advances in neural information processing 

systems, 33, pp.1877-1901.  https://arxiv.org/abs/2005. 

14165 

Diedrich, J., Benedek, M., Jauk, E. and Neubauer, A.C., 

2015. Are creative ideas novel and useful?. Psychology of 

Aesthetics, Creativity, and the Arts, 9(1), p.35-40. 

https://doi.org/10.1037/a0038688 

GPT-3. 2020. A robot wrote this entire article. Are you 

scared yet, human? The Guardian. https://www. 

theguardian.com/commentisfree/2020/sep/08/robot-wrote-

this-article-gpt-3 

Green, O., 2020. Bob The Robot: Exploring the Universe - 

A Cozy Bedtime Story Produced by Artificial Intelligence. 

Stolkholm: Olle Green.  

Guilford, J.P., 1967. Creativity: Yesterday, today and 

tomorrow. The Journal of Creative Behavior, 1(1):3-14.  

Hass, R.W., 2017. Semantic search during divergent 

thinking. Cognition, 166, pp.344-357. https://doi.org/ 

10.1016/j.cognition.2017.05.039 

Mednick, S.A., 1968. The remote associates test. The 

Journal of Creative Behavior. 2:213-214. 

Mitchell, M., 2021. Abstraction and analogy‐making in 

artificial intelligence. Annals of the New York Academy of 

Sciences, 1505(1):79-101. https://doi.org/10.1111/nyas. 

14619  

Nijstad, B.A., De Dreu, C.K., Rietzschel, E.F. and Baas, M., 

2010. The dual pathway to creativity model: Creative 

ideation as a function of flexibility and persistence. 

European review of social psychology, 21(1), pp.34-77. 

https://doi.org/10.1080/10463281003765323  

Rietzschel, E. F., Nijstad, B. A., and Stroebe, W. 2019. Why 

great ideas are often overlooked. The Oxford handbook of 

group creativity and innovation, 179-197. 

Runco, M.A., 2008. Commentary: Divergent thinking is not 

synonymous with creativity. Psychology of Aesthetics, 

Creativity, and the Arts, 2(2):93–96. https://doi.org/10. 

1037/1931-3896.2.2.93 

Runco, M.A. and Jaeger, G.J., 2012. The standard definition 

of creativity. Creativity research journal, 24(1):92-96. 

https://doi.org/10.1080/10400419.2012.650092  

Silvia, P.J., Martin, C. and Nusbaum, E.C., 2009. A 

snapshot of creativity: Evaluating a quick and simple 

method for assessing divergent thinking. Thinking Skills and 

Creativity, 4(2):79-85. https://doi.org/10.1016/j.tsc.2009. 

06.005 

Simonton, D.K., 2018. Defining creativity: Don't we also 

need to define what is not creative?. The Journal of Creative 

Behavior, 52(1), pp.80-90. https://doi.org/10.1002/jocb.137 

Sternberg, R.J. and Davidson, J.E., 1982. The mind of the 

puzzler. Psychology Today, 16(6):37-44. 

Stevenson, C.E., Baas, M. and van der Maas, H., 2021. A 

minimal theory of creative ability. Journal of Intelligence, 

9(1):9. https://doi.org/10.3390/jintelligence9010009 

van der Maas, H.L., Snoek, L. and Stevenson, C.E., 2021. 

How much intelligence is there in artificial intelligence? A 

2020 update. Intelligence, 87:101548. https://doi.org/ 

10.1016/j.intell.2021.101548 

Acknowledgements 

We thank Emma van Lipzig for her contribution to the data 

categorization. This research was partly supported by the 

Jacobs Foundation Fellowship 2019-2022 awarded to Claire 

Stevenson (2018 1288 12). 

Author Contributions 

CS conceived and designed the study, collected the data, 

performed the analysis and wrote the original draft of the 

paper. IS and MB performed data coding and helped edit 

and review the camera ready paper. RG helped design the 

study and contributed to data analysis. HvdM helped 

conceive the study and provided supervision. 

 

 

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

168



4. Generative art



Artistic Autonomy in AI Art

Alayt Issak and Lav R. Varshney
Coordinated Science Laboratory

Univerity of Illinois Urbana-Champaign
Urbana, IL 61801 USA

aissak@illinois.edu

Abstract

The concept of art has transposed meaning and medium
across time, with its context being a deciding factor for
its evolution. However, human beings’ innermost func-
tionality remains the same, and art, to this day, serves as
an expression of the subconscious. Accelerated by the
conception of GANs in 2014, automation has become a
central medium in Artificial Intelligence (AI) Art. How-
ever, this raises concern over AI’s influence on artistic
autonomy within the process of creativity. This paper
proposes ethical care towards maintaining the artist’s
volition in exercising autonomy in AI Art and utilizes
principles of self-determination theory alongside fun-
damental limits of creativity to do so.

Introduction
Ethical care to creativity and intent
The traditional role of automation in society served to make
human lives easier by outsourcing mundane tasks, and, very
traditionally, to replace human jobs that would cut costs and
increase profits. Recommender systems, for example, utilize
language models to engage users in predictive text systems.
However, much criticism has fallen on this medium as it al-
ters the way people write. These systems have been found to
make people “machine-like” – which is evident given its in-
tention (Varshney 2020b). This prompts ethical care on the
implementation of automation within attributes that charac-
terize humanity—one of which is creativity.

Indeed as early as 1964, invoking Goethe’s Sorcerer’s Ap-
prentice, the scholar of technics Lewis Mumford had argued:
“let me first challenge the notion that automation is in any
sense a final good, so beneficial in every aspect that the pro-
cess must be hastened and extended relentlessly into every
field . . . If the human organism had developed solely on that
principle, . . . man would have been left without a thought in
his head” (Mumford 1964).

In psychoanalysis, creativity serves as the expressive ele-
ment or natural human impulse that drives the artistic experi-
ence (Zweig 2012). It is what drives surprise within viewers
for pushing the boundary of what is deemed to be the ex-
perience of reality. It is also surprise that drives creativity
as examined by its use for intrinsic motivation in creative
action-taking as implemented by the artificial creative sys-
tem of curious robots (Saunders et al. 2010). AI Art, with

emphasis on its support to human creativity through creative
machines, falls under criticism for automating this very pro-
cess, given that the trade-off to maintain creative autonomy
is evident in the practitioner.

Much work in Computational Creativity (CC) argues for
the importance of process rather than just products of cre-
ativity (Colton 2008; Jordanous 2016), and further work,
has introduced the humble creative as a means of further-
ing human development through co-creative processes that
cultivate human creativity through its advanced creative ca-
pabilities (Cassion, Ackerman, and Jordanous 2021). This
comes to show certain feats CC has taken in advancing co-
creativity by alluding the working definition of CC towards
responsibility that is detached from the artist.

As a result, this perspective goes in line with much CC
work, where in creating tools that could in itself be deemed
creative, has led to autonomous systems that extend beyond
generative adversarial networks (GANs) such as The Paint-
ing Fool (Colton 2019). However, reciting back to process,
we focus on the co-creative interaction of generative deep
learning algorithms that are responsible in co-creation, and
as such navigate the role of these algorithms with emphasis
on Generative Adversarial Networks (GANs) due to their
foundational blueprint to existent and advancing role in the
contemporary AI artist’s toolbox.

As an agent of play to enact creativity, GANs are utilized
as a black box for providing artistic result, where the feed-
back loop is based on the artist’s alteration of the algorithm
upon interpretation of results. Other deep generative AI
modeling techniques such as variational autoencoders and
normalizing flows have also been used in the same manner.
Unlike creation where artists decide meaning and form in
process, this form of AI Art limits artistic autonomy by bas-
ing the artist’s process upon output i.e. generating multiple
sessions of training and determining the artwork based on
generated artifacts. The limitations exhibited by this phe-
nomenon has since led to interventions in the chain of com-
putations, and is primarily exhibited by in-training modifi-
cations of intervening in the GAN latent space (Broad et al.
2021). We take these exceptions to recover human auton-
omy into account (as per our proposal for new ethics in AI
Art), and present human-centric means that led certain prac-
titioners to do so.

With regards to design intent, GANs were originally fo-
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cused on improving quality, stability, and variation (Rad-
ford, Metz, and Chintala 2016) in order to implement the
style transfer of the input image. Since then, they have
evolved from representation to visually indeterminate arti-
facts to create an AI Art identity (Hertzmann 2020). How-
ever, the implementation of this medium still surrenders the
creative process as the artifact’s varied intent (Ventura 2016)
does not address the fundamental loss in autonomy that oc-
curs within automation (McCormack, Gifford, and Hutch-
ings 2019). In June 2021, a discussion series on AI research
and social responsibility, titled Post-Human Creativity: The
Use of AI in Art, featured artists who emphasized the need
to strengthen “interactions between humans and machines
. . . instead of making technology more human” as to pre-
serve “meaningful interactions with algorithms and push the
boundaries of creative processes.” (D<AI>DALOS 2021)
With the concerns for AI’s role in art in mind, we consider
the ethical implications to the artist’s creative autonomy via
principles in self-determination theory and intent via funda-
mental limits of creativity.

Defining Creative Processes
Self-determination theory
Self-determination theory is a branch of psychology that
suggests people are motivated to grow and change by three
innate and universal psychological needs: autonomy, relat-
edness, and competence (Ryan and Deci 2000). Autonomy,
or regulation by the self, is a phenomena that parallels other
aspects of existence such as will, choice, and freedom. It is
further augmented into liberty (independence from control-
ling principles) and agency (capacity for intentional action)
(Ryan and Deci 2006).

We consider the limitation of AI Art to suffice liberty by
considering abstraction in art as the mere generation of such
artwork has led to a misuse of its abstract notion (Ventura
2016). In the style transfer of AI Art, artists often use forms
that acquire a sense of talent, such as impressionism, to
replicate the delicacy of the form’s timeless novelty. How-
ever, when art is dictated in such sense, it transforms to a
craft. Much like impressionism that emphasizes craftsman-
ship, AI Art then too becomes a craft that needs to be per-
fected through training, i.e. craftsmanship in training an AI
model, which in the literal sense occurs via numerous itera-
tions of training a model.

Historically, numerous iterations for craftsmanship was
not the case. In 1979, Benoit Mandelbrot, a visionary math-
ematician and artist, introduced the “Mandelbrot set”, a
class of quadratic recurrence equations in the complex plane
(Weisstein 2002). This development led to a renaissance of
computer-generated art coined as fractals. Despite the re-
cursive element that generates fractals, this early embodi-
ment of computer-generated art was created to give form to
mathematical revelation. The form was thus a byproduct
of Mandelbrot’s revelation of recursive structures revealing
each other indefinitely, and can be attributed to his liberty
to explore the depth of mathematics—a creative discipline
much like art. Thus, as exemplified by early practitioners
who embodied this liberty as a core element of their craft,

current AI Art practitioners carry the responsibility of ex-
panding their motive beyond sole mastery in order to em-
brace true creativity within the field.

On the other hand, taking a rather direct approach to ab-
straction in art, we explore creation that is rooted in Ab-
stract Expressionism. Abstraction took time to develop ap-
preciation due to the neglect for traditional talent per estab-
lished artistic canons (Schwabsky 2009), let alone expres-
sionism, which is expressive of the artist’s inner feelings
(Tejera 1965). In the 1950s, Abstract Expressionism led
to two divergent stylistic tendencies: chromatic and gestu-
ral abstraction (National Gallery of Art 2022). In chromatic
abstraction, the surrender to elements, such as color, shape
and light, illuminate complexities to thought. For example,
Mark Rothko painted what is simple, yet complex to express
complexities in subtle form, see Figure 1.

Figure 1: Untitled, Rothko

In his process, each abstraction held specific and original
meaning, whereas modelling his form of creation via AI Art
would not suffice as it would craft, but not hold meaning on
the basis of liberty for the artist’s expression, i.e. the artist’s
inner world. The expression would be decided upon the re-
sultant AI abstraction, reversing art’s role as revelation to
form, as well as the practitioner’s role from artist to audi-
ence.

In gestural abstraction, creativity spurs from the artist at
the moment of creation and stems from the inner spark,
or according to the psychoanalyst Carl Jung, “not accom-
plished by intellect but by play” or to a larger extent the “dai-
mon of creativity” (Jung 1977). This moment, much like the
deep immersion that comes with it, is encouraged and devel-
oped by a constant interaction that need not be interrupted,
regulated, or automated (Diamond and May 1996). Hence,
if one were to create AI Art based on gestural abstraction,
such as Jackson Pollock’s action painting (Solomon 2001),
see Figure 2, then the artist would lose its creative auton-
omy because of artistic interruption during the surrender of
process to AI.

Therefore, in both divergent cases of Abstract Expression-
ism, it is the human element of the artist that drives the pos-
session of form, and as such frees the extremes and com-
plexity of human consciousness (Grey and Wilber 2001).
Whether subtle or spontaneous, for AI Art to emulate these
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Figure 2: Action Painting, Pollock

works within its training corpus would lack its core essence
in conveying the emotion of the artist and the resultant lib-
erty needed for the process of creation.

Defining Design Intent
Fundamental limits of creativity
In one interpretation, intentionality is the inspiration or de-
sire to express the human intent (Collingwood 2013). The
capacity for this action is captured by the need for agency
in autonomy. Fundamental mathematical limit theories for
creativity have detailed a limit theorem whereby tradeoff be-
tween novelty and quality for a given creative domain ex-
ists (Varshney 2019). To consider a limit theorem for cre-
ativity with intentionality, Claude Shannon’s capacity-cost-
function formalism, which captures limits of reliable com-
munication, is modified to address the semantic problem of
creativity. Incorporating intentionality, semantic creativity
shows that requiring communicative intent may reduce the
quality and/or novelty of creative artifacts that are generated
(Varshney 2020a).

In practice, this inverse relationship between intent
and novelty is paralleled by examples in Dada art, such
as Duchamp’s fountain, that, despite the utmost intent,
garnered controversy on the novelty of artistic creation
(Hutchinson 2015). This begs to consider the role of nov-
elty in AI Art due to the compromise of intent, in part of au-
tonomy, as characterized by human creativity (McCormack,
Gifford, and Hutchings 2019).

Indeed, it is accepted that human-level intentional creative
autonomy for a system is difficult to achieve. With the fail-
ure of symbolic CC (to act from meaning), and embodied
CC (through situated cognition), current practices allude to
non-anthropocentric CC systems rooted in systems with in-
trinsic motivations of their own (Guckelsberger, Salge, and
Colton 2017). In the minimal model presented to address
this question, one argues a system must constitute autonomy
and adaptivity (to exhibit a novel and valuable response to
perturbation) in order to be necessarily creative. As this is
yet to find its way in existing CC framework and literature,

we allude to co-creative processes that fall in the current do-
main for what is fundamental to intent.

In theory, intent is highly discussed in Wassily Kandisky’s
book, Concerning the Spiritual in Art, via inner artistic el-
ements. In his synopsis, the inner need of the artist is built
up of three elements, namely every artist as a creator (ele-
ment of personality); a child of the age (element of style),
and a servant of art (element of pure artistry) (Kandinsky
1977). The second element of style details every artist to ex-
press the spirit of the age, alluding to the leverage of AI into
art. However, this calls upon careful inquiry as borrowing of
method by one art from another (AI Art from its predeces-
sors), can only be truly successful when the application of
the borrowed methods is not superficial but fundamental to
the artist’s endeavor (Spector 2018).

Figure 3: Sketch for “Composition II”, Kandinsky

For example, adapting of form to its inner meaning in
Kandinsky’s Sketch for “Composition II” which rids con-
ventional aesthetic values for his time, as seen in Figure 3
above, cannot be the basis of visual indeterminacy of AI Art
as it must find its own form to its inner meaning. Thus, in
order to move beyond novelty, AI Art must incorporate the
artist’s inner and essential elements as producer (Jordanous
2016) to harness AI as a creative medium and create what is
fundamental to its age.

New Ethics to Autonomy
We now propose a new ethics for artistic autonomy in AI Art
that focuses on co-creative processes in line with our human-
centric approach to autonomy. Accordingly, we present con-
crete ways to re-center human creativity and intentionality
when co-creating with AI systems by attending to the ap-
proach of Collaborative AI, i.e. systems designed to support
the creative practice of human artists (D’Inverno and Mc-
Cormack 2015).

Re-centering creativity
To re-center creativity between AI and the human artist
that will create fundamental art, the artist needs interaction,
feedback, reminding, connection, stimulation and interac-
tion from its AI partner (D’Inverno and McCormack 2015).
An important tool that has opened doors and accelerated this
connection has been multimodal prompt programming, or
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programming in natural language for text-to-image synthe-
sis, which originated in January 2021 with the release of the
novel CLIP+VQGAN framework (Miranda 2021).

Not only did this framework democratize and increase ac-
cessibility to AI Art, but it also opened a new paradigm for
natural language interaction with AI, much like the conver-
sational interactions one would have with a human being
that is deemed to be intelligent. The personification of the
tool with natural language interaction has allowed AI artists
to develop their own creative practice through a humanis-
tic interaction via prompts that probe the generative model
(VQGAN). As a result, this interaction has challenged, pro-
voked and supported artists with re-centered creativity to
synthesize images in way they are stimulated to do so.

To elicit re-centered creativity in prompt programming
furthermore, we highlight distinctions offered by two of
the four perspectives on computational creativity (Jordanous
2016). In process, the artist can take a holistic approach to
image generation by viewing the synthesis of images at each
time step as part of the creative process. Thus, re-centered
creativity emerges for which the artist may even choose the
desired image based on the emotion it invokes regardless of
the training iteration. For the aforementioned exceptions,
this is paralleled by intervening in the GAN latent space.
Whereas in product, one can direct synthesized images to
a desired environment that it deems beneficiary. For in-
stance, a recent children’s book set to expand upon a child’s
imagination with the expansive abstractions generated using
prompt programming techniques (Issak and Varshney 2022).

Re-centering intent
To re-center intent in AI Art, one consideration would be
to rethink novelty and aim for a simultaneous increase of
creative autonomy and intent by alluding to a co-creative
process that hands over creative autonomy. Although some
argue this can only be possible given Metacreativity (giving
creative autonomy to CC systems that possesses a self), the
trade-off here alludes to aspects where automation in AI art
is necessary for creative autonomy, and thus implements it
to fulfill what one may not possess (Berns et al. 2021).

For instance, DARCI (Digitial ARtist Communicating In-
tention) is a creative system that exhibits creativity by not-
ing the attribution of creativity with respect to system in-
tentionality and autonomy (Ventura 2019). It has, thus far,
addressed these difficulties and maintained to exhibit these
characteristics to some extent (Norton, Heath, and Ventura
2010). Drawing back to the “black box” analogy for AI
training and the resultant novelty, one may then consider the
integration of intent within the co-creative process system
by assigning the loss in novelty towards the artist.

In one way, this consideration can reveal surprising results
that automation can afford. For example, the art collective
aurèce vettier reinvents intent by exploring hybrid combina-
tions of art and algorithms. In their work titled, Brightly-
Lit Stool, Four-eyed Cat, see Figure 4, the collective dis-
plays a “painting/technology” to expand conceptual possi-
bilities of AI Art. In doing so, they curate a dataset begin-
ning from personal photos of their pet cat, generate images
which wound up distorted in part of the training process,

intentionally pick one in which a four eyed cat emerges,
and transform the chosen image onto a canvas for painting
(aurèce vettier 2020). This way, AI serves as a tool to create
a component of the entire piece, whereas novelty arises out
of the artist’s greater autonomy to create meaningful inter-
actions with algorithms that push the boundaries of creative
processes.

Figure 4: Brightly-Lit Stool Four-eyed Cat, aurèce vettier

Conclusion
The novelty of AI Art need not arise out of appreciation for
AI’s capability to create such works, but rather ask what the
artwork entails in creativity and evidences in intent. As such,
we encourage artists to re-calibrate the role of AI in their art
by retaining their personal vision with an authentic founda-
tion of creativity and intent (Grey and Wilber 2001). As pro-
posed, such foundations may reveal the nature of the artistic
process, incorporate room for interaction, explore insight-
ful curiosity and perhaps unlock an inner creative in part of
retrieved autonomy within the process of creation.

Future Work
While establishing ethics for re-centering creativity and in-
tent, we also present the question of gestural abstraction in
AI Art as it is yet to be addressed in the CC community. In
line with our argument, perhaps this could be answered by
rethinking the co-creative process for this art form. As this
could be revealed in existing or future CC literature, we will
keep these discussions in our thoughts.
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Abstract

@artbhot is a Twitter bot that brings the generative capabil-
ities of CLIP-guided GAN image generation to the public
domain by transforming user-given text prompts into novel
artistic imagery. Until recently, access to such image syn-
thesis techniques has been largely restricted to Google Co-
lab notebooks, which require some technical knowledge to
use, and limited services which require access. @artbhot in-
creases access to text-to-image technology, as Twitter users
already have the platform knowledge needed to interact with
the model. We discuss here some of the technical challenges
of implementing such a system, and provide some illustrative
examples of its usage. We further discuss what this mounting
of generative technology amongst social media could mean
for autonomous computationally creative agents.

Introduction
Recent developments with generative deep learning tech-
nologies have enabled text-to-image computational models
to produce artistic images and video content, given only text
prompts from users. Colton et. al (2021) explored the pos-
sibilities for this, within the context of generative search en-
gines, where images are generated rather than retrieved as
per Google image search. Such approaches in the field of
text-to-image synthesis (Agnese et al. 2019), allow the user
to encode text in such a way as to drive a search for a latent
vector input to a pre-trained image generation neural model.
This technology has an impressive ability to innovate novel
visual content from text, producing high quality and diverse
imagery which reflects the prompt well, with images that are
often surprisingly innovative. Examples of the kind of art-
work that can be produced are given in (Smith and Colton
2021), and we describe the CLIP-Guided VQGAN text-to-
image system in the background section below.

Interaction with such systems has been largely limited to
Google Colab notebooks (Bisong 2019), but this has barri-
ers to entry due to the the technical knowledge required to
run the notebooks, and user interaction is limited to an im-
age retrieval service. Other recent text-to-image generators
(mentioned below) have invitation-only limited access for a
small number of artists and researchers. To address this lack
of access, we have built the @artbhot twitter-bot (Veale and
Cook 2018), which embeds CLIP-guided VQGAN in the
Twitter social media platform experience. As described and

illustrated with examples below, people can tweet their text
prompt with appropriate annotations, and expect an image
to be returned in due course. This greatly increases acces-
sibility to the public, as Twitter has over 200 million active
users. Due to it’s popularity and reach, and both the data
and interaction available through its API, Twitter also pro-
vides an ideal platform for @artbhot to take on more creative
autonomy. In particular, we plan to challenge the assump-
tion that text-to-image users should be served only imagery
which purely reflects their prompt. Instead, as described in
the final section below, we aim for @artbhot to use prompts
as springboards for creative ideation and visualisation and
for it to enter into a dialogue with users in a fashion akin to
discussions with artists on social media.

Background
In early 2021, Ryan Murdock combined OpenAI’s Con-
trastive Learning Image Pretraining model (CLIP) (Radford
et al. 2021) with the BigGAN generative adversarial net-
work (Brock, Donahue, and Simonyan 2019) into a text-to-
image generation process. He made the system available via
a Colab notebook called The Big Sleep. In overview (with
further details in (Colton et al. 2021)), the process involves
first encoding a user-given text prompt into the CLIP latent
space as vector v1. Then the system performs a search for a
latent vector input to BigGAN, v2, which produces an image
that, when encoded into the CLIP latent space as v3, has op-
timally low cosine distance between v1 and v3. The search
is performed using gradient descent to minimise a loss func-
tion based on this cosine distance. Given that related images
and text are encoded by CLIP to similar places in the latent
space, this approach tends to produce images which some-
how reflect the given text prompt.

In the interim, many CLIP-guided text-to-image genera-
tors have been made available, with steadily improved qual-
ity and fidelity (with respect to the prompt) of the images
produced. The most recent, and impressive examples of this
generative technology are @midjourney1, Disco Diffusion2,
DALL-E 3 from OpenAI and Imagen4 from Google. DALL-

1midjourney.co
2tinyurl.com/yckn4h7
3openai.com/dall-e-
4imagen.research.google/
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Figure 1: (a) Processing of a tweet by @artbhot (b) Example user interaction on Twitter.

E is particularly impressive as it employs a one-shot process,
with an encoded text prompt fed-forward through a model to
produce images near-instantaneously. However, the trained
model is so large that access is limited, with the expecta-
tion that OpenAI will provide a subscription service for it
soon. Currently, Disco diffusion is available as a Google Co-
lab notebook, and @midjourney is only available to selected
users. Wombo Dream5 however is an app that is available
for free from the app store, and appears to have been very
popular. In addition to users being able to enter a prompt
and receive an image based on this text, they can also se-
lect from several art styles that can influence the aesthetic of
their generated image. These styles include ‘Dark Fantasy’,
‘Mystical’ and ‘Salvador Dali’. There is also now DALL.E
mini 6 which is available to the public and free of charge.
It is a smaller version of the model mentioned above and is
hosted on Hugging Face7.

In a similar process to that of the Big Sleep approach,
CLIP-guided VQGAN harnesses the perceptual power of
CLIP and the image generation capabilities of the Vec-
tor Quantized Generative Adversarial Network (VQGAN)
(Esser, Rombach, and Ommer 2021). This GAN architec-
ture combines two approaches to interpreting meaning, us-
ing both discrete and continuous representations of content
(Cartuyvels, Spinks, and Moens 2021). Discrete represen-
tations model a more human way of interpreting meaning
aside from a pixel based approach, which is traditionally
how computers have processed images. In particular it con-
siders the image as a whole and interprets the relationships
between the different compositional elements of the con-
tents, i.e., relationships between different parts of an image
(such as the sky and the ground in a landscape image).

VQGAN models these discrete representations as long
range dependencies, meaning it can interpret the relation-

5wombo.art
6tinyurl.com/4eyr5yjv
7huggingface.co

ships between compositional elements, and not just the el-
ements themselves, as described in (Esser, Rombach, and
Ommer 2021). VQGAN models image elements, and the
local relationships within visual parts of an image, us-
ing continuous representations (such as the RGB chan-
nels in a pixel). It also interprets discrete representa-
tions within image content using a transformer (Vaswani
et al. 2017), but before a feature map can be passed
to this, the model learns an intermediary representation
of this image data using a codebook, as described at
tinyurl.com/2vm3t9r8. This is a fixed size table of embed-
ding vectors that is learned by the model. This interme-
diary stage is necessary, as transformers scale the length
of an input sequence quadratically, making even a 224 x
224 pixel image above the processing capacity of most
GPUs. CLIP-guided VQGAN is described in (Crowson
et al. 2022), and various notebook for CLIP-guided VQ-
GAN have been implemented, with a list of ten given here:
ljvmiranda921.github.io/notebook/2021/08/11/vqgan-list/

@artbhot Implementation and Deployment
Twitter bots are usually small, autonomous programs run-
ning on a server, which regularly produce and tweet out-
puts composed of texts, images, animations and/or mu-
sic/audio compositions, as described in (Veale and Cook
2018). More advanced bots can respond to replies on Twit-
ter and/or tweets if they are hashtagged appropriately. Our
Twitter bot, @artbhot, is currently only reactive, in that it
is used as a service: people tweet text prompt requests at it,
and it responds with a reply comprising an image that (hope-
fully) reflects the prompt, and a repetition of the prompt.

@artbhot is comprised of two parts: the generative pro-
cess, which is provided by CLIP-guided VQGAN; and code
which enables it to interact with the Twitter API. The imple-
mentation is hosted on a remote server which runs 24 hours
a day, so users can access image generation capabilities on
demand. Users can read instructions on how to use the bot
from a document linked in the bio section of the @artbhot’s
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Figure 2: Generated images for prompts. Top row: “Steampunk morocco, concept art”; “ ”; “Aliens invading New-
castle Upon Tyne”; “Pythagoras killing his student because the square root of 2 is irrational”. Middle row: “A positive lateral
flow test”; “Waiting for the bot”; “Wake up @artbhot”; “The Scribe, sitting in her throne. Deviant art character illustration”.
Bottom row (all): “A 35mm analog film photo of an alchemists lab in the distant future”.

Twitter page. These instructions include how to communi-
cate with the bot using the following tweet format:

@artbhot #makeme prompt text

(e.g. @artbhot #makeme an oil painting of a burger).
Every 15 seconds, the bot code checks for new tweets

in this format from any user, using the python Twitter API.
Once found, the prompt text is extracted, processed and ei-
ther used as input for a CLIP-guided VQGAN process, or
rejected for containing any prohibited words. This cross-
referencing of the prompt against a list of prohibited words
aims to keep the experience of using the bot as friendly as
possible. If a prohibited word is found, a textual reply is au-
tomatically generated and sent to the user as a reply to their
tweet, asking them to try again. The processing performed
by @artbhot for a given input tweet is portrayed in fig. 1(a).

If an image is generated, it is then sent to the user via the
Twitter API as a reply to their initial tweet, with a reminder
of the prompt they used (this is to ensure that the prompt text
follows the generated image in the case where a bot reply is
shared on Twitter without the original tweet from the user

to provide context). An example user interaction on Twit-
ter with @artbhot is given in figure 1(b). The first iteration
of @artbhot incorporated CLIP guided BigGAN for image
generation, as this model was one of the best CLIP guided
GANs available to the public. This was a local version of
the code released in the Big Sleep colab notebook, installed
on our server. Later, an implementation of CLIP-guided
VQGAN was released (github.com/nerdyrodent/VQGAN-
CLIP). On experimenting with this text-to-image genera-
tor, we found that the output from the newer model showed
improvements in multiple ways. Firstly, almost no images
were outright failures from VQGAN in the way that Big-
GAN regularly generated blank or highly noisy/textured un-
interpretable images. Also, the fidelity of the image to the
prompt was usually much better and there was much less vi-
sual indeterminancy (Hertzmann 2020), making the images
more coherent from VQGAN than from BigGAN. For these
reasons, we replaced BigGAN in @artbhot with VQGAN.
The top two rows of figure 2 show 8 example images gener-
ated in response to tweets sent to it, which we refer to in the
next subsection.
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A Preliminary Evaluation
We plan to make @artbhot open to the public in 2022, af-
ter some additional implementation described in future work
below. Before this, we have made it available to a user
group of 16 people. It has been running for 5 months and
has processed over 600 tweets, taking, on average, around 2
minutes for a user to receive an image in response to their
tweet. While there have been no outright failures where im-
ages don’t reflect the prompt at all, after an informal evalu-
ation (by ourselves) of the most recent 100 replies to Twit-
ter prompts, we found 16% of the images were not visually
coherent enough to reflect the prompt satisfactorily. Two
examples of this can be seen on the left of row two in fig-
ure 2, with neither properly reflecting the prompt “A posi-
tive lateral flow test” or “Waiting for the bot”. Generally,
the images that are less successful have a high degree of vi-
sual indeterminacy (Hertzmann 2020), making it difficult to
interpret the content of the image and how it may be asso-
ciated with the tweet text. Other factors for relative failure
include content that is off topic, inaccurate colours for the
subject matter, or image content that is too small and/or off-
centre. We do acknowledge however that this is a subjective
evaluation and that other opinions may differ regarding in-
terpretations of image content.

We found that @artbhot was able to handle unexpected
prompts, for instance ones containing emojis. As per the
second image in the first row of figure 2, CLIP-guided VQ-
GAN interpreted the weather emojis correctly and produced
an image with sun and clouds. Diversity was also a con-
cern, as users would expect a variety of images for similar
prompts. We asked four users to each use the prompt “a
35mm analog film photo of an alchemists lab in the distant
future”, with the resulting images portrayed in the bottom
row of figure 2. We see that there is some diversity, but per-
haps not enough to be satisfying, and this is something we
hope to improve upon, probably with automated augmenta-
tion/alteration of prompts.

Overall, the interactions users have had with @artbhot
have been playful and casual, with people feeling free to
try out all manner of interesting and unusual prompts, of-
ten trying to stretch the bot past its limitations. The quali-
tative responses we’ve gathered have been largely positive,
with people reporting they have used it for amusement, en-
tertainment and conversation, but wish it would return im-
ages faster, as attention can wane. We noticed some trends
in the kinds of prompts users sent, including: referring to
the bot itself (see middle row of figure 2); setting moods
or styles such as steampunk (first image of top row); set-
ting up imaginary or historical scenes such as aliens over
cityscapes or pythagorean murders (top row, right); and ask-
ing for design inspiration (final image on the middle row).
One user wanted longer interactions with @artbhot, in par-
ticular to ask it to enhance images and to combine their
prompts/images with those from friends.

Conclusions and Future Work
Text-to-image colab notebooks are very popular, and initial
responses to @artbhot suggest that it would also be very
popular on twitter. Unfortunately, it is beyond our com-
putational resources to provide GPU processing to anyone
on twitter who tweets a prompt. Moreover, as predicted
in (Colton et al. 2021), there seems little doubt that con-
sumer text-to-image generation services will become avail-
able soon, and will likely find their way into products such as
Adobe’s Creative Suite eventually. For these reasons, we are
interested in offering more than a service which fulfils image
generation requests, as @artbhot currently does. Instead, we
will open up @artbhot so that it can receive tweets from any
member of the public (which it currently does not), and se-
lect a few tweets each day to reply to that have the highest
potential for a meaningful, creative and thought-provoking
interaction with the user. Once a user is selected, this longer
interaction with @artbhot may take the form of a string of
iterations on an image; as the user asks to ‘evolvethis’ image
to repeatedly evolve the image with new prompts. This may
also take the form of merging several tweets in to a prompt,
that is then used to generate an image, using a ‘mergethis’
hashtag. In this way, the user will still feel in control of the
process, but will receive innovative and surprising output as
the bot takes on more autonomy.

On responding to the chosen prompts, we plan for @artb-
hot to apply a range of generative techniques and appeal
to a number of computational creativity theories and prac-
tices. These include (on the text side) fictional ideation, hu-
mour, narrative generation, poetry, etc., and (on the imagery
side) style transfer, animations, and visual stories. @artbhot
will employ framing and explainable computational creativ-
ity techniques (Llano et al. 2020) to get users to look more
closely at its ideas and creations. We further aim to enable
@artbhot to learn from feedback, so as to be more interest-
ing and engaging for users.

Figure 3:
Exhibition piece:
Pericellular Nests

We also aim to encourage con-
versation and collaboration with
users, to ultimately generate pieces
deemed to be artworks rather than
just imagery reflecting text. To do
this, we will need to utilise exist-
ing evaluation techniques from ca-
sual creators (Compton and Mateas
2015) and computational creativ-
ity in general, and to develop new
ones specific to the project. We
will also need to implement more
advanced artistic image generation
techniques. We have already taken
first steps in this direction by writ-
ing software which takes anima-
tions from @artbhot and makes a
large collaged animation (as per
fig. 3) for an exhibition8 at the

Pablo Gargallo Museum in Zaragoza, Spain; celebrating the
life and work of nobel laureate Santiago Ramon y Cajal.

8zaragoza.es/sede/servicio/cultura/evento/232731
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Abstract

This paper proposes a framework for computational
modeling of artistic painting algorithms, inspired by hu-
man creative practices. Based on examples from expert
artists and from the author’s own experience, the paper
argues that creative processes often involve two impor-
tant components: vague, high-level goals (e.g., “make a
good painting”), and exploratory processes for discov-
ering new ideas. This paper then sketches out possible
computational mechanisms for imitating those elements
of the painting process, including underspecified loss
functions and iterative painting procedures with explicit
task decompositions.

Introduction
In this paper, I describe aspects of human creativity and cre-
ative practice missing from current computational formula-
tions, and sketch possible ways these ideas could be incor-
porated into algorithms. Perhaps by basing algorithms on
human creative processes, we could develop new kinds of
tools for artists. Such algorithms could even shed light on
the mechanisms of human creativity.

This paper begins with several examples from expert
artists’ processes across different art forms, together with
my own experience. These examples illustrate two main
points. First, creative processes are often driven by vague,
high-level goals, such as “make a good painting.” Exist-
ing formulations treat an artwork as deriving from prede-
termined styles and goals. This paper argues the opposite:
often, an artwork’s apparent goals and style emerge from
the creative process. Second, exploratory processes play a
key role: different painting strategies will lead to different
outcomes, rather than being purely a function of goals. In-
deed, artists frequently discuss the importance of process in
creative practice, e.g., (Saltz 2020), and some psychology
research on creativity emphasizes process, e.g., (Glăveanu
and Beghetto 2021; Wasserman 2021), but such ideas have
not, to my knowledge, made it into algorithms in meaningful
ways.

To make the discussion concrete, this paper focuses on
algorithms that take a photograph as input and produce a
painting as output. Many different types of algorithms for
creating digital paintings from input photographs have been

developed, including methods based on hand-authored pro-
cedures, optimization of brush strokes, learning from ex-
ample paintings, and learning generative networks. These
methods can produce appealing and artistic results. How-
ever, they do not handle vague, high-level goals: the style of
the output is highly determined by the combination of algo-
rithm, parameters, and inputs used. Indeed, a knowledgable
viewer can generally recognize the class of algorithms used,
and sometimes the specific algorithm. In contrast, an artist’s
work can evolve in distinctive and surprising directions.

This paper then proposes possible computational frame-
works based on the above observations. I propose to de-
scribe vague goals as underspecified problems, which may
be thought of as optimization problems where high-level
choices like style and the specific goals of the painting
are part of the search space. In order to model creative
processes, the optimization objectives would incorporate
perceptual models that can approximate aspects of human
judgement of artworks, and the outcomes would depend on
both hand-designed exploration processes and numerical op-
timization. I describe possible ways to design exploratory
processes to place brush strokes, incorporating hierarchical
task decompositions based on human behaviors.

Existing Computational Painting Frameworks
To focus on a concrete problem domain, this paper discusses
stroke-based rendering algorithms that take a photograph as
input and produce an image composed of strokes, i.e., curves
with color, thickness, and often texture (Hertzmann 2003).
The earliest methods were mostly procedural: an algorithm
defines the steps to create each brush stroke (Haeberli 1990;
Litwinowicz 1997; Hertzmann 1998; Zeng et al. 2009;
Colton 2012). These procedures embody very specific
strategies. For example, Litwinowicz (1997) described a
method that places a set of small brush strokes on a jit-
tered grid, sampling colors and orientations from a source
image, to achieve an “impressionist” effect (Fig. 1(a)).
These methods frequently employ random-number genera-
tion to avoid regularity and create variety. Harold Cohen’s
AARON (1995) is a particularly sophisticated example of
hand-authored generative rules for painting, though it is out-
side the scope of this paper because it does not take a photo-
graph as an input.

Purely procedural methods provide a very limited
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(a)

(b)

(c)

Figure 1: Existing approaches to stroke-based painterly im-
age stylization. (a) A procedural method, where strokes are
placed on a jittered grid, drawing color and orientations from
a source image (Litwinowicz 1997). The stroke arrangement
does not adapt to the source image. (b) An optimization
method, allowing strokes to adapt to image content, but with
a costly optimization process (Hertzmann 2001). (c) Opti-
mization with differentiable rendering (Zou et al. 2021).

paradigm for understanding painting, since they rely on
hard-coded, low-level strategies. Authoring rules for where
brush strokes go is very difficult.

This leads to the appeal of optimization algorithms
(Fig. 1(a)), in which one specifies an objective function for
the painting (Hertzmann 2001; Collomosse and Hall 2005;
Li et al. 2020; Zou et al. 2021). The objective models the
way that an artist may have a goal, e.g., “accurately represent
shapes,” without requiring the algorithm author to specify a
low-level strategy for where brush strokes go. These goals
are typically represented with a perceptual image-based loss
function, and a generic optimizer is used to optimize the
loss, such as gradient descent or evolutionary algorithms.
Recent deep painting algorithms (Huang, Heng, and Zhou
2019; Jia et al. 2019; Mellor et al. 2019; Nakano 2019;
Schaldenbrand and Oh 2021) combine procedural and opti-
mization methods. In these methods, an agent or policy (typ-
ically, a Recurrent Neural Network) is trained to optimize an
image-based loss. In all of these optimization-based meth-
ods, the choice of objective function, its parameters, and any
training data, define the artistic style.

Each of these different approaches to painting mirrors dif-
ferent aspects of human creative practices, summarized in

Table 1. Specifically, procedural algorithms mimic the use
of very specific rules and strategies, e.g., place a jittered grid
of strokes; draw big strokes before small strokes. Such rules
do not easily adapt to different styles, inputs, or goals. Op-
timization mimics the search for a high-quality result, e.g.,
the way a human might iterate over and over on an image
until satisfied. Current optimization algorithms correspond
to very specific styles; they do not model the way a human
might choose a different style for each subject, or even in-
vent new styles along the way. Moreover, they do not model
human search strategies, instead they use generic numeri-
cal techniques. Deep painting algorithms are optimization
algorithms that search for procedures, and thus model how
someone might learn to draw, but are also limited to a single
style and without explicitly modeling human search.

There are some nuances in the relationship of these ap-
proaches. All optimization methods are procedural in the
sense that they comprise algorithms and code that gener-
ate outputs. But the philosophy for designing optimiza-
tion algorithms and the philosophy to designing low-level
stroke generation procedures are quite different. Likewise,
the exploratory processes proposed later in this paper can be
thought of as a special case of optimization procedures, but
with a different philosophy for how to design them.

A related approach, outside of this paper’s focus, uses
image processing algorithms without explicit brush strokes
(Rosin and Collomosse 2013). Early examples include dif-
fusion (Bangham, Gibson, and Harvey 2003) and physical
paint simulation (Curtis et al. 1997). Style transfer methods
copy features from example images (Hertzmann et al. 2001;
Ramanarayanan and Bala 2007; Gatys, Ecker, and Bethge
2016) to optimize image-based losses. More recently, CLIP-
based methods (Radford et al. 2021; Ramesh et al. 2022)
optimize images according to a textual prompt rather than an
input image (or an input image alone). These methods can
randomly select styles or be controlled with style prompts;
CLIPDraw (Frans, Soros, and Witkowski 2021) also applies
these losses to stroke-based rendering.

Open-ended search. Stanley and Lehman criticize objec-
tives (2015), narrating many evocative examples of human
innovation and creativity that did not seem to be the product
of goals and objectives. They argue that explicit goals hin-
der exploration and discovery. Although their ideas have not
been used in algorithmic painting, their argument provoked
some of the ideas described in this paper.

They propose open-ended search as an alternative to
optimization. They argue that open-ended search is dis-
tinct from optimization because the objective is continually
changing. However, operationalizing it as an algorithm dis-
tinct from optimization proves elusive. For example, their
Novelty Search algorithm (Lehman and Stanley 2011), when
applied to path planning, is essentially a variant on the clas-
sic goal-directed RRT algorithm (LaValle 1998). Curiosity-
driven learning (Pathak et al. 2017) provides another ef-
fective computational framework for seeking novelty—also
based on an optimization framework—but it is unclear how
to apply it to creative tasks.
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Human activities Computer algorithms
Steps, strategy, process Algorithm, procedure
Goal-directed search Numerical optimization

Skill learning Policy optimization, Reinforcement learning
Intrinsically-motivated exploration, creative play Open-ended search, curiosity-driven learning

Creative problem solving Underspecified problem solving

Table 1: A possible correspondence between human activities and the computational procedures discussed in this paper. The
processes on the right provide models or metaphors to describe the activities on the left. Some of these activities/processes may
be complementary, nested, and/or overlapping, e.g., all computational algorithms are procedures. This is not meant to imply
equivalence between human behaviors and computational models; as the famous quote by George Box goes: “All models are
wrong, but some are useful.”

I argue that, in many examples of human innovation, it’s
not that the innovator lacks a goal or objective, but that the
real goal is expressed at a very high level, much more so
than in normal optimization problems. This includes many
of Stanley and Lehman’s (2015) examples. For example,
they describe how Elvis Presley’s signature sound was not
planned, but rather arose simply from playing around in the
studio. They use this example to illustrate how “having no
objective can lead to the greatest discoveries of all.” How-
ever, in this example, I argue that Elvis and his band did
have an objective: to record a good song. Even though they
made unplanned discoveries along the way, these resulted
from working toward a high-level goal with an open-ended
process, not from aimless exploration. “Open-ended” is a
possible description for why someone chooses to make an
artwork, but, once that choice is made, the process of mak-
ing an artwork does have an objective.

Examples from Expert Artists
There appears to be a widespread view that art arises from
an artist’s specific intent, such expressing an emotion. Com-
puter science discussions of artwork tend to treat the process
as fairly linear. For example, to motivate the use of optimiza-
tion, Durand (2002) writes “Because pictures always have a
purpose, producing a picture is essentially an optimization
process ... The purpose of the picture can be a message, col-
laborative work, education, aesthetic, emotions, etc.” That
is, the artist begins with a goal, and then takes steps toward
that goal. I argue that things aren’t so simple.

This section provides examples to illustrate two main
points. First, art is typically the product of working to-
ward the vague, high-level goal of making art. It does
not follow a linear path from goals to execution, nor does it
come from purely open-ended exploration. Second, the per-
ceived intent or emotion in a work may often be a product
of an exploratory process, rather than its driver. We can of-
ten infer intent in a work, but this intent may have come late
in the artistic process, if at all.

Pablo Picasso indicated a lack of intent when he said “I
don’t know in advance what I am going to put on canvas any
more than I decide beforehand what colors I am going to use
... Each time I undertake to paint a picture I have a sensation
of leaping into space. I never know whether I shall fall on
my feet. It is only later that I begin to estimate more exactly

the effect of my work.” (Read 1960)
Art often does begin with an initial idea or direction, as

described by the artist Francis Bacon: “one has an intention,
but what really happens comes about in working ... In work-
ing, you are following this cloud of sensation in yourself,
but don’t know what it really is.” (Sylvester 1993). That is,
his work starts with an initial intention, but it quickly gives
way to surprise and discovery. He operates on the high-level
goal of making paintings, but the specific intentions of those
paintings are not fixed in advance.

Philosopher Nigel Warburton (2003) argues against
intent-based definitions of art, citing the above examples
from Picasso and Bacon to illustrate “the part played by the
unconscious, ..., and the relatively minor role that conscious
planning may play in the making of a work of art...” Art
critic Jerry Saltz writes “Art is not about understanding and
mastery, it’s about doing and experience. No one asks what
Mozart or Matisse means.”

Numerous illustrations appear in the recent documentary
Get Back (Jackson 2021). The documentary follows The
Beatles in January 1969 when they were under enormous
pressure to write, record, and perform an entirely new al-
bum in only a few weeks’ time. In one clip1, Paul McCart-
ney comes into the studio and improvises random sounds
on his guitar, until the kernel of a new melody and chorus
emerge. We then see The Beatles experimenting with dif-
ferent approaches to refining the song. Ultimately, this song
became the hit single “Get Back.” The song arose from the
high-level goal of making a good song, and then going into
the studio and exploring until something emerged.

At one point in this process, The Beatles considered mak-
ing it a protest song about anti-immigration policies. In this
version, the chorus “Get back to where you once belonged,”
which came from the original jam session, had a totally dif-
ferent meaning than in the final song. Had they released it
as a protest song, surely many listeners would have inferred
that the song originated from the political message, when in
fact the song came before the message.

This example illustrates two kinds of goals in a work.
There is the initial, high-level goal (“write a good song”),
and the apparent goal or intent of the final song (“protest
immigration policies”). As noted by Bacon, there is often
also an initial idea or goal that begins the work, but this ini-

1https://youtu.be/rUvZA5AYhB4
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tial goal may be discarded along the way.
Artists carefully consider and develop their artistic pro-

cesses; process is not merely incidental to outcomes. In the
context of the fine art world, Saltz (2020) writes “serious
artists tend to develop a kind of creative mechanism—a con-
ceptual approach—that allows them to be led by new ideas
and surprise themselves without deviating from their artistic
principles.” Computer artist Charles Csuri wrote “When I
allow myself to play and search in the space of uncertainty,
the more creativity becomes a process of discovery. The
more childlike and curious I become about this world and
space full of objects, the better the outcome” (Greenberger
2022). Painter Gerhard Richter says “I want to end up with
a picture that I haven’t planned,” for which he uses a pro-
cess that involves chance. “There have been times when this
has worried me a great deal, and I’ve seen this reliance on
chance as a shortcoming on my part.” But, “it’s never blind
chance: it’s a chance that is always planned, but also al-
ways surprising. And I need it in order to carry on, in order
to eradicate my mistakes, to destroy what I’ve worked out
wrong, to introduce something different and disruptive. I’m
often astonished to find how much better chance is than I
am.” (Richter, Elger, and Obrist 2009)

Improv theatre is an entire art-form of developing theatre
pieces from scratch before a live audience (Johnstone 1979).
One of my improv teachers compared it to driving on a dark
foggy road in the night, with your headlights illuminating
only the road immediately in front of you. All you can do is
to keep driving to the next visible spot and continuing from
there. You cannot plan, you can only take it one step at a
time. Yet, somehow even amateur improv actors can create
compelling performances out of nothing. Driving on a foggy
night in search of any interesting destination seems like an
excellent metaphor for the creative process in general.

The use of creativity exercises (Barry 2019; Brotchie
1993; Parikh and Zitnick 2020) further illustrates the impor-
tance of strategy and starting point. Exercises like Exquisite
Corpse and automatic drawing can lead to entirely different
outcomes each time.

The reader with experience in computer science research
may relate to these observations in another way. In many re-
search projects, the goal is to develop new ideas or technolo-
gies and publish a paper, while the specific problem being
tackled may change along the way during the project. The
final paper might look quite different from the initial project
idea. It is often said that the most important skill in research
is figuring out what problem to work on, and figuring this out
is part of the exploration. The distinguished mathematician
Michael Atiyah, when asked “How do you select a problem
to study?”, responded “... I don’t think that’s the way I work
at all. ... I just move around in the mathematical waters ... I
have practically never started off with any idea of what I’m
going to be doing or where it’s going to go. ... I have never
started off with a particular goal, except the goal of under-
standing mathematics.” (Minio 2001)

Lessons from Digital Painting
The examples above provide little insight into the specific
processes involved. Toward this end, I describe personal

experience from my own process of learning to paint digi-
tally. I began digital painting as a hobby in 2019, with the
purchase of a new digital tablet and stylus. I had received
some training with traditional media many years prior. Now,
I painted purely for pleasure, and in the spirit of exploration.
But, along the way, I began to recognize specific impor-
tant features missing from existing approaches to automatic
painting algorithms, including the algorithms I had previ-
ously developed.

Why might the reader be interested in my own amateur
experiences? As I began painting regularly, I observed how
my experiences differed from our current computational
models for painting. My observations echo the expert ex-
amples described in the previous section. But, while many
artists have described their own practices at a high level, of-
ten these descriptions do not map easily to computational
frameworks. Many of my colleagues have tried to develop
algorithms by reading art books or talking to artists, only
to be frustrated by the seeming impossibility of translating
artists’ descriptions to algorithms. Here I attempt to relate
my experiences to computer science concepts.

For the reader with a computer science background, I
hope these stories provide a useful window into artistic ex-
perience, targeted to thinking about computational creativ-
ity. For the reader with some artistic experience, I hope you
may recognize elements of your own experience.

Outcomes are unpredictable
As I began to make my own artwork, I often started with the
goal of making my paintings as realistic as possible. Early
on, I tried to paint a watercolor of a specific building. After
awhile, I became frustrated and disappointed with the paint-
ing’s progress (Fig. 2); it lacked the detail and precision that
I’d wanted. So I switched strategies, adding ink outlines in-
stead, in a way that violated my original goals. The resulting
drawing is not in a style that I intended or anticipated, and
lacks the realism I’d wanted. Nonetheless, I was happy with
the painting and received compliments on it from friends.

A few days later, I decided to try out digital pastels while
looking at some flowers on a table at a cafe in front of
me. Again, I found the intermediate drawing too messy and
again decided to add outlines. I again ended up with a draw-
ing that appeared totally different from my initial goals, but
still satisfactory. Moreover, I was surprised how recogniz-
able the style was; like I’ve seen hundreds or thousands of
other drawings in this style. It wouldn’t have felt out of place
in a hotel room or dentist’s office. Perhaps familiarity with
this style affected my choices.

The key lesson that I kept relearning over and over is that
art comes from a process; I cannot choose the outcome of a
new artwork when I begin. I can’t even predict it. It’s about
following the process until I get “something good,” not about
trying to produce a specific result in a specific style.

Even as I have gained more skill since then, and more
ability to control the outcomes of my drawings, still I am
surprised again and again by the painting that comes out.
My paintings have become more realistic, but still abstracted
in surprising (to me) ways. I always start with some idea or
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Figure 2: A digital painting of the Radcliffe Camera in Oxford, made in 2019 when I was still getting started with digital
drawing tools. I started out intending to make a realistic watercolor of the building. I grew frustrated with watercolor, and
decided to switch strategies midway through by adding ink strokes over the watercolor. The final picture didn’t meet my initial
goals at all—it’s not very accurate, and it’s not in the style I intended—but I’m still happy with it. Paintings ©2021 Aaron Hertzmann

goal for each painting. But I also have to be ready to shift or
abandon that initial idea as the painting emerges.

Of course, highly-trained artists working in more applied
domains, e.g., skilled architectural designers, may employ
more predictable styles. But, once the style becomes pre-
dictable the work becomes less “creative.”

The goal of a painting
I started out solely painting from life, without photography,
in order to better develop my skills. At some point, I be-
gan taking photos along with each painting, so that I would
have a reference in case I wanted to keeping working on the
painting later.

And I noticed two things. First, putting the photograph
next to the painting made the painting look “wrong.” Side-
by-side, I could see all the technical flaws in the painting.

Second, I didn’t care. I still liked the painting more.
This seemed like a contradiction: I wanted to make im-

ages look as real as possible, yet, I didn’t want to duplicate
photographs, and I was quite happy when my paintings were
not photographic. Indeed, had I truly sought photorealism, I
could just take photographs.

These thoughts led me to the following realization, which
seems obvious, even vacuous, but is really quite important:
The goal of painting is to make a good picture.

What is a “good” picture? There are lots of ways that
a picture can be “good.” For me, “good” does not mean
photorealistic, or even accurate. It means that I like looking
at it, that other people like looking at it. Depicting reality
can be part of it. Or perhaps the picture conveys something
about my subjective experience. Or maybe it just looks nice.

I always start out with some kind of goal or idea for a
painting. But, my goals might change along the way, and,
ultimately, I seek only a painting that somehow achieves
something. Along the way, I assess my progress—and
whether I am done and can stop—looking at the painting and
evaluating it, and where it may need improvement, using my
own judgement as to whether the painting is as good as I can
make it, and what parts I can try improving. In these assess-

ments I am simultaneously watching the painting evolve and
discovering what its “goals” might be.

I sometimes sense a jarring disconnect between the way
that others (quite understandably) interpret my paintings,
versus the actual history of how those paintings evolved.
One friend commented that my painting allowed her to see
through my eyes, yet I thought it was poor depiction of re-
ality. Another friend commented that I’d done a good job of
capturing the lighting in a scene. I didn’t think the painting
conveyed my actual experience well—it’s just that lighting I
painted looked good anyway.

Dependence on choices and content
In optimization algorithms, the objective and the constraints
are meant to determine the outcomes, and any dependence
on initialization or parameterization is viewed as a short-
coming. Yet, if the artist’s goals were all that mattered, then
artistic process would be no more than a matter of develop-
ing technical skill. In my own experience, initial choices of
strategy, media, and process are paramount to the outcome.
Existing algorithms, typically treat an image’s “style” and
its “content” as independent, e.g., (Hertzmann et al. 2001;
Gatys, Ecker, and Bethge 2016). Yet, often the style that
emerges is very much a function of the scene I’m trying to
depict.

At each stage of a painting, I have many choices to make.
Which media should I use—solid brushes, oil simulation,
watercolor simulation, or something else? Should I try a
new brush I haven’t tried before? Should I draft an outline
first, or just start drawing the first object that catches my
eye? Should I start drawing the background or foreground
first? And so on.

I found that every single one of these choices has a trans-
formative effect on the resulting painting. Something so
seemingly inconsequential as starting with a dark back-
ground would lead to a painting with a completely different
character than had I begun with white background. In some
cases, these choices were made randomly or by accident;
I only started drawing with pencil because of a time when
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(a) (b) (c)

Figure 3: Three examples of digital drawings in which the subject determined the style I ended up using. (a) I used simulated
oil paint to depict shading variations. (b) I used solid-color strokes, since the water could be clustered into three distinct colors.
(c) I used semi-transparent, texture-less strokes to illustrate transparency and refraction. While each of these subjects could
have been drawn in any of these styles, the results would have been very different, and it would have been much more difficult
to achieve a satisfying result. Paintings ©2021 Aaron Hertzmann

I forgot to change the brush from the default, and quickly
discovered that I loved it. While it is hypothetically possi-
ble to steer a painting far from where it began, it is rarely
worthwhile, since it takes much more time and may produce
a painting which is more “stale.”

Often my initial choices about media and style will be a
function of the scene I’m trying to depict. For example, in
Figure 3(a), the real scene involved smooth tonal gradients,
and so I chose simulated oil paint, which allows me to use
blending with wet-in-wet painting. In contrast, in Figure
3(b), the scene involved stark late afternoon lighting, where
the tones off the water could be clustered into a few col-
ors, due to the Fresnel effect reflections on the water: one
for bright sunlight reflections, one for sky reflections, and
one for refraction; the bridge appeared silhouetted against
the sky, so a solid black was sufficient. Hence, I chose an
opaque, solid color brush for the water and the bridge, with
no need for blending. In Figure 3(c), the object had com-
plex transparency and reflection, so I chose semi-transparent
strokes together with layering as provided in the drawing
app.

In principle, I could choose any strategy for any scene.
I have tried drawing complex architectural scenes without
an initial sketch; they often come off loose and sloppy. I
could have depicted the transparent bottle with a single layer
of oil paint strokes. This would have been far more diffi-
cult to paint, most likely doing a poorer job at capturing the
transparency. And sometimes these alternative approaches
produce results that are appealing in other ways; it is truly
hard to claim that one approach is intrinsically better than
another.

Figure 4 shows four paintings painted at roughly the same
time and location, with different techniques and very differ-
ent outcomes.

In short, the the style of an image arises both from the
subject of the scene and the techniques chosen along the
way, rather than the starting with a desired style and goals.

Intuitions and Conscious Choices

So how do all of these choices get made? Much of learn-
ing to paint is about developing intuitions. In my initial at-
tempts, sometimes I would consciously decide to try a new
approach or technique. Some of these experiments felt like
failures, others felt like unexpected successes. From this ex-
perience, I have developed intuitions about which choices
to make. Considering a new subject, I may consciously
choose whether or not to begin sketching an outline, or sim-
ply to start drawing the nearest object. I might consider how
sloppy the subject might look without the sketched outline,
versus the extra time it would take to do so, and the dan-
ger of losing spontaneity. Or, if I’m in a rush, I’ll pick one
without too much deliberation.

At each stage, these is a question of what to work on next.
Refine details in one object? Adjust the overall arrange-
ment? Fix the background? There are countless options at
each stage, and conscious deliberation would take forever.
One skill is to look at the current state of the painting and
select the next element to work on.

At times, I do stop and stare at the painting, sometimes
comparing it to the real subject. It can take time to get a
sense for what is working in the painting and what to im-
prove.

At some point, I tend to transition from exploration to re-
finement, improving little details and fixing little flaws. One
could say that refinement happens once the style and content
of the painting have emerged.

One of the biggest problems is deciding when to stop. I
particularly struggled with this when I used to use physi-
cal oil paint and watercolor. At some point I’d be trying to
refine a piece, and each new change would make it worse.
Digital tools and “undo” are more forgiving, but it can still
be hard to recognize the point at which there is no benefit to
continuing to work on a painting. According to one quote,
attributed to many artists at different times: “A work of art
is never completed, only abandoned.”
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Figure 4: Four paintings made at roughly the same time
in the same spot, illustrating how different choices of me-
dia and technique can produce very different outcomes. I
painted the first three quickly en plein air, and the fourth
from a photograph later on. Each one surprised me when
completed. Paintings ©2021 Aaron Hertzmann

Intuition or Impulse. Instinctive choices often feel mag-
ical, and there is considerable mythology around the idea
of “artistic insight.” To what extent are these seemingly-
ineffable choices about intuitions, random impulse, or some
other “subconscious force”?

In the language of Kahneman and Tversky (2011), intu-
itions correspond to System 1 and conscious choice to Sys-
tem 2, which, in machine learning, can be associated with
supervised learning and conceptual reasoning, respectively
(Bengio 2019). In the extreme version of this view, intu-
itions are optimizations that allow one make decisions from
experience without further cognition.

One can also associate intuitions and cognition with Pri-
mary and Secondary Processes, which is hypothesized in
psychology to be crucial to creativity. As summarized by
Runco (2014), primary processes reflect “impulse, libido,
and uncensored thoughts and feelings,” while secondary
processes are “purposeful, rational, and guided by conven-
tional restraints.” Several studies describe creative work as a
“magic synthesis,” a collaboration of primary and secondary
processes.

Toward Algorithms

How can we devise algorithms that capture some of the
above observations? I now propose a framework with two
components: a formulation of vague, high-level goals, and
a structured exploratory search process for finding outputs
that satisfy the goals. Following the observations in the pre-
vious sections, both elements are essential components.

Underspecified Problems
In conventional painting optimizations, the style of a paint-
ing is largely fixed in advanced by user-set loss functions
and their weights, the type of brush strokes (e.g., fixed stroke
sizes or lengths, texture or paint simulation, etc.), limits on
the number of strokes, style training images, and so on.

I first propose to model painting as an underspecified
problem. I define an underspecified problem as a problem
for which there are many valid solutions that correspond
to different high-level choices, such as different choices of
media, abstraction, style, emphasis, exaggeration/distortion,
apparent intent, and so on; any of these would be considered
a “valid” solution to the problem. An output that satisfies the
goals of the problem might be a style adapted to fit the sub-
ject well; it could be a new style. An underspecified problem
could be phrased as, for example, “make me a nice painting
of a tree in any style,” modeled as optimizing a painting of
that tree for human perception and aesthetic appreciation.
For specific applications, there may be other goals orthogo-
nal to the underspecified problem, for example, more precise
depictions of shape, or style matching a specific user’s pref-
erences.

In research, underspecified problems might include
“prove an interesting theorem” or “write a publishable pa-
per.”

Underspecified problems would likely include subjective
or hard-to-quantify goals, such as aesthetic beauty and vi-
sual novelty. This requires developing a perceptual model
that models the artist’s judgment of their own work-in-
progress (Moruzzi 2021), which provides the objective func-
tion for optimization, incorporation notions of aesthetics,
scene perception, and novelty. Developing such a model is
a “grand challenge” problem, but one for which incremen-
tal progress could still lead to useful algorithms. That is, it
does not need to truly capture human perception to lead to
useful painting algorithms, just as the Creative Adversarial
Network (Elgammal et al. 2017) produces interesting styles
with only a limited model. Curiosity-driven learning (Pathak
et al. 2017) presents possible insights for modeling visual
novelty.

Rather than building such an artificial “critic,” one could
use human judgements. This human-in-the-loop approach
has also been explored extensively in other contexts, for
collaborative artistic exploration (Draves 2005; Sims 1991;
Secretan et al. 2011; Klingemann and others 2021) and for
exploratory user interfaces, e.g., (Koyama, Sato, and Goto
2020; Marks et al. 1997). Including humans in the loop
limits an approach’s usefulness and its ability to model real
processes. But these human judgements could be used to
bootstrap or improve the critic.

Artistic Exploration and Search Algorithms
It is not sufficient to have a perfect model of a human
viewer’s perception and judgement of a work, even if such
a thing were possible. Fortunately, it is not necessary that
the model be perfect either. The exploration and search al-
gorithm is also crucial, and it can make up for limitations of
the perceptual model. The search algorithm’s goal is to find
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good solutions to the underspecified problem; moreover, the
design of the exploratory search process can help determine
the space of styles as well.

There are several aspects that such an exploratory search
procedure would likely have. All of these are about making
choices at each step: choosing strategies, choosing media,
choosing where individual strokes go, and so on. Generic
optimization algorithms as used in existing methods are not
sufficient.

Explicit task decomposition. When starting a painting,
one may choose a strategy, e.g., start with an outline sketch,
start drawing the first object, start drawing the background,
and so on. Within each strategy one has a set of sub-tasks,
e.g., drawing specific objects, refining shape, or color, or
shading, or each together, evaluating the current painting
and deciding whether to stop, etc.

Algorithmically, this corresponds to hierarchical task de-
composition (Lu et al. 2021). A painting algorithm could
be represented as a loop of selecting a current strategy, and,
within this strategy, selecting the next task to perform, and
then performing it for some duration, and then selecting the
next task. While the parameters could be learned in some
cases, the design of these classes of strategies and tasks
would likely be done by the algorithm designer.

Transition from Exploration to Optimization. The
search should also be guided by the underspecified loss func-
tion. At early stages of the painting, the loss may play a
small role, whereas later steps should largely be refinement,
similar to conventional optimization. In other words, the al-
gorithm may behave much like a hand-designed procedural
algorithm early in the process, and more like an optimization
algorithm later on.

Randomness when making choices plays a key role in
producing unexpected outputs, and randomness is more im-
portant early in the process. Randomly selecting a strategy
early on could lead to an entirely different output, whereas
randomness in stroke placement toward the end of the pro-
cess may only provide a bit of stroke jittering.

Learned vs. procedural decision-making. How does the
system make these choices? The simplest answer is to as-
sess the change to the painting according to the underspeci-
fied loss, and randomly pick from the high-scoring options.
In this way, the loss can guide decision-making. A second
answer is to procedurally author rules for the early stages
of the process. A more intriguing and complex approach
would be to use existing deep learning frameworks to learn
some parameters of these decision-making steps, for exam-
ple, by having users rate outputs of the system and allowing
the system to learn over time. This would be distinct from
the existing systems by the use of the hierarchical task de-
composition and the underspecified loss. Moreover, it could
be intriguing to watch the system learn and see its styles
evolve.

Conclusion
The central thesis of this paper is that many creative prac-
tices can be described as satisfying vague, high-level goals
through exploratory search processes, and that we can at-
tempt to model these practices computationally. Building
such a computational formulation includes difficult “grand
challenge” problems, such as the problem of sufficiently ap-
proximating how a viewer perceives a new painting.

The idea of goal-directed exploration overlaps with many
ideas of creativity and open-ended search (Stanley and
Lehman 2015), such as quality and novelty. But it is more
specific: it implies the existence of a high-level goal (pro-
duce an output image), and it suggests the existence of a
mathematical formulation (the language of optimization).
Open-endedness and curiosity-driven (Pathak et al. 2017)
are good descriptions of why we might choose to paint at
all, whereas the framework described in this paper describes
the act of making a specific painting.

It is hard to know which aspects of human cre-
ativity are “fundamental,” and which are secondary ef-
fects/epiphenomena (Jordanous 2012). Which attributes of
creative people, products, and behaviors are important? For
example, it has often been asserted that left-handed peo-
ple are more likely to be creative (van der Feen et al.
2020). However, forming a research program around left-
handed robots does not sound fruitful. This paper points
out attributes of creative practice that, to my knowledge,
have not been deeply explored in the creativity literature
and may be important candidates, in addition to, or instead
of, concepts like novelty and effectiveness (Boden 1998;
Jordanous 2012; Runco and Jaeger 2012).

Many definitions of creativity focus on the qualities of
the output, including both in the psychology literature, e.g.,
(Runco and Jaeger 2012), and in computation, e.g., (Bo-
den 1998; Colton and Wiggins 2012). Yet, in some cases,
very simple rules can produce results that are judged as
“creative” by experts, e.g., (Goldenberg, Mazursky, and
Solomon 1999). Instead, some researchers have argued
for understanding the process itself in defining creativity
(Glăveanu and Beghetto 2021) and evaluating it (Colton
2008; Moruzzi 2021).

This paper focuses on building systems inspired by hu-
man creativity, and, toward this end, we likewise argue that
it is not sufficient to consider losses and evaluations, but to
carefully formulate the processes by which artifacts are pro-
duced when designing these systems.
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Abstract

The unabated mystique of large-scale neural networks,
such as the CLIP dual image-and-text encoder, popular-
ized automatically generated art. Increasingly more so-
phisticated generators enhanced the artworks’ realism
and visual appearance, and creative prompt engineer-
ing enabled stylistic expression. Guided by an artist-
in-the-loop ideal, we design a gradient-based genera-
tor to produce collages. It requires the human artist to
curate libraries of image patches and to describe (with
prompts) the whole image composition, with the option
to manually adjust the patches’ positions during gener-
ation, thereby allowing humans to reclaim some control
of the process and achieve greater creative freedom. We
explore the aesthetic potentials of high-resolution col-
lages, and provide an open-source Google Colab as an
artistic tool.

Introduction
A collage, from the French coller, is “a composite im-
age made by sticking newspaper cuttings, photographs, and
other printed images onto a flat surface, often combined with
paint” (Zaczek and Actor 2008). Photomontage extends col-
lage by manipulating and compositing photographs (Ades
1976). The origins of collage can be traced to the invention
of paper in China, and photo-collage was a social pastime
for the Victorian upper-class (National Galleries of Scotland
2019), before Cubists Pablo Picasso and Georges Braque
made collage into an art form (Zaczek and Actor 2008;
Greenberg 1958).

In this paper, we formalize collage as a picture produced
by optimizing affine spatial and color transformations of
patches, where patches are manually selected, and then auto-
matically sampled, moved around, recolored, and superim-
posed. We design a gradient-based Collage Generator con-
sisting of differentiable spatial and color transformations of
patches followed by transparent or opaque superposition.

The Collage Generator optimizes such transformations
guided by a dual text-and-image encoder (Liu, Gong, and
others 2021), like the popular CLIP model from OpenAI
(Radford, Wook Kim, and others 2021), pre-trained on large
datasets of captioned images collected on the internet (hence
incorporating various cultural biases). Intuitively, the dual
encoder computes a score for the match between a textual

Figure 1: The Fall of the Damned after Rubens and Eaton.
High-resolution collage of image patches of animals (Fig.7),
optimized hierarchically with 3x3 overlapping CLIP critics.

prompt and the resulting collage image. Therefore, it acts
as an AI-based Critic assessing the “quality” of the art-
work given its description. Large-scale dual encoders ex-
hibit some degree of semantic compositionality, as they al-
low novel combinations of phrases or images, and handle
such visual concepts as color, texture, shape, object rela-
tions, perspective and “style”, to guide a generator to create
remarkably convincing images.

Computational artists like Ryan Murdock, Katherine
Crowson and Mario Klingemann have investigated various
neural generators, including Generative Adversarial Net-
works (Brock, Donahue, and Simonyan 2018; Esser, Rom-
bach, and Ommer 2021), Diffusion models (Dhariwal and
Nichol 2021), evolution strategies on colored shapes (Tian
and Ha 2021) or evolution-based Neural Visual Grammars
(Fernando, Eslami, and others 2021); each producing dis-
tinctive aesthetics in tandem with the CLIP critic. In Spring
2021, open-source Google Colabs allowing practitioners to
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combine VQGAN generators with CLIP critics (Crowson et
al. 2022) greatly popularised the technique. More recent
methods that rely on Latent Diffusion conditioning or direct
prediction of CLIP image embeddings manage to forgo the
lengthy CLIP critic iterations and allow considerably faster
and higher quality text-to-image generation (Rombach et al.
2021; Ramesh et al. 2022).

Our system is more interpretable, as it merely optimises
color and affine transformations of hand-selected patches,
instead of optimizing latent variables that condition a neural
pixel image generator. Since the Collage Generator operates
on collections of identifiable patches, we can let the user in-
tervene during the optimization, manually adjusting the ar-
rangement (shift, scale and rotation) of individual patches,
for additional human-in-the-loop guidance.

Our work extends differentiable scalable vector graph-
ics used in CLIPDraw (Frans, Soros, and Witkowski 2021),
substituting strokes with patches. We experiment with vari-
ous rendering methods for superimposing patches in a learn-
able way. We can also combine multiple critic evaluations
on overlapping regions of a larger image to produce high-
resolution1 and detailed collages, allowing the artist con-
trol over the composition of the artwork. We call our sys-
tem CLIP-CLOP (loosely CLIP-guided COLlage and Pho-
tomontage) and open-source its Google Colab code.

CLIP-CLOP also builds upon extensive prior work in
computational creativity. Automated collage generation
(Krzeczkowska et al. 2010) in the The Painting Fool (Colton
2008) employed keyword retrieval-based methods to make
thematic news-based juxtapositions of images. Optimisation
methods were used for spatial and colour transformations of
image cutouts to assemble “Arcimboldo”-like collages that
match a target image (Huang, Zhang, and Zhang 2011). Se-
mantic composition of patches were conceptualised as rela-
tive positions between image cutouts in (Breault et al. 2013),
and then explored as juxtaposition, replacement and fusion
of images in (Xiao, Linkola, and others 2015) or as vi-
sual blending of emoji pictograms in (Cunha, Martins, and
Machado 2018). CLIP-CLOP combines all above aspects
with differentiable transformers and a CLIP critic for textual
prompt-driven image generation.

CLIP-CLOP is directly inspired by art theory. First,
CLIP-CLOP arranges disparate collections of textured
patches into new images, just like collage techniques en-
abled Cubist artists to exploit ambiguities arising from the
shapes and perspectives of patches (Zaczek and Actor 2008).
Second, Hans Arp’s Collage With Squares Arranged ac-
cording to the Law of Chance (1916-1917)2, is a precur-
sor to CLIP-CLOP’s random initialization and optimiza-
tion of patches, with optional manual adjustment, and an
illustration of our human-in-the-loop approach to procedu-
ral art generation. We believe that allowing patch choice
gives the artist more control than the mere combination of
prompt engineering with critic-guided generators (Radford,

1Open-source code and examples of high-resolution images:
https://github.com/deepmind/arnheim

2Museum of Modern Art, New York:
https://www.moma.org/collection/works/37013

Wook Kim, and others 2021) and situates CLIP-CLOP with
recent human-in-the-loop works.

Scale, rotate & shear
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Translation
transforms

smiley face

Colour
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encoder
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II ∙ T
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Figure 2: Architecture of the generative collage algorithm.

Algorithm
Like in traditional collage, the artist prepares a collection of
N image patches. CLIP-CLOP randomly initialises N RGB
color transformation vectors and N affine transformation
matrices, one for each patch, to randomly color and disperse
them onto a canvas. These patch transformations, as well as
the patch superposition and image rendering method, con-
stitute the Collage Generator. A forward pass through this
Collage Generator applies transformations to each patch
and then combines patches by superimposing their RGB
images onto a blank canvas. The resulting image is then
evaluated by the Critic (dual image-and-text encoder) and
matched to one or several user-defined textual prompts. The
automated optimization loop between the parameters of the
Collage Generator and the Critic’s evaluation is illustrated
on Figure 2. An optional evolution-based optimization can
be applied to the set of image patches.

Preparation of Image Patches
We leave that crucial curation process to the artist, as it
uniquely defines the artwork, and offer only basic tools for
preparing image datasets.

CLIP-CLOP takes as input a list of N 4-channel (RGB
plus alpha) image arrays. The contour of each patch is spec-
ified by the alpha channel, which can be semi-transparent.
We explored manual image segmentation using photo edit-
ing software, automated flood-filling from four corners of
each patch image (when those images are adequately cen-
tered photographs of objects on a plain background) and
computer vision-based image segmentation of photographs
over cluttered backgrounds.

Collage Generator
The Collage Generator is composed of color transforma-
tion, spatial affine transformation of each patch, and patch
superposition, three operations that are differentiable, allow-
ing gradient-based optimization.

Color Transformation Each given image patch is as-
signed three color multipliers, for the red, green and blue
channels; changing those coefficients with values smaller
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than 1 uniformly changes the patch’s color. These param-
eters are optimized during training.

Spatial Transformations Similarly, each image patch is
assigned six numbers, for X and Y translation, rotation,
scale, squeeze and shear along the X axis. The two-
dimensional affine transformations are expressed as 3 × 3
translation, rotation and scale matrices, and are applied
to the image pixel 2D coordinates. The resulting affine-
transformed (rotated, scaled and translated) grids of pixel
coordinates are then used to interpolate the patch. Similarly,
these affine transform parameters are optimized during col-
lage generation.

Differentiable Rendering Collage artworks typically su-
perimpose opaque scraps of paper cuttings, assuming a par-
tial ordering – which scrap is on top of another. Yet in our
case of differentiable rendering, a completely opaque su-
perposition of patches compromises the learnability of the
collage because we cannot propagate gradients through oc-
cluded patches.

We thus investigated two alternatives. The first one, trans-
parency, simply adds the RGB values of all patches. A
variation of transparency, called masked transparency, sums
RGB values of only non-masked parts of patches (i.e., where
alpha channel values are strictly greater than 0) and normal-
izes each pixel value by the sum of masks at that position.

The second one, called opacity, replaces the opaque, or-
dered superposition of patches by a differentiable approxi-
mation, consisting of a weighted sum of patches with learn-
able patch weights. Specifically, each patch is given an order
parameter. For each patch and pixel coordinate, we com-
pute the weight by multiplying the order of the patch by the
mask at that pixel. The resulting image is a weighted sum of
patches. Again, patch order parameters are optimized during
collage generation.

Figure 3 shows the effect of various rendering methods.
Note that opacity does not always fully occlude all image
patches but does more so than transparency and masked
transparency, and that (unless the RGB range is allowed to
be negative) transparency can result in saturated (close to
white) image parts (visible on left image in some of the coral
tentacles).

Achieving High Resolution CLIP-CLOP’s advantage is
that it can produce collages at any resolution. During op-
timization, we use down-sampled patches, as CLIP is re-
stricted to 224 x 224 images; for the final rendering, the
same spatial transformations are applied to the original high
resolution patches.

Figure 3: Rendering methods on prompt underwater coral.
Left to right: transparency, masked transparency, opacity.

Critic
By a crude analogy to an art critic, who interprets and eval-
uates a piece of art, we use a compatibility function – called
Critic – between the collage and the textual prompts. Intu-
itively, the higher the score given by the Critic function, the
better the fit between textual and visual inputs. At each step,
Collage Generator produces parameterized transformations
of patches rendered on the canvas and generates a new col-
lage proposal. Next, we use CLIP (Radford, Wook Kim, and
others 2021) – a large-scale model, trained on 400 million
image-text pairs – as Critic, with an encoder that extracts
image features from the collage and text features from the
prompt. These features are matched against each other to
give a compatibility score.

During training, that score is optimised by stochastic gra-
dient ascent and backpropagated through the image to the
Collage Generator to optimize the patches’ transformations
parameters.

Semantic Composition Many generative approaches pro-
duce images with single semantics, i.e., evaluated globally
with one Critic. To achieve a higher level of compositional-
ity, we divide the image into 3×3 overlapping local regions,
each evaluated by a different Critic and prompt. A tenth
Critic evaluates the whole collage globally (with reduced
resolution). Figure 4 illustrates how one could decompose
“landscape” using prompts: “sky with sun”, “sky” and “sky
with moon”, “trees”, etc.

Moreover, the same procedure allows to increase the res-
olution of the final collage. With 3 × 3 regions, we can
produce 448 × 448 images instead of 224 × 224, typical of
approaches that use CLIP. In our work, we experiment with
parallel Critic evaluations and less memory consuming but
slower serial evaluations. We use either arithmetic or har-
monic mean of all individual Critic losses.

Figure 4: Using multiple overlapping CLIP evaluators with
different prompts allows greater control over composition
and higher resolution collages.

Evolution of Image Patches Gradients enable existing
patches to be manipulated but do not provide a signal for ex-
changing one patch for another. To support this, we optimize
a population of 2 to 10 randomly initialized collages and ap-
ply a step of evolution (microbial genetic algorithm (Harvey
2009)) every 100 gradient descent steps. The scores of two
random Collage Generators are compared and the loser is
overwritten with the winner, with random mutations involv-
ing swapping a random patch for another or small Gaussian
noise added to affine and color transformations.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

192



Explorations
Non-Semantic Composition from Patches In many
human-made collages, the arrangement of patches is deter-
mined by their semantic relationship, e.g. a giant child may
be depicted climbing atop a skyscraper. The meaning of
each part is coherent or interestingly incongruous, and hu-
mans can easily construct such scenes. However, a harder
task for humans is to compose an image (e.g. a bull or a
human face3) from semantically different parts (e.g. tree
leaves or fruits), as illustrated on Figure 5. CLIP-CLOP eas-
ily makes such discoveries and compose patches in a non-
semantic way. Figure 5 also shows (in the top row) that
fewer patches make more abstract Picasso-inspired collages
of a bull, while more patches make more realistic images.

Figure 5: Collages made of different numbers of tree leaves
patches (bulls in the top row), as well as Degas-inspired bal-
let dancers made from animals, faces made of fruit, and still
life or landscape made from patches of animals (see Fig. 7).

Figure 6: Alan Turing in stained glass. a) CLIPDraw with
1000 strokes, b) CLIP-CLOP with 100 animal patches or c)
200 broken plate patches, d) CLIP-guided diffusion.

Patches as Textural Image Constituents Figure 6 illus-
trates different aesthetics that can be obtained using di-
verse image generators on the same prompt (Alan Turing in
stained glass). Without cherry-picking, we compared results
on CLIPDraw (Frans, Soros, and Witkowski 2021), Kather-
ine Crowson’s CLIP-guided diffusion (Dhariwal and Nichol

3A Twitter bot regularly posts collages of human faces, gener-
ated by CLIP-CLOP and using patches of animals or human-made
waste at: https://twitter.com/VisPlastica/media

2021) using a Colab from late 2021, and CLIP-CLOP on
patches consisting of animals or fragments from a broken
plate. We noticed that CLIPDraw combines many strokes
to create textures, guided diffusion generates complex tex-
tures directly from pixels, while collage exploits existing
shapes, shadows and textures present on individual patches
to achieve the desired stained glass effect.

Generative Collage as a Human-in-the-loop AI Popular
applications such as Wombo Art4 that rely on state-of-the-
art deep learning for image synthesis, have democratised
the use of generative art systems but also removed the hu-
man user from most of the image production process, let-
ting them only specify the prompt, and therefore focusing
users’ input on creative prompt engineering (Liu and Chilton
2022). The user has limited choice in how to visually repre-
sent concepts, cannot control the various cultural references
and merely acts as a curator of the outputs (Chung 2021). In
a departure from commoditized art generation, we propose
to give the artist full control over the image patches used
for collage, making them curator of the inputs for the algo-
rithm and collaborator with machine creativity. We believe
in art as means of human agency, requiring that “automation
in creative fields is always supported by the development of
humans’ creative potential” (Daniele and Song 2019), and
thus favour interactive systems over fully automated ones.

Human-in-the-loop systems such as collabdraw (Fan,
Dinculescu, and Ha 2019) or Drawing Apprentice (Davis,
Hsiao, and others 2016) have long been used for AI-guided
sketching, and it was found that ”AI Steering Tools” for mu-
sical composition that let users constrain the generative pro-
cess ”helped users increase their control, creative ownership,
and sense of collaboration with the generative ML model”
(Louie, Coenen, and others 2020).

In that spirit, we added a simple interactive human-in-the-
loop correction of AI-optimized collage. We allow the artist
to stop the optimization loop, manually edit one or more
patches via a user interface (click on the current collage to
select a patch, and adjust its position, rotation, scale, etc.
using UI sliders) and then resume the optimization loop.

Conclusion
The remixability of modern media encourages sampling and
remixing, hence: collage (Manovich 2005). Collage is yet
a little-explored art form for procedural visual art genera-
tion. In our work, we introduce a Collage Generator and
combine it with a popular dual image-and-text encoder like
CLIP for AI-based steering. The ability to choose image
primitives gives the artist an unprecedented level of control
compared to previous CLIP-guided methods and helps to es-
cape, to some extent, the straight-jacket of style imposed by
pre-trained neural network generators. Current development
work focuses on real-time manipulation of image patches
during optimization. We resisted going in the opposite di-
rection: automating the image primitive selection process.
We open-source5 CLIP-CLOP as a creative tool for artists.

4https://app.wombo.art
5https://github.com/deepmind/arnheim

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

193



Acknowledgements
The authors wish to thank Kitty Stacpoole, Christina Lu,
Luba Eliott, Max Cant, Jordan Hoffmann, Oriol Vinyals, Ali
Eslami, El Morrison, Kory Mathewson, Ian Horton, Mikołaj
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Figure 1: Art images on left with orange borders are generated using Creative Walk Adversarial Networks. The right part shows
the Nearest Neighbors (NN) from the training set on the WikiArt dataset (with green borders), which are different indicating
our generations’ novelty. Nearest neighbor distance is computed on ResNet-18 space (He et al. 2016).

Abstract

We propose Creative Walk Adversarial Networks
(CWAN) for novel art generation. Quality learning rep-
resentation of unseen art styles is critical to facilitate
generation of new meaningful artworks. CWAN learns
an improved metric space for generative art by ex-
ploring unseen visual spaces with probabilistic random
walks. CWAN constructs a dynamic graph that includes
the seen art style centers and generated samples in the
current minibatch. We then initiate a random walk from
each art style center through the generated artworks in
the current minibatch. As a deviation signal, we encour-
age the random walk to eventually land after T steps
in a feature representation that is difficult to classify as
any of the seen art styles. We investigate the ability
of the proposed loss to generate meaningful novel vi-
sual art on the WikiArt dataset. Our experimental re-
sults and human evaluations demonstrate that CWAN
can generate novel art that is significantly more prefer-
able compared to strong state-of-the-art methods, in-
cluding StyleGAN2 and StyleCAN2. The code is pub-
licly available at: https://vision-cair.github.io/CWAN/

Introduction
Generative models like Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014a) and Variational Auto
Encoders (VAEs) (Kingma and Welling 2013) are excel-
lent tools for generating images due to their ability to rep-
resent high-dimensional probability distributions. However,
they are not explicitly trained to go beyond distribution
seen during training. Hence, the generations tends to be
more emulative than creative. To generate likable novel vi-
sual content, GANs’ training has been augmented with ex-
plicit losses that encourages careful deviation from exist-
ing classes, as first demonstrated in Creative Adversarial
Networks (CANs) (Elgammal et al. 2017a). These mod-
els were shown to have some capability to produce unseen
aesthetic art (Elgammal et al. 2017a; Hertzmann 2018;
Jha, Chang, and Elhoseiny 2021), fashion (Sbai et al. 2018),
design (Nobari, Rashad, and Ahmed 2021), and sculp-
ture (Ge et al. 2019). Producing these creative generations is
mainly leveraged by the generative model’s improved abil-
ity to learn visual representations of novel generations that
are distinguishable from seen ones. Similar deviation mech-
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anisms was shown to have generalization benefit, improv-
ing performance on the task of unseen class recognition by
encouraging discrimination explicitly between seen and un-
seen generations(Elhoseiny and Elfeki 2019; Elhoseiny, Yi,
and Elfeki 2021).

We propose Creative Walk Adversarial Networks
(CWAN) as a new learning system for generating artworks.
We build our method on top of the state-of-the-art GAN
architectures, StyleGANs (Karras, Laine, and Aila 2019a;
Karras et al. 2020), due to their superior performance
as compared to VAEs. We augment StyleGANs with
parameter-free graph-based loss, dubbed as Creative Walk
loss, to improve learning representation of unseen Artworks
generatively. We first represent each art style class (e.g.,
cubism, High renaissance) by its center, representing the
mean neural representation of the given Art style. Our Cre-
ative Walk loss then starts from the center of each seen art
style class and performs a random walk through the gen-
erated images for T steps. Then, we encourage the land-
ing representation to be distant and distinguishable from
the seen art style centers. In summary, the Creative Walk
loss is computed over a similarity graph involving the cen-
ters of seen art styles and the generated images/art pieces in
the current minibatch. Thus, Creative Walks takes a global
view of the data manifold compared to existing deviation
losses that are local/per example; e.g., (Sbai et al. 2018;
Elgammal et al. 2017a). Our work can be connected to
recent advances in semi-supervised learnin, that leverage
unlabeled data within the training classes, e.g., (Zhang et
al. 2018)(Ayyad et al. 2020)(Ren et al. 2018)(Haeusser,
Mordvintsev, and Cremers 2017)(Li et al. 2019). In these
methods, unlabeled data are encouraged to attract existing
classes. In contrast, our goal is the opposite, deviating from
seen styles. Also, creative walks operate on generated im-
ages instead of provided unlabeled data.
Contribution. We propose Creative Walk Adversarial Net-
works(CWAN) for novel art generation. CWANs augment
state-of-the-art adversarial generative models with a Cre-
ative Walk loss that learns an improved metric space for
novel art generation. The loss generatively explores unseen
art discriminatively against the existing art style classes.
The augmented loss is unsupervised on the generative space
and can be applied to any GAN architectures; e.g., DC-
GAN (Radford, Metz, and Chintala 2016), StyleGAN (Kar-
ras, Laine, and Aila 2019a), and StyleGAN2 (Karras et
al. 2020). We show that Creative Walk Adversarial Net-
works helps understand unseen visual styles better, improv-
ing the generative capability in unseen space of liked art
as compared to state-of-the-art baselines including Style-
GAN2(Karras et al. 2020) and StyleCAN2(Jha, Chang, and
Elhoseiny 2021); see Fig. 1.

Related Work
Generative Models with Deviation Losses. In the con-
text of computational creativity, several approaches have
been proposed to produce original items with aesthetic and
meaningful characteristics (Machado and Cardoso 2000;
Mordvintsev, Olah, and Tyka 2015; DiPaola and Gab-
ora 2009; Tendulkar et al. 2019). Various early stud-

ies have made progress on writing pop songs (Briot, Had-
jeres, and Pachet 2017), and transferring styles of great
painters to other images (Gatys, Ecker, and Bethge 2016;
Date, Ganesan, and Oates 2017; Dumoulin et al. 2017;
Johnson, Alahi, and Li 2016; Isola et al. 2017) or doo-
dling sketches (Ha and Eck 2018). The creative space
of the style transfer images is limited by the content im-
age and the stylizing image, which could be an artistic
image by Van Gogh. GANs (Goodfellow et al. 2014a;
Radford, Metz, and Chintala 2016; Ha and Eck 2018;
Reed et al. 2016; Zhang et al. 2017; Karras et al. 2018;
Karras, Laine, and Aila 2019a) have a capability to learn
visual distributions and produce images from a latent z vec-
tor. However, they are not trained explicitly to produce novel
content beyond the training data. More recent work explored
an early capability to produce novel art with CAN (Elgam-
mal et al. 2017b), and fashion designs with a holistic CAN
(an improved version of CAN) (Sbai et al. 2018), which are
based on augmenting DCGAN (Radford, Metz, and Chin-
tala 2016) with a loss encouraging deviation from existing
styles. The difference between CAN and holistic-CAN is
that the deviation signal is Binary Cross Entropy over indi-
vidual styles for CAN (Elgammal et al. 2017b) and Multi-
Class Cross-Entropy (MCE) loss overall styles in Holistic-
CAN (Sbai et al. 2018). (Jha, Chang, and Elhoseiny
2021) recently proposed StyleCAN model, which augments
the Holistic CAN loss on StyleGANs, showing an improved
performance compared to StyleGANs in art generation.

In contrast to these deviation losses, our Creative Walk
loss is global. It establishes dynamic messages between gen-
erations produced in every mini-batch iteration and seen vi-
sual spaces. These generations deviate from style norms rep-
resented by the centers of the seen art style classes. In our
experiments, we added the proposed loss to StyleGAN1 and
StyleGAN2 architectures to produce novel visual artworks,
showing superior likeability compared to existing losses.

Creative Walk Adversarial Networks
We start this section by the formulation of our Creative Walk
loss. We will show later in this section how state-of-the-art
deep-GAN models can be integrated to encourage novel vi-
sual generations. We denote the generator as G(z) and its
corresponding parameters as θG. As in (Goodfellow et al.
2014b; Karras, Laine, and Aila 2019a), the random vector
z ∈ RZ sampled from a Gaussian distribution pz = N (0, 1)
to generate an image. Hence, G(z) is an generated image
from the noise vector z. We denote the discriminator as D
and its corresponding parameters as θD. The discrimina-
tor is trained with two objectives: (1) predicting real images
from the training images and fake for generated ones. (2)
identify the art style class of the input artwork. The dis-
criminator then has two classification heads. The first head
is for binary real/fake classification; {0, 1} classifier. The
second head is a K-way classifier over the seen art style
classes, where K is the number of style classes in the train-
ing dataset. We denote the real/fake probability produced by
D for an input image as Dr(·), and the classification score
of a seen style class k ∈ S given the image as Dc(·), where
S is the set of seen art styles.
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Figure 2: Creative Walk loss starts from each seen style class center (i.e., pi). It then performs a random walk through generated
examples of hallucinated unseen classes using G(z) for T steps. The landing probability distribution of the random walk is
encouraged to be uniform over the seen classes. For careful deviation from seen classes, the generated images are encouraged
to be classified as real by the Discriminator D. H indicates relative entropy; see Eq. 4 for detailed definition.

Creative Walk Loss
We denote the seen class centers, or prototypes1, that we
aim to deviate from as C = {p1 · · ·pK}, where pi rep-
resents center of seen class/style i and K is the number of
seen art styles that we aim to deviate from. We compute
C = {p1 · · ·pK} by sampling a small episodic memory
of size m for every class and computing pi from the dis-
criminator representation. Concretely, we randomly sample
m = 10 examples per class once and compute at each it-
eration its mean discriminator features, computed as activa-
tions from the last layer of the Discriminator D followed by
scaled L2 normalization L2(v, β) = β v

∥v∥ , β = 3.

With the generator G(·), we sample generated images X̃
of size Ñ that we aim them to deviate from the seen art
styles. X̃ is then embedded to the same feature space as
style centers with the discriminator. Let B ∈ RÑ×K be the
similarity matrix between the features of the generations (X̃)
and the seen class centers (C). Similarly, let A ∈ RÑ×Ñ be
the similarity matrix between the generated images. In par-
ticular, we use the negative Euclidean distances between the
embeddings as a similarity measure as follows:

Bij = −∥x̃i − pj∥2, Ai,j = −∥x̃i − x̃j∥2 (1)

where x̃i and x̃j are ith and jth features in the set X̃; see
Fig. 2. To avoid self-cycle, The diagonal entries Ai,i are set
to a small number ϵ.

1we refer alternatively between prototypes and centers

Hence, we defined three transition probability matrices:
PC→X̃ = σ(BT), PX̃→C = σ(B), PX̃→X̃ = σ(A) (2)

where σ is the softmax operator is applied over each row of
the input matrix, PC→X̃ and PX̃→C are the transition prob-
ability matrices from each seen class over the Ñ generated
images and vice-versa respectively. PX̃→X̃ is the transition
probability matrix from each generated image over other
generated images. We hence define our generative random
walker probability matrix as:

PC→C(t, X̃) = PC→X̃ · (PX̃→X̃)t · PX̃→C (3)

where P i,j
C→C(t, X̃) denotes the probability of ending a ran-

dom walk of a length t at a seen class j given that we have
started at seen class i; t denotes the number of steps taken
between the generated points, before stepping back to land
on a seen art style.
Creative Walk Loss. Our random walk loss aims at boost-
ing the deviation of unseen visual spaces from seen art style
classes. Hence, we define our loss by encouraging each row
in PC→C(t) to be hard to classify to seen classes as follows

LCW =−
T∑

t=0

γt ·
K∑

i=1

K∑

j=1

Uc(j)log(P
i,j
C→C(t, X̃))

−
Nu∑

j=1

Ux(j)log(Pv(j))

(4)

where the first term minimizes cross entropy loss between
every row in PC→C(t, X̃)∀t = 1 → T and uniform distri-
bution over seen classes Uc(j) =

1
Ks ,∀j = 1 · · ·Ks, where
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Figure 3: Most liked and disliked art generated using StyleGAN1 + CWAN(left) and StyleGAN2 + CWAN(right) architectures.

T is a hyperparameter and γ is exponential decay set to 0.7
in our experiments. In the second term, we maximize the
probability of all the generations x̃i ∈ X̃ to be equality vis-
ited by the random walk; see Fig. 2. This term is called
the “visit loss” and was proposed in (Haeusser, Mordvint-
sev, and Cremers 2017) to encourage random walker to visit
a large set of unlabeled points. We compute the overall prob-
ability that each generated point would be visited by any of
the seen class Pv = 1

K̃

∑K
i=0 P

i
C→X̃

, where P i
C→X̃

repre-

sents the ith row of the PC→X̃ matrix. The visit loss is then
defined as the cross-entropy between Pv and the uniform
distribution Ux(j) =

1
Ñ
,∀j = 1 · · · Ñ . Hence, visit loss en-

courages to visit as many examples as possible from X̃ and
hence improves learning representation.

Note that, if we replace Uc by an identity matrix to
encourage landing to the starting seen class, the loss be-
comes an attraction signal similar to (Haeusser, Mordvint-
sev, and Cremers 2017), which defines its conceptual dif-
ference to the Creative Walk loss. We integrated our loss
with StyleGAN1 (Karras, Laine, and Aila 2019a) and Style-
GAN2 (Karras et al. 2020) by simply adding LGRW in Eq. 4
to the generator loss. The generator and discriminator losses
are defined as follows

LG = LG GAN + λLCW (5)

LD = LD GAN + λLstyle classification (6)
whereLG GAN andLD GAN are the default generator and dis-
criminator loss, used in the adopted GAN architecture (e.g.,
DCGAN, StyleGAN1. StyleGAN2). Similar to (Elgammal
et al. 2017a; Sbai et al. 2018), we add art style classification
loss, Lstyle classification, on real art images to LD.

Experiments
Dataset. We performed our experiments on the WikiArt
datasets (WikiArt 2015), which contains approximately 81k
art works from 27 different art styles and over 1k artists.

Nomenclature. Our models are referred as CWAN-
T(value), where CWAN means Creative Walk Adversarial
Network, with Creative Walk loss of T time steps. We name
our models according to this convention throughout this sec-
tion. We perform human subject experiments to evaluate
generated art. We set value of the loss coefficient λ as 10 in
all our experiments. We divide the generations from these
models into four groups, each containing 100 images; see
examples in Fig. 3.
• NN↑. Images with high nearest neighbor (NN) distance

from the training dataset.
• NN↓. Images with low nearest neighbor (NN) distance

from the training dataset.
• Entropy ↑. Images with high entropy of the probabilities

from a style classifier trained on WikiArt dataset.
• Random (R). A set of random images.
For example, we denote generations using CWAN with
T=10, and NN↑ group as CWAN-T10 NN↑. Fig. 3 shows
top liked/disliked paintings according to human evaluation
on StyleGAN1 and StyleGAN2 with our Creative Walk loss.
Baselines. We performed comparisons with two baselines,
i.e., (1) the vanilla GAN for the chosen architecture, and
(2) adding Holistic-CAN loss (Sbai et al. 2018) (an im-
proved version of CAN (Elgammal et al. 2017b)). For sim-
plicity, we refer the Holistic-CAN as CAN. We also com-
pared to StyleCAN(Jha, Chang, and Elhoseiny 2021) model,
an adaptation of the holistic CAN loss on the state-of-the-
art StyleGAN (Karras, Laine, and Aila 2019b) and Style-
GAN2 (Karras et al. 2020) architectures.
Human Evaluation. We performed our human subject
MTurk experiments based on StyleGAN1 (Karras, Laine,
and Aila 2019b) & StyleGAN2 (Karras et al. 2020) archi-
tecture’s vanilla GAN, CAN, and CWAN variants. We con-
ducted three types of experiments; see Fig. 5.

1. Likeability Experiment: Following(Elgammal et al.
2017a), we performed the likeability experiments on
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Table 1: Human experiments on generated art from vanilla GAN, and CAN, and CWAN. CWAN obtained the highest mean
likeability in all the groups. Here Q1 is asking for a likeability score and Q2 is asking whether the art work is created by a
computer/human. See Likeability Experiment for more details. More people believed the generated art to be real for the artwork
generated from model trained using the Creative Walk loss.

Likeability Mean Turing Test

Loss Architecture Q1-mean(std) NN ↑ NN ↓ Entropy ↑ Random Q2(% Artist)

CAN (Elgammal et al. 2017b) DCGAN 3.20(1.50) - - - - 53

GAN (Vanilla) (Karras, Laine, and Aila
2019a)

StyleGAN 3.12(0.58) 3.07 3.36 3.00 3.06 55.33

CAN (Jha, Chang, and Elhoseiny 2021) StyleGAN 3.20(0.62) 3.01 3.61 3.05 3.11 56.55
CWAN-T3 (Ours) StyleGAN 3.29(0.59) 3.05 3.58 3.13 3.38 54.08
CWAN-T10 (Ours) StyleGAN 3.29(0.63) 3.15 3.67 3.15 3.17 58.63
GAN (Vanilla) (Karras et al. 2020) StyleGAN2 3.02(1.15) 2.89 3.30 2.79 3.09 54.01
CAN (Jha, Chang, and Elhoseiny 2021) StyleGAN2 3.23(1.16) 3.27 3.34 3.11 3.21 57.9
CWAN-T3 (Ours) StyleGAN2 3.40(1.1) 3.30 3.61 3.33 3.35 64.0

Best Best

Best
Best

Best
Best

Best

Best

St
yl

eG
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StyleGAN+CWAN-T10(Ours) StyleGAN+CWAN-T3 (Ours)StyleCAN1
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StyleCAN2 StyleGAN2+CWAN-T3 (Ours)

Figure 4: Percentage of each rating from human subject experiments on generated images. Compared to CAN, images generated
using CWAN are rated (5,4) by a significantly larger share of people, and are rated (1,2) by fewer people.

Amazon Mechanical Turk by asking the surveyors the fol-
lowing questions.

(a) Q1. How much do you like this image? 1-5 rating; 5 is
best rating.

(b) Q2. Do you think this image was created by artist or
generated by computer? (yes/no)

The user interface of this experiment is shown in Figure
5 (top). We divide the generations into four groups de-
scribed in nomenclature. We collect five responses for
each art piece (400 images), totaling 2000 responses per
model by 341 unique workers. Table 1 summarizes the
likeability of CWAN generated artworks in comparison
to vanilla GAN and StyleCAN variants (Jha, Chang, and
Elhoseiny 2021). We find that images generated from our
model is more likeable in all the groups described earlier.
Figure 4 shows how our paintings are given higher rat-

ings by more share of participants and lower ratings by
less participants. We found that artworks from the trained
StyleGAN1 and StyleGAN2 with our Creative Walk loss
were more likeable and more people believed them to be
real art, as shown in Table 1. For StyleGAN1, adding the
Creative Walk loss resulted in 38% and 18% more peo-
ple giving a full rating of 5 over vanilla StyleGAN1 and
StyleGAN1 + CAN (StyleCAN1) loss, respectively, see
Fig. 4. For StyleGAN2, these improvements are 65% and
15%. Table 2 shows that images generated by CWAN
on StyleGAN1 and StyleGAN2 architectures have better
ranks when combined with sets from other baselines.

2. Comparison Experiment: We performed experiments
where given an artwork from a model trained with our
Creative Walk loss vs an artwork with CAN loss, we ask
people, which one they prefer. The pairing of the im-
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Likeability Experiment 

Comparison Experiment 

Emotion Experiment 

Figure 5: User interfaces of the likeability experi-
ment(top), comparison experiment(middle) and emotion ex-
periment(bottom).

Table 2: Normalized mean ranking (lower the better) cal-
culated from the likeability experiment. We take the mean
rating of each artwork on both CAN and CWAN losses. We
then stack, sort, normalize them to compute the normal-
ized mean rank. The numbers are corresponding normalized
ranks from the models in the row above them.

Normalized Mean Ranks

CAN/CWAN-T10 CAN/CWAN-T3 CAN/CWAN-T10/CWAN-T3
StyleGAN1 0.53/0.47 0.53/0.47 0.52/0.48/0.50

CAN/CWAN-T3 GAN/CWAN-T3 CAN/GAN/CWAN-T3
StyleGAN2 0.54/0.46 0.59/0.41 0.49/0.59/0.42

ages was done on the basis of nearest neighbour. So, for
each image generated from a StyleGAN model trained on
Creative Walk loss, we found the nearest neighbour from
images of model trained on CAN loss. Several qualita-

tive results from these experiments are shown in Figure 6.
The nearest neighbour was computed based on features
that were extracted from a pretrained ResNet-18 (He et
al. 2016). This is to make sure that the images we give
out for comparison looks similiar as possible. We took
random pairs of images from generations from StyleGAN
model trained with CAN and CWAN; see the user inter-
face for this experiment in Figure 5 (middle). The re-
sults for this experiment on StyleGAN 1 and 2 model on
CWAN and CAN losses are summarized in Table 3. We
collected 5 responses each for 600 pairs of artworks by
300 unique workers. Table 3 shows that CWAN loss is
significantly more preferred compared to art work from
CAN losses.

Figure 6: Figure shows CWAN (left) preferred more than
CAN (right) for each pair of columns (random selection).
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Figure 7: Distribution of emotional responses for generated art from StyleGAN1 + CWAN. Example image for fear, awe, and
contentment is shown. The box beneath shows the most frequent words used by evaluators to describe their feeling. These
responses were collected from a survey on Amazon Mechanical Turk.

3. Emotion Human Subject Experiments: To measure
the emotional influence of AI generated art on the par-
ticipants similar to (Jha, Chang, and Elhoseiny 2021),
we asked participants to record their constructed emo-
tion when exposed to a generated artwork. Following
(Machajdik and Hanbury 2010; Achlioptas et al. 2021;
Mohamed et al. 2022), we allowed these options of emo-
tion categories 1) Amusement 2) Awe 3) Contentment 4)
Excitement 5) Anger 6) Disgust 7) Fear 8) Sadness and
9) Something Else (“Other” in Fig 7). People were also
asked to describe why they feel that particular emotion
in text, so that survey participants chose the emotion af-
ter properly looking at the art work; see the user interface
Figure 5 (bottom). We collected 5 responses each for a
set of 400 generated artworks from 250 unique work-
ers. Despite the model being trained unconditionally, it
was able to produce generations that constructed diverse
feelings in the viewer. Fig. 7 shows the distribution over
the opted emotions, which are diverse but mostly positive.
However, some generations construct negative emotions

Table 3: Evaluator preference percentage for generated im-
ages for both CWAN and CAN loss on the StyleGAN ar-
chitectures. We split the preferred images into two groups
based on their NN distance, and then the preference percent-
age is calculated for these groups.

Architecture Low NN distance split High NN distance split

CAN StyleGAN1 0.46 0.48
CWAN-T10 StyleGAN1 0.54 0.52
CAN StyleGAN2 0.46 0.43
CWAN-T3 StyleGAN2 0.54 0.56

like fear. Fig. 7 also shows the most frequent words for
each emotion after removing stop words. Notable posi-
tive words include “funny”, “beautiful”, “attractive”, and
negative words include “dark”, “ghostly” which are asso-
ciated with feelings like fear and disgust. Compared to the
emotion experiments on Real Art and StyleCAN reported
in (Jha, Chang, and Elhoseiny 2021), emotional responses
to StyleGAN +CWAN art are more entropic (diverse).

Emotional Descriptions by people. In Fig. 9, we can see
a sample of the emotional descriptions that we collected on
the art generated by CWAN in the emotion human subject
experiment. One of the interesting descriptions we collect
by a survey participant where they describe an artwork with
a old looking female as ”Zombie grandma”. Another survey
participant describes a artwork generated as ”super relax-
ing” because of the sunset like colors in the artwork. More
examples are shown in Fig. 9
Wundt Curve Analysis. Wundt curve (Packard 1975;
Wundt 1874) illustrates Collin Martinale’s “The principle of
least efforts”, a theory that explains human behavior towards
creativity in artworks (Martindale 1990). The curve shows
that as the originality/novelty of the work increases, people
like the work. After a certain threshold, people start dislik-
ing it due to the difficulty of understanding, which leads to
a lack of appreciation. We approximate Wundt curve by fit-
ting a degree 3 polynomial on a scatter plot of normalized
likeability vs. mean NN distance ( novelty measure). Gen-
erations are more likable if the deviation from existing art
is moderate but not too much; see Fig. 8. We observe that
likeability responses to image sets with higher NN distance
(i.e., Random (R) and NN↑ ) are generally lower compared
to NN↓. Compared to CAN and GAN, CWAN achieves on
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Novelty: Medium
Likeability: High

Novelty: High
Likeability: Low

Figure 8: Empirical approximation of Wundt Curve (Packard 1975; Wundt 1874). The color of the data point represents
a specific model and its label specifies the group named according to nomenclature. Art from the NN ↑ group has lower
likeability than the NN ↓ group. Examples of a high and low likeability artwork and its novelty are shown. The NN distance is
computed from features of resnet-18 and are normalized by scaling down by 20 (to be < 1). We select 20 because it was around
the higher NN distances we observe in our generations

Figure 9: Descriptions given by people when asked to describe the why they felt a particular emotion while looking at artworks
generated by CWAN (our method)

balance novel images that are more preferred.

Key Observations
In the experiments and the analysis conducted above, we
noted the following key observations.

1. The creative walk loss used in CWAN has performed bet-
ter than CAN on two SOTA base architectures i.e. Style-
GAN1 and StyleGAN2.

2. From Table 1 we find that the artworks generated by our
proposed CWAN model are more likeable than those art-
works by CAN in all the evaluation groups.

3. From Fig. 3 we see that artworks by CWAN have a sig-
nificantly higher percentage of people giving a rating of 5
and least amount for people giving a rating of 1.

4. In Fig. 8, we approximated the Wundt Curve from art-
works generated from CWAN.

5. The generated artworks were able to construct meaning-
ful and diverse emotional experiences for our human par-
ticipants as shown in Figures 7 and 9

Conclusion

We propose Creative Walk Adversarial Networks. Aug-
menting Generative Adversarial Networks with a creative
random walk loss. Through our experiments and analysis,
we showed that CWAN improves generative models’ capa-
bility to better represent the unseen artistic space and gen-
erate preferable novel artworks. We think the improvement
is due to our learning mechanism’s global nature, which op-
erates at the minibatch level producing generations that are
message-passing to each other to facilitate better deviation
of generated artworks from seen art style classes.
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Abstract 

This paper discusses the combination of available arti-
ficial intelligence (AI) models, i.e. Neural Language 
Models (NLMs) with trained GANs and human inter-
pretation to facilitate architectural ideation. The work-
flow identifies conceptual scenarios for a speculative 
design using semantic prompts. Results become visual 
references to complement revised semantic descriptions 
for guiding a VQGAN+CLIP model, leveraging control 
over the outcomes, which are then sorted using dimen-
sionality reduction and further curated for training other 
models (GANs). The NLMs’ interpretation of text input 
increases the possibility of spanning greater semantic 
distances, towards creative visual outcomes, while the 
nested workflow of AI-human steps enables an auto-
mated query of a larger solution space. Furthermore, it 
considers the problem of low-bandwidth, reductionist 
encoding of visual data (Hadamard, 1945) resulting 
from verbal-based (NLM) processing models  (LeCun, 
2021) that potentially constrain design agency.  

1. Introduction 
A reconsideration of the binary separation of intelligence 
as human and artificial, and the perception of intelligence 
as a “spectrum” (Bratton, 20 Feb.2022) may enhance hu-
man capacity to make decisions by introducing AI as an 
assistant for design creativity. This paper tries to propose a 
pedagogical structure where the agency of human design-
ers is complemented by generative tools including lan-
guage-based AI models (i.e.VQGAN+CLIP) for an archi-
tectural design studio course. The workflow involves a 
back-and-forth shift of “agency”, trying to establish the 
type of framework where AI can make a contribution in 
relation to human-driven decision stages. Due to current 
limitations of Artificial Neural Networks (ANNs), and 
specifically Neural Language Models (NLMs), applying 
AI’s potential in a heuristic manner seems more feasible 
than pursuing a clear problem within a deterministic design 
approach. Furthermore, NLMs’ limitation when used in 
isolation warrants their integration with other ANNs 
(Bolojan, Vermisso, & Yousif, 2022).As a result, this pro-
ject theme offers an open-ended, bottom-up way to craft a 
design agenda.  The research involves the integration of 
computational generative tools with more analog design 
steps to re-imagine design scenarios for re-assembly of 
large, broken cargo ships and oil tankers into informal 
dwelling communities. The specific geographical and so-

cio-cultural backdrop (Fig.1) is used to introduce NLMs 
and other ANNs during the early stages of ideation. In ad-
dition, we contemplate on further design tasks where AI 
may be useful, like the identification of ways to synthesize 
particular semantic features with each other. The project is 
inspired by the empirical creativity of ship-breaking com-
munities in Bangladesh and operates on the fringe of the 
regular economy. It is viewed as an exercise that is guided 
by (human-computational) creativity, while being ground-
ed by material and assembly constraints. Pedagogically, it 
offers a methodological exploration of design agency dur-
ing a process of ideation and generation. 

Figure 1 Iron supply for ship construction is recycled 
from unregulated ship-breaking (Bangladesh). The de-
sign project lives along the margins of this conceptual 
space, assisted by human and automated (AI) input.  

Design Inquiry: The process of invention 
The proposed workflow leverages generative models to 
operate in a heuristic fashion, allowing an expanded search 
in the solution space, for initial design conditions like visu-
al inspiration. During this early stage, when a clear ques-
tion or problem is absent, a flexible approach can trigger 
creative thinking. This argument has been widely discussed 
by experts including mathematician Jacques Hadamard, in 
his study of the cognitive mechanisms of mathematical 
invention, and the identification of a given problem: “What 
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shall we try to discover? What problem shall we try to 
solve?” (Hadamard, 1945). Hadamard mentions neurolo-
gist Édouard Claparède’s distinction between two kinds of 
invention: the former looks for the means to reach a partic-
ular goal (question to solution), while the latter imagines 
the usefulness of a fact that is discovered, possibly to be 
exploited much later (answer before question). Hadamard 
notes that human progress lies largely on the second kind. 
As Donald Rumsfeld famously remarked, besides what we 
know that we know and don’t know, there exist “unknown 
unknowns”, things which we would not even consider in 
our selection.  (Zak, 2021) Adopting a flexible methodolo-
gy opens the way to such unexpected discovery. 

2. State-of-the-art: Architectural AI & NLM 

Although Artificial Intelligence has begun to concern ar-
chitects in the past 3-5 years for the most part, Makoto Sei 
Watanabe was one of the first architects to design using an 
AI interface in the late 1990s. His work used a number of 
inputs processed through an algorithm, which returned an 
output which was evaluated and scored by the designer, 
helping the algorithm to revise its performance.  
(Watanabe, 2005) Today, a number of architects use Gen-
erative Adversarial Networks (GANs) (Goodfellow, et al., 
2014) because of their high quality results in computer 
vision, to perform data interpolation (StyleGAN) or do-
main transfer (CycleGAN) with impressive results 
(Bolojan, The Hitchhiker’s Guide to Artificial Intelligence: 
AI and Architectural Design, 2021) Unfortunately, these 
kind of models can be computationally expensive, requir-
ing precise curation of data and substantial computational 
resources, to reach very high resolutions. A type of net-
work which has recently offered generative capacities 
through language are Neural Language Models, released in  
2021. NLMs like CLIP, DALL-E and VQGAN+CLIP are 
pretrained on large datasets, so they are computationally 
cheap. (Rodrigues, Alzate-Martinez, Escobar, & Mistry, 
2021) used VQGAN+CLIP for design inspiration, using 
text prompts in literal (analogy) and abstract (metaphori-
cal) ways, combined with photographs and sketches. It is 
important to note that Watanabe mentioned, in his work, 
the separation of one architecture “condition” (i.e. form) 
from others, considering separate inputs within an AI-
assisted workflow. This work aligns with this intuition, 
proposing to replace singular AI models with multiple ones 
which perform various tasks, including NLMs and GANs.  

3. Design Methods 

A design workflow is proposed, which includes manual 
curation of semantic descriptors, automated generation of 
visual spatial scenarios in 2D (Wombo “Dream” AI) and 
sorting  of the visual outcomes (PixPlot), manual qualifica-
tion of the results and a second layer of automated 2D sce-
narios generation (VQGAN+CLIP). The current state of 
this workflow (Fig.2) offers a robust method for generating 

an expanded search space of conceptual spatial references 
for further interrogation. Students used these methodolo-
gies as a foundation for developing a catalogue of design 
scenarios which were 3d modeled, implementing paneliza-
tion strategies (GH+Ivy) to rationalize the surfaces and 
speculate how these could be constructed from reclaimed 
steel from ship-breaking. The discussion herewith will 
focus on the early stages of the catalogue material, and 
how this process can be refined using additional generative 
models beyond NLMs. Overall, this is a priori a specula-
tive exercise to assess a process of varying agency, where 
the designer relinquishes control during certain parts of the 
process while he interferes elsewhere. Among the objec-
tives is intuiting how to steer NLMs towards results which 
align with the design narrative, and identify how to use 
these automated steps in a meaningful way (i.e. producing 
nested “collage”-like drawings for concept generation.)  

Figure 2. Workflow connecting NLMs with GANs. 

NLMs for preliminary scenario generation 
The “Dream” app by WomboAI is based on some internal-
ized neural-language-model in the fashion of other existing 
language-based AI models like “DALL-e” or 
“VQGAN+CLIP”, which contain a deep artificial neural 
network (i.e. GAN) for classification of visual data based 
on linguistic correlation and one for generation of visual 
results based on the classification. Such AI models can 
generate fairly complex visual results from text prompts of 
varying specificity. It is unquestionable that this type of 
results are seductive due to their visual complexity and 
speed of generation. However, it is important to question 
their significance for design decision making. As far as 
usefulness goes, the designer’s agency is minimized, as it 
is difficult to intervene within the language-based AI mod-
el (in this case, Wombo’s “Dream” app). Although we 
cannot accept these AI-generated outcomes as direct valid 
steps in architectural designing, they are likely references 
in the act of ideation, helping inspire and steer our design 
inquiry towards certain directions which may have other-
wise remained latent.  To efficiently manage the large 
number of results which can quickly accumulate from 
these automated processes, it is important to categorize the 
properties (spatial, tectonic, visual, formal etc.) which 
qualify a scenario as interesting, successful and/or optimal. 
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The creation of separate categories which relate to the var-
ious semantic descriptors is necessary to identify areas of 
interest in the visual results. Naturally, every outcome dis-
plays interesting high and low-level features. (Fig.3) 

Figure 3. Schematic structure to identify correlation 
between design aspects and semantic feature descrip-
tion (text prompt); High and low-level image features. 
 
It is not important to establish an ideal scenario, but to ex-
trapolate qualities which can be translated into inspiring 
and applicable design features, i.e.strategies to create open-
ings on a large surface by perforating, folding, bulging, 
projecting. Combining particular features should also be 
considered. Figure 3 gives an example of “high” and “low” 
level features. As a note, the same characteristic (i.e. a cer-
tain type of opening shape) can be read as a high-level fea-
ture in an image or a low-level feature in another, depend-
ing on its scale relative to the overall composition. In this 
paper, we will refer to properties like overall compositional 
structure as a “low-level” feature while “high-level” fea-
tures will identify finer details inside a composition (open-
ings, textures, individual structural members, etc). While 
humans are good at recognizing patterns, sorting through 
large samples of data with thousands of features requires 
another interface. In order to sort the AI-generated images 
form the NLMs (stage 1), we used dimensionality reduc-
tion (UMAP) and clustering algorithms (K-means) in Pix-
Plot (Fig.4). The data comprised 861 images, grouped into 
10 clusters based on their characteristics. It was clear that 
the network organized results from the same text prompt or 
same neural style (option in Wombo AI) together, picking 

high-level features like woven configurations, bulging to-
pologies, pleating, as parameters for clustering, as well as 
other more visual ones like color distribution. Based on the 
PixPlot matrix, results with certain complex features were 
selected as reference images to guide a VQGAN+CLIP 
model. We are currently looking at selecting particular 
successful seeds from radically different clusters for blend-
ing through StyleGAN later, because blending seeds from 
different feature families may output interesting results.  

Figure 4. Visualization of 861 results (left) from the 
“Dream” app, sorted in 10 clusters, using PixPlot.  

4. Results & Discussion: Encoding intentions 

According to experts, words -like other aspects of our ex-
istence- are gradually “domesticated”, entering a fully con-
scious state of acceptance via “methodical selection” and 
selection for regular use depending on our preference. 
(Dennett, 2017) A characteristic example of word types 
which are not “preferred”, but necessary, are technical 
terms in a scientific field, which are commonly accepted to 
describe the field itself. In architecture, an array of seman-
tic descriptors has been consciously adopted when refer-
ring to design properties or construction attributes. Select-
ing such semantic references to guide NLMs, i.e. Wombo 
“Dream” or VQGAN+CLIP is normal, leading to visual 
outcomes which are “expected”, typically reflecting “real-
istic” qualities which the intended spatial configurations 
need to possess, to qualify as successful. If we are looking 
for something unique, creative, the choice of words needs 
to extend beyond the conscious selection of descriptors 
which are semantically close to each other and typical to 
the primary reference context (ship breaking), to ones 
which are not typically combined. We have tried to work 
with text prompts which supplement the ‘expected’ fea-
tures (i.e. metal ship hull; slum dwelling, etc.) with ones 
which are unfamiliar and semantically distant (i.e. fighter 
jet intake; woven exoskeleton) (Fig.5) Increasing the se-
mantic distance is an obvious idea; regarding the notion of 
“relevance”, Boden mentioned that it is difficult to traverse 
large conceptual distances, but it is also more likely to 
reach novel concepts. (Boden, 2013) We tried to “lend” 
our human intuition to the network’s search descriptors via 
unusual prompts, to inquire what results might be obtained. 
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Figure 5. Wombo Dream results guide VQGAN+CLIP. 

 
Figure 6. Scenarios generated with VQGAN+CLIP cu-
rate qualities consistent with the project theme: ship 
hull population with novel topological-tectonic features. 
 
Fig.6 shows 6 results from a text prompt in VQGAN+CLIP 
with a target reference image; (one of four images -shown- 
which had been generated with Wombo was selected). The 
prompt for the first 3 trials was: “1000 Slum Dwelling 
Welded Ship Hull Sections Rivets” and the chosen seed was 
#1. As the reference images were generated in Wombo 

with a prompt including the phrase “HR Giger”, we see the 
influence of that graphic language at a high-level feature is 
evident (but not exaggerated) in the results from the 
VQGAN+CLIP (A0021, A0027, A0009.2). We tried 3 
more tests with the same prompt, adding “HR Giger” at the 
end of the prompt and keeping the seed to #1 (“1000 Slum 
Dwelling Welded Ship Hull Sections Rivets HR Giger”). It 
is clear that using the same semantic reference as the 
graphic reference in the target image is perhaps an exag-
geration, because the high-level semantic features which 
relate to this formal language (the low-level arrangement 
does not seem to vary much) will be searched for both via 
language reference and image reference, resulting in over-
powering visual results. (B0021, B0027, B0009.1) The 
image reference of this feature is sufficient to assign the 
preferable, as it works in a stronger sense than the text 
prompt, based on the results herewith shown (A/B009, 
A/B0021, A/B0027). However it should be noted that the 
results from the (B) trials demonstrate -despite their exag-
gerated “Giger” style, interesting details at the high-level 
resolution. Whether a semantic feature is pursued via both 
target image and prompt reference depends, therefore, on 
the specific scenario being considered. 

Future Work: Feature Disentanglement in GANs 
Due to the intrinsic limitations of language, introducing 
additional AI models is warranted to explore detailed se-
mantic combinations further. We propose AI models which 
are good at interpolation, to combine known elements into 
new configurations (Boden, 2013). We are in the process 
of training a StyleGAN network, to later blend a number of 
qualified new seeds with selected features, as well as exist-
ing seeds from Wombo Dream. StyleGAN can perform 
feature disentanglement so these can be reconfigured into 
new organizations with emergent visual-spatial qualities.  
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Abstract

This paper argues that generative art driven by confor-
mance to a visual and/or semantic corpus lacks the nec-
essary criteria to be considered creative. Among sev-
eral issues identified in the literature, we focus on the
fact that generative adversarial networks (GANs) that
create a single image, in a vacuum, lack a concept of
novelty regarding how their product differs from pre-
viously created ones. We envision that an algorithm
that combines the novelty preservation mechanisms in
evolutionary algorithms with the power of GANs can
deliberately guide its creative process towards output
that is both good and novel. In this paper, we use re-
cent advances in image generation based on semantic
prompts using OpenAI’s CLIP model, interrupting the
GAN’s iterative process with short cycles of evolution-
ary divergent search. The results of evolution are then
used to continue the GAN’s iterative process; we hy-
pothesise that this intervention will lead to more novel
outputs. Testing our hypothesis using novelty search
with local competition, a quality-diversity evolutionary
algorithm that can increase visual diversity while main-
taining quality in the form of adherence to the semantic
prompt, we explore how different notions of visual di-
versity can affect both the process and the product of the
algorithm. Results show that even a simplistic measure
of visual diversity can help counter a drift towards sim-
ilar images caused by the GAN. This first experiment
opens a new direction for introducing higher intention-
ality and a more nuanced drive for GANs.

Introduction
Visual art is among the most well-researched domains in
computational creativity as it is perhaps the most recognis-
able among tasks which, when performed by humans, are
deemed creative (Ritchie 2007). Painting in any style or
medium requires some degree of skill (Colton 2008), and en-
dowing machines with painting skill has a long and exciting
history (Cohen 2017; Colton 2012; Lindemeier et al. 2015;
Machado and Cardoso 2002). A watershed moment in this
endeavour has been the advent of Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014), which not only
started to bridge the gap between human and machine per-
formance but also allowed novices to generate compelling
images without extensive technical knowledge, development

effort, or access to specialised hardware. Generative art pro-
duced through deep learned models has taken the world by
storm in the last five years. The strength of models trained
in vast image databases in producing highly typical content,
such as human faces, has led to an almost ubiquitous fascina-
tion by researchers, artists, laymen, media, and speculators.
We follow McCormack, Gifford, and Hutchings (2019) and
refer to visuals generated via deep learning as “AI Art” in
this paper.

As the general public became more interested in AI Art, a
crucial component for the perception of creativity hinged on
whether the software could explain in natural language the
framing information regarding what it was trying to portray
(Colton, Charnley, and Pease 2011). While several GAN
architectures addressed the generation of images from text
prompts (Reed et al. 2016; Zhang et al. 2017), they per-
formed well only in limited datasets and could not scale to
generate visuals based on broader themes. The recent intro-
duction of OpenAI’s Dall-E (Ramesh et al. 2021) demon-
strated an unprecedented high correspondence between a
given text prompt and the generated image on different
prompts. While neither the Dall-E model nor the training
dataset have been publicly released at the time of writing, a
pre-trained model of Contrastive Language-Image Pretrain-
ing (CLIP) is available (Radford et al. 2021). The release of
CLIP energised researchers and enthusiasts alike, leading to
many open-source projects and twitter bots that take advan-
tage of the links between semantics and images to produce
more convincing AI Art, such as album titles and covers1.

In the context of computational creativity, however, it
would be easy to argue that images generated only to con-
form to the patterns of the corpus fall into “mere generation”
(Ventura 2016) and lack authenticity (McCormack, Gifford,
and Hutchings 2019). Using the criteria of novelty, qual-
ity and typicality regarding products of a creative process
(Ritchie 2007), we argue that GANs and similar architec-
tures target only typicality by conforming to patterns dis-
covered in their training corpus. While we appreciate that
there are several issues—such as intent and attribution (Mc-
Cormack, Gifford, and Hutchings 2019)—that AI Art should
address before it can be considered creative, we focus in this
paper on the novelty of the product by endowing the algo-

1https://twitter.com/ai_metal_bot
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rithm with a way to assess and prioritise diversity in its gen-
erated output.

While a product’s novelty can be assessed in terms of
past artefacts of the same type, we focus instead on con-
temporaneous novelty in a population of artefacts that are
generated—iteratively—at the same time. While GANs
are typically applied to generate a single image, our study
also tests how diverse a population of images produced by
GANs can be when the initial seeds are different. We take
advantage of evolutionary algorithms that perform quality-
diversity search (Pugh, Soros, and Stanley 2016) and com-
bine them with the power of deep learning through cycles
of exploration and refinement. Taking advantage of trained
models of semantic-image similarities, we test this process
of iterative refinement (Liapis, Yannakakis, and Togelius
2013) when generating sets of images for five text prompts.
This first experiment raises a number of questions regarding
e.g. how image novelty can be assessed, and we test two
different image metrics as both evolutionary goals and for
analysing the quality of the final results.

Background Technologies
The proposed methodology combines complex, cutting-
edge technologies of deep learning and divergent evolution.
The relevant technologies and a high-level overview of their
inner workings are presented below.

OpenAI CLIP
OpenAI’s CLIP is a supervised neural network architecture
which associates images with corresponding text and vice
versa, learning underlying concepts within each of these do-
mains (Radford et al. 2021). CLIP was released in January
2021 and quickly became popular for a wide variety of tasks,
such as image classification (Esmaeilpour et al. 2021), se-
mantic image generation (Ramesh et al. 2021), and caption-
ing (Mokady, Hertz, and Bermano 2021).

CLIP is essentially a zero-shot classifier, which was pre-
trained using images and corresponding textual phrases
scraped from the internet. The training dataset itself was
not released but it contained 4 · 108 text-image pairs. The
structure of CLIP consists of a Transformer-based model
(Vaswani et al. 2017) which encodes the tokenised input
text batches. For the image encoding, two different archi-
tectures were compared; a ResNET-D based model (He et
al. 2019) and a Vision Transformer (ViT) model (Dosovit-
skiy et al. 2021). Batches of image-text pairs are encoded
and cross-processed using contrastive learning (Van den
Oord, Li, and Vinyals 2018) in order to train the model
to predict the probability that a given text input matches
a given image or vice versa. The resulting trained mod-
els matched or outperformed some of the best classifiers
when applied to broad datasets, but ranked worse on spe-
cific, narrow-domain datasets. The benefit of CLIP in the
current work is that it can provide a singular cosine sim-
ilarity score (we refer to this as CLIP score in this pa-
per) between a textual prompt and an image, for any se-
mantic prompt. This CLIP score has been used to as-
sess generated images and predetermined text input, and

thus to steer various methods of GAN image generation
towards some predetermined text input (Gal et al. 2021;
Kim and Ye 2021). These CLIP-guided image generation
experiments are often performed by enthusiasts and are not
published; however, many early contributions are available
in online repositories2.

In practice, CLIP-guided image generation starts from a
random fractal noise array as an image, and uses CLIP to
generate its embedding. CLIP is also used to embed the in-
put text prompt and the two sets of vectors are compared
using cosine similarity, given by:

similarity(⃗timage, t⃗prompt) =
t⃗image · t⃗prompt

|⃗timage| · |⃗tprompt|
(1)

where t⃗image and t⃗prompt are the CLIP vector embeddings
of the image and the text prompt respectively, and |⃗t| denotes
the magnitude of vector t⃗.

Generative Adversarial Networks
Generative Adversarial Networks (GANs) were introduced
by Goodfellow et al. (2014) and have since become an im-
portant milestone in AI Art. GANs consist of a generator
which learns to generate artefacts within its domain, and a
discriminator network which learns to distinguish between
what the generator creates versus real artefacts. The out-
put of the discriminator is used to train the generator, pitting
their progress against each other, and resulting in greatly en-
hanced performance compared to previous techniques. Gen-
erally, the discriminator is discarded after training and only
the generator is used for inference. This technique has been
used extensively across different domains, for text to im-
age generation (Brock, Donahue, and Simonyan 2018), style
transfer (Karras, Laine, and Aila 2019), super-resolution up-
scaling (Ledig et al. 2017), and many more applications.

Vector Quantized Variational Autoencoders (VQVAE) are
autoencoders which operate on image segments instead of
individual pixels (Esser, Rombach, and Ommer 2021). Their
networks combine convolutional layers with transformer
structures, capturing short-range feature interactions with
the former and long-range ones with the latter. An image at
the encoder input is converted into a sequence of segments
which are stored in a discrete code book of representations.
An image is thus compressed to a sequence of indices repre-
senting the position of each segment within the code book.

During VQVAE training, a GAN architecture is used (of-
ten referred to as a VQGAN) to learn the weights and bi-
ases of the encoding and decoding networks, and also to de-
termine the code book entries which will be available for
these processes. Therefore, the training data has a signifi-
cant impact on the variety of images which can be encoded
or decoded by a VQGAN. Specifically, images with fea-
tures that bear the closest resemblance to the training data
set will be compressed and decompressed more faithfully

2https://github.com/lucidrains/big-sleep
and https://colab.research.google.com/drive/
1L8oL-vLJXVcRzCFbPwOoMkPKJ8-aYdPN, among others.
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than images in a different domain. As discussed in the in-
troduction, products of VQGANs therefore target typicality
(Ritchie 2007) with the training set above all else.

VQGANs enable an easy translation between an image
and its latent vector representation, offering a way to manip-
ulate images that can be combined with both CLIP evalua-
tion and latent vector evolution. By applying backpropaga-
tion to the latent vector conditioned by the CLIP score of its
corresponding image to a given text prompt, an image can
be directed towards a suitable representation for the latter.

Novelty Search with Local Competition
Evolutionary computation has a long history and has proven
to be powerful in numerical optimisation tasks (De Jong,
Fogel, and Schwefel 1997). However, it often struggles
to discover appropriate individuals that can act as stepping
stones for further improvements towards an objective. In
deceptive fitness landscapes, such individuals may perform
poorly in terms of the objective but may possess the neces-
sary genotypic structure that can lead to highly fit individ-
uals after a number of genetic operators are applied. Nov-
elty as the (sole) evolutionary objective was introduced “as
a proxy for stepping stones” (Lehman and Stanley 2008).
Novelty search has shown great promise in many applica-
tion domains such as robotics (Lehman and Stanley 2008;
2011), game content generation (Liapis, Yannakakis, and
Togelius 2015; 2013; Liapis et al. 2013) and generative
art (Lehman and Stanley 2012). While most publications
in this vein apply novelty search to neuroevolution (Stan-
ley and Miikkulainen 2002), it can also be applied to other
types of indirect (Liapis 2016; Liapis et al. 2013) or direct
embryogenies (Liapis, Yannakakis, and Togelius 2015).

Emulating evolutionary processes in nature, applying lo-
cal competition to the process of natural selection showed
greater promise in some applications (Lehman and Stanley
2011). Local competition pits individuals against phenotyp-
ically similar individuals in the search space. This Novelty
Search with Local Competition (NSLC) allowed diverse fea-
tures to survive and serve as stepping stones towards better
specimen, even if their performance was only optimal lo-
cally. It empowered individuals with diverse features to sur-
vive and evolve without being overpowered by better devel-
oped features in other individuals. In practice, NSLC op-
erates as a multi-objective optimisation problem where one
objective is increasing the novelty score and the other objec-
tive is increasing the individual’s local competition score.
Both scores compare an individual with its nearest neigh-
bours in a behavioural space; these neighbours may be from
the current population or from an archive of novel past indi-
viduals. The novelty archive is populated during evolution,
with the most novel individuals in every generation being
added to the archive. The novelty score is calculated via
Eq. (2), as the average distance of this individual with its
nearest k neighbours. The local competition score is calcu-
lated via Eq. (3), as the ratio of nearest k neighbours that
the individual outperforms in terms of fitness. Evidently,
the algorithm hinges on two important parameters: the fit-
ness metric which affects the local competition score, and
the distance metric which affects the nearest neighbours be-

ing considered and the novelty score in general.

n(i) =
1

k

k∑

j=1

d(i, µj) (2)

lc(i) =
1

k

k∑

j=1

of (i, µj) (3)

where d(x, y) is the behavioural distance between individ-
uals x and y and depends on the domain under considera-
tion, µj is the j-th nearest neighbour to i, of (x, y) is 1 if
f(x) > f(y) and 0 otherwise, where f is the fitness func-
tion for the current problem. The current population and the
novelty archive are used to find the nearest neighbours.

Proposed Methodology
At its core, our proposed methodology revolves around an
alternating sequence of refining cycles (via backpropaga-
tion) and exploration cycles (via divergent evolution). Us-
ing CLIP-guided VQGANs in this instance, we describe the
specific methods followed in each cycle below.

Backpropagation Cycle
In order to take advantage of the power of GAN architec-
tures in converting seemingly random noise into visually
appealing images, we use backpropagation-driven cycles to
start the process and as a final step of refining an image be-
fore showing it to a human audience.

The code used for semantic image generation is based
on Pixray3, using pixel-based generation through VQGANs
(Esser, Rombach, and Ommer 2021). Details of the VQ-
GAN technologies are in the Background section. For
this paper we adopt a VQGAN pre-trained on the WikiArt
dataset (Tan et al. 2016). WikiArt is a dataset of 81, 444
images of artistic creations (paintings, images) across many
different art styles4. The images produced from the WikiArt-
trained VQGAN are more illustrative and surreal rather
than representational or photorealistic, which suits our goals
of producing artefacts that observers would consider cre-
ative. Moreover, the images generated for each prompt were
deemed to be more visually similar to each other than other
models, when starting from different random seeds.

The generated images have dimensions of 384 by 384 pix-
els, and the VQVAE model sectioned the images into blocks
of 16 by 16 pixels, resulting in a latent vector of 576 in-
tegers, each representing an index of the code book entry
used to represent that block. Each integer’s value range is
[0, 16384], as part of the autoencoder’s code book.

At the start of the experiment, we randomise each latent
vector using a random fractal noise array, and use CLIP to
generate its embedding. In subsequent iterations, we use the
negated CLIP’s cosine similarity of Eq. (1) as a loss function
to guide the backpropagation process towards a latent vector
which produces an image that better matches the semantic

3https://github.com/pixray/pixray
4https://archive.org/details/wikiart-

dataset
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Figure 1: GAN iterations guided by CLIP.

prompt. Since the latent vector consists of integers and is not
compatible with the continuous requirement for gradient de-
scent, the internal tensor representation of the vector within
VQGAN (consisting of floating point numbers) is used to
backpropagate the CLIP loss. Fig. 1 visualises this process.

Exploration Cycle
Exploration cycles are carried out via novelty search with lo-
cal competition (NSLC) operating on the latent vector rep-
resenting the image. The genotype (latent vector) consists
of 576 integers, ranging between 0 and 16384. Since each
gene is an integer that is mapped in a very indirect way to
some image segment, the evolutionary algorithm uses only
mutation operators. In each mutation, 5% of the individual’s
genes (chosen randomly) are replaced with random integers
between [0, 16384]. This mutation rate was chosen based on
initial trials, as it can create perceptible perturbations in the
image without making it unrecognisable within one applica-
tion of mutation (as is the case with higher mutation rates).

For this experiment, k = 15 nearest individuals are con-
sidered for calculating both the novelty score and the local
competition (LC) score, as per Eq. (2)-(3). In each gener-
ation, the e = 3 most novel individuals are added to the
novelty archive. Note that the novelty archive starts empty at
the start of each exploration cycle; there is no carryover from
previous exploration cycles. The archive growth as the algo-
rithm progresses increases the computational requirements,

so this strategy of always adding a few individuals offered a
good compromise between benefit and performance.

A Non-dominated Sorting Genetic Algorithm (NSGA-II)
(Deb et al. 2002) was used to process the resulting two met-
rics (novelty and LC score) as a multi-objective optimisation
problem, using the Pymoo Python library (Blank and Deb
2020). A minimal Pareto front is calculated for the two ob-
jectives; individuals closest to this front are dominant over
the remaining population and are selected for the next gener-
ation. If more individuals are required after exhausting those
on the Pareto front, a next best Pareto front is calculated and
a next set of individuals is selected from therein. If there
are more individuals on the Pareto front than those required
to survive, then individuals are selected to create sparsity in
the objective space. The sparsity is based on the Manhattan
distance between individuals within this space.

One of the major challenges in this work was defining di-
versity in the generated images for the purposes of NSLC.
As noted in the Background section, the behavioural dis-
tance affects which neighbours are considered for both nov-
elty and LC, and in turn affects how we envision novelty
in the final product (Ritchie 2007). It is a relatively easy
task for a human to identify visual similarity between two
images, but there are several challenges in quantifying sim-
ilarity or diversity into a simple metric. In this work we
compare image novelty by using two different approaches:

Chromatic Diversity (HSV): With this approach, we hy-
pothesise that the distribution of colours in the pixels reflect
the diversity of the images (Machado et al. 2015). We con-
sider the hue, saturation and brightness of each pixel and for
any two generated images I1 and I2 we derive a diversity
metric from their means and standard deviations as follows:

m1 = ∆b = |b1 − b2| (4)
m2 = ∆σ(b) = |σ(b1)− σ(b2)| (5)
m3 = ∆s = |s1 − s2| (6)
m4 = ∆σ(s) = |σ(s1)− σ(s2)| (7)

m5 = ∆h = |min[h1 − h2, h1 − (1− h2)]| (8)
m6 = ∆σ(h) = |σ(h1)− σ(h2)| (9)

where h, s and b denote the hue, saturation and brightness,
the means (h, s, b) are taken across all the pixels in I1 and I2,
and σ denotes the standard deviation of these values. Note
that since the hue value is cyclic, its mean and standard de-
viation were calculated as follows:

h = tan−1

(∑N
i=1 sin(h)∑N
i=1 cos(h)

)
(10)

σ(h) =

√∑N
i=1(min(hi − h, hi − (1− h)))2

N − 1
(11)

where N is the number of pixels in the image.
All h, s, b values are normalised in the [0, 1] value range

before the above calculations. We calculate the distance
metric dHSV as the mean square value of the individual met-
rics m1. . .m6.
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Figure 2: Structure of the experiments alternating between
GAN and evolutionary NSLC cycles.

Visual Transformer Diversity (ViT): Another way to as-
sess diversity is based on the embeddings of pre-trained
models. Transformers (Vaswani et al. 2017) have shown
an outstanding performance when applied to image classifi-
cation (Dosovitskiy et al. 2021; Wu et al. 2020). Within its
layers, the model encodes information about different im-
ages in its training set, and uses it to discern different im-
ages. We utilise this encoded information with a ViT model
pre-trained on the ImageNet data set (Deng et al. 2009), and
stripping its last layer. Since the last layer of ViT is used for
image classification, by removing it we retain a latent vector
of 768 floating point values for each processed image. We
calculate a value of diversity (dV iT ) by taking the Euclidean
distance between the latent vectors of two images.

Experiment
In order to assess how our envisioned algorithm that com-
bines latent variable evolution (Bontrager et al. 2018) to-
wards novelty with GANs, the following section reports our
findings when producing novel sets of images for different
semantic prompts. We first describe our choice of prompts
and parameter setup, followed by a quantitative analysis of
both the process and the final product, and conclude with a
qualitative view of the resulting images.

Protocol
For the purposes of demonstrating our proposed methodol-
ogy in a visual creativity task, we use the Pixray image gen-
eration system which leverages pretrained VQVAE models.
Importantly, we wish to explore how the method operates in
a variety of settings while still being able to compare with
existing research. To facilitate this, we test five semantic
prompts (SP) used by the community5:

• a lonely house in the woods (SP1)

• a pyramid made of ice (SP2)

• artificial intelligence (SP3)

• cosmic love and attention (SP4)

• fire in the sky (SP5)

For this experiment, we generate a population of 50 im-
ages by running Pixray for a total of 600 iterations. The ini-
tial population consists of latent vectors encoded from a set
of randomly generated fractal noise images. The same initial

5https://github.com/lucidrains/big-sleep

population of images is used in all tested variations of our al-
gorithms, across all prompts. To establish our GAN baseline
(GAN-BSL), we run the process uninterrupted for each ini-
tial latent vector for 600 iterations in order to collect the final
population. Initial experiments showed that at 600 iterations
the composition of the image is stable, and although more it-
erations will refine it, the image does not change much. For
our NSLC experiments, we interrupt the GAN process after
100, 200, 300 and 400 iterations and take the latent vectors
of the images at that point to produce an initial population
for NSLC; NSLC evolves for 50 generations, guided by ei-
ther ViT (NSLC-ViT experiment) or HSV (NSLC-HSV ex-
periment) distance metrics, and the final evolved population
is then used to continue the GAN process (until interrupted
again). The process is clarified in Figure 2.

Evaluating the novelty or quality of the generated output
is not straightforward (Ritchie 2007). For the purposes of
this paper, we align these notions with the quality-diversity
characterisations of NSLC and use the following perfor-
mance metrics to compare the different algorithms:

• mean fitness based on the CLIP score across all 50 im-
ages in the population.

• mean ViT diversity calculated as the average ViT dis-
tance from the nearest 15 neighbours per individual, aver-
aged across all 50 images in the population. Note that for
this metric only the current population is considered for
finding nearest neighbours (no archive).

• mean HSV diversity is calculated identically to mean
ViT novelty using the HSV metric for measuring distance
and finding nearest neighbours.

Numerical Results
We are equally interested in the process followed by the al-
gorithms tested as we are in the product at the end of 600 it-
erations (Jordanous 2016). Therefore, Figure 3a shows how
the mean fitness (CLIP score) fluctuates at different GAN
iterations. Evidently, with the uninterrupted GAN-BSL the
algorithm increases its accuracy quickly in the first 20 iter-
ations but then continues to slowly improve. When the pro-
cess is interrupted by NSLC cycles, the evolved population’s
fitness drops by 12% on average for NSLC-HSV and by 21%
for NSLC-ViT. Surprisingly, the drop is nearly as substantial
when NSLC is applied at later iterations, even if the (seed)
images are well-formed at that point. It is evident that af-
ter each NSLC cycle, the GAN has a similar behaviour as
when facing random initial seeds and can quickly restore the
CLIP score to a similar level as the GAN-BSL at the same
iteration (before quickly dropping again at the next NSLC
cycle). At the end of the 600 iterations, all three algorithms
seem to be reaching a very similar mean fitness score, al-
though in almost all cases both NSLC variants reach slightly
higher scores than the GAN baseline (with the exception of
SP4 where the mean fitness of NSLC-ViT is 2.9% lower
than GAN-BSL). Overall, NSLC-HSV seems more stable in
performance, reaching on average 1.5% higher mean fitness
than GAN-BSL. By comparison, NSLC-ViT has more fluc-
tuations between prompts and reaches an average increase
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(a) Mean population fitness (b) Mean HSV diversity (c) Mean ViT diversity

Figure 3: Progression of the performance metrics over GAN iterations. The iterations at which evolutionary NSLC cycles were
performed are marked in red.

of 0.7% from the GAN-BSL mean fitness. The biggest in-
crease in CLIP score is for SP3, where NSLC-HSV outper-
forms GAN-BSL by 3.9% in terms of mean fitness.

Figures 3b and 3c show how the mean diversity of the
population fluctuates at different GAN iterations. Both im-
age distance metrics are displayed, and the interim popula-
tions of all three methods (GAN-BSL, NSLC-ViT, NSLC-
HSV) are parsed to derive these diversity values—even if
they were not evolving towards that specific novelty mea-
sure. It is fairly surprising that for both image distance met-
rics the diversity increases during the first 20 GAN itera-
tions. One would expect that the swift increase of the CLIP
score (see Fig. 3a) during those early stages would come
at the cost of diversity as the images are pushed towards
a generic style imposed by the manifold. For both image
distance metrics, the diversity for the GAN-BSL stays fairly
stable after these first few iterations, or tends to drop. This is
most pronounced in SP5 for both ViT diversity and HSV di-
versity; we hypothesise that the (literal) prompt itself pushes
images that are fairly similar in colour (red and blue) and in
terms of image classification. Regarding the NSLC variants,
we observe the reverse behaviour compared to the mean fit-
ness plots of Fig. 3a: diversity increases after each explo-
ration cycle, at least for the distance metric targeted by nov-
elty search. Interestingly, NSLC-HSV manages to increase
both HSV diversity and ViT diversity, even if it evolves to-
wards the former. On average, in each exploration cycle
NSLC-ViT increases ViT diversity by 25% while NSLC-

HSV increases ViT diversity by 10% (per prompt). NSLC-
ViT however underperforms in terms of HSV diversity, with
minor or no increases after each cycle. On the other hand,
with NSLC-HSV we observe an average increase of 43%
in HSV diversity after each cycle (per prompt). Since im-
ages produced by NSLC are more diverse but less fit, once
GAN iterations re-start the diversity quickly drops as CLIP
score increases. GAN iterations after NSLC tend to lead
the population to a lower ViT diversity than the GAN base-
line. This behaviour is surprising, especially considering
that both NSLC variants manage to increase ViT diversity
during the evolutionary cycles. Even more surprising is the
fact that the GAN increases ViT diversity quite dramatically
when dealing with random images (at 0 iterations), but this
does not seem to be the case when NSLC produces noisy
images at iterations 100, 200, 300, 400. After 600 iterations,
the final images of NSLC-HSV have an average of 6.3% in-
crease in HSV diversity compared to the GAN baseline but
an average 11.5% decrease in ViT diversity, per prompt. The
final images for NSLC-ViT however are less diverse for both
ViT and HSV compared to the GAN baseline (by 5.8% and
13.7% respectively).

Indicative results
In order to better understand the process introduced in this
paper, we show the most diverse images at different stages
of the process. We use the HSV diversity and measure only
the nearest-neighbour distance to choose the most diverse
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Figure 4: The progression of 5 individuals (chosen for their
highest nearest-neighbour HSV diversity) per population at
the end of each stage in the NSLC-HSV experiment for SP3.

individuals at that point. Since NSLC-HSV led to more di-
verse individuals while maintaining comparable quality to
the GAN baseline, we show results of NSLC-HSV in Fig-
ure 4. For the purposes of brevity, we focus on SP3 since
its final products have the highest increase in terms of CLIP
score (3.9% above the GAN baseline) and a good increase
in HSV diversity (7% above the GAN baseline).

It is evident that even after 100 GAN iterations, images
are recognisable although their details are rough. At 100
GAN iterations, images are fairly diverse, while after the

first exploration cycle new patterns are introduced (e.g. a
human nose) but some images become more indistinguish-
able. These rough images are refined during the next GAN
cycle, which results in similar-looking but crisper images.
Similar rounds of exploration and refining add more details.
Later NSLC cycles result in more recognisable, less noisy
images. Notably, after 400 iterations the images start be-
coming more similar, and overarching patterns such as the
introduction of the text “artificial” starts appearing in most
images. At that stage, the last NSLC cycle does not quite
manage to break these patterns and the final products at 600
iterations show more similarities than e.g. interim images
at 300 iterations. We can assume that NSLC is more mean-
ingful in early stages, and given enough time GANs will
enforce their patterns even to initially novel images. Per-
haps stopping the process earlier or intervening with NSLC
in earlier stages (e.g. at 20 or 50 iterations rather than at 400)
may better counter this drift towards dominant patterns.

Discussion
Our experiments investigated how quality-diversity evolu-
tionary search applied in interim phases of a Generative Ad-
versarial Network process can impact the creative process
and products. Results show that seeding diversity in explo-
ration cycles through NSLC can increase the diversity tem-
porarily, but with a lesser impact in the long run as the GAN
process re-asserts patterns in the corpus. While simplistic,
HSV distance was shown to be better as a measure for the
novelty score that guides evolution. However, observing the
most diverse images in terms of HSV distance (see Fig. 4)
the differences are not as obvious to a human. It is also worth
noting that this study is the first to assess the diversity of a
population of random initial seeds refined through the GAN
iterative process; the final products were surprisingly more
diverse than expected. As a general overview, NSLC man-
ages to increase slightly the typicality (in terms of semantic
prompts) of the final generated images; however, the small
increase in diversity (and only for one visual similarity met-
ric) compared to random seeds is perhaps underwhelming
considering the computational overhead of multi-objective
evolution over multiple cycles throughout the process. De-
spite these mixed results, the notion of diversifying products
of AI Art has many interesting research directions beyond
the experiments reported in this paper.

While this paper explored visual diversity under different
perspectives (based on models trained on labelled data and
based on simple visual metrics), there are many more ways.
Other measures based on deep learning, such as the Learned
Perceptual Image Patch Similarity (LPIPS) metric (Zhang et
al. 2018) can be used both as a distance metric for novelty
search or as a way to evaluate the existing products’ diver-
sity. In our preliminary experiments using LPIPS for nov-
elty score, however, the final products were not as diverse
as those of the GAN baseline (in term of LPIPS). Given that
HSV distance was surprisingly efficient as a novelty metric,
other metrics of visual quality in the literature such as com-
pressibility (Machado et al. 2015) could also be explored. It
should be noted that in our preliminary experiments we also
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explored using the binary distance6 between latent vectors
(i.e. the genotype) as a measure of novelty, but the results
were underwhelming.

Beyond the distance measures, other ways of perform-
ing changes on the image during evolution can be explored.
While our preliminary experiments that used recombination
between two parents’ latent vectors resulted in less diverse
final products, better operators for mutation and recombi-
nation could lead to more creative outcomes. A potential
alternative to the current random mutation of the latent vec-
tor could be to use the intermediate representation used by
the GAN, which consists of a tensor of real values, in or-
der to provide a smoother gradient if mutation is based on
Gaussian noise. The disadvantage to such an approach is
an increase in computational time, since this intermediate
representation is much larger than the latent vector used in
our current work. Another alternative would be to apply
mutations on the image itself, and then allow these to be
decoded into a new latent vector (rather than the reverse,
which is done in the current implementation). Changes to
the image can be performed as filters applied to the en-
tire image, similar to (Colton, Valstar, and Pantic 2008;
Heath and Ventura 2016), as local changes in a portion of
the image, or taking advantage of machine-learned models
such as style transfer (Gatys, Ecker, and Bethge 2016).

Extensions of this work that go beyond applying NSLC
on the images themselves could provide a more direct way
to demonstrate the intentionality of the computational cre-
ator. OpenAI’s CLIP already offers a human understand-
able (Colton 2008) goal in the form of the semantic prompt.
Allowing the computational creator to adapt the semantic
prompt itself (e.g. by applying latent variable evolution on
the semantic prompt, rather than on the image) could lead
to more visually diverse images and—more importantly—
to a creative process where the computational creator could
change its goal and explain towards which direction it is
changing (and why, presuming some objective or distance
criterion). More ambitious goals in this vein could include
both image adjustments (through evolution) and a corre-
sponding change in the best semantic prompt that matches
these image adjustments. Finally, the refinement could come
in the form of additions to the semantic prompt, such as
maximising or minimising cosine similarity with keywords
(e.g. “photorealistic”) or with intended emotional outcomes
from the audience (Galanos, Liapis, and Yannakakis 2021)
that are added during exploration cycles. Further work in
this direction could involve a human audience assessing di-
versity of the resulting images, thereby highlighting how the
metrics match (or not) human perception and aesthetics.

Conclusion
In this work, we highlighted how what is considered to-
day “AI Art” (McCormack, Gifford, and Hutchings 2019)
largely ignores any creative dimensions except typicality
(Ritchie 2007). We explored ways of injecting novelty both
in the final products and in the process of a generative ad-

6We measure binary distance as the number of items in the two
images’ latent vectors that were not identical at the same position.

versarial network, by interspersing cycles of artificial evo-
lution that targets both typicality and novelty as objectives.
Applying several cycles of exploration between cycles of it-
erative refinement, we investigated how image generation
driven by state-of-the-art image-language mappings can lead
to more diverse outcomes. This first experiment has shown
that Novelty Search with Local Competition can lead to
more visually diverse results, but also highlighted that evo-
lution applied on the code book led to more noisy interim
results which forced GAN refinements to overcompensate in
terms of conformity. Many extensions to the general concept
of cycles of evolutionary exploration and backpropagation-
based refinement in different aspects of the AI Art process
(e.g. on the image level or the prompt level) can allow for a
more direct and more explainable creative process.
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Abstract
Is style reproduction a valid computational creativity
task? Does producing output ‘in the style of’ an ex-
isting creator contribute to computational creativity re-
search? Where is the creativity in imitation or replica-
tion of an existing style, and where does style reproduc-
tion fall into what has been criticised as ‘pastiche’ rather
than credible creative activity? This paper tackles these
debates, which have been under-addressed in computa-
tional creativity literature. We review the presentaiton
of past work in style reproduction, and consider the fit
of such work into evolving definitions of computational
creativity research. As part of this, we consider style
reproduction itself as a creative task, both within and
outside computational forms. We discuss various points
of interest that emerge in the analysis, such as control in
the creative process, intentionality and effort. Our work
gives a more objective understanding of the level of cre-
ativity present in style generation, and specifically what
value it brings to computational creativity research.

Introduction
Recently, there has been a striking increase in use of so-
called “creative AI” systems. This rise has been particu-
larly noticeable in two areas with low barrier to entry: text-
generation systems like OpenAI’s GPT family of transform-
ers (Radford et al. 2019), and image-generation systems
with generative adversarial networks (GANs) (Goodfellow
et al. 2014), notably those inspired or derived from Style-
GAN (Karras, Laine, and Aila 2018) and Creative Adversar-
ial Networks (CANs) (Elgammal et al. 2017). In the former
case, one can use a special corpus to fine-tune a general-
purpose transformer to alter the parameterization of the neu-
ral network and enforce that the vocabulary and sentence
style of a new text sample will be in similar style to training
samples. In the latter case, one can use a collection of im-
ages of a variety of styles, and the neural network will gen-
erate new images intended to differ from all of those styles.

Creating and training new AI systems that generate new
artifacts in a manner influenced by distinctive aspects of
an existing creator, or “in the style of” that creator, is an
exciting development, and it opens many areas of enquiry.
For example, these new systems cannot merely commit pla-
giarism (“[t]he action or practice of taking someone else’s
work, idea, etc., and passing it off as one’s own” (OED

2022)). We must ensure ethical use of corpora that may be
of deceased authors on the one hand, or subject to copyright
restrictions on the other hand (Brown, Byl, and Grossman
2021). Pease and Colton (2011) warn us off ‘pastiche’ (style
imitation) to avoid compromising innovation and imagina-
tion. And focusing on older styles leaves computational art
systems unprepared to respond to contemporary events.

But are these systems, and other systems that generate
work “in the style of” their training data sets, computation-
ally creative? How should the field of computational cre-
ativity respond to and integrate these new systems into our
existing theories? Or do “in the style of” systems fall into a
category below that of creative systems that are not merely
replicating styles, but developing new ones? Here, we in-
vestigate this question by examining recent papers describ-
ing “in the style of” systems, both from inside the ICCC
community and outside, and use existing theories of compu-
tational creativity to see which desiderata of those theories
are and are not found in those papers.

Our overall conclusions are mixed. Style-reproduction
systems can be computationally creative, however many fail
to satisfy the goals of creativity theories, or only identify
a system as creative due to human decisions. Our existing
theories may need to be updated due to the ease of training
standard models (like StyleGAN or fine-tuned GPT models)
to emulate styles. In particular, one of Ventura’s “lines in the
sand” (criteria for creative systems) is that the system has a
form of knowledge representation (Ventura 2016). But if all
that is used is a standardized general model and fine-tuning
procedure for a corpus scraped from a website, has the sys-
tem meaningfully crossed Ventura’s “line in the sand?”

The consequence of these general-purpose generative sys-
tems may be another round of the artificial intelligence
“moving of the goalposts” that has happened repeatedly over
the past several decades, moving various tasks such as photo
retouching from one where detailed study time spent learn-
ing the practice could move one’s photography to being “of
new importance, and call[ing] forth words of approval” (Vi-
cente 1904) to tasks largely done by a computer. Perhaps
even “computationally creative” work requires substantial
human labour to construct the system, forcing us back to
focus on the human component of computationally creative
systems in assessing whether they can be deemed “creative”.
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Style reproduction and human creativity
Style reproduction is the attempt to create novel creative
works that are in the same genre and have stylistic elements
in common with the creations of existing creators. In this
paper, we are focusing on the emulation of the style of in-
dividual, specific creators: creating motets in the style of
Palestrina, not just in that of the Italian Renaissance, for ex-
ample, or weaving textiles similar to those of a specific fab-
ric artist, not just those from a more general time and place;
in practice, the lines between these tasks can be blurry.

When do humans do it, and is it creative?
Human beings reproduce style under many different cir-
cumstances. Many of these scenarios are educational: stu-
dents may learn to write counterpoint in Bach’s style as a
school exercise in understanding Baroque harmony (Ben-
jamin 1986), or they may create mock-Shakespearean son-
nets to learn to write poetry (The Folger Library 2022). Even
when they are not specifically commanded to duplicate an
existing style, that may be the clear intent, as when they are
exposed to still life paintings by a well-known painter and
then asked to make a still-life of their own. These training
tasks are not necessarily meant to create high-quality work
(though, presumably, in some cases they do), and as the stu-
dents are not experts in the work of the artist being emulated,
the likelihood that the work would be particularly novel or
reproduce the style well is also fairly low.

Experts also may reproduce styles as an homage. A hip
hop example comes in a rap verse made by Bone Thugs-
N-Harmony, when they reproduced the style of Notorious
B.I.G. in a verse in the song “Notorious Thugs”, and vice
versa; Biggie’s verse in the style of the Bone Thugs helped
make other prominent rappers take them more seriously
(Findlay 2020). Poets emulate the style of their colleagues,
particularly when writing odes to those colleagues. In other
fields, style reproduction can allow established experts to
learn more about the creative space: chess masters might
attempt to play “in the style of” another player as a way of
incorporating that player’s ideas into their own play. In these
cases, the expertise of the creator allows for high-quality
novel work (within the scope of the copied style).

Another context in which creators create “in the style of”
another creator can be in the visual arts, where an artist may
make large-scale works requiring labour from a many partic-
ipants. A muralist, for example, might plan a new large mu-
ral and then hire multiple artists to fill in the space devoted
to the mural, all operating in a consistent style defined by
the muralist. Similar circumstances may occur when artists
work in a studio that builds smaller-scale art for sale that re-
produces a primary creator’s own work. Here, the creativity
largely belongs to the primary conceptual creator, and the
other hands on the project largely support that creator.

Another reason to duplicate the creator’s style is to extend
that author’s oeuvre, particularly if it comes with a built-in
audience. This has been done in “official” contexts, as with
the dozens of “Oz” books written after L. Frank Baum’s
death in 1919 (Updike 2000). Similar, but related, is the
creation of fan fiction or fan art, when fans build new works

based on a beloved setting (Thomas 2011). Some fan art or
fan fiction is “in the style of,” in the sense that it truly at-
tempts to reproduce the original creator’s vision; others can
be “inspired by,” in the sense that it uses characters or situ-
ations from an original creator and adapts them to new cir-
cumstances the original author did not use. In both cases,
quality can vary widely: much fan fiction is sloppy and
a transparent facsimile of the original, but in some cases,
fans do build successful creative works. For example, “Fifty
Shades of Gray” was originally developed as “Twilight” fan
fiction (CBC 2015), and the Archive of Our Own (AO3),
hosts a number of extremely popular fan fiction stories, and
even received a Hugo Award in 2019 for its cultural signif-
icance (Romano 2019). A further example of this kind of
style transfer comes when a collective pseudonym is used for
a collection of different creators, as with the “Hardy Boys”
children’s literature series, ghostwritten by a variety of au-
thors under the name Franklin W. Dixon (Tensley 2019).

And of course, humans reproduce style for more nefar-
ious reasons,like copying the style of a successful artist to
sell forgeries; this process may occur most notoriously in the
visual art world (Chernick 2020), but also fake manuscripts
can also be used to pretend a deceased author had written
things that they had not (Stewart 2010). Successful forgers
meticulously copy the oeuvre of the artist whose work they
are copying (sometimes even reproducing artistic media and
materials), meaning that the space for them to be imagina-
tive is vastly reduced; while they may produce technically
excellent copies of a style, they may not be very novel.

Is human style-reproduction creative? In the cases we
have described, many examples are not very high in creativ-
ity. The restriction to copy a well-established style may as-
sist students in learning how to use artistic media or lan-
guage, but the overall likelihood they create high-quality
work is low. Here, a measure of quality we have in mind is
one of significant computational effort, for example as for-
malized in Mondol and Brown (2021a; 2021b). Depending
on how much of a “paint-by-numbers” approach the copied
style has, a skilled copyist might reproduce the style faith-
fully, but this might indicate the overall lack of scope for
novelty and quality in the original creator’s work, implying
that it, itself, is not creative. There is a tension: if repro-
ducing style is akin to use of a photocopier, then there is
minimal scope for creativity, as there is no room for novelty.
If the task is more open, as with some fan fiction writing,
it allows space for the new creator to genuinely explore a
creative (albeit constrained) space, and it can be creative.

To be more specific, every aspect of the Four P analysis
of creativity (Producer, Product, Process, Press) (Jordanous
2016; Rhodes 1961) can support the decision of the extent
to which the task of creating artefacts “in the style of” some
selected style is (or is not) a creative task in a particular con-
text. The Producer can be exploring her personal identity in
building works inspired by a beloved creator whose works
have moved her, or she might be just trying to make a quick
buck. The Product may be an excellent recapturing of the
reproduced style, or it can be a sloppily-produced pastiche
easily recognizable as both terrible and a sloppy copy of the
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original style. The Process can involve detailed research into
the history and background of the copied creator and their
methods, and a careful and laborious re-enactment of their
ideas, or can focus on easy ways to slap up something that
has surface features in common. And those who experience
the Product (the Press) may either see it as yet another in a
long line of tacky examples of a sad effort to capitalize on
a once-beloved creator, or may celebrate the opportunity to
re-engage with an oeuvre with slightly different eyes.

“Is human style reproduction creative?”, like so many
questions in creativity research, has the answer “it depends.”
But “yes” is certainly a possibility.

When computers reproduce style
We now consider research papers about automatic style re-
production. This literature is sparse; sparser still is discus-
sion of the creativity of the task itself. We analyse several
works both from within and outside the ICCC community,
and focus on desiderata and frameworks to analyze compu-
tational creativity research.

Existing literature: a quick summary
In computer graphics, particularly non-photorealistic ren-
dering, understanding a painter’s style well enough to mimic
it comes up particularly with distinctive painters, like the TV
painting artist Bob Ross (Kalaidjian 2007) or Eyvind Earle
(Murphy 2015), who was most responsible for the moody
imagery in Disney’s “Sleeping Beauty”. In these cases, re-
searchers were mainly interested in technical issues of the
artists’ styles,. According to a member of this research com-
munity (Kaplan 2021), this is often the goal of such work,
not to either assess the creativity of new creations or to en-
gage with the question of the overall task.

Successfully reproducing style has been treated as a fit-
ness test for evolutionary computation, particularly in vi-
sual art and music (e.g. (Blackwell and Bentley 2002;
Uhde 2021)). Uhde (2021) defines artistic style transfer as
generation of new artefacts with the style of one input ex-
ample and the content of a second input example. Though
Uhde acknowledges the difficulties in distinguishing style
from content, style identification and preservation is key to
Uhde’s formalisations. Bentley (1999) has presented devi-
ation from an original guiding style towards a distinct new
style as a problem, rather than a benefit, as it diminishes the
contributions of the artist whose work was used as a guide.

One ICCC example of style reproduction is the DeepTin-
gle paper from 2017 (Khalifa, Barros, and Togelius 2017).
This work attempts to reproduce the distinctive style of the
alarmingly prolific gay erotica author Chuck Tingle, using
LSTM networks to produce new sentences and stories. The
paper does not engage with the question of whether au-
thoring stories in this way is a creative task, and uses A/B
tests to compare the texts generated by the LSTM (or by a
Markov chain) to those by the original author, on the cate-
gories of grammatical correctness, coherence, and interest-
ingness. The authors highlight the challenge in duplicating
a complex, unique style; they do not question whether du-
plicating art created by a marginalized author is appropriate.

Another ICCC paper presents EMILY, a system to cre-
ate poems in Emily Dickinson’s distinctive style (Shihadeh
and Ackerman 2020). EMILY uses Markov chains custom-
trained to focus on elements of Dickinson’s poems. The
quality of poems generated are compared to those of Dick-
inson on standard metrics (such as typicality, imagery and
emotionality); Dickinson’s poems score better than the ones
they derive. Other similar papers reconstruct poetry in the
style of Bob Dylan (Barbieri et al. 2012), Dante (Zugarini,
Melacci, and Maggini 2019), Shakespeare and Oscar Wilde
(Tikhonov and Yamshchikov 2018).

In the space of visual art, more recent projects like Style-
GAN (Karras, Laine, and Aila 2018) train neural models
to produce art indistinguishable by an adversarial network
from art created by a specific creator. These systems re-
produce style alarmingly well. However, the best possible
outcome for such a system would be for it to create artifacts
identical to or very similar to those from the training data set:
novelty is not a direct goal. For that matter, neither is value:
if the training data were all cartoons scribbled by children
in crayons,1 recreating that style would be the goal. Knowl-
edge is represented in these systems, but the complex way
in which neural networks represent goals makes answering
“why” questions almost impossible currently.

By contrast, the Creative Adversarial Networks of Elgam-
mal et al. (2017) were designed to create artworks of high
quality (having properties similar to a training set) and nov-
elty (style distinguishable from all styles in a training set).
They do the opposite of style mimicry: they use the inspiring
set, pre-divided by style, as a measure of what to avoid.

As with any computationally creative system, style du-
plication algorithms can incorporate the input of human co-
creators. In one case, Kerdreux, Thiry, and Kerdreux (2020)
focus on using a computer as a tool in helping an artist trans-
fer the style of one image to another. They argue that the
style-transfer algorithm is creative, because it can create im-
ages that have “an aesthetic that can significantly differ from
what a painter would do” (i.e. an aesthetic that has broad-
ened out beyond the inspiring style). Their focus was eval-
uating the images created by the collaboration between the
system and the human, and in particular how to assess the
quality of the collaboration between them. Co-creativity
emphasises the importance of human participants perceiv-
ing their computational partners as a creative collaborator
contributing in their own right (Jordanous 2017). Similarly,
Crnkovic-Friis and Crnkovic-Friis (2016) produce choreog-
raphy “in the style of” (though probably in more general
style than that of a single choreographer). Their focus is on
the ability of their neural network system to collaborate with
humans, highlighting: “how current results can be used as a
practical tool for a working choreographer.” Hence style du-
plication can complement co-creativity - and vice versa.

Themes and goals of a style duplication algorithm
A striking absence from the papers we have discussed, and
others we have found, is the key question of whether the

1Our inspiration for choosing this example is the second au-
thor’s pride in her daughter’s highly creative drawings.
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underlying task of style reproduction is properly seen as a
creative task, and specifically, as a computational creativ-
ity task. Even for the small number that have been pub-
lished in the ICCC community, the goal has been faithful
re-interpretation of the base style, and on what kinds of con-
straints need to be added to a base creative system to make
it compatible with a new author’s style, as with EMILY’s
needing to be adapted to deal with Emily Dickinson’s punc-
tuation choice , or the DeepTingle system’s reproduction of
Chuck Tingle’s unusual vocabulary and grammar choices.

The more recent development of general-purpose systems
that can be fine-tuned to reproduce individual creators’ work
also envisions a breadth of style reproduction work that is
only just now starting. Authors both in the academic space
and those from the popular press are using systems that sim-
plify the process of fine-tuning of methods like GANs and
language transformers so that culture hackers and creators
can play around with “in the style of” creations, rather than
focusing on those details. Even still, these methods are not
citing whether their underlying methods are creative.

And finally, a key theme is co-creativity: many of these
systems envision creators using them in context of those cre-
ators’ work, rather than just running the systems full-bore
and not curating or editing the results. For example, when
Melynk (2021) used StyleGAN to create knitting patterns,
she did not just design knitting patterns in the style of Fair
Isle knitting, she also knitted the patterns themselves, and
briefly discussed changes to make them fit the style better
and work better as physical objects. In general, we see a
large number of these researchers using “in the style of” cre-
ators as collaborators in their production process.

Other desiderata for computational creativity
Here we engage with other models of computational creativ-
ity in light of recent works of systems that build “in the style
of”, to further our analysis of whether this task is a compu-
tationally creative task.

The ICCC community stamp of approval
First, perhaps, there is the obvious fact that many papers
have been accepted to the International Conference on Com-
putational Creativity. Some of these are on the margin of
the specific task under consideration: the CAN paper of El-
gammal et al. (Elgammal et al. 2017) tries to push away
from known styles, for example, and the six-word stories
papers of Spendlove and Ventura (2020) and of Zabriskie,
Spendlove, and Ventura (2018) discuss specifically genre,
rather than style. However, the porosity of the boundary be-
tween these two versions of “in the style of” may be a key
finding of our paper. Firmly in the “in the style of” category,
however, are EMILY and DeepTingle, described above.

Further, we note the existence of papers that imply the
computational creativity of this task, while analyzing other
properties of such systems. For example, the ICCC best pa-
per by Ens and Pasquier (2018) uses complexity measures
to identify which style (including which creator) matches
a given creative object best, and Brown, Byl, and Gross-
man (2021) consider the Canadian legal status of collecting

special-purpose corpora for fine tuning of language models.
There appears to be a willingness to at least consider the ‘in
the style of’ task as legitimate by ICCC researchers.

Do the authors present their systems as creative?
Surprisingly few authors in the papers we have studied do
describe their work as creative. While many of the ICCC
authors follow a familiar-to-ICCC pattern of justifying (or
at least stating) that the systems they produce are creative,
many ICCC authors shy away from describing the systems
they are presenting as computational creativity.

For the non-ICCC works, descriptions of the work as cre-
ative are strikingly absent: as noted above, theses repro-
ducing the styles of both Bob Ross (Kalaidjian 2007) and
Eyvind Earle (Murphy 2015) simply do not engage with the
question of creativity at all. A law review article (Gervais
2019) describing the question of copyright of AI-derived
works, which does do some engaging with the question of
style reproduction ultimately argues (in a fashion familiar to
ICCC researchers) that creativity is a fundamentally human
endeavour and thus impossible for computers to perform.

A sophisticated non-ICCC example of “in the style of”,
which focuses on reproducing the style of a community,
are the contests by Sturm et al., who highlight the social
and cultural aspects of producing good folk songs (Sturm
and Ben-Tal 2021). These researchers focus strongly on
questions of ownership and appropriation, and perform ex-
tremely detailed and thorough evaluations, but still have not
spent much time on the creativity question, let alone the
computational creativity question.

Definitions of computational creativity
We can compare the papers we read to specific definitions of
computational creativity.

The current ACC definition (Association for Computa-
tional Creativity 2014) extends the field to include algorith-
mic understanding of human creativity and to include co-
creativity. As such, discussions of co-creativity, as in Ker-
dreux, Thiry, and Kerdreux (2020), clearly fit. None of the
papers we considered spent much time on illuminating hu-
man creativity; the non-photorealistic rendering ones, for
example, focused on technical issues of simulation, not on
the process by which the creators worked.

This leaves the more traditional question of computational
creativity: is the system capable of human-level creativity?
While there are various ways to express this concept (see
Jordanous (2014) for explanation), this frame is consistent
with both the previous ACC definition and the popular Final
Frontiers definition by Colton and Wiggins (2012).

There is evidence that the authors of some systems do see
their work as attempting a task that would be human-level
creative: for example, the EMILY paper (Shihadeh and Ack-
erman 2020) compares its work to real Emily Dickinson po-
ems, and the lovely paper on identifying and naming new
constellations (Sewell, Christiansen, and Bodily 2020) in-
cludes the strong claim, “we argue that our system’s creativ-
ity lies within the combination of these concepts to mimic
the process that a human would use to find a new constella-
tion”. In some cases, the evaluation of a system asks humans
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to assess the output on scales meant to assess creativity, as
well. Whether these systems succeed or not, their authors
believe that assessing them on their creativity is appropriate.

Desiderata for computational creativity
Colton’s tripod criteria Colton’s “creative tripod” (2008)
identifies key criteria he argues are necessary for a creative
system: skill, appreciation and imagination. “In the style of”
systems built upon existing general-purpose creators (like
StyleGAN or GPT language models) essentially outsource
their skill and imagination to other systems (or to a human
co-creator); further, to the extent that they are “apprecia-
tive”, it is largely that those systems’ general-purpose fine-
tuning methods allow parameterizations to be learned from
diverse sources without care for what makes a particular
style special. In many other systems, imagination seems to
be lacking, or largely comes in from human co-creators.

By contrast, special-purpose systems, like the
constellation-identification paper (Sewell, Christiansen,
and Bodily 2020), are implicitly appreciative: designed to
identify and recreate the interesting aspects of their domain.

Ventura’s standards Ventura also identified standards for
a computationally creative system in two papers: his “mere
generation” paper and “how to build a CC system” papers
(2016; 2017) require the possible creation of novelty and
value, and argue for intentionality and knowledge represen-
tation as key ways to avoid “merely generating.”

Style reproduction systems run into serious problems in
this frame. Intentionality, of course, is uncertain for most
of them: as we note below, these systems have little to no
autonomy in most cases, and they only reproduce a certain
style because they are programmed that way. But novelty
is also a serious concern: as a system’s space of operation
is constrained by its code, it may not be able to generate
anything truly unusual; for example, DeepTingle does not
have the astonishing breadth of inspiration of the real Chuck
Tingle; see also the discussion of cover bands below.

Knowledge representation is also a challenge: in particu-
lar for systems that fine tune general-purpose systems, it is a
stretch to say that they represent knowledge about the style
they reproduce. Certainly at the least, they offer no way
for an external observer to query what form that knowledge
takes. A system that attempts to highlight specific aspects of
a style, as with the choreography system of Crnkovic-Friis
and Crnkovic-Friis (2016) (even if the details are hidden in-
side neural network parameters) may have more legitimate
claims to represent knowledge of that domain well.

FACE model The FACE model (Colton, Charnley, and
Pease 2011) suggests four different criteria that creative sys-
tems could include, each of which can be subdivided into
two forms, g and p. To test for a FACE criterion, we
ask if the system can generate framing information, aes-
thetic measures, concepts for how they operate and exam-
ples/expressions of those concepts (gform), and if they can
generate methods for generating each of the above (pform).

No systems exhibited abilities to generate framing infor-
mation (natural language textual descriptions that describe
the processes employed by the system). However this is

typical given the low occurrence of computational creativity
systems with framing information included, especially out-
side the FACE model team; so we do not treat the absence
of “framing” as indicative of the system not being creative.

Another similar observation which did deviate somewhat
from general computational creativity research was that the
freedom to be able to generate new methods for generation
(the p form of the criteria) was absent in all examples ana-
lyzed. While such a capacity is uncommon in many com-
putational creativity systems presented, it has been explored
to a greater extent than systems using framing information,
either as actual work presented or as potential for the fu-
ture. However none of the style reproduction papers ana-
lyzed highlighted any value in systems gaining this ‘meta-
generative’ ability, to generate generative methods them-
selves. Indeed, the generative process was highly controlled
in many of the papers examined: in the EMILY system,
construction of the model was done heavily supervised by
known domain knowledge, rather than the system being al-
lowed to find the style itself. In the DeepTingle system, the
researchers themselves placed focus on the style’s unique
vocabulary and syntax as the key items to be replicated.

The third point of interest arising from the FACE model
analysis was in looking at how systems had aesthetic mea-
sures. Where systems did, the measure was often tightly
coupled to the measure of how well the output fit previous
examples, with little in the way of other measures being per-
mitted. In other words, style generation was seen as the
overriding aesthetic determiner, with little room for other
aesthetic choices to be allowed within the system processes.

How does the work interact with the Four Ps?
A convenient framework for understanding creativity,
and computational creativity, is Rhodes’s Four Ps (Per-
son/Producer, Process, Product, Press) (Rhodes 1961),
adapted to the computational creativity domain by Jor-
danous (2016); the recent tutorial on evaluation by Lamb,
Brown, and Clarke (2018) also uses this as a scaffolding.

None of the papers we explored focused on the creativity
of the Producer (when it was a computer); some did discuss
the creativity of the human whose style was being emulated.
Similarly, little is said in these papers about the Press (which
corresponds to the social millieu in which a creation finds it-
self), except for measure of significance of the style being
duplicated. (One delightful exception is the one-pot season-
ings presented at ICCC by Fu et al. (2019): their product
went to market, and their research made it clear that one
goal of the product was, in fact, commercial success!)

Instead, unsurprisingly, most analysis in these papers
hangs on the Product or Process characterizations. For ex-
ample, Kazakçi, Cherti, and Kégl (2016) concern them-
selves with details of good generative Process. The Style-
GAN and CAN papers (Karras, Laine, and Aila 2018;
Elgammal et al. 2017) go into great detail about the un-
derlying neural networks algorithms and objectives in their
work. The authors of EMILY explore why custom gener-
ation of language models (in their case, Markov chains) is
more apropos than using off-the-shelf models (Shihadeh and
Ackerman 2020). And most authors describe various ways
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in which they evaluate the quality of their results by present-
ing those Products to humans or algorithms for judgment.

Still, if an author frames their work on one or more of
the four Ps, this does not fundamentally resolve whether an
individual project, or the overall style-reproduction idea, is
creative, and a valid computational creativity pursuit.

And some outliers
We also note some outliers that we found in our study, which
may highlight why this overall task is tough to place.

At ICCC’19 Pebryani and Kleiss (2019) described a co-
creative system assisting Indigenous Balinese creators in
producing culturally significant complex textile weaving
patterns; here, the tool is as much a tool for training a new
generation of designers as a creative system in its own right.
The creators of the system focus on questions of process
in their work, while emphasizing the ethnographic work in
their research. When we asked an expert in Indonesian tex-
tiles about this work, he also highlighted the openness of
Balinese designers to the use of technological innovations,
as long as the textiles built in this manner were not used as
important cultural artifacts (Sullivan 2021).

Also, some ICCC papers start with the acceptance of the
importance of style transfer and use it as a primitive for fur-
ther analysis. In addition to the CAEMSI paper (Ens and
Pasquier 2018) and the Brown, Byl, and Grossman paper
about language model corpora (2021), Kerdreux, Thiry, and
Kerdreux (2020) use style transfer as a primitive in their
artistic practice research, and Mondol and Brown (2021b)
describe styles, their codification, and their reproduction as
a task for algorithms to do in their algorithmic information
theory model of several computational creativity primitives.
The existence of these manuscripts argue in favour of style
transfer as a computationally creative process implicitly: if
the task is a sub-task of another computationally creative
process, or creates other valid computationally-creative re-
search areas by its sheer existence, then presumably, it is
itself a valid computationally creative task.

Domain-general analysis of style reproduction
We have analyzed individual research contributions looking
at style reproduction, across multiple creative domains. We
now reflect on the overall requirements and properties of the
task of style reproduction that we have seen repeatedly.

Style reproduction: highly-constrained creativity?
In discussions above of individual research contributions
looking at style reproduction, we often see the creative sys-
tems operate in a more tightly constrained domain than we
might usually expect for a creative system. To say this an-
other way: the limits on acceptable output are more closely
bounded, such that the set of possible outputs is smaller
and more tightly controlled. Constraints can affect creativity
(Sternberg and Kaufman 2010). In experiments on how con-
straints on output acceptability affected levels of creativity
demonstrated by story generation systems, McKeown and
Jordanous (2018) found “a sweet spot for maximal creativity
closer to the less constrained end of the spectrum”, but also

that tighter constraints in their experiments afforded greater
creativity than if the systems ran virtually unconstrained. In
a more theoretical sense, Mondol and Brown (Mondol and
Brown 2021b; 2021a) studied the extent to which setting up
constraints on valid (or preferred) outputs can still allow for
some domains to have a breadth of quality and novelty be
displayed by creators.

In some of the systems reviewed above, we see the
style reproduction task being implemented as output gener-
ation with additional stylistic constraints placed on the out-
put, for example the punctuation-based, vocabulary-based
or grammar-based restrictions placed on the output of the
EMILY or DeepTingle systems (Shihadeh and Ackerman
2020; Khalifa, Barros, and Togelius 2017). It would seem,
therefore, that it could be useful to consider treating style
reproduction as a highly-constrained form of creativity.

Components of creativity
It is tractable to analyze the “in the style of” task itself via
Jordanous’s components of creativity (Jordanous and Keller
2016). We can break down creativity into these constituent
parts for a more fine-grained understanding of the creativity
inherent (and lacking) in the task of style reproduction.

Many of the creativity components are not affected by
stylistic constraints for “in the style of” tasks, including Ac-
tive involvement and persistence, Dealing with uncertainty,
General intellect and Spontaneity and subconscious process.
In other words, the above components are neither priori-
tized nor de-emphasized by the restrictions of fitting output
to replicate or reproduce a particular style.

For other creativity components, the consideration of
those components becomes more specific. Domain com-
petence increases in importance, with the required compe-
tence being increasingly focused on a solid recognition of
the definition and fit of the system output to stylistic expec-
tations. Generating results is typically required from cre-
ative systems. In style reproduction, the generation of re-
sults is a necessity if the system is going to be deemed cre-
ative. Social interaction and communication gains an addi-
tional facet: the importance of output being socially relevant
and acceptable, as examples of artifacts in the target style.
It is not enough for those systems to generate artifacts that
it deems to be stylistically relevant; they must be deemed
acceptable by the wider community as reproductions of the
target style. Thinking and evaluation takes on an additional
required step; the evaluation must consider to what extent
the target style is reproduced in the outputs. Value similarly
gains an extra aspect: the extent to which the system outputs
are stylistically accurate contributes to system value.

On the other hand, the importance of some of the cre-
ativity components becomes de-emphasized, or refocused,
posing some really interesting challenges for the validity of
style reproduction as a creative task. Independence and free-
dom, as we see in the analysis of style reproduction as a task
with strong constraints, becomes much more limited. Style
reproduction systems have some independence, but much
less than a more general system. Originality at first con-
sideration, seems to be severely compromised, even though
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it is widely recognized as one of the two critical parts of
creativity (alongside value) (Runco and Jaeger 2012).

There is, however, still scope for originality or novelty
within the task of style reproduction. Above we discussed
the lack of creativity for a human performing tasks that are
the creative equivalent of a photocopying task, yet allowed
more attribution of creativity to a human who is perform-
ing style reproduction tasks in a way which there is still
scope for some originality. This fits in with Boden’s ex-
ploratory creativity (Boden 1992), such that the full concep-
tual space of possibilities is being explored, without chang-
ing the structure of the conceptual space. Originality is com-
promised in style reproduction, but still possible. The extent
to which originality occurs within a style reproduction task
appears correlated with the perception of the creativity of
the entity performing that task. Progression and develop-
ment, as with originality, is compromised to some extent;
the system can explore the development of what it is doing,
and progress from one state or set of outputs to another. The
boundaries constraining such development and progression
are, however, dictated and limited by the stylistic constraints
more than is typical outside of style reproduction. Variety,
divergence, and experimentation again can be thought of us-
ing Boden’s exploratory creativity. The system can exhibit
variety, and can diverge and experiment, though must remain
within the conceptual space of the style being reproduced.

One component that poses an interesting challenge for
this analysis is Intention and emotional involvement. This
component can still be present in style reproduction systems,
as a system can hold “intentions” (however implemented) to
reproduce the intended style, and it can still use some kind
of emotional modelling in its processes if that is applicable.
However what it cannot do is express any intentions or de-
sires to go beyond the stylistic constraints it has to operate
in. What if, for example, a human musician who makes a
living as part of a cover band (a band that reproduces the
musical style and outputs of a recognized existing artist) de-
cides to produce their own music, becoming emotionally in-
vested in their new musical direction? If that is acceptable
for a human musician, then what would it mean for a style
reproduction system to change its intentions and want to ex-
plore new creative directions? Is this a flaw in the system or
an exciting development for creativity? Or, arguably, both?

Even leaving behind the questions about what happens if
a style reproduction system starts to deviate from the “in the
style of” task it is designed to do, we have gained some use-
ful insights from analyzing the creativity of the task of style
reproduction using its constituent components. A surprising
amount of room for creativity emerges. Creativity can still
be demonstrated, it would appear, within the stylistic con-
straints that the system is operating in - as long as there is
some room for originality and exploration. Certain aspects
of creativity relating to value judgments increase in impor-
tance, demonstrating the challenges involved in building a
system with the expertise to work in an existing style.

The use of Turing tests
We have repeatedly noticed the use of modified Turing tests,
where the artifacts created by a computational system are

compared by untrained humans to those created by the hu-
man creator whose style is being emulated (“can you iden-
tify whether this painting was created by a computer or by
XXX?”). This phenomenon is in general frowned upon in
computational creativity research: Pease and Colton (2011),
in particular, have pointed out that building systems to pass
this modified Turing test encourages pastiche and copying of
the sorts of surface features that humans might notice, while
not really engaging with the creative substance of a genre.

“In the style of” creation, however, offers a situation
where perhaps these modified Turing tests are appropriate
as an evaluation, at least of the question of whether or not
the style has been copied. (Obviously, every genius has bad
days: just knowing that a poem reads like an Emily Dick-
inson poem does not mean it reads like a good Dickinson
poem!) Still, many of the systems themselves, particularly
those based on GANs, are themselves trained to confuse an
internal system into being unable to distinguish true exam-
ples of the targeted style from those created by the system.

The question of intentionality and autonomy
In the previous section, we explored a number of frame-
works developed to identify the extent to which style du-
plication systems can be computationally creative. A key
take-away message is that existing systems miss out on a
few of the elements of these systems, but the most serious
lapse is intentionality. That is, there is no obvious reason
why style duplication systems do what they do, and mini-
mal scope to engage with intention or the ability to consider
multiple styles for suitability. By contrast, computationally
creative systems that have engaged meaningfully with the
question of intention have mostly done so by beginning with
a representation of knowledge, and then allowing the system
to choose which events to report, and with which response.

For example, Ventura (2019) shows how DARCI chooses
when to make a painting, which elements to include in that
painting, and how to represent them. Similarly, Colton
(2012) explains how The Painting Fool can answer the ques-
tion “why did you paint this?” by reference to news articles
it has read. A bot that retells a daily news story in the style
of a famous politician, for example, lacks this sense of cre-
ative autonomy (it must always make a story) and lacks the
intentionality needed to best represent the story. If, instead
of following a single style, a creative system were able to
choose an apropos style, based on the events or mood being
conveyed, such a system might be better able to claim the
mantle of autonomy and intentionality, at least at the level
that existing systems that emphasize these features do.

Co-creative systems and intentionality
Multiple frameworks stress autonomy and intention as key
elements of a creative system. This may, in fact, be a red
herring. Perhaps we insist on these elements as we subcon-
sciously seek a difference between humans and computers.
Since computers are (perhaps with some layers of indirec-
tion) only programmed because of human intentions, we see
a key concern that motivation must come from somewhere.

In theory, a co-creative system that allows a human cre-
ator to consider many different authors’ styles might allow
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them the entertaining task of responding to one day’s news
with a movie script in film noir style, and the next day’s news
with the text of a Shakespearean sonnet. In this sense, the
human task (that of intentionality and autonomy in choos-
ing subject and style) and the automated task (that of repre-
senting an event or subject in that style) can be handled by
each actor effectively. For that matter, the automated system
might attempt to represent the event in multiple styles and
leave it up to a human participant to be part of the process of
choosing which style works best for a situation.

Does labouring matter?
One clear reason to develop style reproduction algorithms is
to change the role of the human in the process: instead of
doing the labour of figuring out which sentences of a cre-
ator’s oeuvre might be apropos a specific inspiring event,
or figuring out which cadence would properly represent a
composer’s work at the culmination of a piece, the human
being can cast that task to the style reproduction algorithm.
In particular, at this point, near-novices can build almost any
“in the style of” model for English texts with relatively lit-
tle work using existing GPT-2 worksheets written in Google
Collab; one just must supply the text upon which the model
must be fine-tuned (Woolf 2019). This has caused popu-
lar blogs like “AI Weirdness” to present silly examples of
GPT-2’s creations of British snacks, Halloween costumes
and more. (These humorous weirdnesses happen in part be-
cause of overtraining due to the tiny fine-tuning data sets.)

We cannot shake the belief that these general-purpose
fine-tuned generators really do change the level of creativ-
ity involved across the board. If one day, we build Shake-
spearean sonnets, the next day, we build odes in the style of
Keats, and the following day, we build Imagist poems in the
style of William Carlos Williams, it feels like the labour that
has typified previous researchers and creators, painstakingly
trying to account for the punctuation styles or vocabularies
of existing authors, has vanished into the ether. We could
even, in theory, write this paper paragraph-by-paragraph,
translating each paragraph into a different creator’s style.
(We note that we have not done this.)

Moving the goalposts
However, the situation with other activities in which humans
engage is that we have often down-graded the creativity of
certain tasks after computers (and AI systems in particular)
have gotten good at them. Some tasks are “still” typically
considered creative, despite the assistance their computer
collaborators give to humans. For example, crossword puz-
zle creators can access word lists (and even common clues)
as they develop their puzzles, and it has been possible to
fully generate such puzzles for many years (Rigutini et al.
2008), but the task of creating crosswords is still seen as
creative. Similarly, comic book artists need not hand-shade
their panels anymore. But some word puzzles may in fact
be less creative (for solvers and designers alike) once their
underlying algorithmic nature is identified. Similarly, some
strategy games, like checkers, have been fully solved (in the
sense that any player facing an optimal computer player will
at best tie the computer player) (Schaeffer et al. 2007); does

this mean that good game play was never creative? Does it
mean it is no longer creative?

We believe these questions have been less addressed in
the computational creativity literature than they should be;
in particular, certain domains are so constrained by the “in
the style of” constraint that they feel a bit automatic to en-
act. If the supply of good-quality haiku in the style of a
single producer that respond to a single prompt is small,
and the process of creating them is very standardized, then
it would be unsurprising to see the ostensibly creative task
get rounded down to being not-very creative. How much is
our field participating in this general process of “rounding
down” the creativity of tasks?

Conclusion

We think the answer to the question of our title is the un-
satisfying answer, “sometimes”. Arguing in favour of style
reproduction being a computational creativity task: style re-
production requires the agent to produce novel and valuable
work in a highly constrained space of valid possibilities, and
properly imitating the style of a famous creator requires skill
and appreciation. Building good paintings in Salvador Dalı́’s
style is no different than building good Surrealist paintings.

Many of the systems we consider work hard to repro-
duce important features of the underlying style; others ex-
ploit general-purpose systems that can be adapted to dis-
cover these features. The systems often carry an under-
lying concept with them, and incorporate both aesthetics
and evaluation into their internal processes; in many cases,
this comes for free from the general-purpose systems upon
which they are created. And, as is often true with current
computationally creative systems, these systems routinely
collaborate with human co-creators; if in these scenarios,
the human finds the computer to be a valuable partner, that
is strong evidence for the idea that the systems are computa-
tionally creative, and so is the task.

Arguing against the claim that computational style repro-
duction is computationally creative is the routineness and
triviality of the adaptation to new styles: if all that is needed
to turn GPT-2 from a Hemingway story generator to a Keats
poem generator is to change the fine-tuning training data,
then it might be hard to say that this task is worthy of the
name “creative”; in particular, saying there is a true con-
cept being carried by the general-purpose system through
the generation process may be impossible. We also argue
that the key goals of intention, autonomy and motivation are
especially weak in the case of reproduction “in the style of”,
unless the answer is actually to be found in the mind of a
human co-creator (or in the case of systems not yet built, in
their own intentional decision of which style to reproduce.

Ultimately, “in the style of” creation is, perhaps, just a
heavily-constrained version of any other computationally
creative task, with reduced (but still present) scope for nov-
elty. We hope that future researchers will look on it with
an eye for all of the issues we have discussed in this paper,
and will examine whether their solutions are computation-
ally creative, or if they are just routine turning of the crank.
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icki, Marek Grześ and Max Peeperkorn.

Author contributions
This work was done through close collaboration between the
two authors.

References
Association for Computational Creativity. 2014. Computa-
tional Creativity.
Barbieri, G.; Pachet, F.; Roy, P.; and Esposti, M. D. 2012.
Markov constraints for generating lyrics with style. In Pro-
ceedings of the 20th European Conference on Artificial In-
telligence, ECAI’12, 115–120. NLD: IOS Press.
Benjamin, T. 1986. Counterpoint in the style of J.S. Bach.
New York: Schirmer Books.
Bentley, P. 1999. Aspects of evolutionary design by com-
puters. In Roy, R.; Furuhashi, T.; and Chawdhry, P. K., eds.,
Advances in Soft Computing, 99–118. London: Springer
London.
Blackwell, T., and Bentley, P. 2002. Improvised music with
swarms. In Proceedings of the 2002 Congress on Evolution-
ary Computation. CEC’02 (Cat. No.02TH8600), volume 2,
1462–1467 vol.2.
Boden, M. 1992. The Creative Mind. London: Abacus.
Brown, D. G.; Byl, L.; and Grossman, M. R. 2021. Are ma-
chine learning corpora ”fair dealing” under Canadian law?
In ICCC, 158–162.
CBC. 2015. Fifty Shades of Grey fan fiction devotees grap-
ple with film’s success.
Chernick, K. 2020. Art forger Han van Meegeren fooled the
world into believing his fake Vermeers. A new film unpacks
his bag of tricks. ArtNet.
Colton, S., and Wiggins, G. A. 2012. Computational cre-
ativity: The final frontier? In ECAI.
Colton, S.; Charnley, J. W.; and Pease, A. 2011. Compu-
tational creativity theory: The FACE and IDEA descriptive
models. In ICCC, 90–95.
Colton, S. 2008. Creativity versus the perception of creativ-
ity in computational systems. In Creative Intelligent Sys-
tems, 2008 AAAI Spring Symposium, 14–20.
Colton, S. 2012. The Painting Fool: Stories from building
an automated painter. Computers and Creativity 3–38.
Crnkovic-Friis, L., and Crnkovic-Friis, L. 2016. Generative
choreography using deep learning. In ICCC, 272–277.
Elgammal, A. M.; Liu, B.; Elhoseiny, M.; and Mazzone, M.
2017. CAN: creative adversarial networks, generating “art”
by learning about styles and deviating from style norms. In
ICCC, 96–103.
Ens, J., and Pasquier, P. 2018. CAEMSI : A cross-domain
analytic evaluation methodology for style imitation. In
ICCC, 64–71.

Findlay, M. 2020. 2Pac and Notorious B.I.G. Made Classics
With Bone Thugs-N-Harmony. Hot New Hip Hop.
Fu, J.; Goodwin, R.; Harris, C.; Lang, K.; Lougee, R. W.;
McLane, C. J.; Maria, J.; Martin, J. J.; Segal, R.; and Yeshi,
T. 2019. Computational-creativity enabled one pan season-
ings for retail sale. In ICCC.
Gervais, D. 2019. The machine as author. Iowa Law Review
105:2053–2106.
Goodfellow, I. J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial networks.
Jordanous, A., and Keller, B. 2016. Modelling creativ-
ity: Identifying key components through a corpus-based ap-
proach. PLoS ONE 11:e0162959.
Jordanous, A. 2014. What is computational creativity? The
Creativity Post.
Jordanous, A. 2016. Four PPPPerspectives on computa-
tional creativity in theory and in practice. Connection Sci-
ence 28(2):194–216.
Jordanous, A. 2017. Co-creativity and perceptions of com-
putational agents in co-creativity. In ICCC.
Kalaidjian, A. 2007. Automated Landscape Painting in the
Style of Bob Ross. Master’s thesis, University of Waterloo.
Kaplan, C. 2021. Personal communication.
Karras, T.; Laine, S.; and Aila, T. 2018. A style-based
generator architecture for generative adversarial networks.
CoRR abs/1812.04948.
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Abstract

Music is an essential element of films and videogames, which
strongly contributes towards an immersive experience, by
establishing a setting and mood, enhancing the storyline, and
developing characters. Automatically generating music for
films and games has been explored in existing works, but there
is still room for improvement in terms of musicality and adap-
tivity. Neo-Riemannian Theory (NRT) comprises an established
set of techniques for analysing music which is triadic but not
necessarily tonal, and has had much application to the study of
emotional and situational arcs in film music. NRT has barely
been used in a generative setting, and we introduce a ratio-
nalised version for this purpose, which we believe could have
particular application to film and videogame music, where
mood or emotion-based music is required. We suggest ways in
which such a procedural NRT approach could be applied, and
describe future directions for our own projects in this area.

Introduction

Music is central to the setting of ambiance, mood and emo-
tional arcs in films and videogames, and often contributes
to the portrayal of plot elements and character development.
Generative music can be employed for offline film/game de-
velopment and also in response to player actions and environ-
ment changes during live gameplay (Plut and Pasquier 2020).
The adaptive nature of such generative music can often be
beneficial, e.g., when experiencing music generated by the
Adaptive Music System (AMS) (Hutchings and McCormack
2020), gamers reported “... an overall higher immersion and
correlation of music with game-world concepts with the AMS
than with the original game soundtracks ...” However, exist-
ing generative music systems for games can be said to lack
somewhat in musicality, i.e., the ability to present music in a
pleasing way, take sounds and arrange them in patterns and
phrases using music theory concepts such as rhythm, harmony,
dynamics, tone, articulation, form, musical continuity, and
tempo to express thoughts and emotions. For instance, in
(Hutchings and McCormack 2020), the authors state that: “lis-
tening to the music tracks, it becomes apparent that the overall
music quality of the AMS is not that of a skilled composer ...
musical quality could be enhanced through improvements to
the composition techniques within the framework presented.”
Moreover, Liapis et al. state that there is not a substantial dif-

ference in the generation of game audio and music generation
outside of games (Liapis, Yannakakis, and Togelius 2014).

In general, the systems used in industry are usually game
specific, while systems made for academic research are too
general (Plut and Pasquier 2020). For instance, the generative
compositional system for The Audience of Singular videogame
by Plut (2017) produces music which is not entirely adaptive
and could be considered as an independent musical piece
(Plut and Pasquier 2020). For melody generation, the system
uses Markov Models to generate various possible music sen-
tences or notes that are randomly selected from a scale. Such
an approach does not follow organizational elements such
as pitch proximity and late-phrase declination (Huron 2006)
and can result in lack of musicality. Similar limitations can
be found in generative systems for film music, such as in the
DeepScore project (Savery and Weinberg 2020), where music
for a film clip can be generated to fit temporal keyword cues,
or to fit a visual analysis of the clip. Here, an evaluation of the
system resulted in feedback that if the system used keywords
instead of visual analysis of the media, the generated music
was pleasant to listen to, but was often not in-sync with
the on-screen actions, and the score was too simplistic and
lacking emotion. A similar response was given for the system
when using visual analysis, with additional feedback opining
that transitions between scenes were too unharmonious.

We are developing a general generative system which can
adapt to the requirements of a scene from a specific film or
game to produce music with high musicality and appropriate
support for the scene. To this end, we propose a procedural
version of an established music analysis technique called Neo-
Riemannian Theory (NRT). This has been used to successfully
analyse emotional and situational arcs in film music, especially
where triadic but not necessarily tonal music has been com-
posed. With the term major/minor triadic chord (or trichord),
we mean a chord of three notes with a tonic note, another note
a major or minor third above the tonic, and a final note a fifth
above the tonic. These can be presented in various permuta-
tions, or inversions. Our procedural version of NRT comprises
a set of rewrite rules for minor and major trichords, and inher-
its a mapping from chord progressions to changes in emotional
and situational elements in media such as films or videogames.
Before describing NRT and procedural NRT, we first describe
the roles that music plays in films and games. We end by
describing related work and future directions for our work.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

231



The Roles of Music in Films and Videogames

Films put demands on the music for their soundtracks that are
quite different from those imposed on other genres (Lehman
2018), with videogames perhaps being the closest in this
respect. In general, soundtracks must take on various roles
to enhance and accompany the media’s narrative. Copland
delineates five purposes of film music: creating a convincing
atmosphere of time and place; underlining psychological
refinements (the unspoken thoughts of a character); serving
as a kind of neutral background filler; building a sense of
continuity; and underpinning the theatrical build-up of a
scene, eventually rounding it off with a sense of finality. In
film music, while the basic building blocks are the same as
any other Western genre, how these are arranged is guided
by the script, where the end goal of the music is making
meaning (Lehman 2018), performing a narrative function
opposed to solely being musically pleasing.

In order to further understand how soundtracks are
composed to fit the video, Lehman (2018) sets out three
Hollywood practices: (a) the soundtrack’s active role in
making meaning, (b) the tendency for film music to rely on
immediate gestures for expressive impact where tonality is
not necessary, via the practice of using small musical ideas
chained together, repeated or changed to prevent the music
from being overwhelming, by constantly giving the audience
new musical information, and (c) the music’s ability to make
meaning via associations e.g., linking a feeling to a melody
and being able to recall it through repetition.

Soundtracks for films and videogames share many function-
alities. In both cases, timed musical cues and sound effects
typically suggest a responsive, narrative-specific environment
aimed at either immersing the viewer/player in the spectacle
of storytelling or engaging them in the bodily emulation of
problem solving in a narrative-based context. These principles
give music its ability to create a compelling and entertaining
emulation, as described specifically for game music in
(Whalen 2004). Moreover, videogame music draws from vari-
ous cinematic practices to help structure the game’s narrative
elements based on familiar dramatic conventions (Rod 2007).

Neo-Riemannian Theory for Musical Analysis

NRT originated in the work of David Lewin (1982), and was
built on Hugo Riemann’s work on interrelations of triads and
systems. An example of this is harmonic dualism (negative har-
mony), which describes the inversional relationship between
major and minor chords, with minor triads being considered
“upside down” or mirrored versions of major triads (Rehding
et al. 2003). NRT was a response to analytical problems
created by chromatic music that is triadic but not necessarily
tonal (triadic chromaticism) (Lewin 1982). Analytical models
for diatonic music are not suitable to analyse chromatic chord
progressions, as chromaticism makes use of notes foreign
to 7-note modes or diatonic scales (Cohn 1998). Therefore,
Neo-Riemannian Theory has been used as an analysis tool
for chromatic chord progressions, including in film music,
showing that tonality is not the only way to relate chords.

Figure 1: The Tonnetz, from en.wikipedia.org/wiki/Tonnetz.

NRT employs three Neo-Riemannian Operators (NROs)
to describe the transition from one trichord to another. These
are: Parallel (P) for pairs of triads that share an interval of
a fifth, Relative (R) for triads that share a major third, and
Leading-tone Exchange (L) for triads that share a minor third.
When analysing music, the chord transitions which can be
identified with these operators are dictated by the Tonnezt
depicted in figure 1, which has been used since the 18th
Century to describe chord progressions. To describe the P, L
and R operations, we take a triangle on the main board of
either red or blue colour and map it to the adjacent triangle,
as per the key in the bottom left of figure 1. Red triangles
represent major trichords and blue triangles represent minor
trichords, and we see that P, L and R always transform major
to minor chords and vice-versa.

Part of the analytical power of NRT lies in the ability to
analyse chord transitions which are not captured directly as
P, L or R transitions, but sequences thereof. For instance, if
a transition of one triadic chord A to another B is captured
as the NRO sequence LP, then this represents the fact that
applying L to A, then applying P to the resulting chord will
end with B. Lehman (2014) showed that such sequences of P,
L and R transitions can model any possible relation between
the major and minor triads. Subsequent additions to the
theory introduced two inversional operators, Slide (S) which
exchanges two triads that share a third (such as C major and
C♯Major), and Nebenverwandt (N) which transforms a major
triad into its minor subdominant, and vice-versa, (N’) a minor
triad into its major dominant (Lehman 2014).

Triadic chromaticism appears in most film scores (Lehman
2014). An example is the soundtrack of the movie A Beautiful
Mind composed by James Horner. Throughout the whole
score, chromatic chord progressions, which can be analysed
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Figure 2: NRT analysis of an excerpt from the soundtrack to
the film Beautiful Mind. The NRO chord transition sequence
is given below the stave.
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Table 1: Association of NRO sequences and emotional and/or
situational scene elements (Lehman 2014).

NRO Sequence Emotion/Situation

LP Antagonism
L Sorrow, loss
N Romantic encounters
PRPR Mortal threats, dangers
RL Wonderment, success
NRL Suspense and mystery
RLRL Heroism (Lydian)
NR Fantastical
S Life and death

using NRT, are used to portray the genius of the protagonist.
Figure 2 shows a small excerpt of the chord progression used
in the cue “Playing a Game of Go!”, analysed using NRO. In
the film at this point, the music highlights when the lead
character loses a game of the board game Go and self doubt
creeps in. This is an example of the music supporting an
emotional event, which can be captured analytically using
NRT. Lehman (2013) links such emotions and events to
sequences of NRO operator applications, i.e., sequences of
trichord changes. In this way, the mapping of the portrayal
of emotional and/or situational aspects of a scene (such as
the expression of genius, sorrow and wonderment) and the
music accompanying it can be captured analytically. For the
set of emotion/situational constructs captured in this way,
see table 1. In the excerpt of figure 2, we see that S (life
and death) operators, along with L (sorrow, loss) and LP
(antagonism) sequences are employed. While the mapping
of the music to the emotion/situations in table 1 is not exact,
the analysis of the emotional arc of the music matches well
the emotions of the film scene being acted out.

Sequences of NRT operators can generate transformations
between chords that do not share any notes, and Lehman
(2014) states that the transformational complexity and its
connection to aural distance can convey feelings and meaning
by considering the distance between the original chord and
the destination chord. For instance, passages with simple
LPR compounds can be associated with relaxation due to the
closeness of chords. In contrast, complex combinations can be
associated with tension. Furthermore, NRT’s transformational
approach leads to the possibility of writing tightly voice-lead
passages of music. That is, as NROs transform chords into
new ones that share common tones, the melodies produced
from these operators could present linear progression,
making the melodies easy to sing and hence probably more
memorable. This is an important feature of soundtracks,
which use melodies as story-telling devices (Whittall 2001).

For such film music, NRT is used to analyse chromatic chord
progressions that would not be fully justifiable if analysed us-
ing a diatonic approach (Lehman 2014) as this type of music
makes use of notes foreign to a mode or diatonic scale. Ensur-
ing that the progression stays diatonic requires the use of spe-
cific combinations of PLR, therefore not utilizing NRT to its full
potential. Furthermore, Lehman states that as NRT operates
on pitch classes rather than diatonic notes, NROs disregard en-

Table 2: NRT Rewrite rules for major and minor chord
starting points. In each case, the starting chord is {a,b,c}.

NRO Major Minor

R {a,b,c+2} {a−2,b,c}
P {a,b−1,c} {a,b+1,c}
L {a−1,b,c} {a,b,c+1}
N {a,b+1,c+1} {a−1,b−1,c}
N ′ {a−2,b−2,c} {a,b+2,c+2}
S {a+1,b,c+1} {a−1,b,c−1}

harmonic spelling (e.g. C♯ and D♭ are the same note on a key-
board but the name of the note changes depending on the key
signature). In film music analysis and likewise in film music
composition, this allows one to focus on other musical features,
such as associativity and meaning, that are more important to
the genre, while avoiding claims that such chromatic progres-
sions are due to some unjustifiable or irrational music theory.

Procedural Neo-Riemannian Theory

The transformational relationship of NRT chord progressions
is well-suited to work with visual, dialogue and interactive
elements of a scene that are meant to evoke feelings. As such,
it could be employed in generative systems to write expres-
sive and associative music for films and games. Unfortunately,
Cohn’s (1998) mathematical description of NRT analytical
techniques is frankly overly complicated and confusingly for-
malised in places. To prepare the theory for implementation
in a generative system, we rationalise it here in terms of a
set of conditional rewrite rules, R, which take a trichord and
transform it to another. The conditional check is whether the
starting chord is major or minor and each type of chord has
six rewrite rules available to transform it, as per table 2. The
table prescribes how to transform trichord {a,b,c} into a new
trichord by adding or subtracting a given number of semitones.
As an example, rewrite rule R would take the C-major chord
{C,E,G} and transform it to {C,E,A} (first row, first column
of table 2), but would take the C-minor chord {C,E♭,G} and
transform it to {B♭,E♭,G} (first row, second column). Note
that for a rewrite rules to be applied, a chord must be per-
muted into its prime form, i.e., with a being the tonic note, b
being a major/minor third above a and c being a fifth above a.

Note that all the NROs rewrite a minor or a major chord
to another minor or major chord. Hence, if we start with
a major or minor chord, M, we can string together NROs
to produce many more transformations of M than in table
2. For instance, starting again with the C-major chord, the
sequence LPR would transform it as follows:

{C,E,G} L−−→
maj
{B,E,G} I−→{E,G,B} P−−→

min
{E,G♯,B} R−−→

maj
{E,G♯,C♯}

(Note the required step, I, to permute trichord inversion
{B, E, G} to the prime form {E, G, B}). This means that
a generative system could transform chord {C, E, G} into
{E,G♯,C♯} in three steps L, P then R but could also transform
it directly in one step LPR.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

233



This further means that a sequence of chords can be con-
structed using the guidelines of table 1 to follow the emotion-
al/situational requirements of a given scene/cut scene in a
game or film, or indeed to react live to player actions or other
changes in a game. In addition, the length of the sequence
could be used as an indication of the strength of emotional/si-
tuational change reflected by the chord transformation in the
music, as per analytical NRT. This could be done in a stochastic
way, perhaps driven by a Hidden Markov Model to introduce
variety and surprise in the outputs. Finally, given that entire
film soundtracks can be analysed in terms of sequences of
NRO rewrite rules, it should be possible to drive the genera-
tion of new sequences via machine learning over a corpus of
music from a particular composer, or from a particular film.

Related Work

The generation of chord progressions has been investigated for
automatic generation of musical harmony, and Wiggins (1999)
looks at the notion of intentionality in this respect, which is im-
portant for the generation of chord progressions to accompany
film/game scenes. Bernardes et. al. (2016) implemented the
D’accord harmony generation system which worked over a
perceptually motivated tonal interval space. While not using
NRT, Monteith et al. (2010) generated music to induce tar-
geted emotions, using statistical techniques such as HMMs,
and applied this in (Monteith et al. 2011) to produce affective
music to accompany the audio of fairy tales being read.

Chew and Chuan (2011) proposed a style-specific accompa-
niment system that applies statistical learning to music theory
frameworks including NRT. In this work, Neo-Riemannian
Theory is used to represent the transitions between adjacent
chords and NRT operators (NRO) are used on the Tonnetz,
a conceptual lattice diagram representing the tonal space, to
build decision trees to statistically learn melody-chord pat-
terns. Given the styles this system mimics (e.g., Rock) and the
roman numeral analysis (a type of music analysis where ro-
man numerals are used to represent chords coordinating with
scale degrees 1-7) used for the chord progressions, it is clear
that this work aimed to create diatonic chord progressions
using functional harmony, rather than triadic chromaticism.
Similar limitations are seen in other related works such as
Amram et al. (2020), where generative chord-based com-
position is implemented. Here the authors do not implement
NRT to its full extent and consider atonality a disadvantage.

Conclusions and Future Work

We have provided a bridge from film and videogame music
composition to computational creativity, via a description
of the roles of music in films and games, and a procedural
reading of an established music analysis technique, namely
Neo-Riemannian Theory. The new formalism encapsulates
four main points for generative music: (i) a set of rewrite
rules for trichords (ii) the sequencing of rewrite rules to
provide longer distance chord transforms (iii) a mapping of
emotional and/or situational cues to sequences of rewrite
rules, and (iv) the observation that chord transform distance

is roughly proportional to the strength of the emotional
change perceived in the music.

We are building a general-purpose music generation system
specifically to aid with film and videogame compositions. At
the heart of this will be procedural NRT, and we plan to draw
further from music theory when applied to films, to supple-
ment this approach. In particular, we will experiment with the
automated invention, repetition and variation of short musical
sequences called leitmotifs, (Whittall 2001), which can repre-
sent characters, emotions, locations and other elements in a
film or game. Our aim is to use AI techniques such as HMMs,
deep learning, constraint solving and planning to harness NRT
and leitmotifs into a system of real utility for composers.

The system will take as input tags that describe emotions,
allowing the output to directly follow the scene’s emotional
arc or, in some less canonical soundtrack examples, provide a
contrast to the emotions seen in the media (as suggested by an
anonymous reviewer). Producing film and videogame music
that deconstructs the viewer’s expectations by representing
a different emotion than the one seen on screen can create
a powerful viewing experience. An example of this technique
can be seen in the psychological horror movie Us, where the
composer uses a mixture of well-known, happy, upbeat songs
to provide a terrifying contrast from the violence that is hap-
pening on-screen. The use of unexpected songs which provide
a contrasting mood from the visuals can heighten the feelings
of fear as they do not offer any hint on what is going to happen,
as most canonical soundtracks do. Other times, contrasting
moods between music and visuals can be used to provide a
comical effect, such as using a feel-good song while a charac-
ter is going through hardships. We plan to take into account
such less-canonical scoring techniques by providing a system
that can create soundtracks that respond or contrast the visu-
als. As aforementioned, this could be achieved by manually
annotating the film with mood tags, so that the composer or
director can choose how the visuals should be represented,
or not represented, by the music in order to create a variety
of interesting viewing experiences for the audience.

Future projects include a collaboration with Younès Rabii,
developer of the videogame Tea Garden (Pyrofoux 2020). We
plan on applying an NRT-based generative system to produce
music for games where characters are created dynamically,
such as tabletop role-playing games or videogames that
feature a component of live automated videogame design
(Rabii and Smith Nicholls 2022). Neo-Riemannian Theory
would provide an effective framework to produce music that
quickly responds to changes in the characters and videogame
design, given the possible combinations of Neo-Riemannian
operators and the events and emotions they can represent.

We also plan to use our NRT generative system alongside
@artbhot (Smith and Colton 2022), a Twitter bot that gener-
ates images from user-given text prompts, to create multime-
dia outputs such as stories with background music. We plan
on exploring using music as a background for a story created
from a user-given prompt, or creating music from a user-given
prompt and using visual imagery to accompany it. As NRT can
be used to write music in various genres, it should produce mu-
sic suitable to represent the story line or the user-given prompt.
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Abstract

Music is a phenomenon that can be represented in
various data modalities, such as MIDI, musical score,
graphic score and audio. Connecting these modalities
in an informative and intelligent way is important, es-
pecially for multi-modal music generation systems. In
this study, we present a novel self-supervised represen-
tation learning approach that can be applied to finding a
mapping between audio and graphic scores in a gen-
erative context. Our approach consists of two varia-
tional autoencoder-based generators and a contrastive
learning mechanism. We demonstrate this technique us-
ing György Ligeti’s Artikulation, which is an electronic
music composition with a graphic score. In initial ex-
periments, given manually designed graphic score ex-
cerpts in the style of Artikulation, we generated good
quality audio correspondents with our model. We fur-
ther suggest some ways of improving our approach and
discuss some future directions for our work.

Introduction
Music can be represented in audio and symbolic (e.g. musi-
cal score, MIDI, or graphic score) domains. Commonly in
generative music studies, just one of these data modalities is
targeted and the generative system is specifically designed
for the selected domain (Oord et al. 2016) (Payne 2019).
While there are studies that focus on connecting some of
these modalities (Wang and Yang 2019), the full potential
of multi-modal representations has not been fully explored
in generative contexts yet. This is especially true for a wide
range of sonic and timbral options and various music repre-
sentations. Connecting these different music representations
is beneficial in an end-to-end multi-modal music generation
pipeline, where the generation starts in the symbolic music
domain, and then symbolic material is converted into audio
via a mapping between symbolic and audio representations.
In this multi-modal setting, we benefit from the advantages
of both worlds, where the symbolic representation enables
us to control the generation process in terms of some high-
level musical attributes such as tonality, harmony and rhyth-
mic complexity, and provides us with a confined format;
while the audio representation allows us to introduce ex-
pressive, textural and complex elements in a sonic domain,
where we appreciate music as people.

Figure 1: Legend for sonic objects in the graphic score of
György Ligeti’s Artikulation.

It has become clear recently that self-supervised represen-
tation learning can be highly effective, as highlighted by the
success of the CLIP model (Radford et al. 2021) for map-
ping both images and text into the same latent space. Such
contrastive learning can then be used in generative meth-
ods, for instance with CLIP being used to guide GAN im-
age generation, such as with BigGAN (Brock, Donahue, and
Simonyan 2018) or VQGAN (Esser, Rombach, and Om-
mer 2021). Inspired by these successes, we believe self-
supervised representation learning approaches for connect-
ing symbolic music and audio domains could enhance the
creative potential of generative music models.

In the matter of symbolic music representations, tradi-
tional musical scores might be limited in terms of expressing
the actual music itself, specifically in scenarios such as elec-
troacoustic and acousmatic music. In contemporary classi-
cal music (Spencer 2015), graphic scores act as alternative
music notations, and allow more expressive performance de-
tails to be represented, particularly for subtle and continuous
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Figure 2: Graphic score fragment from Ligeti’s Artikulation.

changes. Such scores engage performers to follow abstract
visual mappings, which can be attractive to manipulate for
inexperienced practitioners, e.g., for those without formal
training on traditional Western scores. Graphic scores are
not universal, however, and their organisation depends a lot
on the unique mappings given in a legend, as in Figure 1;
deciphering graphic scores is a challenging task. One well-
known graphic score is for Artikulation by György Ligeti,
designed by Rainer Wehinger, who first listened to the piece
and then constructed coherent abstractions to illustrate the
musical entities presented. An example of this score is de-
picted in Figure 2. In the organisation of this graphic score,
the horizontal axis represents time, the vertical axis repre-
sents pitch and coloured shapes represent unique sonic enti-
ties that are used in the piece as themes and musical ideas.

In this study, we present a self-supervised representation
learning framework to connect audio and graphic score do-
mains, and demonstrate a creative composition use case that
allows practitioners to compose in the style of Artikulation
utilising its visual and sonic universe. Without such an ap-
proach, this task might not be possible, as it is challenging to
separate and re-synthesize the complex textures in Artikula-
tion by listening to the piece and looking at the graphic score
and its abstract legend. Practically, in our use case, our sys-
tem allows us to generate new audio segments, which are
conditioned on manually created graphic score excerpts that
are not part of the original graphic score, but in its graphical
style. Demonstrating this feature, we exhibit some manu-
ally created graphic score fragments and their synthesised
correspondents within the aesthetics of the piece. To con-
clude, we address potential ways of improving this system
and some future directions for this study.

Data Processing
The original graphic score of Artikulation is presented in
fragments of 5 to 10 seconds duration. First, we cropped
these fragments and manually processed them to get rid of
the time axis lines and canvas contours, then merged these
processed fragments into a single long image file constitut-
ing the whole graphic score for the piece. Then, we extracted
graphic score excerpts using 2 seconds of windows, where
the stride amount is 1 second. As the piece is 227 seconds
long, this excerpt extraction process gave us 226 windows
in total. Then, we further processed these extracted images
to restrict their palettes to 10 discrete colours to make the
learning procedure easier. One caveat is that this proce-

dure gets rid of the grey shaded regions in the original score,
which represent the effect of reverb. In our future work, we
will further experiment with graphic score excerpts that have
such reverb regions.

We recorded the audio file of Artikulation while streaming
the piece online from YouTube at 44.1kHz sampling rate and
applied a similar data processing where 2 seconds of audio
fragments were extracted, again with the stride amount of 1
second. These audio fragments were paired with their corre-
sponding graphic score excerpts. Then, we used constant-q
transform (CQT) (Schörkhuber and Klapuri 2010), which is
a wavelet-based time-frequency transform, to generate spec-
trograms for each audio file, to be used in the learning pro-
cess.

Model Architecture
Our architecture consists of three main sub-parts, which are
an audio pipeline, a graphic score pipeline, and a contrastive
learning block for self-supervised representation learning, as
illustrated in Figure 3. Both the audio and graphic score
pipelines utilise a variational autoencoder (VAE) architec-
ture (Kingma and Welling 2013) and our contrastive learn-
ing mechanism is based on the cosine similarity between au-
dio/graphic score latent representations using a duplet loss.

In the audio pipeline, we have an encoder-decoder ar-
chitecture, which is taken from (Tatar, Bisig, and Pasquier
2021) and the audio data is presented to the network in CQT
spectrogram format (Schörkhuber and Klapuri 2010). The
encoder part has two consecutive 4096-dimensional dense
layers that are followed by two parallel 4096-dimensional
dense layers embedding in two 512-dimensional spaces,
which are for the mean and the variance of variational sam-
pling to a 512-dimensional space. The decoder part has
three dense layers with 4096 dimensions. During the train-
ing procedure, we use the Adam optimiser (Kingma and Ba
2014) where the learning rate is 0.0001, β1 is 0.9 and β2 is
0.999. As per the typical configuration of VAEs, the loss
function of this encoder-decoder architecture has two parts,
namely the reconstruction loss and regularisation loss, and a
mean squared error loss function is used for the reconstruc-
tion part, where KL-divergence (Kullback and Leibler 1951)
is used for the regularisation. In this pipeline, our decoder
generates CQT spectrograms, which are then converted into
audio files using fast Grifin-Lim phase reconstruction as in
(Tatar, Bisig, and Pasquier 2021).
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Figure 3: Architecture schematic for the two VAEs and contrastive learning block.

The graphic score pipeline also uses an encoder-decoder
architecture, which directly takes and generates RGB im-
ages on both sides. The encoder here first flattens the RGB
image, then passes it through a 2048-dimensional dense
layer, which is followed by two parallel 2048-dimensional
dense layers. The embedding space has 512 dimensions sim-
ilar to the audio pipeline. The decoder part consists of two
2048-dimensional dense layers, which are followed by a de-
flattening procedure, which converts single stream decoder
outputs into three channel RGB images. An adam optimiser
is used as in the audio pipeline with the same parameters.
Similar to the case above, we use mean squared error and
KL-divergence for reconstruction and regularisation losses,
respectively.

The contrastive learning block aims to make the corre-
sponding embeddings of the graphic score and audio pairs
as close to each other as possible, using cosine similarity be-
tween their mean and variance latent vectors in variational
autoencoders. The training procedure utilises a multi-task
optimisation process, where we train the VAE architectures
for reconstruction and the contrastive learning block for self-
supervised representation learning using a unified loss, si-
multaneously. Since we have two main objectives, which
are the reconstruction quality of VAEs and creating a struc-
tured embedding space, we weight our VAE and contrastive
losses. Based on our initial experiments, which suggest that
audio reconstruction might be a more challenging task in
this setting and require more attention, VAE losses for the
graphic scores and audio are weighted as 10% and 90% with
respect to each other. We also downscale the cosine similar-
ity loss between 512-dimensional latent vectors by a factor
of 50, in order to make it aligned with the VAE losses and
have 0,0x decimal numbers for each of our losses at the be-
ginning of our training procedure. We trained our complete
model for 200 epochs with a batch size of 32.

We use this architecture in a multi-modal generative set-
ting, where a user-designed graphic score is encoded into the
embedding space and its latent vector is decoded using the
audio decoder. Graphic score and audio embeddings share
the same latent space due to the contrastive learning strategy,

thus, the latent vector of a given graphic score can be inter-
preted keeping the semantic connections between two data
modalities. This shared embedding space approach has been
successfully demonstrated in the CLIP model (Radford et al.
2021), which uses text and image data, but CLIP requires
a separate generator to create artefacts. In our approach,
we combine the self-supervised representation learning and
generation tasks in the same model and training procedure,
and utilise this technique with graphic scores and audio,
which allow us to create a generative universe in the style
of a piece or a composer.

Experiments
To demonstrate the reconstruction capability of our model,
we use four audio and four graphic score excerpts that are all
from Artikulation, originally. We reconstruct these excerpts
using our audio and graphic score pipelines that are trained
separately without the contrastive learning block. We also
reconstruct these original excerpts using our trained com-
plete architecture. All of the reconstructed graphic scores in-
cluding the originals are exhibited online (Figure 5, 6 and 7)1

and all the reconstructed and original audio files (Original 1-
4) are presented on a SoundCloud page2. For the separately
trained pipelines, as demonstrated with the figures and audio
files, reconstruction quality is high. For our trained complete
architecture, although the reconstruction quality slightly de-
creases compared to the separately trained pipelines, which
is expected due to introducing the contrastive learning block,
reconstructed graphic scores and audio files exhibit intelligi-
ble graphical objects and good quality sonic entities, respec-
tively.

In order to test our trained architecture in a multi-modal
generation scenario, we manually designed four different
graphic score fragments in the style of Artikulation, which
are not exactly the same as any of the original graphic score
fragments. This approach demonstrates the creative poten-
tial of the system, where creators can compose their own

1https://bit.ly/37A1CgV
2https://soundcloud.com/user-330551093/sets/audio-sym-ssrl
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Figure 4: Four manually designed graphic score excerpts.

musical pieces by designing graphical scores in the universe
of Artikulation. Our expectation is that combined models
are able to generate an audio excerpt that sonically reflects
the material presented in the given graphic score fragment in
alignment with the characteristics of Artikulation. Our de-
signed graphic scores are presented in Figure 4 and we dis-
play their reconstructed versions generated using our com-
plete model via the same link1 (Figure 8). Even though
the reconstructed versions are lower in quality compared
to the originals, they are successful in terms of represent-
ing the graphical content, shapes and colours. We exhibit
the multi-modally generated audio files of four manually
designed graphic score excerpts on the same SoundCloud
page2. When we analyse these audio files, even though they
are not considered to be good quality regarding clear sonic
textures compared to Artikulation, the generated audio files
still exhibit the textures of the piece and are reflective in
terms of the visual composition.

When we evaluate these audio files in more detail, in the
beginning of generated audio for graphic score (a), we have
a sonic element with rising pitch similar to the curved or-
ange shape on its graphic score. Generated audio for excerpt
(b) demonstrates a similar rising pitch object, but lower in
pitch compared to excerpt (a), which can be associated with
the comb-shaped curvy figure on the lower side of the ver-
tical axis, which corresponds to musical pitch. In the audio
excerpt for graphic score (d), we have a unique and strong
sonic statement, which might be reflected in the horizontal
cone-like black figures. A similar sonic entity is repeated on
the second half of this audio excerpt, but differently, which
might correspond to the second set of black figures. The
difference can be due to having horizontal green and brown
shapes happening at the same time. In our future work, we
plan to quantitatively analyse generated audio files using au-
dio similarity metrics, to better evaluate the reflectiveness of
their given graphic scores and the style of Artikulation in
general.

Conclusions
In this study, we present a novel framework that connects
audio and graphic score domains using self-supervised rep-
resentation learning, which can be extended to other music

data modalities. We demonstrate its use case in a scenario
where we utilise Ligeti’s Artikulation represented in both a
graphic score and audio forms, and also exhibit the results
of our initial experiments with the system, which generates
music in audio format in the style of Artikulation based on
unseen but stylistically similar graphic score excerpts pre-
senting a creative use case of this generative system in the
context of human-machine co-creation. Even though the re-
sults are not perfect, we believe that this approach has valu-
able potential, especially to be utilised in multi-modal mu-
sic generation systems. Also, due to the artistic form of
this graphical music representation, we think that sonify-
ing visuals in a defined sonic and visual space is valuable
from a computational creativity perspective, as it might al-
low to further pieces with rich textures referencing a variety
of visual abstractions and reflecting complex styles of com-
posers.

In our future work, we plan to improve the quality of the
generated material as well as the generalisation capability
of the model by further experimenting with the architecture
and applying data augmentation both in visual and audio do-
mains. Also, besides our own subjective evaluation, we will
introduce numerical metrics which can evaluate the close-
ness of generated audio material to given graphic scores in
the context of Artikulation. To improve the match between
a given graphic score excerpt and its corresponding gener-
ated audio, we plan to experiment with introducing various
inductive biases to the model, which might ease the learn-
ing process and allow the model to learn a mapping be-
tween the graphic score and audio more effectively. Be-
sides Artikulation, we will experiment with other contem-
porary classical music pieces with graphic scores using our
approach. Additionally, we are interested in using this tech-
nique in other combinations of data modalities as well, such
as audio-MIDI. Moreover, we would like to build an online
tool based on this system, which can generate music using
graphic score excerpts specifically created by the users. Fur-
thermore, we plan to utilise this system in a scenario where
an audio excerpt in the style of Artikulation is provided and
the model is expected to generate its corresponding graphic
score (i.e., the reverse direction to the inference workflow
discussed here), which enhances the creative potential of this
approach.
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Abstract

Recent breakthroughs in AI-generated music open
the door for new forms for co-creation and co-creativity.
We present Artificial.fm, a proof-of-concept casual cre-
ator that blends AI-music generation, subjective rat-
ings, and personalized recommendation for the creation
and curation of AI-generated music. Listeners can rate
emergent songs to steer the evolution of future music.
They can also personalize their preferences to better
navigate the possibility space. As a “slow creator” with
many human stakeholders, Artificial.fm is an example
of how casual creators can leverage human curation
at scale to collectively navigate a possibility space. It
also provides a case study to reflect on how ownership
should be considered in these contexts. We report on the
design and development of Artificial.fm, and provide a
legal analysis on the ownership of artifacts generated on
the platform.

Introduction
“As notions about the nature and function of music become
embedded in the structure of software-based musical systems
and compositions, interactions with these systems tend to re-
veal characteristics of the community of thought and culture
that produced them.”
–George Lewis (Lewis, 2000)

Recent breakthroughs in deep learning have introduced
the opportunity for generating high-fidelity songs in the raw
audio domain. Some believe that this new potential portends
the end of musical creativity, while others think it repre-
sents yet another tool to augment musical production. Both
sides have merit, but of particular importance is the fact that
these end-to-end music generation systems can synthesize
music without any understanding in music composition or
technique. This opens up the possibility of embedding them
in computational creativity systems, which allows users to
explore a large possibility space of music without formal
musical training(Compton and Mateas, 2015) and engage in
mixed-initiative co-creativity Yannakakis, Liapis, and Alex-
opoulos (2014).

To interrogate these questions, we introduce a proof-of-
concept casual creator system, Artificial.fm, that allows lis-
teners to help curate and steer the evolution of music gener-
ated with OpenAI’s Jukebox model (Dhariwal et al., 2020).
In addition to listening to this new kind of music, listeners

can also provide feedback on the generated songs, thus help-
ing the AI learn to generate better music in the future. The
system also uses these ratings to provide personalized music
recommendations, which helps the music evolve to fit the
preferences of the listener.

These components form an interconnected sociotechnical
system for music generation and curation, with many dis-
tinct human stakeholders. This distributed model of pro-
duction complicates the definition of the user of the system,
since many different users are involved in different ways. It
also raises important questions about who owns the artifacts
generated by the system.

Our system falls in the lineage of “slow creators” defined
by a “problematic gulf of execution” (Compton, 2019). This
collection of creators involves most audio-based generators,
since evaluating songs requires the user to actually listen to
the outputs, instead of quickly discerning its quality, as with
visuals. However, a distinct yet understudied aspect of Arti-
ficial.fm is the fact that generation itself is high-latency and
therefore impossible to do on the fly: Jukebox takes about
20 hours to generate 20 seconds of audio. Thus Artificial.fm
explores design patterns for a growing set of systems where
intensive underlying computation means real-time interac-
tion with the underlying generator is fundamentally infeasi-
ble.

In this paper, we present the case study of Artificial.fm
to highlight how slow creation can translate to the evalua-
tion and curation of AI-generated music. We then use legal
precedent to trace the multiple stakeholders involved in this
process and unpack the each actor’s stake in ownership.

Related Work
Algorithmic Music has a rich history amongst composers
starting in the pre-computing era from the process works of
George Brecht’s Drip Music (1962), Stockhausen’s Setz die
Segel zur Sinn (Maconie, 1970) and Xenakis’ Formalised
Music (Xenakis, 1992) to the formation of the US League
of Automatic Music Composers (1978).

Algorithms have been used to generate music both in the
symbolic domain (Hiller Jr and Isaacson, 1957; Moorer,
1972; Hadjeres, Pachet, and Nielsen, 2017; Huang et al.,
2018) and in the waveform domain through digital vocoders
(Bonada and Serra, 2007; Blaauw and Bonada, 2017) and
synthesizers (Mehri et al., 2016; Engel et al., 2017).
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Compton (2019) identifies Musical computational cre-
ativity systems as inherently “slow creators” where the user
evaluation in the grokloop is implicitly slow. Though com-
putationally slow in generating these more complex musi-
cal generative spaces, this newer generation of ‘slow sys-
tems’ are capable of producing more aesthetically pleasing
and uniquely shaped outputs that often feel more rewarding
and personal to the user. More recent casual creators like -
Magenta’s Tone Transfer, Piano Genie and applications pro-
duced at the BitRate ML and Music hackathon 2020, take
advantage of modern AI models to produce higher fidelity
musical outputs.

These generators are characterized by large possibility
spaces, which can be difficult for individuals to explore. A
promising approach to rapidly search through a large pos-
sibility space to find the “gem in the rough” is to crowd-
source its exploration. A diverse set of casual creators lever-
age collaborative media to produce intriguing artifacts. The
Reddit R/Place experiment had users collaboratively paint a
pixel canvas (Rappaz et al., 2018). Drave’s Electric Sheep
used user feedback and evolutionary algorithms to generate
new “sheep” - fractal animations adapted to crowd prefer-
ences (Draves, 2005). PicBreeder also uses evolutionary al-
gorithms and allows users to collaboratively evolve images
Secretan et al. (2008, 2011). Feed the Ganimals allowed
users to explore and curate AI-generated hybrid animals, and
found that social cues led to the formation of diverse local
trends (Epstein et al., 2020a, 2021).

System Overview
Artificial.fm uses OpenAI’s Jukebox (Dhariwal et al., 2020),
a deep neural network trained on 1.2 million songs, for mu-
sic generation. Jukebox has the ability to take as input a
“prime” of existing music which it then improvises on top
of. We solicit primes from local musicians as part of a col-
laboration to support artists affected by the pandemic. Juke-
box also takes in a specified artist and genre as inputs which
condition the style of the generated song outputs.

The outputs of the song generation process are streamed
via the platform, where listeners provide subjective feedback
on the AI-generated music, in the form of ratings. The ques-
tions related to how happy, danceable, artificial, instrumen-
tal, upbeat and song was, and how clear the lyrics, and if
they liked it, on a 5-point Likert scale (see Supplementary
Information Section 1.2 for more information).

The crowdsourced feedback is then used to adapt the
generation process with an algorithm that balances explor-
ing new permutations of parameters with exploiting exist-
ing parameters that are popular with users. This is achieved
using a variation of Thompson sampling, which is regret-
minimizing in such contexts (Chapelle and Li, 2011). To do
so, we use the Spotify API and Essentia (Bogdanov and oth-
ers, 2013) to generate a rich set of covariates for the artist of
the prime, as well as candidate artists and genres (see Sup-
plementary Information Section 1.3 for more information on
how these covariates are generated).

As new primes are solicited from local musicians, the fol-
lowing algorithm finds parameters (e.g. an artist and genre
prompt) to pair with that prime to balance exploration and

exploitation: First, we fit a model f̂ predicting ratings of
the existing songs (e.g. How much do you like this song?)
based on the Spotify covariates of that song’s prime artist,
artist prompt, and genre prompt (27 features total). Then,
we sample M artist, genre pairs from the joint distribution of
these prompts in the input space. Then, we predict the rating
of that artist, genre pair for the given prompt f̂prime(aℓ, gℓ).
We then take the top γ artist, genre pairs and randomly sam-
ple one uniformly (here γ controls exploration vs exploita-
tion, γ = 1 is maximal exploitation, γ = M is maximal
exploration). See Supplementary Information Section 1.4
for more details about this algorithm. 1

Artificial.fm also provides personalized song recommen-
dations to users. Through a preference elicitation interface
(see Figure S3), users can explicitly specify the kind of
songs they would like to hear. Based on their stated pref-
erences, a personalized recommendation algorithm serves
songs to them consistent with these preferences (see Sup-
plementary Information Section 1.5 for more details about
this recommender system).

Data and Results
As of July 21, 2021, we accumulated 522 ratings of 71 songs
by 40 people. The songs were generated with genre prompts
from folk, house, pop, americana, rock, classical, electronic,
and funk, and artist prompts from The Weeknd, Aerosmith,
The Doors, Justin Bieber, Elton John, Dolly Parton, Otis
Redding, and Lady Gaga. The primes were sourced from
several local artists we reached out to. The 40 people found
the platform through word of mouth.

The distribution of ratings by question is shown on the left
of Figure 1. Relative to the other questions, listeners found
the songs highly artificial (one-sided t test, p < 0.001), and
lacking in clear lyrics (p < 0.001). This suggests that the
music of Artificial.fm may not fall into the “normal distri-
bution” of what you find on the radio, but instead represents
a polyphonous new kind of music onto itself. That being
said, we did find meaningful variation in all seven questions
ratings, which suggests there is quantifiable diversity in the
possibility space to explore and optimize.

The pairwise correlations between these seven questions
are shown on the right of Figure 1. We observe that per-
ceptions of liking a song is associated with ratings of a
song being danceable (R = 0.75, p < 0.001), instrumental
(R = 0.44, p = 0.004), and having clear lyrics (R = 0.35,
p = 0.037). We also find that ratings of the artificiality of a
song are marginally negatively associated with having clear
lyrics (R = −0.30, p = 0.088), and how happy the song is
perceived to be (R = −0.29, p = 0.078).

1This algorithm assumes there is already a large number of
both songs and ratings and therefore requires solving the “cold-
start problem.” Since the scope of this short paper is introducing
the concept of AI radio via Artificial.fm with preliminary user test-
ing and ethical considerations, this algorithm should be considered
as a sketch for how Artificial.fm would work at scale. As such, we
leave formal evaluation of such an approach to music generation to
future work.
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Figure 1: Left: Song ratings by question. Right: Pairwise correlation matrix between question ratings. . refers to p ≤ 0.1, ∗

refers to p ≤ .05, ∗∗ refers to p ≤ .01, ∗∗∗ refers to p ≤ .001.

Ownership of AI-Generated Music
The owner of a casual creators’ output should be the entity
responsible for creation. Compton and Mateas (2015) de-
fines casual creation as the “the creation [of] new artifacts
that bring feelings of pride, ownership, and creativity to the
users that make them.” This definition centers the users of a
casual creator as the owners of its output. Artificial.fm chal-
lenges this idea of ownership and highlights open questions
related to ownership of AI-generated works. 2

At least five actors could claim some level of ownership
over the works created by Artificial.fm: (1) the artist who
submitted the prime on which a piece of music is based, (2)
the many artists whose music was used to train Jukebox, (3)
the system architects who developed Artificial.fm, (4) the
listeners whose ratings are used to steer music production,
and (5) the artificial intelligence itself. This section begins
to explore the question of ownership for casual creators by
analyzing the legal basis on which these actors may claim
ownership and concludes by suggesting ownership models
better suited to the distributed nature of systems like Artifi-
cial.fm.

The Prime and Training Artists
Both the prime and training data artists could claim own-
ership over a given piece of music created by Artificial.fm
by arguing that Artificial.fm infringes on their copyright.
To this end, they would need to show that the generated
music is “substantially similar” to their work (Williams v.

2We use the term “ownership” broadly to encompass all the
rights commonly associated with authorship. Where relevant, this
section will base its analysis on U.S. and California law.

Gaye, 2018) and that the music was not independently cre-
ated (Feist v. Rural Telephone Service Co., 1991).

The prime artists explicitly provide direct access to their
works but the training data artists do not. Moreover, it is
unclear whether Artificial.fm has “access” to the underly-
ing training data because the music in the training data has
been transformed into the Jukebox algorithm which does not
contain copies of the works it has been trained on. Even
if Artificial.fm has access to the artists’ work, an infringe-
ment claim would require showing that a song created by
Artificial.fm is substantially similar to a given artist’s work
(Williams v. Gaye, 2018). Substantial similarity is assessed
using a two part test: first, an objective test where a music
expert analytically compares the elements of two works for
substantial similarity and second, a subjective test where an
“ordinary reasonable person” assesses if the two works feel
substantially similar (Swirsky v. Carey, 2004). Different ex-
perts and “ordinary people” may disagree about substantial
similarity making these tests inherently vague. In the Artifi-
cial.fm case, it is likely that some generated music is similar
to some works owned by prime artists, but it is unlikely for
generated music to be substantially similar to songs in the
training data.

The System Architects and Listeners
The system architects and listeners play their own role in
creating the output of Artificial.fm and could claim owner-
ship over the generated content. To focus on their contri-
bution, imagine that Artificial.fm was trained exclusively on
works in the public domain.

On one hand, the system architects might be akin to pho-
tographers who compose photographs by documenting ob-
jects from the real world. The U.S. Supreme Court clari-
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fied in 1884 that photography is to be treated as an art un-
der copyright law, and that the photographer is to be treated
as the “mastermind” whose creativity gives rise to a copy-
rightable work ( Burrow-Giles Lithographic Co. v. Sarony,
1884). The system architects can similarly be characterized
as the masterminds, who use their ingenuity to take advan-
tage of a technology to produce works of art. On the other
hand, although the listeners are using a tool built by the sys-
tem architects, it is the listeners’ preferences, not the archi-
tects’, that guide what Artificial.fm produces. In this sense,
the listeners are akin to photographers and the system archi-
tects are similar to camera makers, who have no claim to the
photographs made with the technology they built.

Along these lines, the AI Artist Mario Klingemann often
refers to himself as a “neurographer,” a photographer of neu-
ral landscapes (Castelle, 2020). Artificial.fm employs sev-
eral design patterns so that listeners can earnestly explore
the possibility space, and hence become neurographers of
sorts. The personalized song recommender and preference
pane push the onus of creativity onto the listener, which may
in turn strengthen their ownership claim.

The Artificial Intelligence Itself
Perhaps the true author of Artificial.fm music is the AI
(United States Copyright Office, 2021). Like a photogra-
pher, the AI decides what to create based on underlying cri-
teria and thus identifies a small subset of expressions from a
large pool of possibilities. In support of this idea, Colton et
al. (2020) present the framework of the machine condition,
by which machines creatively express their own subjectiv-
ity. However, the AI could also be compared to a sophis-
ticated camera, a tool to enable others to create art without
contributing creativity itself. Tracing the history of photog-
raphy and animation, Hertzmann (2018) advances this idea
and argues that only social agents can create art. Epstein et
al. (2020b) find that there is natural heterogeneity in the ex-
tent to which people anthropomorphize AI (i.e. think of it
as a tool vs an agent), and that these perceptions of agency
are related to allocations of responsibility and credit for the
involved human stakeholders.

If the AI is capable of creativity, this raises the question of
whether it is “working” for whoever built it or whether it is
autonomous. In the former case, the original creator of the
AI might own any creative expression created by it (under
the work for hire principle (Bridy, 2012)). In the latter case,
the AI might exist as some form of DAO (decentralized au-
tonomous organization) that could be capable of ownership.

A Distributed Approach to Ownership
Likely for pragmatic reasons, traditional copyright law fa-
vors resolutions with a small number of copyright owners.
Many actors contribute to Artificial.fm in distinct ways, and
so traditional ownership norms may be an ill fit. As a result,
Artificial.fm, and platforms like it, do not fit neatly into ex-
isting ownership norms and are more suited to a distributed
ownership model that divides ownership among all the ac-
tors involved in the process of casual creativity. Data co-
operatives and non-fungible tokens (NFTs) are two possible

technical approaches to such ownership structures.
A data cooperative is a member-owned entity, similar to

a credit union, that administers data voluntarily pooled by
its members to safeguard data rights, protect privacy, and
facilitate data monetization (Pentland and Hardjono, 2020).
While data cooperatives are usually associated with personal
data, they may also be useful in the context of casual cre-
ators, where all the actors who contribute to the creation of a
set of works pool these works in a cooperative that advocates
on behalf of all the creators.

NFTs are an application of blockchain ledgers to track the
ownership of unique digital assets, which facilitates a large
number of owners. In the casual creators context, all actors
involved in the creative process could receive NFTs that give
them fractional ownership over one or more works.

Both data cooperatives and NFTs are technical solutions
to facilitate distributed ownership, but neither solution pro-
vides an answer to how much ownership each actor should
receive. The normative question of how to allocate this own-
ership fairly and in a way that incentivizes casual creativity,
is beyond the scope of this paper, but remains an open and
exciting question for our community.

Conclusion
In leveraging AI for song generation, one might wonder if a
formula for good music emerges. In using users’ preference
for songs as a metric for how good songs are, what music is
perceived to be better is considerably unpredictable, making
it difficult to optimize AI systems to generate “good” mu-
sic that people enjoy listening to. Indeed, much of the time
music’s perceived quality is closely related with its popular-
ity (Salganik, Dodds, and Watts, 2006). With music’s social
context being extremely influential to the public’s opinion
of what is good music, and gives rise to a snowball effect of
“the rich get richer,” as the more popular songs gain more
popularity while less popular songs do not see the same in-
crease in streaming. As such, the design of the system be-
comes increasingly important, both to calibrate the listener’s
expectations for the music they will hear, and to surface
cues necessary for them to make informed decisions. Ca-
sual creators like Artificial.fm bring us one step closer to un-
derstanding and integrating social context into AI systems,
which in turn bootstraps their creative potential.
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Abstract

Dialogue is often modeled as an encoder-decoder problem:
incoming utterances are translated into a computational rep-
resentation of their semantic meaning, passed through a tran-
sition function to obtain a response, and then passed through
a decoder to render the response as natural language. This
view, while computationally appealing, omits the role of hu-
man emotions, mental state, and shared world knowledge in
conversation. We challenge this viewpoint by recasting the
task of dialogue modeling as a two-party co-creative pro-
cess in which symbolic and subsymbolic knowledge repre-
sentations are combined to inform response selection. Sym-
bolic knowledge is identified and extracted from conversa-
tional text in real-time and used to create a shared symbolic
representation of the user, the agent, and their respective re-
lationships to objects and abstract concepts within the larger
world. As part of this process, the agent takes on an “identity”
which it has largely constructed as a result of the stochastic-
ity in its own response patterns, but to which it subsequently
adheres. This emergent identity becomes a critical aspect of
the system’s future behavior, and helps to evoke a more natu-
ral, human-centric flavor in automated conversational frame-
works.

Motivation
As demand for voice technology expands, the challenges in-
herent in conversational AI become more pressing. Users
desire voice assistants who behave less like machines and
more like humans (Bowden et al. 2019; Ram et al. 2018;
Shum, He, and Li 2018). They don’t simply want to query
their devices; they seek to engage with them in complex ex-
changes. Rather than merely dictating to their digital assis-
tants, they seek to use them as sounding boards and obtain
social validation from them. These types of interaction go
beyond simple retrieval systems, database queries or neural
language models, no matter how excellently they may per-
form their specific tasks.

In this work we re-frame the task of dialog modeling as
an improvisational co-creative process in which two agents
- one human and one AI - engage in the shared experience
of idea generation and information transfer. Critically, this
framework eschews the idea that the correct response to
an arbitrary utterance can be modeled solely as a function
of the preceding utterances. Instead, we draw upon sym-
bolic knowledge (in the form of relational knowledge graph

triples) and subsymbolic knowledge (in the form of embed-
ded sentence representations) in order to interpret user input
and craft appropriate responses. The long-term objective is
not to learn the ”correct” response to a given user query, but
rather to induce a positive reaction in the user.

Overview
A co-creative situation requires more than just individual
agents acting in their own interests. It requires each agent to
model and respond to the intentions of its partner, even if the
participants’ creative objectives may differ. (We distinguish
in this work between intentions, meaning the conversational
function an utterance is meant to perform, and objectives,
meaning the conversational outcomes sought by one or both
partners.)

For example, in human communication, the intended
meaning of an utterance is integrally tied to the speaker’s
mental state (Anscombe 1957 reprinted in 2000) (Yus 1999)
as illustrated by the query “Do you watch Star Trek?”. This
statement may function as (a) a question about the auditor’s
viewing habits, or (b) an implicit request to hear the auditor’s
opinion of Star Trek, but it is most commonly used as (c) an
invitation to open a line of conversation about Star Trek and
related shows. Responding only to the first or second pos-
sibility may create an awkward conversational pause, as the
true desire of the speaker was not addressed. Conversely, it
is nearly irrelevant what is said about Star Trek, or whether
the response centers on Star Trek at all, so long as the de-
sired conversational role is filled. The expectations of the
user, and not the objective content of the sentence, deter-
mine the spectrum of optimal responses.

Taking this one step further, we adopt the paradigm of Di-
alogism discussed by Robert M. Krauss in “The Psychology
of Verbal Communication” (Krauss 2002): rather than char-
acterizing communication as individual acts of production
and comprehension, we model dialogue as a collaborative
effort in which each agent seeks to maximize the satisfaction
of both participants (Clark and Brennan 1991), essentially
converting conversation from an encoder-decoder problem
to a cooperative multi-agent game. In this framing, because
the human seeks a socially optimal outcome, the dialogue
system must ironically convince the human that its own de-
sires have been met - otherwise the human partner experi-
ences frustration in being unable to contribute to a shared

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

246



satisfactory experience. This necessitates that the agent both
has desires, and also has an awareness of the user’s conver-
sational preferences.

Related Work
In the field of dialog modeling and conversational AI, am-
biguous user statements are often resolved via the use of ex-
ternal symbolic or text-based knowledge. This is the ap-
proach used by (Li et al. 2016), who encode persona-based
symbolic knowledge as distributed neural embeddings that
are subsequently passed to a neural conversation model, and
(Dinan et al. 2019), who use thematically relevant text ex-
tracted from Wikipedia to inform response generation. Such
models are expanded upon by manipulating knowledge prior
to response generation, either by swapping between prede-
fined knowledge bases (Tuan, Chen, and Lee 2019) or by
traversing a static knowledge graph to seek nodes relevant to
the next generative step (Ji et al. 2020). Such methods can
greatly increase the factual accuracy and thematic relevance
of dialog responses, but fail to take the user’s preferences,
intentions, and objectives into account.

In a parallel but largely disjoint line of research, there is
a long history of research that incorporates user models into
conversational systems in order to improve response genera-
tion and/or recommendation accuracy (Wahlster and Kobsa
1986) (Göker and Thompson 2000) (Cheng, Fang, and Os-
tendorf 2019) (Zeng et al. 2019). These systems seek to
model user behaviors and preferences, often to good effect,
but fail to draw connections between the user and external
world-based symbolic knowledge.

The result of these disjoint research agendas is a series of
systems in which external knowledge exists independent of
the user, the agent, or their shared conversation history. The
agent knows something about the world, but not about its
conversation partner, and critically, it knows nothing about
itself. We seek to rectify this by creating a system in which
knowledge about the user, the agent, and the world are
jointly represented in a shared symbolic space that is dy-
namically updated as real-time conversations unfold.

Implementation
Our architecture is adapted from the BYU-EVE framework
(Fulda et al. 2018a), a conversational architecture in which
multiple response generators compete for the preference of
the dialog manager. At each time step, a set of candidate
utterances C = {c1, ..., cn} is produced by the response
generators. Each candidate ci receives a numerical ranking
from each of m response evaluators Ej and z response filters
Fk, which can be viewed as functions mapping the space of
possible candidate utterances to the space of real numbers.
Candidates are scored according to Eq. 1:

S(ci) =
z∏

k=1

Fk(ci) ∗
m∑

j=1

Ej(ci) (1)

Finally, the agent’s response to the user is sampled from
among the candidates with the highest overall scores. Our
modified EVE architecture employs a variety of filters and

Figure 1: Overview of our response generation architecture.
Incoming text from the user is processed to extract knowl-
edge graph triples which are then used to inform response
generators, response filters, and response evaluators. The
system’s output text also serves as a source for dynamically
extracted knowledge graph triples representing the opinions,
observations and inferences of the agent. Over time, the
agent develops an emergent “personality” based on its own
generated text, as well as an actively curated representation
of the user’s identity. This duality – agent and user both
represented in the context of larger world knowledge – is
essential to fulfill Krauss’ concept of dialogism in a conver-
sational AI framework.

response evaluators based on offensive speech detection, re-
sponse length, topic appropriateness, and so forth. One
of the most critical and effective evaluators employs con-
versational scaffolding, a technique developed at Brigham
Young University to leverage the analogical properties of
sentence embeddings when prioritizing responses (Fulda et
al. 2018b).

Our novel addition to this architecture and the key contri-
bution of our work is the implementation of a dynamically
generated knowledge graph extracted directly from current
and past conversations that contains contextualized knowl-
edge about both the user and agent (as opposed to a static
graph containing world knowledge only). The dynamic se-
mantic graph not only serves as a user model, but also acts
as one of several means by which candidate utterances are
generated, and serves as the mechanism by which the agent
acquires emergent conversational goals (see Section ”Agent
Objectives”).

A key long-term goal of this research is the design of a
conversation partner with an independent and dynamically
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Figure 2: A possible knowledge graph structure that might
result from a brief co-creative conversation between the
agent and a human. Knowledge graph triples are extracted
from both user and agent utterance using a sequence of
hand-coded tests to identify objects and triples of interest.
Thus, the knowledge graph includes information about both
the user and the agent. As the conversation progresses, the
agent seeks to identify and resolve ambiguities in the knowl-
edge graph by directing targeted queries toward the user.

emergent set of goals, affinities, and expectations. This is
not merely a gimmick to add interest: Independent desires,
belief states, and objectives are essential components of sat-
isfactory conversation. An obsequious agent who seeks al-
ways and only to fulfill the user’s desires is ultimately dis-
appointing. The typical user desires to also satisfy her or his
conversation partner, and does not enjoy a conversation with
someone who has neither opinions nor identity.

Knowledge Graph Implementation
We use the neo4j (Neo4j 2012) knowledge graph service
to maintain and update a unique knowledge graph for each
user with whom the system interacts. Triples are added to
the knowledge graph whenever hand-coded string matching
algorithms detect an object-relation-object reference within
the user’s utterance. Self-references such as ”I” and ”Me”
are mapped to a pre-defined user node, allowing the gener-
ated knowledge graph to incorporate knowledge about the
user’s relationship to known objects, rather than just about
the objects themselves.

One might argue that explicit modeling of the user is un-
necessary because a user model is implicit within the neural
network of an encoder-decoder system. This is a bit like
saying it is not necessary to read textbooks about classical
mechanics because the underlying physical principles can
be derived from observation. It is true that the necessary in-

formation is present, but extracting it becomes prohibitively
expensive. (For an overview of the number and complexity
of factors involved in speech generation, see (Levelt 1999).)
Additionally, recent research has shown that deep neural net-
works can benefit from the injection of external knowledge
relevant to the problem domain (Ning, Zhang, and He 2017).
Additionally, the use of external symbolic memory which
can be queried and fed piece-wise into downstream neural
text generators, overcomes known limitations of a neural
model’s context window size (Andrus et al. 2022).

The knowledge graph is updated using the Cypher query
language via a pre- and post-processing module that runs as
part of the agent’ NLP pipeline. The NLP pipeline also ex-
tracts information regarding the sentiment, emotional con-
tent, and keywords, found in the user’s text, which are used
to inform some of the system’s response generators.

Agent Objectives
Krauss’ conversational paradigm of Dialogism emphasizes
that in human conversation, neither party attempts solely to
maximize its own preferences. Instead, both conversation
partners seek a Pareto-optimal solution that maximizes both
partners’ satisfaction. In a conversational AI setting, this
translates to a situation where the human cannot feel satis-
fied unless she or he believes that the agent is also satisfied.
It is thus necessary for the agent to have desires and con-
versational objectives that can be satisfied. Subconsciously,
the typical user will desire to satisfy the agent and will feel
subtly distressed if she or he is unable to do so.

In order to provide an independently-motivated conver-
sation partner, our agent models itself as if it were also a
user. By observing its own generated utterances (some of
which were produced by neural text generative algorithms,
others by templated responses that leverage the knowledge
graph) and extracting its own likes, dislikes, the agent is able
to create and populate a node for itself within the knowl-
edge graph. We note that the resulting agent “personality”
is spontaneously emergent and, to a large extent, stochastic.
Responses generated more or less at random, such as ”You
like Lord of the Rings? I like Lord of the Rings, too” become
embedded in the agent’s world knowledge and begin to de-
fine its relationship to known world objects. The resulting
knowledge graph can be quite different on each execution
run.

To support the demands of dialogism, we imbue our agent
with the hand-specified objective of curiosity, meaning that
the agent actively seeks to expand its knowledge graph. This
is done via specialized response generators that produce
questions about nodes and edges in close proximity to the
user node, e.g. ”Why is it that you dislike cats?”. This de-
sire to attain knowledge provides a way for the user to sup-
port the agent’s objectives, thus satisfying the demands of
dialogism.

Additionally, the agent actively seeks to resolve ambigu-
ities in its knowledge graph. If the user makes statements
that result in contradictory relationships (e.g. the user both
”likes” and ”dislikes” cats), the agent actively seeks to re-
solve the ambiguity.
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Conclusion
By reframing conversational AI as a two-party co-creative
process, we seek to avoid the common pitfalls of traditional
encoder-decoder models. A truly empathetic conversation
partner does not merely map input text to output text. In-
stead, it must understand the relationship between itself,
its conversation partner, and the larger world, and use that
knowledge to inform its response selections. By combin-
ing external symbolic knowledge with a series of neural
response generators and embedding-based response evalua-
tors, we enable the agent to create responses that simultane-
ously align with external knowledge while also conforming
to the patterns and rhythms of typical human conversation.

In future work, we hope to integrate audio speech mech-
anisms into this architecture. We will also explore the pos-
sibility of dynamically adapting our scoring function in re-
sponse to key emotive signals detected in the user’s speech,
intonations, and prosody.
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Abstract

With the rise of artificial intelligence in recent years,
there has been a rapid increase in its application towards
creative domains, including music. There exist many
systems built that apply machine learning approaches
to the problem of computer-assisted music composi-
tion (CAC). Calliope is a web application that assists
users in performing a variety of multi-track composi-
tion tasks in the symbolic domain. The user can up-
load (Musical Instrument Digital Interface) MIDI files,
visualize and edit MIDI tracks, and generate partial
(via bar in-filling) or complete multi-track content us-
ing the Multi-Track Music Machine (MMM). Genera-
tion of new MIDI excerpts can be done in batch and
can be combined with active playback listening for
an enhanced assisted-composition workflow. The user
can export generated MIDI materials or directly stream
MIDI playback from the system to their favorite Digital
Audio Workstation (DAW). We present a demonstration
of the system, its features, generative parameters and
describe the co-creative workflows that it affords.

Introduction
The development of computer-assisted composition (CAC)
systems is a research activity that dates back to at least the
works by IRCAM on OpenMusic (Assayag et al. 1999).
CAC is a field that is concerned with developing systems
that are capable of automating partially or completely the
process of music composition. There exist several com-
positional tasks a system can address: multi-track pattern
generation, multi-track complete generation, rhythm gener-
ation, harmonization, chord progression generation, melody
generation, interpolation, form-filling, orchestration and in-
terpretation. Many machine learning-based (ML) systems
have been developed for computer-assisted composition in-
cluding: Flow Machines (Pachet 2004), Style Machine (An-
derson, Eigenfeldt, and Pasquier 2013), Magenta Studio
(Roberts et al. 2019), Manuscore (Maxwell et al. 2012),
Morpheus (Herremans and Chew 2017); demo systems such
as Sornting, DrumVAE (Thio et al. 2019), DeepDrum
(Makris, Kaliakatsos-Papakostas, and Kermanidis 2018) and
commercial systems such as AIVA 1, Spliqs 2 and Melody

1https://www.aiva.ai/
2https://www.spliqs.com/

Sauce 3. Magenta Studio, DrumVAE and Sornting de-
ploy algorithms based on the MusicVAE model (Roberts
et al. 2018). DeepDrum proposes an adaptive neural net-
work model for better capturing drum rhythms. Flow Ma-
chines and Style Machine employ Markov models. Manus-
core uses a cognitive architecture and Morpheus combines
a tensor model with constraint rules. Finally, AIVA, Spliqs
and Melody Sauce employ proprietary algorithms; the first
two for generating conventional multi-track music, and the
last one, for melody creation. Calliope differentiates it-
self by using a Transformer model called the Multi-Track
Music Machine (MMM). MMM, trained on half a million
MIDI files (Ens and Pasquier 2020a), offers genre-agnostic
batch-enabled generative capabilities. Its rich multi-level at-
tribute controls combined with bar infilling enables to tackle
many composition tasks at once. Calliope has been re-
leased publicly and is being used by a variety of composers
for artistic purposes and in the context of usability and ac-
ceptability evaluation studies. The project is available at
https://metacreation.net/calliope.

System Description
Building on top of Apollo, our interactive web environ-
ment that makes corpus-based music algorithms usable for
training and generation via a convenient graphical interface
(Tchemeube, Ens, and Pasquier 2019), Calliope (Figure 1) is
narrowed down for MIDI manipulation in the browser, gen-
erative controllability of the MMM model, batch generation
of partial or complete multi-track compositions and interop-
erability with other MIDI-based systems. The aim is to en-
able users to effectively co-create with a generative system.
Calliope is built in Node.js, the Web stack (HTML, CSS,
Javascript) and MongoDB. It is made interoperable with the
MMM pre-trained model via a Python process runtime.

MIDI Viewing and Playback
MIDI notes from any uploaded MIDI file can be visualized
in a piano roll format (Figure 2). Metadata info such as the
MIDI channel number and assigned MIDI instrument can
also be viewed and edited. The MIDI player supports the
General MIDI (GM) standard for MIDI playback and the
capacity to select from a list of soundfonts.

3https://www.evabeat.com/
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Figure 1: Calliope’s Interface
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Figure 2: Multi-Track Piano Roll with Bar In-Filling

Conditioned Music Generation
Generation is achieved using the Multi-Track Music Ma-
chine (Ens and Pasquier 2020a). Because of its design which
uses bar selection, and a set of global and local attribute con-
trols, the model can accommodate a variety of compositional
tasks.

Bar Selection MMM’s primary mode of generation is bar
in-filling. The model can generate note patterns for bars
in a given multi-track MIDI file. A subset of bars across
the multi-track content can be selected for generation by vi-
sually highlighting them (Figure 2). It is also possible to
temporarily edit the MIDI file by deleting or adding tracks.
This is useful to perform generation on a subset of the MIDI
tracks or to generate a new track for a given MIDI file. Gen-
erated music for a particular subset of bars is constrained
on musical information that precedes those bars (within the
given track) and on musical information found within the
neighboring tracks.

Global Parameters MMM offers the following global
(model-level) generation parameters (Figure 3):
• Temperature [0.8, 1.2]: Also called typicality, this float

value determines how much the structure of the generated
MIDI content is closer (conservative) or farther (experi-
mental) to what the MMM model is most likely to gener-
ate. Technically, it corresponds to the the temperature in
the sampling of the neural network.

• Polyphony Hard Limit {1-6}: The global maximum
number of simultaneous notes the system can generate at
any given moment.

• Percentage {0-100}: This parameter controls how much
of the existing MIDI content is preserved or replaced by
the generation. This is done based on the number of tracks
per step and bars per step. For example, for tracks per step
and bars per step each 4, and percentage at 25, the model
will process only 4 out of 16 bars to be generated at each
generation step.

• Model Dimensions {1-8}: The dimension of the model
in bars. This is the window size used by the model to

Figure 3: MMM’s Global Parameters

process MIDI input data for generation. The default value
is 4 corresponding to a 4-bar window.

• Tracks per Step {1-8}: Number of tracks being pro-
cessed at each generation step. The default value is 4.

• Bars per Step {1-8}: The number of bars processed
within each track at each generative step. The default
value is 2.

• Max Steps {0-8}: The maximum number of generation
steps. This value can be used to avoid memory overload.
When it is set to zero, it is ignored by the system.

• Tempo: The resulting tempo for the generated output as
a positive integer value.

Track Parameters In addition to model-level parameters,
MMM offers a set of local (track-specific ) music-based gen-
eration parameters (Figure 2). Such parameters are available
to be specified for each track of a given MIDI file. They are:

• Instrument Type: The type selector is composed of a set
of 128 instrument types and 8 instrument groups follow-
ing the MIDI GM Standard 4. It conditions MMM to gen-
erate in the style of the chosen instrument. For example,
if violin is selected, MMM generates a MIDI pattern to
be played by a violin instrument. This is especially con-
venient to differentiate the percussion group (e.g. drums)
vs other instrument track types (e.g. guitar, strings, synth
lead groups).

• Note Density [0-10]: The number of notes generated per
bar size. The higher this value, the more likely the model
is to generate bars with a high total number of notes. A
value of zero means that the note density is set at random
by the model for each generation request.

• Polyphony Range {0, 1, 2, 3, 4, 5, 6}: the number range
of simultaneous notes used by the model as a soft con-
straint for generation. The upper limit of this parameter
is automatically overriden by the value of the ”Polyphony
Hard Limit” global parameter.

• Note Duration Range {Any, 1/32, 1/16, 1/8, 1/4, 1/2,
Whole}: Note duration values are defined in accordance

4https://en.wikipedia.org/wiki/General MIDI
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Figure 4: Batch Number for Generation

to the Western music notation. For example, 1/16 corre-
sponds to a note duration equivalent to a sixteenth note.

Batch Generation of Music Outputs
Batch generation of musical outputs is implemented by pass-
ing a batch size parameter (Figure 4) to the MMM Python
interface which offers batch support natively. The ability
to batch generate means that the user can quickly explore
alternatives, including generating from a previously gener-
ated output, for a given set of control parameters. We have
tested generation of 5, 10, 100, 500, 1000 music samples at
a time. These generations can be done within 3 seconds to
10 minutes on an average computer depending on the total
note density of the music input.

Ranking
It is possible to rank a collection of generated MIDI files
against a selected one. This is useful to informally evaluate
the quality of the model generations. We employ a rank-
ing algorithm which statistically quantifies the similarity of
a generated output MIDI file against the set of other MIDI
files (Ens and Pasquier 2020b). This enables assessing ac-
curacy or reliability of the MMM model for style imitation
tasks. From an interaction point-of-view, it helps the user
explore the variability in similarity among MIDI files and
effectively apply filter operations on the set of files. This is
especially useful in the context of large set of generated files
(e.g. set of 50 files and up).

Co-Creative Interaction
In terms of co-creation, the user can configure multiple at-
tribute controls for generation (instrument type, node den-
sity, polyphony range, note length range, bar selection
within a piece). Those controls set the creative context for
the system to generate, allowing the user to steer the gener-
ative behavior of the model and guide the composition pro-
cess. The system generates new musical phrases by out-
putting multi-track polyphonic sequences of notes for the
set of selected bars and in accordance to the attribute control
values. The user listens and analyzes the resulting output

Figure 5: Compositional Workflow in Calliope

and updates the generation request accordingly. The steps
involved in Calliope’s interactive workflow are shown in
Figure 5. Generation happens within an interactive context
defined by a user session (step 2). The user session itself is
defined by a seed MIDI file, which is used to kick-off the
first generation. The connection from steps 9 to 3 highlights
how generated outputs can themselves later be fed back into
the system as seed MIDI files for new user sessions. This en-
ables more complex workflows for the user within Calliope.

MIDI Streaming
Additionally, it is possible for the user to stream MIDI play-
back to their favorite DAWs to assign playback to their own
project session instrumentation. Calliope can be integrated
with the user’s digital studio (e.g. Ableton) via a MIDI port
accessible in the MIDI player. This provides a unique oppor-
tunity for the user to interface their native environment with
a generative system. Users can stream playback of generated
MIDI files to their preferred instrumentation and sounds,
including applying their existing preferred signal chains to
the live output audio stream. This opens up new areas for
workflow experimentation given a computer-assisted com-
position framework. Alternatively, they can download the
MIDI files from Calliope and import them back into new or
existing DAW project sessions.

Conclusion
We presented the Calliope system, a co-creative interface for
multi-track music generation. We presented its features in-
cluding the ability to view and play MIDI files, the ability to
select bars to guide partial generation, and complete set of
global (model-level) and local (track-specific) controls and
how their combination allows users to tackle a broad range
of compositional tasks. We situated our system with respect
to other existing CAC systems and discussed the co-creative
aspect of the system along with the compositional workflow
it affords. The Calliope system is at the beta phase and we
are working on its next version. More future work includes
an ongoing evaluation study of the system along human fac-
tors including usability, user experience on feeling of trust,
authorship, controllability and measured of technology ac-
ceptance among amateurs and professional composers.
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Abstract

This paper presents the Interdependence Gestural Agent
(Intergestura), an electroacoustic music-performing
multi-agent system whose design is based on sonic
meditation principles, adapted to incorporate principles
of gestural listening. The Intergestura system is com-
prised of a human performing real-time granular syn-
thesis on a digital drawing tablet, and a pair of soft-
ware agents that behave according to the rules of a cer-
tain sonic meditation piece. The agents behave in a
call and response manner, listening for both the phys-
ical and sonic gestures of one another and of the hu-
man performer. Through this behaviour, performance
with the agent affords an experience in which the par-
ticipant deeply focuses their own attention, awareness
and listening, similar to the conditions produced when
performing the original text score with a group of hu-
man performers.

Introduction

The use of algorithmic processes has changed the way we
operate in all areas of musical practice, from making instru-
ments, to composing, performing, improvising, and listen-
ing (Magnusson 2019). The line between what can or should
be considered an instrument or interactive composition has
been blurred. Much contemporary research has focused on
endowing machines with creative agency, further complicat-
ing these distinctions (Pasquier et al. 2017).

This paper presents the Interdependence Gestural Agent
(Intergestura) system. Intergestura sits at the intersection
of interactive composition and improvisational performance
system,and facilitates human-machine co-creation and part-
nership. The system is designed around two key design
consideration: i) the sonic meditation works of composer
Pauline Oliveros (Oliveros 1974), and ii) an embodied view
on machine listening that includes gestural action. While
Oliveros’ text pieces focus on listening and responding to
sonic gestures (Van Nort 2009), Intergestura adapts this
across modalities to develop a call/response relationship that
is based on both sonic and physical gestures, which results
in sound-based output. We first discuss relevant prior works
before discussing the system in more detail.

Related Work
Sonic Meditations
Composer Pauline Oliveros published her first set of sonic
meditations in 1974. The meditations are a highly influen-
tial collection of text-based scores meant for performance
by musicians and non-musicians alike, and have inspired
many subsequent sonic meditation pieces in the decades
since (Jensen 2009). Through sounding and listening, these
pieces foster diverse modes of training, coordinating and
synchronizing attention and awareness (Oliveros 1984). The
enhancement and development of aural attention and aware-
ness are some of the explicit goals of these pieces. In per-
forming a sonic meditation, all persons present are meant to
take part in the piece - audience is performer and performer
is audience. In this way, “Oliveros is more interested in the
social, psychological and even physiological aspects of mu-
sic making than in its product” (Gioti 2020).

The meditations present a structure which engender a
meditative engagement with collective sounding and listen-
ing – something we build upon by exploring such struc-
tures in the context of interactive agents. We also build
upon a more recent piece, dispersion.eLabOrate, that ex-
plicitly augments another of Oliveros’ sonic meditations.
The eLabOrate project features a room-scale ecosystemic
augmentation of the Tuning Meditation (Hoy and Van Nort
2019). In eLabOrate, a group of human participants are
joined by a room-scale agent which listens to the collec-
tive through a microphone array, analyzes what it hears in
software, and then generates sounds according to the med-
itation instructions. As the original sonic meditations are
co-created through a process of blurring sonic boundaries
between participants, eLabOrate is co-created by and blurs
boundaries between human participants and technological
system. We expand this research into agent-based augmen-
tations via Intergestura, which shifts the focus from envi-
ronmental interactions towards an embodied, gesture-centric
approach to listening and interaction.

Musical Agents and Co-creation
A classic example of an agent-based performance system is
George Lewis’ 1988 Voyager system. Voyager is a software
system with roots in Black American and African diasporic
cultures intended for use in real-time improvisation settings
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(Lewis 2000). The system can perform completely on its
own or it can perform with other human players, “listening”
to them either through a MIDI interface or a machine lis-
tening algorithm. Voyager is made up of many constituent
elements that Lewis conceives of as “players” in an impro-
vising orchestra, but they could equally be thought of as in-
dividual agents in a multi-agent system (MAS). Players are
grouped together and given tasks, including melody gener-
ation, choice of pitches, rhythm, tempo, and interval range,
amongst others. Lewis views Voyager as its own entity and
understand interactivity with it as a process of dialogue. He
repeats that the system is non-hierarchical - in performance,
it can follow, or act as leader, it can choose to respond or
not, just as a human improviser might be faced with making
the same set of choices. To play with Voyager is to engage
in an act of human-machine co-creation.

Intergestura: Overview
The behaviour of Intergestura takes its structure from the
piece Interdependence, from the collection Four Meditations
for Orchestra (Oliveros 1997). There are two roles for per-
formers in Interdependence - sender and receiver. Senders
play a short, staccato pitch and receivers respond to short
pitches with a short pitch. Performers can switch between
these two roles at will. There are three variations on this
base call and response structure, as seen in Table 1. Per-
forming Interdependence with a group of human performers
requires attentive listening and quick responses. In perfor-
mance one does not know what role other performers are
taking at any given time - one must be ready to respond at a
moment’s notice and as instantaneously as possible. In ad-
dition to the heightening of collective sonic awareness, from
these simple instructions arise sonic textures that often start
out sparse and pointillistic and morph into dense masses of
sound. Oliveros notes that “correct player reactions can cre-
ate an atmosphere of electricity that runs through the ensem-
ble in a rippling effect.” Successful performance of the piece
requires and results in both awareness - of the overall sound
field - and attention - to the inner details of that field and the
cues contained within it. It is both the enhancement of col-
lective listening practices and the aesthetic possibilities of
the piece that have inspired us to adapt the structure into an
agent-based system, blurring the line between interactive in-
strument/composition/partner, much as the sonic meditation
pieces themselves blur the line between audience and per-
former, composition and meditation exercise. It is important
to note that while Interdependence structures the agent be-
haviour, the system is not an attempt to directly recreate the
meditation - the system can certainly be used to perform In-
terdependence, but can additionally be steered to perform
other forms. We now discuss details of the system design.

System Description
The Intergestura system is built in the Max/MSP program-
ming environment. It is comprised of an instrumental as-
pect in which Wacom and MIDI-based gestural inputs are
mapped to granular synthesis-based sound processing and
an agent component that responds to and co-performs with

Variation Respond To Respond With
0 Short pitch Short pitch

1 Short pitch Short pitch or long
tone

2 Short pitch or end
of long tone

Short pitch or long
tone

3 Short pitch or end
of long tone

Short pitch, long
tone, or long tone
with gliss

Table 1. The four variations for receiver behaviour in Interdepen-
dence. Sender always plays a short pitch, at any time and at any
dynamic.

this instrumental system. The system uses gestures as its
fundamental unit. References to ‘pitch’ or ‘tone’ in the in-
structions are replaced with ‘gesture’ in Intergestura’s struc-
ture. For instance, the base version becomes ‘respond to a
short gesture with a short gesture.’ The agents have access
to two corpora to structure their behaviour - one is a run-
ning memory of human input gestures and the other is a col-
lection of human-segmented gestures, similar to the design
of the FILTER system, which draws upon running episodic
and semantic performance memories (Van Nort, Oliveros,
and Braasch 2013). The agents, like human performers, can
choose either role to play in and can switch between these
roles, as well as between the different variations.

Gesture
Human input into the system primarily takes place through
gestural input with a drawing tablet. Physical gestures on the
tablet are captured and through various mapping processes
are connected to a granular synthesis module, finally pro-
ducing an audible sonic gesture. Additional control of the
system takes place through a standard MIDI controller.

Gesture is one way that meaning is produced and un-
derstood in music-making (Leman 2010). Through physi-
cal and sonic gesture, meaning is made directly and indi-
rectly - Leman writes “gesture appears as a mediator for
music-driven social interaction or as the vehicle through
which a ‘me-to-you’ relationship is established”. This view
on gesture is a rich space for thinking about the develop-
ment of agential systems, building upon the view of ac-
tion/sound gestures as a point of interaction design discussed
in (Van Nort 2009). In Intergestura, agent behaviour is
based on call and response, listening and reacting. Gesture is
how the agents understands their roles, and through gesture
the human-machine relationship is established. Via gestural
interaction, the agents participate in the co-creative process.

From an instrumental performance system perspective,
Intergestura is inspired by elements of the greis system
(Van Nort, Oliveros, and Braasch 2013), such as tablet inter-
action, parallel granular engines, and semantic and running
memory structures. We discuss these components, followed
by the agent modules which interact with them.

Synthesis and Mapping Design
Sound in Intergestura is produced through a trio of identi-
cal granular synthesis modules. The human performer plays
one module and the agents play the others. Each module
contains a pair of granular engines that run in parallel to each
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other. Each engine provides a different quality of sonic gran-
ulation and the performer can crossfade between engines or
have them both sounding simultaneously. Sound sources are
grouped into sets according to similar sonic qualities, pre-
determined and selected by the human performer. In perfor-
mance these are navigated by the performer, who also selects
a given set for each agent, thereby determining the higher-
level constraints for their general sound palette. While the
agents can choose to randomly switch between sounds in a
set, they cannot navigate between different sets.

Gestural control data from stylus actions on the tablet are
mapped into the granular module to produce sound. While
stylus pressure is always mapped to output volume, there
are a number of mapping modes that can be selected and
layered. This ranges from direct parameter mappings (e.g.
stylus y-position mapped to both grain rate and size, x-
position mapped to scrubbing through the sound source)
to a self-organizing map (SOM) (Kohonen 1982). In this
latter mode, many granular synthesis parameters are two-
dimensionally organized across the surface of the tablet and
are navigated via stylus coordinates. Scrubbing through the
sound source is done through a time-based method inspired
by (Van Nort, Wanderley, and Depalle 2014). A final map-
ping mode makes use of a multilayer perceptron (MLP) (Pal
and Mitra 1992) to map stylus coordinates as well as ve-
locity, acceleration, and jerk magnitudes to various granu-
lar synthesis parameters. The MLP is trained so that faster,
chaotic gestures produce noisier sonic output while slower,
smoother gestures produce smoother sonic output.

Agent Modules
Intergestura uses the cognitive concepts of semantic and
episodic memory to form the agent’s corpus, in combination
with a reactive rule-based system, inheriting the instructions
from the Interdependence meditation. Each form of memory
constructs its own corpus. The semantic memory constructs
a hybrid corpus, containing control gesture, sonic gesture,
and machine analysis of these. The episodic, or running,
memory constructs a corpus, consisting only of control ges-
ture data. Semantic memories are sonic gestures that are
explicitly segmented (via stylus button) by the human per-
former, and are used to structure the behaviour of the agent
in sender mode. The gesture, containing control data and
audio, is added to the semantic memory and analysis per-
formed on the audio component of the gesture. There are up
to 10 semantic memories at any point, with new memories
taking the place of the oldest memory. The running mem-
ory stores only control gestures, which are used by the agent
in both modes. The running memory consists of the last
20 gestures that have been made by the human performer.
These gestures are segmented automatically - starting when
the stylus makes contact with the tablet and ending when it
is lifted. Again, new memories replace the oldest memory.

At the beginning of sender mode behaviour, the agent ran-
domly selects one of the gestures from the bank of seman-
tic memories. This gesture is used to structure the sender
behaviour and generate a sequence of gesture playback trig-
gers. The agent looks at the onsets detected in the analysis
of the sonic component of the gesture to create a sequence

of triggers and determines how fast to step through that se-
quence. Next, a random gesture is chosen from the running
memory. The agent then begins to step through the sequence
and at each trigger plays the control data from the chosen
running memory into its granular module. After playing
through the sequence, the agent makes a choice on whether
to choose a new semantic memory and repeat the sender pro-
cess, or to enter receiver mode.

On entering receiver mode, the agent randomly selects a
number of gestures to respond to. It listens for the ends of
incoming gestures - from the human performer and from the
other agent. It specifically waits for a message that the stylus
has stopped making contact with the tablet, whether from the
human performer directly or from the other agents’ played
back gesture. On lift of the stylus, the agent decides to re-
spond or not. In variations 0 and 1, the agent only responds
to short input gestures. In variations 2 and 3 the agent will
respond to input gestures of any length. If it chooses to re-
spond, the agent selects a random gesture from the running
memory. The agent will temporally compress or stretch the
recalled gesture, based on the rules of the current variation.
The third variation also gives the agent the option to add ran-
dom, narrow-interval glissandi to the played back gestures.
It plays back the transformed gesture into its granular syn-
thesis module and returns to listening. After playing back
its predetermined number of gestures it has the option to re-
main in receiver mode or return to sender mode. If the agent
chooses to remain in receiver mode, it also selects which
variation it will perform and returns to the top of the task.

Each agent has some autonomy over the sound source se-
lected in the granular module. While it is constrained to the
folder selected by the human, each time the agent receives
an input gesture, it also looks at the standard deviation of the
velocity of that gesture. If above a threshold, the agent will
randomly select a new sound source from its selected folder.

Meta-Controls
Each agent has a set of meta-controls that can be engaged
with by the human performer - a probability of role (sender
or receiver), a probability of variation, and an on/off switch.
The first meta-control influences the likelihood of the agent
staying or switching between sender and receiver modes. At
either extreme, it will remain in the respective mode until
the control is changed. The second meta-control maps to
parameters that exclusively influence the behaviour of the
agent in receiver mode. Towards one end, the agent will be
more likely to play variations 0 or 1 and towards the other,
it will be more likely to play variations 2 or 3. At the centre,
it is equally likely to select any of the variations. The final
control is a button that enables or disables the agent.

Discussion
From our experience in performing this sonic meditation nu-
merous times in diverse ensembles, attempting to play In-
terdependence with the Intergestura system feels similar to
performing with a group of humans, but responses feel im-
mediately instantaneous - in performing with humans there
is some build up as performers attain focus and attention,
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but with the digital system the immediacy of response is
there from the start. The pair of agents are highly responsive
and playing with them feels like interacting with mirrored
versions of oneself: recently played sonic gestures return
but are transformed in some fashion by the agent’s listen-
ing/sounding decision process. In performing sonic medita-
tions with a group of humans, the boundaries between one’s
own actions and those of fellow performers become percep-
tually blurred - it can become challenging to tell where one’s
own actions end and an other’s begin. Similarly, perform-
ing with Intergestura blurs the line between oneself and the
agents. In a back and forth of many quick gestures in suc-
cession, it can be difficult to tell which gestures the human
produced and which came as reflections from the system.

This quick back and forth style of playing often results
in the feeling of rippling electricity described by Oliveros,
especially when the agents are playing in variations 0 or 1.
Furthermore, by interacting with the meta-controls, it is pos-
sible for the human performer to play with the system but
move away from directly playing Interdependence. For ex-
ample, one could choose to have only a single agent active,
have it constantly in receiver mode, and constantly playing
variation 2. In this state, the agent would respond to every
human input gesture, acting as an augmenter of performance
and allowing for sounds and shapes not possible for the hu-
man performer alone. Through these meta-controls the hu-
man performer can choose to perform Interdependence ex-
plicitly or to morph to other styles of playing.

Playing with Intergestura is a process of human-machine
co-creation. (Brown 2012) and (Ravikumar, McGee, and
Wyse 2018) argue for human-machine systems that embody
co-creativity through partnership and shared tasks. Brown
argues that metacreative systems should be conceived of as
partnerships with generative systems, with human partici-
pants being viewed as components of the overall system,
as opposed to viewing the system simply as a tool or au-
tonomous machine. Ravikumar et al. additionally argue
that co-creation should happen through a process of co-
experience, where co-creation happens between participants
who experience togetherness by working towards a shared
goal. Performing with Intergestura embodies this notion of
co-experience. Whether playing Interdependence directly or
not, to engage with the system - becoming part of the larger
human/machine system - is to engage in a partnership with
the agents. It is clear that the agents on their own cannot take
part in a process of creation, and the possibilities of what the
human can achieve without the agents are greatly reduced.
The human and agents come together to perform a shared
instrumental system and to create the system in its totality.
The system and partnership affords an experience of playing
together, working towards a common task, and co-creating.
The network of listening and sounding, grounded in simple
rules of attention and action, that is fostered by sonic medi-
tation style pieces is a powerful framework for emergent hu-
man/machine co-creativity - it is greater than the relatively
simple rule sets the pieces (and agents) are based on.

Future Work and Conclusion
We are currently developing an alternate version of this sys-
tem in which all interaction takes place through sound. As
in dispersion.eLabOrate, our goal is for a system which can
be used to augment traditional sonic meditation practices in-
volving multiple participants. The system will be able to
perform within an ensemble of humans with diverse instru-
mentation and engage in co-creation purely through sound,
opening up interaction with the system to a wider range of
people. This requires a different strategy than the current
’gestural listening’ approach, and we intend to evaluate the
implications of this design change in a future comparative
study.

While it is changing, the paradigm of co-creation still
stands in contrast to dominant conceptions of human-
machine interaction which often view computers as tools
to be used. We believe it is important to deeply explore
new forms of interaction afforded by digital systems as they
may lead to new ways of creating, thinking, and being in the
world. Intergestura is one approach towards this larger goal,
drawing on novel forms of human-human co-creation that
we believe offer a rich space of possibility in the context of
computational creativity for musical performance.

Author Contributions
K. Maraj developed the system and lead the writing of the
manuscript. D. Van Nort supervised the project and con-
tributed to system design, scholarly contextualization and
paper revisions.

Acknowledgments
This research received support from the Social Sciences and
Humanities Research Council, the Ontario Early Researcher
Award and the Canada Research Chairs Program.

References
Brown, A. R. 2012. Creative partnerships with technol-
ogy: How creativity is enhanced through interactions with
generative computational systems. In Eighth Artificial Intel-
ligence and Interactive Digital Entertainment Conference.
Gioti, A.-M. 2020. From artificial to extended intelligence
in music composition. Organised Sound 25(1):25–32.
Hoy, R., and Van Nort, D. 2019. An ecosystemic approach to
augmenting sonic meditation practices. In 14th Int. Sympo-
sium on Computer Music Multidisciplinary Research, 318.
Jensen, M., ed. 2009. Deep listening anthology: Scores
from the community of deep listeners. Deep Listening Pub-
lications.
Kohonen, T. 1982. Self-organized formation of topologi-
cally correct feature maps. Biological cybernetics 43(1):59–
69.
Leman, M. 2010. Music, gesture, and the formation of
embodied meaning. In Musical Gestures. Routledge. 138–
165.
Lewis, G. E. 2000. Too many notes: Computers, complexity
and culture in voyager. Leonardo Music Journal 10:33–39.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

259



Magnusson, T. 2019. Sonic writing: technologies of ma-
terial, symbolic, and signal inscriptions. Bloomsbury Aca-
demic.
Oliveros, P. 1974. Sonic Meditations: March - November
1971. Smith Publications.
Oliveros, P. 1984. Software for people: Collected writings
1963-80. Station Hill Press.
Oliveros, P. 1997. Four meditations for orchestra.
Pal, S., and Mitra, S. 1992. Multilayer perceptron, fuzzy
sets, and classification. IEEE Transactions on Neural Net-
works 3(5):683–697.
Pasquier, P.; Eigenfeldt, A.; Bown, O.; and Dubnov, S. 2017.
An introduction to musical metacreation. Computers in En-
tertainment (CIE) 14(2):1–14.
Ravikumar, P. T.; McGee, K.; and Wyse, L. 2018. Back to
the experiences: empirically grounding the development of
musical co-creative partners in co-experiences. In 6th Int.
Workshop on Musical Metacreation. 9th Int. Conference on
Computational Creativity, ICCC, 1–7.
Van Nort, D.; Oliveros, P.; and Braasch, J. 2013. Elec-
tro/acoustic improvisation and deeply listening machines.
Journal of New Music Research 42(4):303–324.
Van Nort, D.; Wanderley, M. M.; and Depalle, P. 2014. Map-
ping control structures for sound synthesis: Functional and
topological perspectives. Computer Music Journal 38(3):6–
22.
Van Nort, D. 2009. Instrumental listening: sonic gesture as
design principle. Organised sound 14(2):177–187.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

260



A Roadmap for Therapeutic Computational Creativity

Alison Pease1, Margareta Ackerman2, Nic Pease3, Bernadette McFadden4

1 School of Science and Engineering, University of Dundee, UK
2 Department of Computer Science and Engineering, Santa Clara University, CA, USA

3 Independent Psychotherapist, Cork, Ireland
4 Bernadette McFadden Addiction Counselling-Member of Addiction Counsellors Ireland, Cork, Ireland

Abstract

Recent years have seen a budding interest in therapeu-
tic applications of creative machines, spanning both au-
tonomous systems and agents that enrich the human cre-
ative process. This paper takes a deep dive into ther-
apeutic modalities through the lens of computational
creativity and explores opportunities in this exciting
emerging domain. In addition to bringing to light to
how computational creativity can interface with men-
tal health and wellness, the current paper brings atten-
tion to the potential risks and pitfalls of bringing cre-
ative machines into the therapeutic context. We hope
that this work, conducted in collaboration between CC
researchers and practising psychotherapists, will help
pave the way forward to responsible and effective ap-
plications of computational creativity to therapeutic do-
mains.

Therapeutic Computational Creativity (TCC) is an emerg-
ing sub-domain of computational creativity that studies cre-
ative systems that promote well-being. More ambitiously,
such systems can support or even improve mental health.
The aims of TCC are wide reaching, spanning from casual
wellness applications to improve mood, to the potential to
be incorporated into treatment of conditions such as depres-
sion, anxiety, bereavement and trauma.

While Therapeutic Computational Creativity is still in its
infancy, there are several works that have already begun
paving the way for this new domain. (Cheatley, Moncur, and
Pease 2019) posited design considerations for CC systems
intended to operate in a therapeutic context. Focusing on be-
reavement, they identified ten design recommendations for
creative systems aiming to assist in the therapeutic process.
These include requiring users to participate in the creation
process, allowing private and collaborative creation, and be-
ing secure and private. One of the challenges identified in
(Cheatley, Moncur, and Pease 2019) is to encourage people
who may not think of themselves as creative to engage in
a creative process. Co-creative systems can be applied in a
therapeutic context to overcome this challenge. Their cre-
ative abilities offset or even eliminate the need for any artis-
tic expertise on the part of the bereaved and as such extend
creative self-expression and the benefits of art therapy.

Building on the above work, Cheatley, Ackerman, Pease
and Moncur (Cheatley et al. 2022) studied the impact of

using co-creative songwriting system ALYSIA in a bereave-
ment context. ALYSIA allows users to easily create songs
by offering an interactive process for the creation of origi-
nal lyrics and melodies. The system generates original ideas
line by line, allowing the user to select from the system’s
generations, make edits, or enter their own melodic or lyri-
cal material as they see fit.1 The bereavement study (Cheat-
ley et al. 2022) asked participants who have recent lost a
loved one to write a song about the deceased by utilising the
co-creative ALYSIA system.

Using a combination of quantitative and qualitative ana-
lytical methods, and utilising the Warwick-Edinburgh Men-
tal Well-Being Scale (WEMWBS) (Tennant et al. 2007), it
was found that ALYSIA has promise as a therapeutic modal-
ity for bereavement. ALYSIA was helpful in enabling be-
reaved individuals, particularly those under 30 years of age,
to express their feelings. Participants reported that using the
co-creative system not only supported their self-expression,
but also helped them to identify feelings that they were not
previously aware of, as well as accept the reality of their
loss, reminisce, and continue bonds with the deceased – all
of which have been found to be beneficial for bereaved in-
dividuals in the process of adapting to and overcoming their
bereavement and grief.

Several other computational creativity projects consid-
ered the potential of CC systems to assist in therapeutic
contexts. For instance, (Adolfsson et al. 2019) utilised
a light weight biofeedback technology, Muse2, to assess
mental state (through the measurement of alpha waves)
and create audiovisual experiences that simultaneously re-
flect the user’s mental state back to them, as well as help
them to achieve a calmer state. (Goldstein and Vainauskas
2019) utilised the same neurofeedback technology inte-
grated with Impro-Visor (Keller and others 2012) to ex-
plore neurofeedback-driven music creation, which reflects
the user’s mental state, as well as offering the potential to
allow people with limited mobility to express themselves
through music.

Another related area in CC concerns casual creators

1ALYSIA was offered as a commercial product back in 2019
by WaveAI, and was based in part on the work of Ackerman and
Loker (Ackerman and Loker 2017)

2https://choosemuse.com/
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(Compton and Mateas 2015). Casual creators centre on the
autotelic aspects of the creativity process, that is, the inher-
ent pleasure of the creative act rather than any potential ben-
efit of the resulting product. Further, casual creators make it
easy in engage in creative acts by having the systems take on
much of the creative onus, allowing users to create pleasing
artefacts often with minimal effort (see (Petrovskaya, Deter-
ding, and Colton 2020) for a variety of examples).

We believe that casual creators have a role to play in TCC,
representing a class of systems that may have value for men-
tal wellness by offering readily accessible, enjoyable cre-
ative experiences. On the other hand, it is important to em-
phasise that the aims of TCC extend beyond casual creators,
allowing for systems that require more substantial effort on
the part of the user (such as in the bereavement study util-
ising ALYSIA (Cheatley et al. 2022)), as well as permit-
ting for greater emphasis on the resultant artefact (which can
play a role in the healing process, as identified by (Cheatley,
Moncur, and Pease 2019)).

TCC can be viewed as part of a broader effort to dis-
cover new, creative ways to support mental health and
wellness, including utilising modalities such as virtual
reality (Emmelkamp and Meyerbröker 2021) and video
games (Fernández-Aranda et al. 2012) for therapeutic pur-
poses. This effort extends to commercial applications,
where several products interface between mental wellness
and creative machines. These firms include Endel3 and
Brain.fm4, which offer personalised generative music and
soundscapes designed to aid users in reaching desired men-
tal states, such as focus, relaxation, or sleep. There are also
a variety of AI-driven solutions for mental health support,
such as Wysa5 and Woebot6, typically focusing on chatbot
technology. However, these are outside the scope of the cur-
rent work since they do not integrate autonomous creativity
or co-creative methodology.

In ICCC 2021, CC Researcher Margareta Ackerman and
Research Psychologist Galen Buckwalter led the first tu-
torial on TCC7. The event discussed the potential of this
field, focusing on the therapeutic potential of creative self-
expression that can be enabled through co-creative systems.
The tutorial also included a hands-on session where atten-
dees experienced a light therapeutic process through the
use of creative machines, in particular, utilising co-creative
lyrics system, LyricStudio8 to write poetry about their expe-
rience with the COVID-19 pandemic. Several participants
expressed surprise at the quality of the poems that they were
able to create in a short amount of time. Poems were sub-
sequently shared with the group. We hope that the current
work will encourage future work and community events on
therapeutic applications of CC.

In the remainder of the paper we take a deep dive into
therapeutic modalities and approaches through the lens of

3https://endel.io/
4https://www.brain.fm/
5https://www.wysa.io/
6https://woebothealth.com/
7https://computationalcreativity.net/iccc21/therapeutic-cc/
8https://lyricstudio.net/

computational creativity. We firstly consider what makes
creative arts therapy work, and then describe and contrast
two main approaches: psychotherapy and occupational ther-
apy. We draw particular focus to the concept of the ‘third
hand’, a technique which we propose will be especially rel-
evant to TCC. We then look at therapists’ attitudes to the use
of technology in their practice, before describing three case
studies in which previous generations of creativity software
were used in art therapy. After briefly outlining implica-
tions of this work for TCC researchers, we then consolidate
our work into eight concrete recommendations for TCC re-
searchers: these are intended to provide a roadmap to this
emerging area. We conclude with further work and reflec-
tions on TCC as playing a potentially significant role in fu-
ture mental health support and therapy.

Creative arts therapy
Many cultures hold that art making and creative activity
can be therapeutic in that they promote healing, wellness,
eudaimonic well-being, flourishing and happiness (Stuckey
and Nobel 2010; Conner, DeYoung, and Silvia 2018; Lo-
mas 2016). Our creativity can help us to construct our iden-
tities, as well as narratives that give meaning to our lives
and meet deep existential and spiritual needs. (Lomas 2016)
found that all four major arts modalities – music, visual arts,
movement-based creative expression, and expressive writing
– are associated with sensemaking (enabling people to com-
prehend existence and find meaning in it), enriching experi-
ence (facilitating new or elevated emotional states), aesthetic
appreciation (enjoying beauty or skills), entertainment (hav-
ing pleasure and fun), and bonding (connecting with others
through art).

The positive power of creativity has been recognised
within clinical fields, and is used in art therapy to help clients
to process difficult feelings, uncover and come to terms
with traumatic past experiences, and bring about changes in
thinking and behaviour. While therapeutic art, or art as ther-
apy, is done in unstructured, informal, unmediated, everyday
environments, art therapy harnesses the power of creativity
in very specific ways, usually under the guidance of a trained
therapist.

There is a wide spectrum of therapies: these range from a
focus on the core personality and questions around the struc-
ture of the self, where it comes from, and how it can be
changed (psychotherapy approaches); to those which focus
on finding meaningful activities for a person, given situa-
tional issues in the here and now (occupational therapy ap-
proaches).

Psychotherapy
In psychotherapy the relationship between client and thera-
pist is core to the healing process: it is this relationship, this
connection between two people, that heals (Clarkson 2003).
Here, art can provide a means of communication between
them, a way of entering into a dialogue, often to express un-
conscious feelings or trauma that goes beyond words. The
role of the therapist is to hold the space and bear witness.
Healing happens when a client feels listened to and under-
stood (Rogers 1977; Clarkson 2003). Three characteristics
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of the therapist in particular therefore form the core part
of the therapeutic relationship: congruence (authenticity),
unconditional positive regard and accurate empathic under-
standing (Rogers 1977).

Creativity can also be a form of play which can help peo-
ple to access early childhood states and memories, some-
times helping them to ‘reset’ if trauma has occurred as a
child. Here, as when children engage in creative play, it is
the process, the sensory experiences and the sharing with
other people, that is important, rather than a finished arte-
fact. The goal here is to invoke a healing experience, rather
than a product with artistic merit.

Psychotherapy can also take place in group settings, and
here, the whole group hold the space and bear witness. For
instance, people might meditate for a while – a private space
within a shared space – and then be encouraged to take some
clay and “just play around with it”, without rational thought
or judgements, and see what happens. Once people feel they
have finished, the group will go around the room and peo-
ple will show their piece and explain what it means to them
and perhaps what they think it expresses. Afterwards each
person can take their piece home with them, or scrunch it up
into a ball of clay and leave it.

Integrative psychotherapy consists of combining tech-
niques and therapeutic approaches according to the client
and the situation (Norcross, R., and Goldfried 2019). This is
based on the idea that there is no one true way, that the ther-
apist needs to to find a new language for each client and find
what works in the moment. The skill of the therapist here
lies in not only knowing a variety of techniques, but being
able to select the most appropriate one for a given context.

Occupational therapy
Occupational therapy (OT) has a different approach to the
role of creativity. As its name suggests, occupation plays a
central role in the therapeutic process, with the goal being
to improve health and well-being by enabling an individual
to engage in meaningful activities. Here, occupations are
viewed as a basic human need, and if people’s situations,
such as illness or mental health issues, hinder their ability to
engage in their usual pursuits, then new patterns of occupa-
tion are required: for instance, OT was originally developed
to help soldiers who were injured during World War I. It
is in these times in a person’s life that creative occupations
may offer an alternative means of engaging in a meaning-
ful occupation and contribute to health and well-being (Law,
Steinwender, and Leclair 1998).

In a series of papers, Reynolds shows how artistic occupa-
tions such as needlecraft, textile arts and visual art-making
can provide people living with with depression, chronic ill-
ness, or cancer with a source of positive identity, even when
they have not engaged regularly in art in their earlier adult
lives (e.g. (Reynolds 2003)). She found that artistic occupa-
tions can help people to reconnect with their previous, pre-
illness self; restore a sense of one’s own expertise, status and
self-esteem; develop a positive sense of personal growth;
and provide a socially validated identity. These can help
people to meet new challenges and manage their condition.

OT has its roots in arts and crafts participation, which
is thought to have many benefits, including increased self-
expression and perceived control, a sense of self and of pur-
pose, skills for occupational participation, establishing daily
routines and transforming a client’s experience of illness
(Bathje 2012; Perruzza and Kinsella 2010). Here the prod-
uct is an object of value in its own right (Hussey, Sabonis-
Chafee, and O’Brien 2007; Perrin 2001), in contrast to the
psychotherapy context in which the main role of creative
artefacts is to communicate between conscious and uncon-
scious, or between therapist and client. Thus, in OT, the de-
velopment of the necessary skills to produce an artefact and
a sense of the quality of an artefact are integral to people’s
therapeutic experience. Perrin describes the potential of the
art or craft product to do two things:

• “To anchor us in the reality of the here and now. ‘I
did this. It is a tangible expression of who I am and
what I do. No matter how depressed, disordered or
disabled I might be, this is a reflection of the fact that
I do exist and I still have the capacity to make a mark
on the world around me.’

• To use the external (hands and objects) to influence
the internal (thoughts and emotions).”

(Perrin 2001, p. 130).
Arts and crafts activities are seen as a way into creative

thinking, with creativity understood more widely to include
skills such as adaptation, innovation, change, first insight,
going with the flow, and risk taking (Schmid 2004).

The concept of the Third Hand
Kramer coined the term ‘third hand’ as a metaphor to de-
scribe part of the job of an art therapist (Kramer 1986). This
is a “hand that helps the creative process along without be-
ing intrusive, without distorting meaning or imposing picto-
rial ideas or preferences alien to the client” (Kramer 2000,
p. 48). This might be at a purely functional level, such as a
therapist providing a paintbrush, or at a more personal and
artistic level, such as providing appropriate choices of colour
for a client, suggesting a topic or modifications to an art-
work, implementing changes themselves, or doing ‘hand on
hand’ painting with a client. This is seen to be useful in a va-
riety of situations; principally when the therapist is sure that
they know what the client is trying, and unable, to express.
Kramer warns that the therapist (often an artist in their own
right) must be careful to work within the style of the client:
“They must cultivate an area of artistic competence distinct
from their own artistic struggles and predicaments, a conflict
free sphere wherein technical skill, pictorial imagination, in-
genuity and capacity to improvise are employed solely for
empathic service to others.” (Ibid., p 48).

When done well, the addition of a ‘third hand’ can lead
to cooperative and supportive interactions between the art
therapist and client, and can trigger turning points; in the
development of a particular artwork, in how a client feels
about their artwork, and in how a client develops personally
and emotionally. When done poorly, it can be seen as over-
helping or taking over, which can lead to disempowerment
of a client and lack of therapeutic progress and trust.
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The use of computers in art therapy
Dialogue around the use of technology by art therapists has
been ongoing for more than 35 years, since Weinberg’s study
in 1985 on the potential of rehabilitative computer art ther-
apy for people who are suddenly disabled (Weinberg 1985).
Those in favour of the idea urge their colleagues to keep
up with and be open to new artmaking materials, as well
as pointing to successful studies of computer art therapy
such as those described below (see also (Hartwich and Bran-
decker 1997; Thong 2007; Weinberg 1985; Peterson, Sto-
vall, and Elkins 2005)). Kapitan expresses this as follows:

“To participate as artists in techno-digital culture, we
must broaden our definitions of art materials and con-
texts across a wide spectrum: from traditional “low
tech” forms that offer refuge from the digital world
to interactive art events and virtual forms that stimu-
late playful, subversive, and symbolic communications
with their audiences. Art therapists must be willing to
move beyond historically validated media and offer our
work in new contexts.” (Kapitan 2007, p. 51)

In 1987 Canter argues that “art therapists are challenged
to use state-of-the-art technology to positively reinforce art
therapy techniques” (Canter 1987, p. 17); and Thong sim-
ilarly states: “In order to take art therapy into future gen-
erations, we must be open to new areas of image making
and new creative tools.” (Thong 2007, p. 52). Hartwich
and Brandecker suggest that “Prejudice against the computer
comes more from therapists than patients” (Hartwich and
Brandecker 1997, p 372). All warn that failure to adapt to
artistic-technological innovations could lead to the profes-
sion of art therapy becoming extraneous or anachronistic.

Those against the idea point to practicalities such as cost
and unfamiliarity on the part of the therapist (Peterson, Sto-
vall, and Elkins 2005), as well as deeper concerns about
their therapeutic value (Gerity et al. 1996; Asawa 2009;
Gerity 2001; Kapitan 2007). One concern is that technology
may inhibit or prevent the unconscious expression which a
therapist sometimes seeks in creative activity, by offering
suggestions which are easy to select but may not reflect un-
conscious feelings. A second concern is that the human to
human connection is central in therapy and creative soft-
ware cannot play a role in that. Thirdly, the therapist may
be trying to foster a state of child-like play in a client, via
primitive movement, sensations and tactile experiences, and
again technology may well inhibit rather than encourage this
state. Gerity, for instance, warns about over-exposure to the
“seductive environment” of virtual reality and popular dig-
ital cultures. She champions the importance and power of
safe, quiet, transitional spaces, such as a pottery room, heal-
ing garden, and inter-generational puppet-making workshop
(Gerity 2001). Here the natural rhythm of creative work
can flourish, including perhaps a stage of chaos or bore-
dom which an artist sometimes moves through before find-
ing “flow” (Csikszentmihalyi 1975). There is a danger that
digital technologies, on the other hand, trap a person into
endless superficial passive consumption, preventing us from
finding our creative rhythm, accessing our inner environ-
ment or feeling real in the world. It is worth bearing in mind

that Gerity’s criticisms here were written in 2001: todays’
digital culture is a changed landscape, although with many
of the issues that she feared. While much of it is designed to
hold the users’ attention for as long as possible, responsible
design could evade at least some of these issues.

It is important to note here that the dialogue (and case
studies below) is almost entirely around a techno-digital
art culture which is assumed to exist independently of art
therapy; tools created independently, which therapists learn
how to use, adapt to their purposes and then offer to their
clients. Asawa points this out: “Art therapists, as well, are
rarely consulted in the process of creating software designed
for the flexibility and intuitive processes that they value.”
(Asawa 2009, p 59). Co-creative systems, on the other hand,
often follow user-centred design methodologies, which in-
clude the user in all aspects of the development of a system
to enhance and complement a person’s creative process.

Case studies of creativity software for art
therapy

Computational Art Therapy for clients with
impulsive or destructive personalities
(Canter 1987) conducted a three month study in which
clients with emotional and learning disabilities and impul-
sive or destructive personalities were given the opportunity
to use computational as well as conventional art therapy, in-
cluding programs for drawing (MacPaint), music (Music-
Works) and animation (VideoWorks). She found that many
selected the computational tools and continued to engage
with them after completing the programme. Benefits in-
cluded increased attention span; development of visual and
musical expression in clients who normally could not ex-
press themselves verbally and were unfamiliar with music;
and development of self confidence, creativity and commu-
nicative skills. Clients felt more in control of their environ-
ment, showed enhanced creative problem solving skills, and
flourished in a conflict-free atmosphere with the metaphor
of friendly user and teacher. She highlighted the importance
of an easy undo feature, which provided an environment in
which clients could experiment safely, knowing that they
can undo a move without any consequences. This allowed
clients to “easily make quick changes without conflict, em-
barrassment or frustration.” (Canter 1987, p. 25) Further-
more, the fact that it worked in real-time meant that clients
can instantly hear or see their partially completed piece,
which she felt was beneficial. Overall she found that the
use of state-of-the-art technological tools for art therapy pro-
vided new kinds of creative learning experiences and posi-
tive interpersonal communication and helped to build self
esteem and trust in the art therapist and exemplified positive
changes in clients’ behaviour.

(Parker-Bell 1999) highlights the same advantages as
Canter found: the undo feature, and the success amongst
learning disabled youth in particular to learn how to use the
software, and subsequent increased self-esteem due to their
achievements. Writing in 1999, she also emphasises the im-
portance of familiarity: “art therapy clients may be more
familiar with the computer than any other art tool besides
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the pencil. At times we may need to bridge any gaps in
art familiarity by starting with the client’s home base - the
computer.” (Ibid. p 180) and advocates integrating computer
use into clinical practice. She does identify some limita-
tions; describing feeling a “tremendous hunger for the tac-
tile stimulation and physical generation of energy that tra-
ditional artmaking can provide.” after long sessions on the
computer (Ibid. p 184), and suggests that traditional art ma-
terials be combined with computer art (for instance, scan-
ning a hand-drawn pencil sketch and adding colour on the
computer). Another limitation she found was a lack of di-
versity in some of the software programs; for instance the
version of the Flying Colors program that she used had no
racial or age variety in available figures; all being blond and
blue-eyed Caucasians within a single adult age range. She
recommends that therapists consider style, level, functions,
and content of a program when matching it to a client.

Rehabilitative computer art therapy for suddenly
disabled people
Occasionally, computers may be the only art tool suitable for
some physically challenged people. For instance, (Ranger
1996) advocated using computer art therapy with children
who had severe cerebral palsy. Because of spasms and min-
imal motor control, these children were unable to use tradi-
tional materials to express and communicate their thoughts
and feelings. Weinberg looked at the potential of rehabili-
tative computer art therapy for suddenly physically disabled
patients, including quadriplegics, cerebral vascular accident
patients and brain trauma patients (Weinberg 1985). She
found that because deep psychological illness was rare in
this patient group, psycho-educational art therapy or art as
therapy were more appropriate than psychotherapy, since the
focus was on patients’ current problems of coping, adapt-
ing and building self-esteem. The hardest people to en-
gage were patients who were accomplished artists prior to
their quadriplegia: this group struggled with their inability
to maintain their artistic standard, resulting in anger, frustra-
tion and withdrawal.

She found that certain aspects of computer art were par-
ticularly beneficial. The main feature was that the computer
could undertake the manual parts of art that patients were
now no longer able to do, leaving mental work such as aes-
thetic judgements for the patients. Further features included
adjusting speed and pace of the computer to enable those
with quadriplegia to work at a slower rate; bright colours
and movements on the computer, which stimulated percep-
tion and helped to hold attention span; patients’ ability to
make a lot of progress over a short period of time, allowing
for shorter sessions which was useful for patients learning to
live with problems such as incontinence; and capability to
store work in progress. She also highlighted that computer
art can help therapists to monitor stroke patients’ progress,
in terms of cognitive abilities, spontaneity, creativity, per-
ception and problem solving skills.

Weinberg describes rehabilitative computer art therapy
for quadriplegic, stroke and brain trauma patients as hav-
ing the potential to help patients to adapt, cope, value and
build upon their remaining strengths by having successful

art experiences; to increase self-esteem, motivation, auton-
omy and control; to help to maintain orientation and mem-
ory; stimulate exploration and creativity and provide an out-
let for expressing negative emotions; to prevent isolation by
providing socialisation through non-verbal communication;
and to provide patients with a temporary escape from the
awareness of physical and mental pain by channelling atten-
tion into creative activity. She concludes that “Rehabilita-
tive computer art therapy, by offering an unusually novel
and rapid approach to successful art experiences, has the
unique power and advantage to elicit disabled patients’ cu-
riosity and motivation to build upon their residual strengths.”
(Weinberg 1985, p 72).

Computational Art Therapy for children in
hospital
(Thong 2007) writes about her experiences in helping to es-
tablish a hospital computer art program. She concludes af-
ter two years that children who were proficient with tradi-
tional art materials demonstrated the same level of creativity
with computer art. A further, perhaps even more striking
finding, was that using computer art enabled her to engage
children who were “defended against” traditional art expres-
sions, providing “adaptive solutions to a patient’s problems
in the actualisation of his creative intentions” (Rubin 1984,
p. 9), in (Thong 2007, p. 53).

She argues that those who have explored digital media
have found computer art beneficial, and believes that com-
puter art should be added to an art therapist’s toolbox of
media, and used in appropriate settings. To illustrate how
digital art can be used as a therapeutic intervention, she de-
scribes five case studies of hospitalised adolescents, using
programs such as Photoshop, Magic Mouse’s Flying Col-
ors, and Haptek’s People Putty. Benefits include helping
people to find their voice and to self-advocate by produc-
ing computer artwork they feel sufficiently happy with to
share, thereby opening up conversations with therapist, doc-
tors, nurses, guests, and other patients; helping to draw pa-
tients out of their solitude and find social connections; find-
ing ways to remember and express happier times; giving
people a feeling of control over their hospitalisation; and
providing space where anger leading to behavioural prob-
lems can be safely expressed and explored.

Thong discusses the importance of empowering clients
through choice; both of creative media, and of elements
within a software program, and argues that “Based on the
cases illustrated throughout this article, the expressive po-
tential of computer art is unmistakably therapeutic.” (Thong
2007, p 58).

Implications for Therapeutic Computational
Creativity

Many art therapists are actively seeking to keep their work
current by engaging with new art technologies. Those who
have used previous generations of creative software have
found it to have therapeutic value, particularly with certain
client populations, such as young people or suddenly dis-
abled people. Furthermore, techniques such as the ‘third
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hand’ which were developed for human-to-human settings
have a natural analogue in CC systems. This all points to
TCC being an exciting and worthwhile application of CC
and suggests specific, promising directions. However, we
must also listen to those who urge caution. A computer
cannot authentically bear witness, listen to and understand
a person’s pain. It cannot “hold space”. There may be a
pale imitation of this, or a behaviour that “fools” people
into feeling listened to or understood (as ELIZA famously
demonstrated (Weizenbaum 1966); also see (Abd-alrazaq et
al. 2019) for an overview of chatbots in mental health), but
that is necessarily different to the human to human connec-
tion that is sought and used in therapy. This precious con-
nection must be cherished and protected. The therapeutic
relationship between client and therapist is widely acknowl-
edged to be a cornerstone of therapy (Clarkson 2003), and
it seems far fetched to imagine that this deeply human bond
could ever be replaced by a machine.

Nevertheless, computers may be able to have therapeutic
value in ways different from a human therapist. The dis-
tinction between therapy and therapeutic is crucial here. A
healing process may take multiple forms, and a person who
has been through trauma might benefit from both therapy
and therapeutic endeavours. Computers can certainly assist
with the latter, and CC systems in particular have a role to
play, in enhancing our creative process and making us more
creative beings.

In order to provide a solid foundation for the emerg-
ing discipline of TCC, we need to add our voice to the
dialogue on the use of computers in art therapy. We be-
lieve that the way forward is via cross-disciplinary engage-
ment and collaboration. The landscape of creative software
has significantly changed since the case studies into com-
puter art therapy described above. The CC community now
have over 20 years experience in thinking about theoreti-
cal issues such as the role of framing, explanation and di-
alogue (Llano et al. 2020), or what authenticity means in
the context of creative computers (Colton, Pease, and Saun-
ders 2018); in building co-creative systems which are de-
signed to enhance a user’s creative flow (Jordanous 2016),
and to operate within hybrid human-machine creative teams
(Yannakakis, Liapis, and Alexopoulos 2014); in evaluat-
ing creative and co-creative systems (Karimi et al. 2018;
Kantosalo, Toivanen, and Toivonen 2015) and in method-
ologies for all of the above (Bray and Bown 2016).

Engaging with art therapists who advocate keeping up
with state-of-the-art technologies for artmaking will help to
make them aware of the collective body of work in CC, po-
tentially to adopt new technologies, and to influence further
directions and opportunities. Equally important, engaging
with therapists who have theoretical concerns about incorpo-
rating computers into their practice will enable us to identify
limitations and provide an essential note of caution.

Recommendations for Therapeutic
Computational Creativity

For TCC to flourish, proceed along ethical lines, and achieve
take-up, we will need to construct a framework within which

to operate, including definitions, methodology, evaluation
criteria, ethical guidelines, outreach and so on. In these
early stages, a complete framework would be premature; it
is more timely to outline recommendations as a roadmap for
how to proceed. In addition to arising from the work just de-
scribed, the following recommendations have emerged via a
series of discussions between the four co-authors of this pa-
per. Inline with our own recommendations, we are a mixed
group of two CC researchers and two psychotherapists (one
of whom embraced the idea of TCC as a new healing modal-
ity, with the other being considerably more wary about the
idea, emphasising the importance of human connection in
his own therapeutic practice). Recommendations 1-4 require
us to recognise the inter-disciplinarity of the subject and to
work closely with therapists and mental health profession-
als; 5-6 concern moral imperatives which should be embed-
ded into the work at all stages; and 7-8 concern methodolog-
ical recommendations.

Recommendation 1: Collaborate with mental
health professionals
Working with art therapists will provide grounding and in-
spiration for the development of creative systems that stand
to have substantial impact for mental health and wellness.
Mental health professionals with other specialities – for in-
stance, Cognitive Behavioural Therapy or Psychodynamics
– can also offer insight into the therapeutic process that may
inspire TCC systems.

Another critical motivation to engage with mental health
professionals involves learning from their theoretical con-
cerns about incorporating computers into their practice, in
order to unpick these. Some may be based on false assump-
tions about what computers can or cannot do or pertain to
state-of-the-art only: however, we expect that some theo-
retical concerns will go beyond these and address deep and
inherent limitations.

Recommendation 2: Design software which is
underpinned by work in art therapy
There is a wealth of research on art therapy and why it
works. Disregarding this literature would lead at best to
wasted time and resources, and at worst to ineffective, irrel-
evant or dangerous solutions. Techniques such as the ‘third
hand’ are a natural fit for TCC and we can learn from ther-
apists’ experiences about how and when to use this. While
this technique seems to be at the other end of the spectrum
from systems which take on much of the creative responsi-
bility themselves, work on it will help to guide designers to
strike an appropriate balance of creative input by human and
machine.

Related to this, we can also learn from art therapists’ ex-
periences of the processes involved in people’s ‘creative mo-
ments’, in order to develop insight into the creative flow
and when intervention might be appropriate. For instance,
some champion Csikszentmihalyi’s idea of the struggle and
moments of ‘being stuck’ as important parts of the process
(Csikszentmihalyi 1975). Designers of co-creative systems
would need to incorporate this into the interaction dynamics
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between computers and people: simply making the process
quicker and easier for the human may not be desirable.

Another example is inspired from a demonstration of
Vishnevsky’s interactive generative art program Silk9 to a
psychotherapist (an author on this paper). She used a touch
screen to draw pictures, and enthused about the therapeu-
tic potential of such a system: “That’s the colour of my
touch”; “I was nearly dancing”; “That’s what my energy
looks like”. She connected this experience to movement
therapy, in particular Gabrielle Roth’s movement medita-
tion practice 5Rhythms (Roth 1995). This practice is struc-
tured around five basic rhythms, each representing distinct
musical, movement, and metaphorical qualities – Flowing,
Staccato, Chaos, Lyrical and Stillness. The therapist’s ex-
perience of the visual quality of Silk inspired her to con-
sider what the five rhythms would look like as visual art.
We then showed her another system, ViFlow (Brockhoeft et
al. 2016), in which dancers’ limbs were tracked and their
movements shown in real-time on a large screen. From this
we devised together a hypothetical therapeutic system, in
which a human would dance the 5Rhythms and their move-
ments would be represented in real-time as visual art. This
suggests how work in TCC might benefit from a theoretical
underpinning in art therapy.

Recommendation 3: Distinguish therapeutic from
therapy
Everyday therapeutic art can consist in varying levels of
creative responsibility; for instance, with some experiences
having a meditative quality. There is space here for co-
creative tools, that a client can use on their own, at home,
as part of a therapeutic routine. Art therapy on the other
hand is usually done under the guidance of a trained thera-
pist. Co-creative tools here may be appropriate for some ap-
proaches; for instance, occupational therapy, which empha-
sises skills and meaningful activity, or some forms of inte-
grative therapy or psychotherapy. In other contexts, such as
those aspects of psychotherapy which emphasise the human
to human connection, sensory experience, child-like states
and unconscious expression, we would expect TCC to be of
limited use.

Recommendation 4: Match the client to the
medium
We suspect that certain populations will be better suited
to therapeutic CC than others. In the case studies de-
scribed above, computer art therapy was found to work well
with people with various (often overlapping) characteris-
tics. These included learning disabled youth (Parker-Bell
1999), people who are familiar with computers (Parker-Bell
1999), people who are “defended against” traditional art ex-
pressions (Thong 2007), people between 18 and 30 (Cheat-
ley et al. 2022), children and adolescents (Canter 1987;
Ranger 1996), people with little motor control (Ranger
1996), suddenly disabled people (Weinberg 1985), people
who were accomplished artists prior to a sudden disability

9weavesilk.com

(Weinberg 1985) and people without deep psychological ill-
ness (Weinberg 1985). We further hypothesise that specific
art forms such as co-creative songwriting might work espe-
cially well for people who struggle with linguistic expres-
sion, such as clients with substance abuse, people who are
dyslexic, or people who are semi-literate. In these cases,
the prompts given by a songwriting system such as ALYSIA
could enable people to create lyrics where otherwise they
simply would not have been able to.

Recommendation 5: Develop a set of guidelines for
responsible research in TCC
TCC research will raise issues around trust, privacy, data
protection, therapeutic support and so on, and it is impera-
tive that these are considered in advance of and during de-
sign processes. Responsible Research and Innovation (RRI)
offers ways to incorporate ethical design into emerging tech-
nologies. This covers a wide range of tools, including tra-
ditional technology ethics by philosophers and social scien-
tists; value sensitive design (Van der Hoven 2013) in which
values are incorporated into the design process of new tech-
nologies based on an assessment of the potential implica-
tions of the innovations and values at stake; and interac-
tive processes by which societal actors (researchers, citi-
zens, policy makers, business, third sector organisations,
etc.) work together and are mutually responsive to each
other. There is now a wealth of work on how to incorporate
RRI into research, both generally (e.g. (Schuijf and Dijkstra
2019)) and in neighbouring TCC domains, such as robotics
and healthcare (e.g. (Stahl and Coeckelbergh 2016)).

Recommendation 6: Consider diversity issues in
TCC
Diversity was identified as an issue in computer art therapy
by Parker-Bell in 1999 (Parker-Bell 1999) and is still rele-
vant today. The same arguments that recommend that thera-
pists come from a wide variety of backgrounds, in terms of
race, sex, class, abilities, age and so on, hold for developers
of CC systems for therapy. In the wake of the Black Lives
Matter movement and the resultant awareness of the socio-
political, socio-cultural, and socio-structural realities within
which our community operates, we have a shared responsi-
bility to widen our focus. Cultural notions of creativity, cul-
tural availability of computers, more participatory research
and an inclusivity of race, gender, abilities and age should be
reflected in our research. As well as enriching the subject,
this will help to ensure relevance and avoid “the singular
white lens that pervades arts therapies discourse.” (Gipson,
Williams, and Norris 2020, p 4). For CC this means diversi-
fying the community ((Cook and Colton 2018) offers some
practical suggestions of how we might do this) and ensuring
diversity in both therapists and clients.

Recommendation 7: Employ user-centred
methodologies
Neighbouring disciplines such as Human Computer Inter-
action and Interaction Design have developed and applied
user-centred design principles, such as cooperative design,
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participatory design, contextual design and empathetic de-
sign (e.g. (Norman 1986)). These are driven by understand-
ing, consideration and inclusion of the user and their expe-
rience of a computer system. Investigative methods such as
ethnographic study, contextual inquiry, prototype testing and
usability testing are employed in order to ensure that the user
(in this case both art therapist and client) is included in ev-
ery step of the design, development and evaluation process.
These methodologies are already applied in some CC work
(for instance (Bray and Bown 2016)) and will be essential in
designing TCC for meaningful use.

Recommendation 8: Develop appropriate ways to
evaluate TCC
Evaluation of therapeutic effectiveness, human-machine in-
teraction and appropriate levels of creative input from the
machine will all be necessary for TCC to progress as a
field. Evaluation is an active research area in CC. Pro-
posed methods so far include measuring relevant charac-
teristics of system-produced artefacts, such as relative nov-
elty and value (Ritchie 2007) or novelty as the violation of
observers’ expectations (Grace and Maher 2019). Alterna-
tively, (Colton, Charnley, and Pease 2011) suggest break-
ing down the creative act into component parts and measur-
ing progress in automation along relevant axes. (Jordanous
and Keller 2016) propose using qualitative methods, such as
interviews, to evaluate characteristics associated with cre-
ativity in a system’s process and output. (Jordanous 2019)
further provides an overarching set of evaluation guidelines
designed to provide a general framework to standardise dif-
ferent approaches, and proposes meta-evaluation criteria.
Much of the evaluation in art therapy of a client’s progress
within a programme focuses on the results of case studies.
There are some empirical studies, however, which aim to
evaluate the impact of art therapy on measurable outcomes
such as depression, self-esteem and harmful behaviours (see
(Reynolds, Nabors, and Quinlan 2000) for a review).

Evaluation criteria from both disciplines will need to be
combined and developed to formulate suitable, practical
metrics for TCC.

Further work and conclusions
In this paper, we set out to share guiding principles for future
work in TCC. Naturally, these principles themselves should
be further developed via discussions with a wide range of
stakeholders. These will then form the basis of a framework
within which to operate, once the field has sufficiently ma-
tured.

In these early days of TCC, it has been been found that
younger audiences, who are used to interacting with tech-
nology on a daily basis, may be particularly responsive to
electronically delivered creativity-based therapies (Cheatley
et al. 2022). While we are currently at the inception of the
field, this early finding along with the potential for safe, scal-
able mental health solutions suggests that, in time, TCC may
become an important part of mental health support and ther-
apy.

A primary dichotomy in the development of TCC sys-
tems centres on whether to develop systems that integrate
with in-person therapy, or instead offer scalable solutions
that do not require a human therapist. Integrating TCC sys-
tems into the therapy room offers a safer route, and may
facilitate faster developments in the field through collabora-
tive opportunities with therapists. TCC may look different
depending on the type of therapy into which it is integrated
(e.g. psychotherapy or occupational therapy) and across dif-
ferent client populations with respect to age and condition.

On the other hand, the case for more scalable systems is
born from the pressing need for providing mental wellness
and health support. The already under-served mental health
needs of the general population reached critical heights due
to the impact of the COVID-19 pandemic. The US alone
saw a steep increase in people experiencing depression and
anxiety, raising from one in ten to four in ten, with increased
mental health support needs expected to persist for years af-
ter the conclusion of the pandemic (Chidambaram 2021).
TCC may be part of the solution to this mental health crisis,
helping the general population maintain and improve mental
wellness.

The wide reaching promise of TCC suggests an explo-
ration into a range of conditions, spanning anxiety, depres-
sion, post-traumatic stress disorder, bereavement, and mar-
riage and family therapy, to name a few. Similarly, the wide
range of artistic modalities which have been studied in the
context of CC include visual art, music, poetry, and dance
and movement. This and other domains may be explored as
potential therapeutic modalities through a CC lens, allowing
people across all levels of artistic expertise to better express
their emotions and formulate meaning from challenging ex-
periences through creative expression.

Exploring the synergy between art therapy and CC will
open up new modalities and opportunities within therapy,
offering a unique and promising approach to this challenge.
With decades of research into creativity through a compu-
tational lens, the CC community is uniquely positioned to
bring out the healing aspects of the creative process through
the use of creative machines. This exploration calls for great
respect for therapeutic traditions, coupled with a profound
understanding of the intricacies of both human and machine
creativity.

The novel perspective of a new application domain for CC
will also further a variety of research directions within CC,
such as the development of theoretical concepts, method-
ologies and co-creative interaction protocols. These are es-
sential for a healthy and flourishing field, and offer ways in
which we can extend the reach of CC within society. We
hope that the roadmap outlined in this paper will help to in-
spire the blossoming of TCC, leading both to profound aca-
demic exploration and social good.
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Abstract
Supporting chefs with ingredient recommender systems
to create new recipes is challenging, as good ingredient
combinations depend on many factors like taste, smell,
cuisine style, texture, chef’s preference and many more.
Useful machine learning models do need to be accu-
rate but importantly– especially for food professionals
– interpretable and customizable for ideation. To ad-
dress these issues, we propose the Interpretable Rela-
tional Representation Model (IRRM). The main com-
ponent of the model is a key-value memory network to
represent the relationships of ingredients. The IRRM
can learn relational representations over a memory net-
work that integrates an external knowledge base- this al-
low chefs to inspect why certain ingredient pairings are
suggested. Our training procedure can integrate ideas
from chefs as scoring rules into the IRRM. We analyze
the trained model by comparing rule-base pairing algo-
rithms. The results demonstrate IRRM’s potential for
supporting creative new recipe ideation.

Introduction
Data mining and machine learning methods play an in-
creasingly prominent role in food preference modeling, food
ingredient pairing discovery, and new recipe generation.
Solving these tasks is non-trivial, since the goodness of in-
gredient combinations depends on many factors like taste,
smell, cuisine, texture, culture, and human creative pref-
erences. Although efforts have been made to detect good
ingredient combinations using Machine Learning and build
models that help in the creation of recipes or discover novel
food ingredient pairs - there is no current machine learning
method in this field that 1) allows embedding chef specific
ideas to be incorporated in the creation process and 2) offer
interpretations why a suggested ingredient pair is good.

Our work is aimed at interpretable and customizable food
ingredient recommendation systems that inspire chefs to
find new recipe ideas. In this paper, we propose the Inter-
pretable Relational Representations Model (IRRM) an in-
terpretable and customizable neural network score function
(see Fig. 1). Given a set of pre-selected ingredients (cardi-
nality 1 or more) by a user, the IRRM suggests top-N ingre-
dients from a set of candidates. For example, suppose a user
selects apple and chocolate as the pre-selected ingredients,
IRRM suggests compatible ingredients (e.g. cinnamon), and
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Figure 1: IRRM architecture

also identifies reasons (e.g. cinnamon is good for apple and
chocolate in terms of their flavor affinity).

Professional chefs already have a lot of their own favorite
recipes and are inspired by everything around them to de-
velop new recipes. That is, in the process of creating new
recipes they might want to constrain or input prior knowl-
edge into the system. For example a list of existing recipes
either by the chef or a list of recipes that the chef finds in-
spiring even if not by him or herself. Therefore, we allow
recipes (i.e. ingredient lists of a particular chef) as input to
IRRM.

Our contributions are as follows:

1. We present an extensible framework for scoring
ingredient-ingredient combinations incorporating prior
ideas from chefs via recipes.

2. We introduce the Interpretable Relational Representa-
tions Model (IRRM), inspired by session-based recom-
mendation systems with implicit feedback. Leveraging a
pre-trained ingredient knowledge graph, our model can
learn pair-specific relational representations for one-to-
one (i.e. ingredient to ingredient) and many-to-one (i.e.
ingredient-set to ingredient) food ingredient pairing tasks
from recipes (i.e. a list recipes that are apriori available
constraints). The trained relational vectors are also inter-
pretable.

3. We propose a training procedure to integrate chef’s ideas
as scoring rules via positive sampling strategies.
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Problem Definition
We model food ingredient pairing as a session-based rec-
ommendation scenario with implicit feedback (Huang et al.
2018; Tay, Tuan, and Hui 2018).

Let I denote a set of ingredients and Itarget =
{i1, . . . , iM} denote a pre-selected ingredient set, where
i ∈ I is the ingredient, M is the number of ingredients,
and Itarget ⊂ I. We call Itarget a pre-selected ingredient
set in this paper. Next, let Icandidate denote a set of can-
didate ingredients. Icandidate depends on each pre-selected
ingredient set, that is, Icandidate = I − {i1, . . . , iM}.

In addition, we use an ingredient knowledge base (KB).
The KB helps to estimate good ingredient pairs in terms of
contextual information on ingredients.

Based on these preliminaries, we define the food ingre-
dient recommendation task. Given a pre-selected ingredient
set Itarget and candidate ingredients Icandidate, we would
like to infer the top-N ingredients from Icandidate.

Recommendations with Key-Value Memory
Networks

Ingredients are represented as one-hot encoding vectors
(corresponding to a unique index key belonging to each in-
gredient). At the ingredient embedding layer, this one-hot
encoded vector is converted into a low-dimensional real-
valued dense vector representation which is multiplied with
the embedding matrices Q ∈ Rd×|I|. d is the dimensional-
ity of the ingredient embeddings while |I| is the total num-
ber of ingredients. icandidate ∈ Icandidate is converted to
q using this embedding layer. On the other hand, a pre-
selected ingredient set Itarget = {i1, . . . , ij , . . . , iM} is en-
coded by the Ingredient Set Encoder. At first, each ingredi-
ent ij is converted to a vector using the ingredient embed-
ding layer (same as icandidate). As a result, {ij ∈ Rd|j =
1, . . . ,M} vectors are generated. The sum of these vectors
is normalized and converted to the ingredient set vector p
using a feed-forward network with a single hidden layer,
followed by Layer Normalization. Given a pair of a pre-
selected ingredient set vector and a candidate ingredient vec-
tor, ⟨p, q⟩, the Relation Encoder first applies s = p + q
to generate the joint embedding of p and q. The gener-
ated vector s ∈ Rd is of the same dimension of p and
q. This joint embedding s is used as the input to the key-
value memory network. The attention vector a ∈ Rd is
a vector of importance weights over keys which are repre-
sented as the key matrix K = [latt1 , . . . , lattN ]T ∈ RN×d,
where N is the number of key-value pairs in the memory
network and lattj ∈ Rd is a key vector. Each element
of the attention vector a can be defined as aj = sT lattj ,
where aj ∈ R. In order to normalize the attention vec-
tor a to a probability distribution, we use the Softmax
function:Softmax(aj) =

exp(aj)∑N
n=1 exp(an)

. We generate the

vector m =
∑N

n=1 Softmax(an)vattn as the summation of
weighted value vectors which are represented as the value
matrix V = [vatt1 , . . . ,vattN ]T ∈ RN×d. Finally, in order
to generate the relational vector r, m is added with the joint

embedding s (residual connection) and Layer Normalization
is applied as follows r = LayerNorm(s+m).

We use pre-trained knowledge graph embeddings over
a given KB for the key matrix K and the value ma-
trix V , where N depends on the number of attribute
types which you want to integrate and K is constant
through training. Given a pair of a pre-selected ingredi-
ent set Itarget = {i1, . . . , iM} and a candidate ingredi-
ent icandidate, {i1, . . . , iM , icandidate} is converted into the
entity vectors using knowledge graph embeddings which
provide the entity vectors e ∈ RdKB

and the relationship
vectors l ∈ RdKB

. We use the TransE (Bordes et al.
2013) for the knowledge graph embeddings. The reason
for this choice is that given triplet ⟨ei, latt, eiatt⟩, TransE
can learn entity vectors and relationship vectors to follow
eiatt = ei + latt. Using it, we define a value vector as
vattj = LayerNorm(

∑
i∈{i1,...,iM ,icandidate} FF (eiatt)).

FF is a feed-forward network with a single hidden layer.
Finally, we define our score function as the relationship

between the pre-selected ingredient set vector p, the candi-
date ingredient vector q, and the relational vector r:

s(p, q, r) = CosSim(p, q) + CosSim(p+ q, r) (1)
where CosSim is the cosine similarity. This function scores
the affinity for the relationships. Note that some studies use
distance functions instead of score functions for the same
purpose. We suggest a new loss function for our problem
settings. Softmax-based triplet loss with cosine similarity
score function was introduced by Wang et al. (2018). Here,
we extend it by integrating the concept of multiple posi-
tive sampling (Hermans, Beyer, and Leibe 2017). Note that
while the hinge-based triplet loss is also possible, we found
that using softmax instead of hinge has better performance
and is more stable. Our loss function is defineded as:

L =

Batch∑

x=1

Pos∑

y=1

−log[ exp(
s(px,qy,rxy)−λ

τ )

exp(
s(px,qy,rxy)−λ

τ ) +
∑Neg

z=1

∑Pos
w=1 exp(

s(px,qz,rxw)
τ )

]

(2)
where λ is the margin that separates the golden pairs and
corrupted pairs, τ is a temperature parameter, Batch is the
mini-batch size, Pos is the number of positive examples,
Neg is the number of negative examples. Note that the score
function for negative examples takes the same relational vec-
tors as the positive examples.

Training
Using pre-processed recipes, we train our models in the fol-
lowing steps (Fig. 2): At first, we randomize the order of
recipes and their ingredients (Fig. 2 (1)). We then gener-
ate sequences of ingredients from recipes (Fig. 2 (2)). After
that, we generate pairs of an ingredient set and a candidate
ingredient. Pre-selected ingredient sets are selected based on
the sequence (see Fig. 2 (3)) – unordered session data feed-
ing. We also sample candidate ingredients based on heuris-
tic rules for ingredient pairings – customizable positive sam-
pling.

A specified function – a heuristic rule – is used to weight
all possible ingredients, and the probability of each ingredi-
ent to be sampled is determined by its relative weight. In our
experiments here we use two sampling heuristics:
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Recipe A
• ing_a1
• ing_a2
• ing_a3

Recipe B
• ing_b1
• ing_b2
• ing_b3
• ing_b4

Recipe C
• ing_c1
• ing_c2

randomize

ran
dom

ize

b1 b3 b4 b2 a2 a3 a1 c1 c2

iter=1

{ing_b1}

positive sampling

e.g. batch size = 3

iter=2

{ing_a2}

positive sampling

{ing_b1, ing_b3}

positive sampling

{ing_b1, ing_b3, ing_b4}

positive sampling

{ing_a2, ing_a3}

positive sampling

{ing_c1}

positive sampling

ingredient set

ingredient
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Figure 2: How to generate mini-batches for unordered ses-
sion data feeding.

Recipe Fit Rule which uses co-occurences of ingredients
in recipes to bias sampling. This rule samples positive
examples by weighting ingredient pairs higher that fre-
quently occur together in recipes.

Flavor Fit Rule which uses shared flavor compounds be-
tween ingredients to bias sampling. This rule samples
positive examples by weighting ingredient pairs higher
that have a large overlap in flavor compounds.

Finally, we sample negative examples randomly. The neg-
ative sampling is biased by the frequency of ingredient oc-
currence on training recipes.

Results
Evaluating whether ingredient pairs are correct from the
perspective of creativity is not trivial since evaluations can
change over time with experience and with context. Classic
crowdsourcing approaches often used in evaluating recom-
mender systems do not work in the case of ingredient pairing
tasks. In prior experiments - we found that while ingredient
pairing recommendation systems do stimulate professional
chefs, amateur chefs do not find pure ingredient-ingredient
suggestions useful as they do not include cooking instruc-
tion. In this paper we therefore focus on assessing whether
the model can learn to approximate a ground truth score.
We use CulinaryDB (Bagler 2017) for this experiment. The
dataset consists of 45,772 recipes: lists of ingredients and
attributes for 658 ingredients: flavor compounds, cuisines,
and ingredient categories. Before training models, recipes
are divided into a train, a validation and a test set. Addi-
tionally, we generate 172,207 triplets from all ingredients in
order to construct a knowledge graph.

We trained two variations of IRRM to evaluate our posi-
tive sampling approach proposed to customize the IRRM in
the heuristics. The first uses the Recipe Fit Rule as a pos-
itive sampling strategy and the second uses the Flavor Fit
Rule. Table 1 shows the comparison of the top-10 ingredi-
ents with the highest score for all possible ingredients on the
CulinaryDB by changing IRRM positive sampling strategies

(a) chocolate vs egg  

(b) chocolate vs miso

Cuisine

Food Category

Flavor Profile

Flavor Compound

Cuisine

Food Category

Flavor Profile

Flavor Compound

Figure 3: Visualizations of attention weights over ingredient
attributes on CulidnaryDB.

for the Itarget = {orange} as a example. And the results
of Flavor Fit Rule is shown as a reference.

The results of the IRRM with the Flavor Fit Rule are inter-
mediate between the IRRM with the Recipe Fit Rule and the
pure Flavor Fit Rule. For example, while welsh onion and
tomato come from the recipe rule, lemon comes from the
flavor rule. Moreover, the correlation coefficient between
IRRM with Flavor Fit Rule and pure Flavor Fit Rule was
0.611(p < 0.001) and between IRRM with Recipe Fit Rule
and pure Flavor Fit Rule was 0.280(p < 0.001). orange
is one of flavor effective ingredients. So, we calculated the
correlation coefficient for all one-to-one pairs, too. The re-
sult between IRRM with Flavor Fit Rule and pure Flavor Fit
Rule was 0.298(p < 0.001) and between IRRM with Recipe
Fit Rule and pure Flavor Fit Rule was 0.078(p < 0.001).
We found, even for all ingredient pairs, the specified rule bi-
ases the scores from this result. Consequently, we found
our positive sampling approach can effectively customize
the IRRM based on specified rules. Even if we use a rule,
feeding recipes also affect the results. This means that both
the chef’s recipes and the specified rules can contribute to
the score estimated by the model.

We also analyzed attention weights for confirming inter-
pretability in the trained IRRM for some specific food pairs
around chocolate (see Fig. 3). The data shows that egg is
paired with chocolate because of correlations in food cat-
egory. Whereas, miso has considerable flavor compound
related affinity to chocolate. This interpretation for eggs
is consistent with the results reported by De Clercq et
al. (2016).

Related Work
Ahn et al. (2011) firstly introduced the flavor network to
uncover fundamental principles of food pairing. Using
this idea, Garg et al. (2017) developed a rule-based food
pairing system. Recently, Park et al. (2019) introduced a
Siamese Neural Networks based model trained on a large-
scale dataset for food ingredient pairing.
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Rank
IRRM
Pos. sampling: Recipe Fit Rule

IRRM
Pos. sampling: Flavor Fit Rule Flavor Fit Rule

Ingredient Score Ingredient Score Ingredient Score
1 butter 1.215 mint 1.234 tea 170
2 water 1.198 welsh onion 1.204 mandarin orange 165
3 sugar 1.198 tomato 1.188 lemon 163
4 welsh onion 1.185 sesame 1.181 apple 153
5 tomato 1.178 parsley 1.180 ginger 151
6 apple cider vinegar 1.173 lemon 1.179 guava 149
7 vinegar 1.168 canola oil 1.170 pepper 148
8 garlic 1.167 poppy seed 1.163 mango 147
9 mustard 1.163 mustard 1.162 black currant 146
10 mint 1.162 rosemary 1.160 laurel 145

Table 1: IRRM comparison based on positive sampling strategies. Top-10 ingredients with the highest score from all ingredient
candidates Icandidate on the CulinaryDB for the Itarget = {orange} are shown. Pos. sampling: Positive sampling strategy.

On the other hand, Morris et al. (2012) firstly suggested
Computational Creative System in the culinary domain.
They used a model trained by user rating scores on the recipe
websites to evaluate generated recipes. And, Pinel and
Varshney (2014; 2015) proposed creativity metrics based
on Bayesian Surprise and a human flavor perception model.
França et al. (2017) suggested the Regent-Dependent Cre-
ativity metric that combines novelty and value. They used
Bayesian surprise as a novelty metric and Synergy as a value
metric. Pini et al. (2019) presented a graph based surprise
as a creative metrics using knowledge graph. In this re-
search, we assume there are many possible different reasons
for good ingredient combinations via many potential rela-
tionships between ingredients and suggest a model to learn
creative metrics that are interpretable and customizable.

Conclusion

We have presented a framework for interpretable and cus-
tomizable food ingredient recommender systems for both
one-to-one and many-to-one settings based on recipes. The
main feature that distinguishes our work from previous is
that ingredient pairing is modeled as a session-based recom-
mendation task with implicit feedback and suggests a train-
ing procedure to integrate chef’s ideas.

We demonstrated that qualitatively our model can learn
interpretable relational representations and detect interest-
ing correlations between ingredients and factors such as fla-
vor compounds. And also, it can be customized by chef’s
recipes and heuristics. Future work will carry out user stud-
ies comparing trained score functions and also assessing the
plausibility of visualized attributes for interpretability.
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Abstract 

The novelty of artefacts is central to creativity but 
detecting obfuscated versions has become increas-
ingly difficult. Intelligent manipulation of infor-
mation can render plagiarism detection system vir-
tually useless, allowing nefarious actors to mis-rep-
resent modified artefacts as their own creations. 
We focus on detecting hidden similarities that are 
likely to elude existing novelty assurance systems, 
outlining a model inspired by metaphor, analogy 
and conceptual blending. We focus on text and out-
line a model that combines parsing, information ex-
traction and graph matching to find hidden similar-
ities between documents knowledge graphs. We 
present results for a paraphrase corpus, with vari-
ous degrees of similarity between sentence pairs. 
Quantitative evaluations are accompanied by evi-
dence detailing different types of similarity be-
tween the sentences: 1) identical counterparts 2) 
alignable counterparts 3) novel elements. The pro-
spects for further development are briefly outlined.  

Introduction 

Recent technologies make it easy for nefarious actors to 
transform creations and present the results as (apparently) 
novel creations. Recent advances in text processing includ-
ing translation and paraphrasing tools (many using 
transformers), are easily misused to falsely present outputs 
as though they are original creations (Prentice & Kinden, 
2018). These and some related challenges are known as The 
Global Cheating Industry.  

Boden (1992) identified novelty along with quality, as one 
of only two defining qualities of creativity. Runco and Jae-
ger (2012) identify originality and effectiveness as defini-
tional, while unusual, unique and surprising are strongly re-
lated to creativity. SPECS (Jordanous, 2012) highlights that 
creativity produces outputs “that didn’t exist before”, 
whose “Originality” relates to “innovation / originality / 
new / novel”. We believe that novelty’s importance can ben-
efit from improved support tools this paper aims to detecting 
false novelty arising from modifications that obfuscate the 
true origins of creations.  

Figure 1 depicts different types of cognitively inspired 
similarity, to which we have added and obvious and latent 
similarity (highlighted), which appear to be a somewhat 
overlooked types of similarity. We focus on comparisons 
that are less obvious than literal similarity, but stronger than 
many analogies and metaphors. We aspire to detect cases of 
fake novelty that might elude existing authentication sys-
tems.  

 
Figure 1: Types of similarity (Gentner & Markman, 1997), with 

highlighted areas added indicating the focus of this paper 
 
We adapt an analogy-based model currently under devel-

opment, to uncover latent similarities between texts. We 
shall present results including both quantitative scores and 
also, itemized details on the latent similarities that have been 
identified. Ramscar & Yarlett (2003) showed Latent Seman-
tic Analysis is useful in supporting analogy retrieval from 
texts but not analogical mapping and thus, is unable to iden-
tify the detailed comparisons described later in this paper.  

Evidence of Novelty and the Search Report 

Patent applications are supported by “Evidence of Novelty” 
in the form of a search report, serving to inspire our ap-
proach. We wish to identify the closest “prior art” for a cre-
ations and to detail the obvious and latent similarities to that 
artefact. 
 Many plagiarism detection tools are based on identical 
word sequences, though such services often concede that 
students “paraphrase thoroughly” to avoid detection. A re-
cent review (Vrbanec & Meštrović, 2020) compared sys-
tems for text comparison (tf-idf, LSA, Word2vec, GloVe, 
ELMO, etc), but we believe that these systems can not detect 
the latent similarities that are the subject of this paper. 
Weber-Wulff (2019) highlight that plagiarism detectors 
frequently disagree with one another and their “originality 
scores” are often relied upon too heavily. Rogerson & 
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McCarthy (2017) have shown that paraphrasing tools repre-
sent a serious problem for some plagiarism detection tools. 
Foltýnek, et al., (2020) review 15 plagiarism detection tools, 
concluding they should be improved to detect plagiarism 
arising from “…synonym replacement, translation, or par-
aphrase.” Fakebox (Zhou, 2019) employs fact checking to 
detect fake news, but doesn’t address plagiarism. Some fake 
reviews are detected using graph structures, but graphs 
aren’t widely used for plagiarism detection.  
 Publications and patents can be easily copied made seem-
ingly anew new using technologies like paraphrasing and 
translation tools. Surprisingly, many instances of fake novel 
publications on www.retractionwatch.com were identified 
by human readers rather than computational systems. This 
paper aims to help the detection of such fake novelty. 
Questionable Similarity 
We define Questionable Similarity as involving firstly, few 
if any identical terms that might reveal a documents true or-
igins using standard originality checkers. Secondly, they use 
terms that are similar to the existing artefact. Thirdly, there 
is a consistency in the use of terms between the new and the 
“prior art” that is unlikely to occur by accident. S1 and S2 
below bear questionable similarity to one another, and our 
objective is to detect this latent similarity and identify the 
itemized correspondences that it contains. The animals in S1 
have been replaced by visually similar ones in S2 below.  

 

S1: The leopard chased the rabbit, but he escaped from it. 
S2: A jaguar hunted the hare, but she eluded the jaguar. 

 
The use of different (if related) terms presents a challenge to 
detecting latent similarity, with systems using tf-idf unlikely 
to produce useful results, especially when a large list of stop-
word is used. We also highlight that some comparison sys-
tem use embeddings but they don’t generally itemize the dis-
covered similarities. We believe identified similarities 
should be supported by direct evidence from prior artefacts.  

Analogies and Blends between Text 

As stated previously we take inspiration from cognitve 
processes like analogy and conceptual blending. We will 
outline a model for identifying latent similarities between 
texts. But first we briefly review some related work. 
 Eppe et al, (2018) present a framework for conceptual 
blending, but not a computational model for mining blends 
from text. Comparable computational systems focusing on 
deep semantics and document understanding includes KnIT 
(Nagarajan et al, 2015), Dr Inventor (O'Donoghue, Abgaz, 
Hurley, Ronzano, & Saggion, 2015) (Abgaz, O'Donoghue, 
Hurley, Chaudhry, & Zhang, 2017), CrossBee (Lavrač et al, 
2019), Divago (Martins et al, 2019), IBID (Petit-Bois et al, 
2021). However, none search for concealed similarity that 
hides the origin of supposedly novel text. Word2Vec 
(Mikolov et al, 2013) can retrieve simple proportional anal-
ogies between words, like; king is-to man as woman is-to ? 
yielding a vector close to queen. However, its ability to ac-
curately predict novel analogies is less certain. Furthermore, 

the comparisons of interest in his paper involve novel col-
lections of arbitrary named relations between structured col-
lection of named concepts. Knowledge graphs containing 
temporal information were used to detect fake reviews 
(Fang, 2020). RoboChair (Pollak, et al, 2021) uses text in-
formation for reviewing purposes. Blendville (Gonçalves et 
al, 2019) explores existing semantic structures using an op-
timization approach, but doesn’t explore similarities be-
tween texts. Aris (Pitu, et al., 2013), (Aiyankovil, Monahan, 
& O'Donoghue, 2021) uses graphs to improve software re-
liability by adding formal specifications from similar source 
code by using analogical inference. 
The Cre8blend System 
Cre8blend is a system to discover latent similarities between 
semantic structures. Cre8blend extracts a concept map di-
rectly from the text and then performs homomorphic Graph 
Matching to find similarities to another artefact. This ap-
proach compliments existing originality systems by shifting 
the focus from syntactic similarity to identifying certain 
types of semantic similarity. We point out that while this pa-
per uses text data, it can in principle be adapted to other ar-
tefacts. We outline the main components of Cre8blend. 
Text2pred: The predicate-argument structure is extracted 
from a tree generated by the Stanford parser, where predi-
cates (triples) generate the document knowledge graph. Al-
ternative information extraction systems include Reverb, 
TextRunner, ReLink and DeepKE. A survey of open infor-
mation extraction and identified coreference resolution as an 
overlooked area in information extraction (Niklaus, Cetto, 
Freitas & Handschuh, 2018). Our results include details on 
the coreference chains in our knowledge graphs, as identi-
fied by Stanford’s deterministic coreference model. The fol-
lowing example shows a coreference chain (node) “leop-
ard_it” participating in two (predicates) edges. We note that 
both nodes and edges contain textual information sourced 
from the original documents. 
 

S1: (leopard_it chase rabbit) (rabbit avoid leopard_it) 
S2: (jaguar hunted hare_she) (hare_she eluded jaguar)  

 
Graph Matching - Counterpart Identification 
We take inspiration from Gentner’s (1983) Structure Map-
ping Theory to identify latent similarity between knowledge 
graphs. A graph matching process identifies comparisons 
between tiples from the two document graphs. The graph 
matching algorithms ISMAGS and VF3 impose constraints 
that inhibit their use in this instance. For example, VF3 is 
limited to identifying induced subgraph to graphs isomor-
phisms.  
 Our goal requires identifying subgraph to subgraph 
matching. For input graphs G1 and G2 we need to identify 
the largest subgraph of G1 that is isomorphic with the largest 
subgraph of G2. However, this non-induced subgraph to 
subgraph matching problem has not yet attracted much at-
tention in graph matching. We developed our own system 
balancing semantic and topological factors and it’s also used 
by Aris (Aiyankovil, O'Donoghue, & Monahan, 2021) to 
match graphs containing source code. Semantic similarity 
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between matched words is quantified using Sense2vec 
(Trask et al, 2015), which incorporates part of speech (noun, 
verb, etc) in the similarity estimate, so dove#noun =/= 
dove#verb. 
 
 
 
 
 
Figure 2: Subgraph-subgraph matching. Novelty is influenced by 

identical pairings (dashed lines), non-identical pairings (solid 
line), and unmatched items from the inputs. 

 
 Overly flexible similarity detection might easily become 
overwhelmed by false positives. But novel texts should not 
have highly similar prior art, while longer texts will quickly 
reduce the problem posed by false positives. 

MRPC - Document Knowledge Graphs 

The Microsoft Research Paraphrase Corpus (MRPC) con-
tains pairs of sentences gleaned from news sources, with a 
judgement representing whether “the two sentences to be 
close enough in meaning to be considered close para-
phrases” (Dolan & Brockett, 2005). Our working hypothe-
sis is that sentence pairs may contain differing combinations 
of identical, similar and dissimilar elements. We treat the 
first sentence as a target whose novelty we wish to assess, 
while the second sentence is the closest identified prior art. 
 The MRPC is challenging as the similarity between sen-
tence pairs is more nuanced than suggested by the binary 
categorization as either paraphrased (Para) or non-para-
phrased (Orig). The paraphrase sentences contain signifi-
cant amounts of differences while the non-paraphrased pairs 
also contain various differences. The MRPC includes a 
training set but this was not used to fine-tune our model. 

 
Figure 3: Red nodes map non-identical terms between sentences, 

revealing a possible instance of false novelty. 
 

 1458 pairs of graphs were extracted from 1641pairs of 
text, with failures often attributed to unsuccessful parsing of 
either sentence in a corpus pairs; eg “The broader Standard 
& Poor's 500 Index <.SPX> was 0.46 points lower, or 0.05 
percent, at 997.02.” Graphs contained an average of 3.8 
edges (SD=3.4) ranging from 1 to 87 edges. There was a 

moderate difference between the sizes of the original and 
paraphrased graphs, with average sizes of 3.72 (SD=3.04) 
and 3.85 (SD=3.76) edges respectively. Paraphrased graphs 
were slightly larger and more diverse than the originals. 
 Figure 3 shows similarities between two sentence-graphs. 
The edge (plane landed_in West) was mapped with (plane 
from Cuba). The items of greatest concern for plagiarism 
detection are the red nodes depicting paired non-identical 
concepts and the paired non-identical relations that are sep-
arated by “|”. Of less concern are orange nodes showing un-
mapped concepts and green nodes indicate paired identical 
concepts. Identical paired edges are not repeated.  

Quantitative Results for MRPC Sentence-Pairs 

This analysis focuses on quantitative results, but each is ac-
companied by detailed lists of paired words or paired coref-
erence chains, fostering deep expert or automated investiga-
tion of any discovered similarity. Table 1 Para indicates the 
similarity between paraphrased sentence-pairs, while Orig 
assesses Original (or non-paraphrased) sentence pairs. 95 
pairs were identified as identical for the Para condition and 
just 30 for the Orig condition. Only 6 of 1482 sentence were 
identified by our system as having no detectable similarity. 
This indicates the prevalence of similarity between sentence 
pairs in this corpus, highlighting the challenge of distin-
guishing between them.  
 The average number of mapped edges for the Para condi-
tion was 2.65 and 2.18 for Orig. This moderate difference 
between the sentence types highlights that even Orig. sen-
tence pairs contain much semantic overlap. The number of 
identical edges mapped in the paraphrase condition was 1.02 
but only 0.58 for the Orig condition. Such overt similarity is 
not a source of concern for originality assurance.  
 The Para condition aligned 3.08 concept nodes on aver-
age, compared to just 2.80 for Orig. This quantifies the num-
ber of overt and latent similarities found. Over 1/3 of the 
graphs and approximately 50% of comparisons involved at 
least one node containing a coreference, showing the im-
portance of intra-sentential coreferences.  
 

Average Result Para Orig 
Number of Identical Graphs 95.00 30.00 
Avg. num. mapped edges 2.65 2.18 
Avg. num. identical edges 1.02 0.58 
Total S2v similarity 4.80 2.97 
% total S2v similarity 0.53 0.44 
Num. mapped concept nodes 3.08 2.80 
Coreference Chain in mapping 0.38 0.24 
% of target in LCC 0.58 0.66 

Table 1: Comparison of MRPC sentence-pairs 
 
 We also estimated the semantic (sense2vec) similarity be-
tween mapped edges, each edge including two nouns and 
one verb. The average similarity for the Para condition was 
1.60 but just 1.32 for Orig. from a maximum of 3. The Para 
condition accounted for 53% of the maximum possible 
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similarity, while this was 44% for Orig. We identified the 
largest connected component (LCC) of the mapping. Sur-
prisingly, the Orig sentences produced a stronger result, pos-
sibly indicating that further improvements are required. 
 Thus, Cre8blend identified a larger amount of stronger 
similarity between the paraphrased sentences than the non-
paraphrased (Orig). We reiterate, these results are accompa-
nied by detailed comparisons between the two sentences. 

Qualitative Results for MRPC Sentence Pairs 

We now illustrate some qualitative results from detecting la-
tent similarity between potentially creative sentences and 
obfuscated versions that attempt to hide its true origins. In-
stances of questionable similarity between paraphrased sen-
tences are presented. In the examples in this section, the 
aligned terms are generally located above one another al-
lowing the non-literal similarity to be interpreted. 
Synonym Replacement: Synonym replacement is a com-
mon strategy to feign novelty and avoid plagiarism detec-
tors, but is detectable by our synta-semantic system.  

… by two miles, … a seven-mile section ... 
…by three kilometres, … an 11-kilometre section …. 

 
Replacing multiple synonyms can also be detected.  

… to topple Saddam but to stabilize Iraq... 
…to topple Mr. Hussein but to stabilize the country. 

 
Semantically Distant Term Replacement: Replacing mul-
tiple semantically distant words represents even greater 
challenge for plagiarism detection. Graph matching identi-
fied the following word-pairs:  replacement ↔ work; com-
pany ↔ officials.  

The company didn't detail the costs of the replacement 
and repairs. 

But company officials expect the costs of the replace-
ment work to run into the millions of dollars. 

 
Unknown Term Introduction: Novel terms (like ‘5m’ be-
low) can also hide a documents’ true origin but can be un-
covered using context, such as aligning the following edges 
from 2 sentences: (5m, over, violations), (million, settle, vi-
olations). We note also that this novel term was used in a 
somewhat dissimilar lexical context. 

PwC itself paid $5m last year ... 
…PWC paid $5 million to settle alleged ... 

Questionable Similarity 

We previously described three hallmarks of questionable 
similarity. Figure 4 depicts the results of applying one met-
ric for questionable similarity to all sentence-pairs in the 
MRPC. We observe an exponential style distribution high-
lighting a small number of MRPC pairs displaying the three 
hallmarks of questionable similarity. While we cannot con-
clude these sentences are deliberate fakes, but we believe the 

authors of one of the following texts may be interested in the 
latent similarities identified by Cre8blend.  
 The highest questionable similarity score was for the fol-
lowing sentence pair, aligning 4 predicates and including 4 
non-identical terms within that mapping. 
 
 
 
 
 
 
 

Figure 4: Few MSPR pairs have high questionable similarity 
 

Doctors who knowingly violate the ban could face up to 
two years in prison. 

Under the measure, doctors who perform the procedure 
would be subject to two years in prison and unspecified 

fines. 
 

This pleasing result identified a large collection of parallels 
between the two texts, despite the small level of obvious 
similarity. The next highest result was for the following: 

Feith said people have misconstrued the purpose of the 
small intelligence review team he assembled in October 
Feith said critics have misrepresented the work of the 

special intelligence group he set up in October 
 

This paired 4 edges from each graph, aligning 5 non-identi-
cal term-pairs between the two graphs. However, the next 
highest score can be considered a false positive arising from 
inaccurate identification of the predicate argument structure.  

They were at Raffles Hospital over the weekend for fur-
ther evaluation. 

They underwent more tests over the weekend, and are 
now warded at Raffles Hospital. 

Conclusions and Future Work 

Our model successfully identified some instances of hidden 
similarity but requires further work with longer texts, as well 
as comparison to embedding and other approaches. A 
greater range of lexical information must also be extracted 
for the graphs. Refining our model may reduce instances of 
false positives, but its computational expense seems worth-
while only for valuable artefacts like publications, patents 
etc such as may arise from serious creativity. Examining 
suitable corpora may help identify typical similarity ranges 
for novelty assurance and for plagiarism detection.  
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Abstract 

In recent years, natural language processing techniques 
have made impressive improvements in many tasks. 
However, their ability to make analogies is still mini-
mal. This is partially due to the underlying representa-
tion of words and phrases, i.e., the word embedding is 
trained at the word sequence level and not at a concept 
relationship level. This work explores training a word 
embedding specifically for analogy making using 
knowledge graphs. The algorithm computes how analo-
gous two concepts are based on the structural similarity 
of their adjacent concepts and relationships.     

Introduction 

Analogies describe comparative relationships between two 
sets of concepts. The Stanford Encyclopedia of Philosophy 
defines it as "An analogy is a comparison between two 
objects, or systems of objects, that highlights respects in 
which they are thought to be similar" (Bartha, 2019).                   
With the recent release of large language models, such as 
GPT3 and BERT, natural language processing (NLP) algo-
rithms can achieve almost human-level performance in 
some text generation tasks. For example, the AI Dungeon 
game is powered by GPT3 and can automatically generate 
dialogue and interactions with virtual characters as the user 
interact with the game. NLP algorithms have also achieved 
impressive performances in dialogue generation, question-
answering, and even common sense reason tasks.   
   However, the current state-of-the-art NLP techniques still 
only have rudimental abilities in making analogies. A fa-
mous example of analogy-making came from Mikolov et 
al.'s work when the word2vec technique was invented for 
training word embedding (2013). Their work shows words 
that have similar meanings also have similar representa-
tions in the embedding space. Using vector operation, sub-
tracting the embedding of the word Man from the embed-
ding of King, and then adding the embedding of Women 
results in the embedding of Queen. I.e., the famous analo-
gy example of: 

King-Man+Women = Queen. 

 

 Another example of analogies formed based on word 
embedding is about locations. For example, the pair (Albu-
querque, Albuquerque_Journal) is analogous to (Baltimore, 
Baltimore_Sun). While these analogies show that the 
trained word embedding is meaningful, they are not quite 
the same as typical analogies created by people. Further, 
more recent research on validating the analogies generated 
by word embedding found the system to be fragile and not 
always able to generate meaningful analogies. Even for the 
original example, “King-man+women” is actually closer to 
the embedding of King, rather than Queen (Nissim et al., 
2019)! 
   The imperfection is not a surprise since the word2vec 
technique trains embedding using plain text, without ex-
ploring the relationships among concepts. In this work, we 
explore creating word embedding using algorithms in-
spired by cognitive theories of analogy, particularly the 
Structure-Mapping Theory (SMT) (Gentner, 1983; Gentner 
& Smith, 2012). SMT emphasizes the structural alignment 
of the relationships between two sets of concepts when 
forming analogies. We explore using structured content 
from knowledge graphs as input. The example outputs 
from our system show that the new embedding can create 
interesting and creative analogies among concepts. 

Related Work 

We review three types of related work: the cognitive theo-

ries about analogy-making, the knowledge graphs extract-

ed from Wikidata, and a knowledge graph based analogy-

making system. 

Analogy-Making 

How people form analogies has been studied extensively in 

cognitive science (Gentner, 1983; Kubose, Holyoak, and 

Hummel, 2002; Larkey and Love. 2003; Gentner and 

Smith, 2012). It is generally believed that analogy-making 

involves mapping concept groups with hierarchical struc-

tures from different domains.   

The Structure-Mapping Theory (SMT) points out that 

analogical mapping is created by establishing a structural 

alignment of the relationships between two sets of con-
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cepts. The closer the structural match is, the more optimal 

the inferred analogy is. Surface features, i.e., properties of 

concepts that are not included in the hierarchical relation-

ship structures, play little role in determining the analogy.   

 

 

Figure 1: The analogy between the solar system and the 

Rutherford model (Figure taken from (Gentner, 1983).) 

 

The Structure-Mapping Engine (SME) is a computation-

al system that implements SMT (Falkenhainer, Forbus, and 

Gentner, 1989). A typical example produced by SME is the 

analogy between the Solar system and the Rutherford 

model, as shown in Figure 1. For producing this analogy, 

SME compares alternative ways of mapping the two 

groups of concepts to each other and determines that max-

imum structural mapping happens when the sun is mapped 

to the nucleus, and the planet is mapped to the electron. 

This mapping receives maximum support from the struc-

tural mapping of the relationships among these concepts. 

In the solar system, the sun and the planet have the "at-

tracts" relationship in both ways, i.e., they both attract each 

other. The sun is also "more massive than" and "hotter 

than" the planet. The planet "revolves around" the sun. 

Similarly, in the Rutherford model, the electron and the 

nucleus have "attracts," "more massive than," and "re-

volves around" relationships. Furthermore, the "attracts" 

relationship results from both the sun and the planet having 

mass and gravity. The same relationship structure exists in 

the Rutherford model as well. 

Structured Information in Knowledge Graphs 

The input data -- the concepts and their relationships -- 

used by SME are manually designed as entities and 

predicates. To enable computer programs to generate 

analogies automatically, we also need to enable automation 

in generating input data. Knowledge graphs are composed 

of concepts connected by their relationships. They are 

structured data organized similarly to the manually curated 

data used by SME,  and therefore provide a good basis for 

analogy generation algorithms.  

Knowledge graphs cannot be directly used for 

computing structural mappings as in SME. Figure 2 

provides an example knowledge graph crawled from 

Wikipedia. The main concepts from the solar system and 

Rutherford model analogy – sun, plant, electron, and 

nucleus were used as the seed nodes, and only concepts 

within two steps away from the seed nodes were included. 

The differences between Figures 1 and 2 are pretty 

obvious. The manually curated relationship structures only 

contain a limited set of entities. However, there are no 

natural boundaries for the groups of concepts when using 

knowledge graphs. This makes directly aligning two 

groups of concepts not feasible. Furthermore, the 

knowledge graph gathered from Wikipedia is less 

connected than the manually curated relationship 

structures. Typically, there is just one relationship between 

each pair of connected concepts. In contrast, as seen in 

Figure 1, there are often many relationships between a pair 

of concepts. In fact, these relationships are important 

supporting evidence when aligning the solar system and 

the Rutherford model.   

 

Figure 2: Sun and related concepts in Wikipedia. 
 

Make Analogies using Knowledge Graph 

This work is inspired by and based on (Si & Carlson, 

2017), which uses information from DBpedia as the base 

for generating analogies. Si and Carlson’s approach was 

inspired by the Structural Mapping Theory (SMT). The 

algorithm finds analogous relationship pairs, and the anal-

ogies are composed of a pair of mapping concepts and a set 

of supporting evidence, i.e., analogous relationship pairs.  

An essential step in the algorithm is inferring pairs of 

analogous relationships. The algorithm computes how 

analogous two relationships are based on the topological 

similarity of their adjacent concepts and relationships. Si 
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and Carlson compute four sets of relationship differences 

between the linked-from concept and the targeting concept:  

 

1. Gain – what relationships are associated with the 

targeting concept but not the linked-from concept; 

2. Loss – what relationships are associated with the 

linked-from concept but not the targeting concept; 

3. Same – what relationships are associated with both 

the targeting concept and the linked-from concept; 

4. Diff – the combination of the gain and the loss sets. 

 

The differences among these sets are used to generate a 

unique index (embedding) for each relationship (Si & Carl-

son, 2017).  

This relationship embedding serves as the basis for con-

structing analogies. If two concepts have many relation-

ships that are analogous/similar to each other, the two con-

cepts are regarded as being analogous. For example, Punk 

Rock is analogous to LPC (a programming language) be-

cause “the stylistic origin of Punk Rock is Garage Rock, 

Glam Rock, and Surf Music, just like LPC is influenced by 

Lisp, Perl, and C,” and “Punk Rock is a music fusion genre 

of Celtic Punk, just like LPC influences Pike.” Here, the 

analogy between Punk Rock and LPC is supported by 

mapping the “stylistic origin” of a music genre to the “in-

fluenced by” relationship among programming languages, 

and the “fusion genre” relationship among music genres to 

the “influence” relationship among programming lan-

guages. This approach mimics how structural mapping 

works in a weaker form. 

 

Approach 

This work explores an alternative approach for computing 

the embedding of relationships. Because the word2vec 

algorithm has been widely used for creating word embed-

ding (Mikolov et al., 2013), we propose an algorithm that 

uses word2vec to compute the relationships embedding.  

Our proposed approach contains three main steps, as il-

lustrated in Figure 3. It first constructs a knowledge graph 

by crawling information from Wikidata. We use Wikidata 

instead of DBpedia to construct the knowledge graph. 

For computing word embedding using word2vec, the 

words must appear in the input data many times. Only then 

the word2vec algorithm can learn their relationships with 

nearby words. Unfortunately, most concepts in Wikidata 

are unique, i.e., there is only one entry for each concept. 

Therefore, the word2vec algorithm cannot be directly ap-

plied. On the other hand, the relationships in Wikidata are 

rarely unique. E.g., “Give Name” is a popular relationship 

that connects many pairs of concepts. Therefore, in the 

second step, we construct a reversed knowledge graph 

where the relationships are nodes and the concepts are 

edges, as shown in Figure 4. And finally, we compute the 

embedding for the relationships using this reversed 

knowledge graph. 

Construct Knowledge Graph 

For getting information from Wikidata, we used a web 

crawler, which stores concepts and their relationships in a 

network structure. For creating the knowledge graph we 

used in this work, we used 18 seed words, and did a 

breadth-first search around each of them until at least 1000 

nodes had been reached. Then we merged all the data col-

lected. The resulting knowledge graph contains 219691 

entities and 1540 unique relationships. 

 

 
Figure 3: Workflow. 

 

For computing the embedding for the relationship, we 

built a reversed graph where the relationships are nodes, 

and the entities are links. For example, in Wikidata, 

“member of political party” is the relationship between 

“Armen Sarkissian” and “independent politician.” In this 

reversed graph, relationships such as “member of political 

party” and “given name” become nodes, and the entities 

become edges. We then apply the node2vec algorithm on 

this graph to obtain the embedding for the relationships 

(Grover & Leskovec, 2016). 

 

 

 
Figure 4: Reversed Knowledge Graph. 

 

Node2vec 

Node2vec is an embedding algorithm developed by Grover 

& Leskovec (2016). This algorithm can convert nodes in a 

graph into numerical representations, i.e., embedding. 

Node2vec works in two steps. The first step uses a second-

order random walk on the graph to generate transaction 

samples. These samples are equivalent to the text input to 
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word2vec, and the second step uses word2vec to compute 

the embedding. Take Figure 4, for example; the random 

walk algorithm would visit each note multiple times, and 

randomly follow a link to move to the next node each time. 

After sampling, the graph is essentially converted to a list 

of linear transactions, each of them contains a list of nodes, 

e.g. [given name, member of political party …]. These 

linear transactions become the corpus for word2vec. 

Example Output 

Like regular word embedding, the relationship embedding 

computed in this work allows us to calculate the distance 

between two relationships and find the most similar rela-

tionships. We also implemented the algorithm from (Si & 

Carlson, 2017) and compared these two embeddings.  

Both embeddings are not perfect but can provide some 

insightful results. Moreover, their results read more like 

figurative language than a simple word association. For 

example, Tables 1 and 2 list the top 10 closest relationships 

to two relationships we used for testing. The closest ones 

are on the top.  

 
Table 1: Results for “member of political party”. 

(Si & Carlson, 2017) Node2Vec 
Work location Family name 

Military rank 

Position held 

Military branch 

Sibling 

Spouse 

Moth 

Native language 

Educated at 

Sex or gender 

Place of birth 

Place of death 

Language used 

Official Language 

Residence 

Place of burial 

Educated at 

Parent astronomical body 

Country of citizenship 

 

 

Table 2: Results for “architectural style”. 

(Si & Carlson, 2017) Node2Vec 
Origin of the watercourse Architect 

Heritage designation located on 

street 

Drainage basin 

Material used 

Legal form 

Located on terrain feature 

Located in time zone mouth of 

the watercourse 

Contain settlement 

Director/Manager 

Material used 

Occupant 

Lyrics by 

Anthem 

Legislative body 

Legal form 

Currency 

Industry 

 

In Table 1, both embeddings suggest “Educated at” 

could be an analogy to “member of political party.” And in 

Table 2, both suggest “Legal form” could be an analogy to 

“architectural style.” We think these suggestions are pretty 

creative. 

Note that compared to WikiData itself, our crawled da-

taset is tiny and sparse. Therefore, these suggested rela-

tionships are not necessarily the best analogies from peo-

ple’s points of view. Nevertheless, most proposed relation-

ships convey meaning more or less similar to the source 

concept. 

Discussion and Future Work 

We aim to create analogies where the relationship mapping 

itself is analogous. Though the process of computing how 

analogous two relationships are to each other leverages the 

idea of computing structural similarity, we suspect the re-

sults presented here are different from results produced by 

SME or other systems that infer analogies solely based on 

structural similarities. Using SME, the symbolic meanings 

of the relationships are discarded, and only the structural 

alignment between the two groups of concepts is consid-

ered. Two relationships both named involving do not make 

them more analogous to each other than two relationships 

with different names. In our results, the meanings of the 

relationships are undoubtedly important. We plan to ex-

plore this phenomenon and exam further to what degree 

the embedding we computed is independent of the relation-

ships' symbolic meanings in the future.  

The current work finds analogous relationships, but does 

not use them to find analogous concepts yet. We will ex-

plore this direction in future work. We are also interested 

in computing the relationship embedding using a larger 

knowledge graph and seeing whether that improves the 

results.   
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Abstract

In this pilot study, we explore the Variational Autoen-
coder as a computational model for conceptual spaces
in a social interaction context. Conceptually, the Varia-
tional Autoencoder is a natural fit for this purpose. We
apply this idea in an agent-based social creativity sim-
ulation to explore and understand the effects of social
interactions on adapting conceptual spaces. We demon-
strate a simple simulation setup and run experiments
with a focus on establishing a baseline. While ongoing
work needs to identify if adaption was appropriate, the
results so far suggest that the Variational Autoencoder
appears to adapt to new artefacts and has potential for
modelling conceptual spaces.

Introduction
In society, humans share their ideas and exchange artefacts.
We draw inspiration from these interactions, and this sparks
our imagination to produce new ones (Vygotsky 2004). Ev-
ery individual has a unique perspective, a style of thought,
embedded in a conceptual space (Boden 2004). While ideas
and artefacts can be attributed to individuals, they are shaped
by others, leading to a distributed emergence of creativity.

In this paper, we explore the use of the Variational Au-
toencoder (VAE) (Kingma and Welling 2014) as a computa-
tional model for the conceptual space in an artificial social
context. This is an initial study investigating how to embed
and maintain VAEs in an agent-based Computational Social
Creativity (Saunders and Bown 2015) simulation.

Background
Conceptual Spaces... There are two views on conceptual
spaces: a creativity view (Boden 2004) and a general cog-
nitive view (Gärdenfors 2004). Gärdenfors proposed con-
ceptual spaces as a geometric mental structure to organise
thought, with the aim to bridge the symbolic and the sub-
symbolic. It allows finding similarities between symbols
that cannot be derived from the symbolic level alone. Ac-
cording to this theory, concepts are convex regions in the
conceptual space, and the axes represent properties. Boden’s
view of the conceptual space is well-known and a central
part of her creativity framework concerning the three modes
of creativity. This definition is abstract and less defined,
simply the set of artefacts that follow the rules of a given

domain. While useful to reason about creativity, Boden’s
abstract definition is unsuited for computational purposes.
However, in this paper, we are less concerned with the for-
mal definition and use both views to inform our choices in
the simulation. We use Boden’s view to examine the cre-
ative act and use Gärdenfors’ view to inform traversing the
conceptual space.

...and Variational Autoencoders Due to its probabilistic
nature, and compression and generative capabilities, we ex-
plore the idea that VAE is conceptually a natural fit for ap-
proximating conceptual spaces. The VAE is a deep gen-
erative model that learns fuzzy relations in the data and
maps this onto smooth latent spaces—which is reminiscent
of Gärdenfors’ geometric conceptual space. The latent space
can be queried to find similar artefacts and sampled to gen-
erate new artefacts. This makes it particularly interesting to
use as a way for agents to perceive, interpret, and produce
artefacts. Based on its characteristics, we assume that the
VAE is a reasonable abstraction for the formation of con-
cepts and properties.

Simulation
Like other simulations of social creativity (Saunders 2012),
the DIFI model (Feldman, Csikszentmihalyi, and Gardner
1994) provides the conceptual model for the simulation pre-
sented here. To explore how to embed and maintain the
VAEs in a simulation, we use them in two ways: as the con-
ceptual space for each agent and as a recommender system
for the whole domain. Next, we discuss the data representa-
tion, VAE architecture, each component of the DIFI model,
and further discuss the details of the utility of VAE in the
simulation.

Data Representation
For use in the simulation, the VAEs require pre-training that
can be likened to providing basic education for each agent.
Initially, we used a generated dataset in a simplified musi-
cal domain of short melodies of 16 timesteps of 12 pitches
(chromatic scale) (Peeperkorn, Bown, and Saunders 2020).
Further work proved this dataset to be problematic and led
to heavy overfitting when pre-training the VAEs. To miti-
gate this, we generated a dataset using Hidden Markov Mod-
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Figure 1: Sampling from Agent VAEs before and after the simulation and compared in the Domain VAE projected using T-SNE.

els fitted to real music data.1 Subsequently, we generated a
combined dataset of 400k samples of 16 timesteps and 88
pitches. We considered other datasets, such as images of
typefaces, but the benefit of using categorical data is that it
allows for exact reconstructions.

Recurrent VAE architecture
We used a simple recurrent VAE (Fabius and Van Amers-
foort 2014) using Long Short-Term Memory (LSTM) lay-
ers. A big issue with recurrent VAEs is posterior collapse
which occurs when the network learns to ignore the latent
space. The Kullback-Leibler (KL) term is annealed in the
early stages of the training (Bowman et al. 2015) to mitigate
this issue allowing the VAE to extract informative features
before the full penalty smooths the latent encodings. The fi-
nal VAE network has a 32-dimensional latent space. The en-
coder and decoder consist of two hidden LSTM layers with
128 nodes. For initial training, we used a batch size of 512
and KL-annealing over the first 200 epochs.

DIFI model Setup
Domain The domain is explained as a cultural repository
of knowledge (Csikszentmihalyi 2014). In this work, there
is no single repository for agents to access. Instead, the do-
main is distributed amongst the agents’ conceptual spaces,
each with a personal subset of embedded knowledge. This
does not allow artefact comparison on the individual level,
and therefore, we introduce a static and pre-trained Domain
VAE. It operates as an archimedean point that enables the
analysis of the distributed domain. Additionally, the Domain
VAE is used to split the dataset into different slices for each
agent using a 2D PCA projection of the latent encodings.

Individual Each agent in the simulation has a personal
VAE, each trained on a different slice. In contrast to the

1The data is gathered from the Humdrum database (https://kern.
humdrum.org), selecting the 8 genres with the most samples.

Domain VAE, the individual agent uses the VAE to learn
from and generate new artefacts. Generating is done by ran-
domly sampling from a gaussian distribution, and decoding
the latent vector to produce the artefact. We assume that the
standard deviation can be used as a proxy for novelty pref-
erence. A narrow distribution produces less varied artefacts,
and conversely, a wide distribution produces high variation.

Field The field acts as a gatekeeper for what artworks are
selected for circulation, according to the ideology of society
(Csikszentmihalyi 2014). Different ideologies use different
selection criteria, and subsequently, influence the social in-
teractions taking place in the domain. The field acts accord-
ing to an ideology, a social policy, for selecting artefacts for
the next round in the simulation. In the current setup, we use
a neutral policy, i.e. that every artefact has an equal chance
of being “put on display” in the field. The Recommender
System (Domain VAE) informs the field of its choices. As
such, the field fulfils two roles in the model: the matchmaker
and the gatekeeper. The matchmaker takes the newly pro-
duced artefacts and determines the agent’s position to find
neighbours who share their artefacts. Subsequently, each
agent has a different pool from which the gatekeeper will
select for the next round.

Interaction After initialising the VAEs, the simulation it-
erates through three stages. The first stage is associated
with the individual, where the newly observed artefacts are
used to fine-tune the agents’ latent space for a given learn-
ing budget to extract new features and then produce several
new artefacts sampled according to the novelty preference.
The second stage is where the field receives the position of
each agent, queried from the Recommender System using
the mean of the newly produced artefacts. In the third stage,
the positions are used to determine the agents’ nearest neigh-
bours. The neighbour shares their artefacts, which form a
pool of artefacts. Subsequently, the field selects artefacts
from this pool for the next round according to its ideology.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

288



Figure 2: Agent VAE performances evaluating artefacts over
a sliding window of 25 epochs.

Results
The simulation experiments use the following settings: 250
epochs with 8 agents, the neutral ideology, and novelty pref-
erence set to 0.25. Each round, the field selects 128 arte-
facts, individuals produce 4 new artefacts, and 1 neighbour
shares their artefacts. Each agent has a 5-epoch budget for
fine-tuning using a learning rate of 10−4.

The VAEs are trained on the respective datasets using a
70/30 train/validation split. Table 1 shows that Domain VAE
performs very well. The agents show clear clusters after the
initialisation (Fig. 1). However, the agent VAE pre-training
show very mixed results and some perform well (>80% ac-
curacy), while others do not (<30% accuracy).

Post-simulation sampling of the agent VAEs suggests that
they mingled as expected (Fig. 1). However, there are a few
very dense clusters, which could signify that the latent space

is collapsing.

Table 1: Pre-training results show loss and accuracy after
2000 epochs. The Agents VAE shows the mean results for 8
agents.

Loss Accuracy
Train Val Train Val

Domain VAE 2.028 2.034 .937 .934
Agents VAEs 2.593 2.894 .559 .497

The results in Fig. 2 on the other hand, appear to indicate
that agents adapt well, within a 25-epoch sliding window,
to the artefacts selected each round as accuracy goes up and
reconstruction loss goes down. It is somewhat surprising
given the agent initialisation results (Table 1). While this is
desirable, it might also indicate overfitting. The KL loss is
level, suggesting latent space stability, but an issue is that,
for some agents, it is already very low after pre-training.

Discussion
The results suggest the conceptual spaces drift stably, which,
in turn, suggests that the VAEs adapt. However, it does not
inform to what extent they adapted and if it is appropriate
according to the social dynamics and interactions. With the
current setup, it is very difficult to observe exact agent be-
haviours. Crucial for future work is to further investigate
VAE performance during the simulation and rule out the
previously mentioned issues, such as overfitting or posterior
collapse. Even though the VAEs appear operable, the per-
formance still causes some concern. It could be due to the
datasets, but it might also be that the domain requires a more
sophisticated VAE architecture, such as the Hierarchical de-
coder (Roberts et al. 2018).

This paper focuses on getting the VAE to work and less on
the social dynamics. It does provide opportunities for exam-
ining different novelty preferences or ideologies, for exam-
ple, progressive (seeking novelty) and conservative (seeking
familiarity). These research directions are interesting to ex-
plore, but they depend on the ability to look inside the sim-
ulation and inspect the VAE behaviour. The main challenge
remains: to develop the tools leveraging latent traversals to
increase understanding of how the VAE behaves throughout
the simulation. This is necessary to see if social dynamics
and interactions explain agent VAE divergences. But this
work establishes an initial baseline for future work.

Conclusion
The work presented here is an initial study into mechanis-
ing conceptual spaces using VAEs. The results suggest the
potential for the VAE as a computational model for concep-
tual spaces. We stress that additional sophisticated analysis
is necessary to further examine the VAE behaviours. How-
ever, it shows the potential of VAEs for modelling ill-defined
domains without predetermined rules, which is so often the
case with creative domains.
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Abstract
Creative computer systems grapple with challenging
tasks that exist within effectively endless combinato-
rial spaces. Further complicating these already diffi-
cult tasks is the fact that the goal of high-quality cre-
ative output is itself nebulous. A creative domain with
concrete goals would therefore be a fruitful domain
for studying computational creativity. We propose that
competitive language games are just such a domain—
they require creativity but also feature concrete win and
loss states. We present an analysis of creative agents
that play one such game: Codenames, a 2016 board
game of communicating hidden information via single-
word clues. Our model-agnostic framework allows us to
compare agents that utilize different language models.
We present our findings and discuss how future compu-
tational creativity research can continue to explore com-
petitive language games.

Introduction
AI agents pursue a goal within an environment. Creative
computational (CC) systems are AI agents that seek to gen-
erate or identify high-quality creative artifacts within the en-
vironment of an effectively endless combinatorial space. A
plethora of potential output artifacts exists within that space,
each with varying levels of quality. CC systems, therefore,
often contend with the unique challenge of seeking a goal
that is not well defined.

The space of all possible artifacts for any given human
creative domain is so large that defining a goal for a creative
agent can be as difficult as building the agent that pursues
that goal. Because human creativity is extremely complex,
and its mechanisms are only partially understood, CC sys-
tems’ goals must necessarily be abstractions. The degree to
which those abstractions represent the goals of real-world
creativity corresponds to the maximum creative potential of
systems that use them.

Thus, seeking or developing better defined creative goals
is a fruitful avenue for computational creativity research.
Enter board games. Concomitant with the boom in mod-
ern board gaming (Jolin 2016) is the rise of new social,
language-based games in which participants use their cre-
ativity to come up with clues, guesses, and deceptions.

Classic guessing games such as Guess Who and newer
games like Mysterium (Nevskiy and Sidorenko 2015) re-

quire players to reason and make verbal guesses about im-
ages. Hidden role games like Werewolf and Spyfall (Ushan
2017) are freer form and involve players talking with one
another to deduce others’ hidden roles while keeping their
own a secret. These games all involve reasoning, creativity,
and language skills but critically also include clear objec-
tives and win/lose states. Playing these games is a creative
task with the well-defined goal of winning the game. We
propose that they are therefore ideal candidates for compu-
tational creativity research.

In this paper, we present and analyze a creative system
that plays Codenames (Chvátil 2015), winner of the presti-
gious Spiel des Jahres in 2016.1 Codenames is a word-based
guessing game in which two teams play on a shared grid
of 25 word cards drawn randomly from a large deck. One
player from each team serves as a “spymaster” who must
give their teammates one-word clues corresponding to cer-
tain words on the board that are assigned to each team, secret
to all except the spymasters. Clues are phrased as a single
word and a number, indicating how many cards the clue is
intended to relate to.

The teammates then discuss the clue and select word cards
on the grid to guess one at a time until they either guess in-
correctly or pass. A correct guess identifies one of the team’s
assigned words. An incorrect guess accidentally identifies
one of the opposing team’s words, a neutral word belonging
to neither team, or an “assassin” word that results in instant
game loss. Teams take turns giving clues and guessing un-
til one team wins by identifying all of their assigned cards
(perhaps with inadvertent assistance from their opponents)
or the opposing team guesses the assassin.

Figure 1 shows an example of a Codenames board of 25
word cards. Previously guessed words are covered with col-
ored tiles corresponding to their hidden roles: blue and red
for the opposing teams, grey for neutral, and black (out of
frame) for the assassin.

The spymaster’s role is to come up with one-word clues
that elegantly identify multiple correct words while exclud-
ing incorrect words. Importantly, the spymaster’s clues are
not restricted in any way other than by simple rules about
not using words on the cards or acronyms, etc. This task
requires knowledge of what each word means and how they

1https://www.spiel-des-jahres.de/spiele/codenames/
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Figure 1: An example Codenames board, showing covered
and uncovered word cards.
Credit: Skip McIlvaine, boardgamegeek.com, CC0 license.

relate to one another. The role of spymaster is easy to at-
tribute creativity to—clues must often navigate tricky posi-
tive and negative relationships, and human players can rec-
ognize particularly clever or helpful clues.

The spymaster’s teammates who guess based on the clues
have a less open-ended task, as it is restricted to linking the
clue word to one word card at a time. This role requires
relatively less creativity, but it is still a non-trivial language
task for humans and computer systems.

In order to complete either of these tasks, an agent must
have an understanding of how words both positively and
negatively associate with one another. Using that knowl-
edge, the spymaster searches for a clue word that their
guessers will most likely associate with a chosen subset of
the team’s word cards while avoiding associations with in-
correct word cards. The guesser uses a similar language fac-
ulty to guess word cards that most closely relate to the clue.

In this paper, we present a framework for a system that
completes those tasks to play Codenames in both the spy-
master and guesser roles. We explore how different models
perform at these tasks in competition against one another,
with the goal of demonstrating how competitive language
games can serve as useful test beds for creative systems.

Creativity in Codenames
The spymaster’s task involves elements of puzzle and prob-
lem solving, and we may view the potential for creativity in
solving the task through that lens. The skills required of a
good spymaster player are related to problem framing (Guil-
ford 1956; Dorst 2011) and re-representation (Ohlsson 1992;
Veale 2006), both of which are well-known to facilitate cre-
ativity.

It is important to realize that even though the output pro-
duced by the spymaster is a single clue word (and an asso-
ciated number), the artifact which the spymaster is creating
is not a word. Rather, it is something like a multi-word rela-
tionship graph (including both positive and negative connec-
tions). The spymaster uses skills such as those mentioned
above, as well as, of course, their knowledge of language to
create this graph structure, which, in a more traditional cre-

ative setting, would constitute the output artifact. To make
this a game, the artifact is instead obfuscated, with only the
clue word and number giving hints about its structure. The
guessing players’ job is, essentially, to re-create this rela-
tionship graph from the clues and use it to identify words
assigned to their team.

Serendipitously, it is this gamification of creativity that af-
fords us a well-defined, if indirect, measure of creativity in
the form of game outcomes. While in many traditional cre-
ative settings, artifact value is often very difficult to measure,
the appeal of Codenames—and other competitive language
games—is that the value metric is (at least) strongly corre-
lated with the win/loss outcome. This serves as a powerful
proxy for evaluating the creativity of the system itself, or at
least one critical element of it.

Creative domains are characterized by their extremely
large combinatorial spaces, which are a prerequisite for nov-
elty. The word relationship graphs that are key to playing
Codenames are simpler than other types of artifacts such
as literature or visual art, but they are nevertheless complex
enough to be considered in the same class as metaphors or
short jokes and witticisms—domains which make a strong
case that creativity can be manifest where artifacts take the
form of a small number of words connected in a clever or
surprising way.

Related Work
We use language models to provide the word association fac-
ulties that our Codenames player agents need. In particular,
we use word2vec and GPT-2. We make use of word2vec’s
word embeddings and both GPT-2’s word embeddings and
text generation capabilities.

Word embeddings are a way to represent words as vectors
such that vectors that are close to each other occur in simi-
lar contexts in text. The distributional hypothesis posits that
words that occur in similar contexts have similar semantic
meanings (Harris 1954). This hypothesis is the basis for dis-
tributional semantics (Sahlgren 2008), a theory that forms
the basis for word embedding models. A model built on this
theory is a natural fit for use in playing Codenames because
words that appear in similar contexts are likely to be associ-
ated with one another in a way that will help players guess
related words.

A word embedding model is trained on a corpus of text to
encode the relative contexts of the words in the corpus into
a vector space. Word2vec (Mikolov et al. 2013a) is a neural
network model that learns word associations in this man-
ner. The word2vec model we use implements a skip-gram
and negative sampling unsupervised learning model, which
learns to predict the context for a given word in the corpus. It
is trained to build an embedding that minimizes the distance
between a word and its context while maximizing the dis-
tance between a word and a hallucinated (random) context.
The weights that are trained with this method are treated as
the vector space into which words are embedded.

GPT-2 (Radford et al. 2019) is a powerful, large lan-
guage model (LLM) that implements a transformer archi-
tecture (Vaswani et al. 2017). This unsupervised train-
ing method uses attention mechanisms to focus learning on
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small but important parts of the training corpus. GPT-2 has
been demonstrated to perform well at a variety of tasks such
as summarization, translation, question answering, and text
generation. It is notable, however, that the model was not
trained on any of those tasks explicitly. Its attention-based
language model learns implicitly to complete such tasks via
training to predict text from a prompt.

GPT-2 can be used (with varying degrees of success) as
a general-purpose model by providing it a text prompt that
describes a task to be completed. The model generates out-
put that it predicts to be a likely continuation of the prompt.
This output is highly dependent on the prompt, giving rise to
a new and still-developing discipline known as prompt engi-
neering (Liu et al. 2021). A common form for LLM prompts
is listing a handful of complete examples of the task to be
solved and then providing an incomplete task for the model
to complete.

Prompt engineering is now an integral part of natural lan-
guage processing using LLMs. Recent projects like Prompt-
Source (Bach et al. 2022) facilitate the sharing of prompts
for various tasks, allowing the research community to build
upon past successes and find more useful prompts.

We built our word2vec agents with the Gensim implemen-
tation (Řehůřek and Sojka 2010), using “pre-trained vectors
trained on part of the Google News dataset (about 100 bil-
lion words)” (Mikolov et al. 2013b). Our GPT-2 agents used
HuggingFace GPT-2 Small (124M parameters) (Wolf et al.
2020).

Methodology
To experiment with using Codenames as a test bed for
creative language systems, we built an agent-agnostic
game playing framework and implemented language model-
agnostic AI player agents for both the spymaster and guesser
roles. As this work is focused on language-based creativity,
we use the same rudimentary decision-making process for
all the agents we experimented with. There are undoubtedly
many possible improvements to their strategies, but they are
reasonable for the purposes of this research. By keeping the
agents’ strategies static, we are better able to isolate the ef-
fect of using different language models.

All of the code described in this section can be found in a
public GitHub repository. 2

Defining the Codenames Task
The Codenames game board is a set G of 25 word cards
drawn from a deck of size 400 (for play, the cards are ar-
ranged in a 5x5 grid). G is partitioned into four subsets:
T , an unknown set of target words, P , an unknown set of
opponent words, N , an unknown set of neutral words and
A = {a}, an unknown singleton set that contains an assas-
sin word. G = T ∪N ∪P ∪A represents an instance of the
game with |G| = 25, |T | = 9, |P | = 8, |N | = 7, |A| = 1.3

2https://github.com/gbspend/codenames
3This admits

(
400
25

)
= 3.374984143967 × 1039 unique

draws, each of which admit
(
25
9

)(
16
8

)(
8
7

)
= 2042975 ×

12870 × 8 = 210, 344, 706, 000 possible games, for a total of
7.099100475174× 1050 unique games.

Figure 2: The high-level information flow of our Codenames
framework.

While the set of cards G is public knowledge, its partition-
ing is not; this information is initially only available to the
two teams’ spymasters, who have access to a secret key.

Let U be the set of cards whose partition membership is
currently unknown. Initially, U = G. The object of the
game is for the spymaster to help their teammates discover
which words are in T before the opponent discovers which
words are in P and without discovering the identity of word
a. Teams alternate playing in rounds. Whichever team plays
first will have nine words to guess, while the other will have
eight (note that for convenience and without loss of general-
ity, we assume |T | = 9).

Play proceeds in the following manner. The active team’s
spymaster generates a clue c = (w, k) consisting of a clue
word w ∈ W \ G and a number 0 < k ≤ |T |, where W is
the set of all English words4 and k = |I| where I ⊆ T is a
secret set of words to which the spymaster intends the clue
to correspond. I itself changes every round, depending on
the spymaster’s strategy, and is not recorded in the game.

Given a clue word w, the guesser may then make a maxi-
mum of k+1 guesses. The guesser’s task is to guess a word
v ∈ U whose partition membership is then revealed (by cov-
ering it with one of four tile types), removing it from U (by
removing it from its secret partition). If v ∈ T , the team
guessed correctly and may pass or guess again as long as
they have not exceeded k + 1 guesses for the current round.
The round is over if the guesser has used all of their guesses,
if they pass, if T = ∅, or if v /∈ T . If v = a or P = ∅ (mean-
ing they guessed the assassin word or their opponents’ final
word), the team loses the game. If T = ∅, they win the
game. Otherwise, play passes to the other team. This pro-
cess of playing rounds repeats until one team wins.

Codenames Framework
We built a framework for playing teams of Codenames
agents against one another. Figure 2 shows a diagram
of our framework’s architecture. The Game module ran-
domly determines which team will play first, sets up the
board and secret key, and begins the gameplay loop. In

4We assume W excludes acronyms and proper nouns.
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Figure 3: Information flow in our two types of Codenames
agents. Note that the language task modules are pluggable.

each round, the Game module passes the current board state
b = (T, P,N,A) to the active team’s spymaster. The spy-
master agent returns a clue c = (w, k). That is, the spy-
master agent implements a function σ : B → C, where
B = 2T × 2P × 2N × 2A is the set of possible game board
states5 and C = W × N|T | the set of possible clues.

The Game module then passes c and U to the active team’s
guesser agent, which returns its guess v. That is, the guesser
agent implements a function γ : C → U . Depending on the
conditions described above, the Game module determines
whether the active team may guess again, if the round has
ended, or if the game is over. At the end of the game, the
Game module outputs a result that indicates which team won
and includes the board, the key, and the history of player
actions for convenience in later analysis.

Spymaster AI
The spymaster’s task is to choose an intended set I ⊆ T and
a clue word w. To play effectively, it must balance maximiz-
ing both |I| and its estimated likelihood that w will induce
a guess v such that v ∈ I . Playing very safely by giving
clues that correspond to exactly one word card will likely
lead to a low number of incorrect guesses but may progress
too slowly to beat the opposing team. Conversely, choosing
a clue that tries to represent too many of the team’s word
cards at once will likely lead to a vague clue that will con-
fuse or mislead the spymaster’s teammates.

Recall that guessing incorrectly ends that team’s turn at
best and at worst reveals one of the other team’s target
words for them or loses the game immediately by guess-
ing the assassin. Thus, it is also helpful to consider the set
X = N∪P∪A of words with which the clue word w should
not be associated.

Figure 3 gives a diagram of our spymaster AI agent that
implements the function σ. It generates combinations of
words to consider for I and passes each combination, along

5The notation 2S is shorthand for the power set of S.

with X , into its word association module. That module (de-
scribed below) returns a list of candidate clue words along
with a confidence score for each. The agent selects the can-
didate with the best confidence as its clue word w. Our spy-
master’s procedure for choosing I relies on the heuristic that
a clue representing between two and four words is a reason-
able balance of reserved and aggressive play.6

In the case that only one of the team’s word cards remains
uncovered, it is trivial to select I = T . In all other cases,
the spymaster AI will use the set J = {J ∈ 2T | 2 ≤
|J | ≤ 4} to query a word association module (WAM), which
computes a function α(J , X) = (w, k) = c. The spymaster
then passes the returned clue c to the game module.

Word Association Module (WAM)
To implement α, the WAM uses the sets J,X to construct
an abstract parameterized family of scoring functions σJ,X :
W → R that maps a word u ∈ W 7 to a confidence score
reflecting how well u is positively associated with the words
in J and negatively associated with the words in X .

Given σ, we compute α as follows. For each J ∈ J :
1. rank order W by the score σJ,X(u),∀u ∈W

2. put the top m words into a candidate set CJ

3. compute µJ = 1
|C|
∑

u∈C σJ,X(u)

Next, find the set with the highest average confidence score,
J∗ = argmaxJ∈J µJ and, from its associated candidate
words, CJ∗ , find the word with the highest score, w∗ =
argmaxu∈CJ∗ σJ,X(u). Finally, return the tuple (w, |J∗|).

By choosing the combination J∗ with the highest aver-
age confidence, the model favors combinations that are more
closely related altogether, even though another combination
may have a single candidate word with higher confidence.

The primary language faculty required to play Codenames
is knowledge of the relationships between words, both pos-
itive and negative. Knowing which words positively relate
to each other is a necessary baseline skill, and understand-
ing negative relationships between words is important for an
agent to perform well.

For example, two Codenames word cards are “ambu-
lance” and “doctor”. These words are closely related, but if
“ambulance” was one of a team’s word cards (that is, “am-
bulance” ∈ T ) and “doctor” was the other team’s [or the
assassin] (“doctor” ∈ X or “doctor” = a), it would be impor-
tant to exclude clue candidates that positively associate with
“doctor”. In that scenario, “siren” or “fast” would likely be
a better clue than “emergency” or “injury”.

Thus in this example, when J ⊆ T contains “ambulance”,
we desire σJ,X(“siren”, k) > σJ,X(“injury”, k).

6As stated in the Codenames rulebook: “Getting four words
with one clue is a big accomplishment.”

7While this likely is technically incorrect, in the sense that any
language model is likely subject to some out-of-vocabulary words,
the language models used here support large enough vocabularies
that they render the point basically moot—word2vec has a vocab-
ulary size of 500K words, and GPT-2 uses a vocabulary of 50K
sub-word tokens that likely translates to a functional word-level
vocabulary even larger than that of word2vec.
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The WAMs we experiment with are intended to serve as
good players regardless of whether their teammates are hu-
man or other black-box AI players. Thus, a relevant con-
sideration is whether the clues generated by the WAM are
understandable to a broad audience. An obscure clue word
and/or uncommon relationships to the word cards would
likely confuse or mislead the spymaster’s teammates. For
this reason, statistical language models are a good fit for this
task. We leverage them for both types of WAM.

We reiterate that the spymaster AI is designed to use any
word association module that computes α, independent of
how the WAM models language or how it uses the model
to generate clues—the WAM can implement the function
family σ in any way that maps words to scores. We imple-
ment three different versions: two that use a scoring function
based on cosine similarity between word embeddings and
one that uses conditional probabilities from autoregressive
text generation by a language model.

Word Embedding WAMs
Both word2vec and GPT-2 feature word embeddings which
are well suited to word relationship tasks because they allow
semantic word comparisons using simple geometric, vector-
based operations.

We built two word association modules that use word2vec
and GPT-2 embeddings, respectively, to compute σ. Words
are converted to real-valued embedding vectors using a
language-model-specific embedding function υ : W → Rd.
For a word u, positive word set J and negative word set X ,
σJ,X is then computed using cosine similarity between the
word vector υ(u) and a mean set vector µJ,X :

σJ,X(u) =
µJ,X · υ(u)
||µJ,X || ||υ(u)||

where

µJ,X =

∑
v∈υ(J) v −

∑
v∈υ(X) v

|J |+ |X|
where we slightly abuse notation by overloading υ to em-
bed a set of words into a set of embedding vectors. Note
that this embedding function is the only language-model-
specific component of this approach—word2vec and GPT-2
learn their embedding spaces in different ways.

Text Generation WAM
Text generation is a powerful function of the GPT-2 lan-
guage model. For our third implementation, we built a word
association module that uses text generation to construct
σJ,X . To generate text, GPT-2 takes a prompt and gener-
ates tokens that are, according to its model, likely to follow.
We designed prompts that state that a list of words related
to an input word will follow, ending with a colon, followed
by a comma-separated list of such words. The last line of
the prompt ends after the colon, prompting GPT-2 to com-
plete what comes next with an appropriate list. Here is an
example of such a prompt; note that all three lines comprise
a single prompt:

This is a list of words related to ambulance: paramedic,
emergency, doctor.

This is a list of words related to boat: water, fish, cap-
tain.
This is a list of words related to school:

We experimented with three such prompt templates for
use in the spymaster AIs. Each prompt asks GPT-2 to list
words related to an input. The first prompt asks for words
related to a single (positively associated) word. The second
asks for words that are positively associated with two words.
The third asks for words that are positively associated with
one word and negatively associated with another. Because
J and X can contain more than one or two words, we iter-
ate over all possible template completions using words from
J and X to construct the set C of possible generated com-
pletions. Let πi(Y ) be the prompt created by adding the
tuple of words Y to template type i and let Zi(Y ) be the set
of words generated by GPT-2 when prompted with πi(Y ).
Then, for the first template type (one positive association),

C =
⋃

u∈J

Z1(u)

for the second template type (two positive associations),

C =
⋃

(u,v)∈J×J

Z2((u, v))

and for the third template type (one positive and one negative
association),

C =
⋃

(u,v)∈J×X

Z3((u, v))

In the case that |J | = 1 or X = ∅, the module defaults to
the single positive prompt template.

Each of these prompts is templated to allow for arbitrary
input words, and the generated text is post-processed to ex-
tract only words in a comma-separated list. Any other out-
put is discarded. The list is then filtered so that only valid,
nonduplicate Codenames clues remain (e.g. single words
that do not contain any of the word cards in U ). The set of
words that remains is included in the candidate set C.

For a word u, positive word set J and negative word set
X , σJ,X is then computed using the generative model’s con-
ditional probability for u:

σJ,X = p(u|πi(Y )) for Y a valid tuple from J,X for type i

Table 1 shows examples of each prompt template. The
first and second columns list the template inputs: a single
positive association, two positive associations, and one pos-
itive and one negative association. The third column shows
the complete prompt with GPT-2’s generated completion
text. The input words are shown in italics, and the generated
text in bold; all other text is the template. Note that any new-
lines are explicitly contained in the template or generated
text. The final column shows the result of post-processing
the generated text to extract valid clue candidates.

The GPT-2 model is not fine-tuned; its output relies solely
on the prompt. The open-ended nature of text generation
means that it is susceptible to noise in the output. We found
that using a small number of template inputs reduced that
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Positive Negative Templated Prompt + Generated Text Candidates

cook
This is a list of words related to ambulance: paramedic, emergency, doctor.
This is a list of words related to boat: water, fish, captain.
This is a list of words related to cook: urn, fire, vessel.

urn, fire, vessel

hospital, spell

This is a list of words related to flag and state: country, government, county.
This is a list of words related to mammoth and pyramid: ancient, large, heavy.
This is a list of words related to bridge and skyscraper: concrete, blueprint, tall.
This is a list of words related to hospital and spell: crisis, catastrophe, crisis, disaster.

crisis, catastrophe,
disaster

lock carrot

This is a list of words that are related to ambulance but not doctor: siren, engine, fast.
This is a list of words that are related to bat but not duck: cave, night, fur.
This is a list of words that are related to queen but not king: regina, woman, wife.
This is a list of words that are related to lock but not carrot: urn, house, castle, castle.
This list is the closest of the

urn, house, castle

Table 1: Examples of the prompt templates used in our three text generation word association modules. The positive and
negative inputs are inserted into the templates which GPT-2 then uses to generate the bolded text. That text is post-processed
to extract a list of valid candidate clues.

noise, which is reflected in our three templates. As such,
both of the positive-only templates disregard X . We ex-
perimented with how well each template performed while
making these trade-offs.

We also experimented with different wordings for the
prompt templates, for example beginning each line with
“These words are related to...” instead of “This is a list of
words related to...” We discuss why we chose the wording
and number of inputs for the final prompt templates in a later
section.

Guesser AI
As discussed previously, the task of the spymaster’s team-
mates is to guess which word cards the clue is intended to
represent. Therefore, the guesser agent is simpler, and the
module requires only a word embedding model to calculate
it. Figure 3 includes a diagram of our guesser AI. The agent
uses its word similarity module to choose the word u∗ ∈ U
that is most related to the clue c = (w, k), again using cosine
similarity:

u∗ = argmax
u∈U

υ(u) · υ(w)
||υ(u)|| ||υ(w)||

We note that this guessing process disregards the number
k provided in the clue. While that is additional information
that the guesser could leverage, we believe that this sim-
plified approach is sufficient for the research task at hand,
namely the exploration of different language models as cre-
ative Codenames players. From this perspective, the spy-
master is the more interesting agent and was therefore the
focus of our experiments. Furthermore, whatever informa-
tion the clue number provides is supplementary to the asso-
ciations between the clue word and the word cards. At most,
it could be used to refine the language module’s association
scores.

GPT-2’s text generation function is open-ended; it can
generate any tokens that appeared in its training corpora.
Therefore, the likelihood of the model generating the spe-
cific words found on the board is very low. We experimented

with building prompts for the guessing task. For example
(again, all four lines comprise one prompt):

Which of the words ambulance, shoe, and Moscow is
most closely related to siren? ambulance
Which of the words chick, China, and bolt is most
closely related to lightning? bolt
Which of the words opera, casino, pilot is most closely
related to fancy? opera
Which of the words India, needle, shop is most closely
related to sharp?

In this example, the intended result is that GPT-2 gener-
ates “needle” as the next word. We tested whether the in-
tended word appeared at all before the first generated new-
line character. Our experiments showed that GPT-2 gener-
ated the intended word in less than 5% of trials. We therefore
did not build a GPT-2 text generation guesser at this time.

Model Comparison
As discussed above, the word association tasks that are re-
quired to play Codenames, especially in the spymaster role,
provide opportunities for creativity. Each of our player
agents includes a pluggable, language model-driven module
that serves as the creative heart of its playing procedure. By
comparing these modules within the well-defined creative
space of a competitive language game, we can concretely
reason about their performance.

To make these comparisons, we built a lightweight test
harness that plays games of Codenames between two teams
of agents. These games are played using the same list of
word cards available in the retail game. Each team consists
of a spymaster agent and a guesser agent who are agnostic
to the implementation of the agents they are playing with
and against. Codenames can be played with a small team of
guessers collaborating to guess their spymaster’s clues, but
teamwork between guesser agents is outside the scope of
this work. The fundamental task of testing language models
in this game setting can be adequately explored with a solo
guesser.
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To provide benchmarks for the agents’ performance, we
implemented simple guesser agents that guess randomly or
cheat. The random guesser agent serves as a lower bound on
acceptable performance for an AI agent. The cheat guesser
agent simply guesses n correct words each round, then
passes. This serves as a rough but easy-to-compute pace
against which to compare each agent.8 A benchmark team
consists of either a random or cheat guesser agent paired
with a trivial spymaster agent that returns a dummy clue that
the guesser disregards.

We created teams out of every pairing of spymaster
and guesser AI agents, regardless of their underlying lan-
guage models. These teams were played against one an-
other and the benchmark agents, and their win/loss ratios
were recorded. The name of each team is given as “[spy-
master]4[guesser]”, meaning the spymaster is making clues
fo(u)r the guesser. “w2v” stands for word2vec, “gpte” stands
for GPT-2 embedding model, and “gptp” stands for GPT-
2 prompt (text generation) model. The six teams were
w2v4w2v, w2v4gpte, gpte4w2v, gpte4gpte, gptp4w2v, and
gptp4gpte. Each team played 30 games against every other
team and 30 games against a random team, a cheat team with
n = 1, and a cheat team with n = 2.

Results
In this section, we report the results of our experiments.
Our primary objective is to demonstrate that a competitive
language game task allows for quantifiable comparison be-
tween agents. By powering our player agents with language
association modules, we show by extension how such mod-
ules can be evaluated with concrete performance metrics.

We ran experiments using three spymaster agents and
two guesser agents, in addition to the cheat and random
benchmark agents. The two guesser agents were built on
word2vec and GPT-2 word embeddings. The spymasters
used word2vec word embeddings, GPT-2 word embeddings,
and GPT-2 text generation, respectively, to perform word as-
sociation tasks. The text generation spymaster could fur-
ther be configured to use one of the three prompt templates
shown in Table 1.

GPT-2 Prompt Comparison
We compared the performance of the three prompt templates
by playing text generation agents (paired with both guessers)
against cheat benchmarks with n = 1 and n = 2 as well
as the random player. Table 2 shows the results of playing
10 games between those teams. Each template performed
similarly against the random player, with most teams being
able to beat it consistently. Similarly, all teams performed
uniformly poorly against the cheat benchmarks. In the tests
that follow, we used the template with one positive input as
the prompt for the GPT-2 text generation module.

Comparing Agent Teams
By playing our various teams of agents against one another,
we can judge their relative performance at the word asso-

8Anecdotally, it seems a human team would find a cheat agent
with n = 3 challenging and struggle to ever beat one with n = 4.

Prompt Guess Cheat 1 Cheat 2 Rand

1 positive
w2v 0-10 0-10 6-4
GPT-2 1-9 0-10 7-3

2 positive
w2v 0-10 0-10 7-3
GPT-2 0-10 0-10 5-5

pos + neg
w2v 0-10 0-10 9-1
GPT-2 0-10 0-10 4-6

Table 2: Win-loss ratio results of playing different text gen-
eration spymasters against benchmark agents, each using
one of the three prompt templates.

Figure 4: Heatmap of win/loss ratios after 30 games for each
team of Codenames agents playing against one another and
the unintelligent benchmark agents.

ciation task. The benchmark cheat and random agents pro-
vide a more objective performance measure. Figure 4 shows
the win/loss ratio for each combination of agents playing 30
games against every other team and the benchmark agents.
A darker color indicates a higher win rate for the team on
the y-axis versus the team on the x-axis. Recall that we did
not implement a GPT-2 text generation guesser. We also did
not play a team of agents against a team of the same agents.

Looking at the results, we can see that the word2vec
spymaster and guesser team performed best overall. Con-
versely, the team of the GPT-2 text generation (“gptp”)
spymaster and GPT-2 embedding guesser was the weak-
est. Most teams beat the random agent at least half of the
time, with gpte4gpte and gptp4gpte teams losing as often
as they won against it. None of the teams could consis-
tently win against the cheat agents, but the word2vec spy-
master/guesser team was able to beat the cheat with n = 1
about a third of the time.

Finally, we note that these tests are automated and can be
carried out on any new or modified agent to test its perfor-
mance at the creative spymaster task under the same circum-
stances. This will allow for easy evaluation and comparison

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

297



as improved models are developed in the future.

Discussion
Our experiments with Codenames AI agents serve a dual
purpose: to present an initial attempt at designing agents to
play the game; and (more importantly) to demonstrate that
a competitive language game is a creative domain with a
unique capability for evaluating agents.

Our Codenames Agents
It is somewhat surprising at first blush that word2vec out-
performed GPT-2 word embeddings at playing Codenames.
This may be attributable to differences in how the two mod-
els are trained. Word2vec’s skip-gram and negative sam-
pling model is trained under circumstances that are very sim-
ilar to the task of finding words associated with an arbitrary
set of positive and negative concepts. GPT-2, while not un-
suited for the task at hand, is trained to more generally min-
imize cross entropy in its language model. Perhaps training
or fine-tuning a transformer module using skip-grams and
negative sampling would bring their power to bear on this
more specific task.

This surprising result was demonstrated very clearly by
the test methodology of playing a competitive game with
the two models. This serves as another example of how
this creative task is useful to CC research. Additionally, im-
proved future spymaster agents can be tested against these
same models to evaluate their performance.

Designing a word association module using GPT-2 text
generation relied heavily on prompt engineering. Prompting
the model with examples in the form of a comma-separated
list resulted in the generated text taking a similar form. This
allowed for consistent input to the post-processor to extract
clue candidates.

More challenging was engineering a prompt template that
harnessed the power of the language model to generate high-
quality word associations. As described previously, we set-
tled on three prompt templates that sought associations with
one word, two words, and one positive and one negative
word. By contrast, the word embedding models calculated
word associations using an arbitrary number of positive and
negative word embedding vectors.

We found that increasing the number of input words in
the template tended to increase the noise of the generated
text without improving the quality of its associations. How-
ever, the results reported in the previous section show that
the GPT-2 text generation module prompted with one posi-
tive input performed about as well as the GPT-2 word em-
bedding model.

The Future of Codenames as a Creative Task
Successfully playing Codenames requires robust knowledge
of relationships between words, but the input and output for
player agents are single words or lists of words. This stands
in contrast with a game like Werewolf which requires more
complete communication skills as players attempt to figure
out hidden roles. There is a smaller conceptual distance be-
tween the language model and the agent’s performance play-
ing Codenames.

Playing a competitive game allows for automated and
easy-to-compare metrics for modules with open-ended
tasks, such as using GPT-2 text generation to compute word
associations. Further, by first building a Codenames test har-
ness, we were able to quickly test and compare prompts. For
example, we found that prompts beginning with “This is a
list of words related to...” gave better results than those be-
ginning with “These words are related to...”.

The nature of competitive language games like Code-
names allows for future improved and novel agents to be
tested under identical conditions to the ones presented here.
We foresee an improving field of creative Codenames agents
that can be tested automatically against one another.

Bodily and Ventura present an argument for increased so-
cial consciousness of CC systems, especially as they eclipse
human performance (2020). This is largely motivated by the
triumph of AlphaGo over a top-ranked human player at Go,
which is a creative task with a “well-defined and universally-
recognized way of comparing” performance.

Codenames does not have the same depth, history, or au-
dience that Go has, but it is quite popular in its own sphere.
It shares a similar potential for creativity but operates in the
domain of language. Creativity in language domains is a
valuable and well-studied aspect of computational creativity,
and Codenames could serve as a test bed to develop creative
language modules that could be exported for use in those
more traditional domains.

These arguments for Codenames as a valid and useful cre-
ative domain apply to other competitive language games as
well. We encourage the research community to seek out and
experiment with such games as well-defined creative tasks.

Conclusion

A common difficulty in systematizing creativity is identify-
ing an accurate and concrete goal. High-quality creative out-
put is difficult to quantify, and abstractions or estimations
are usually required. We argue that competitive language
games such as Codenames are a useful creative domain be-
cause they feature well-defined win and lose states while still
allowing for creative expression.

We present a test framework for playing games of Code-
names between AI agents both to describe a new creative
system and to demonstrate the efficacy of the domain itself.
This framework is modular to allow for any player agent to
be evaluated and includes benchmark agents to provide more
objective performance metrics.

Each creative domain provides unique challenges and new
perspectives on what creativity is, how to reason about it,
and what tools facilitate computational creativity. Adding
competitive language games to CC’s suite of canonical cre-
ative domains will allow for more rigorous evaluation and
comparison of its creative systems. There is more to cre-
ativity than winning a game, but in the face of a dearth of
concrete measures of creative performance, competitive lan-
guage games can serve as a valuable proxy for such evalua-
tion.
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Abstract
The representation of everyday concepts is important
for a number of applications, ranging from the Semantic
Web to NLP and general AI. We propose here a detailed
case study of the Leuven concept database (LCD),
which is a rich database of commonsense knowledge,
written in natural language. We aim to convert the com-
monsense knowledge contained in the LCD into a for-
mat suitable for implementation and practical applica-
tion. We then investigate a hybrid approach that com-
bines a syntactic analysis of the surface structure of
the LCD entries with a semantic and ontological analy-
sis of those entries, considering also the role of other
cognitively-grounded facets of core knowledge. The
approach therefore suggests a systematic portfolio of
disambiguation modes with the goal of improving the
match between everyday meaning of concepts and for-
mal semantics. Finally, we illustrate the practical use-
fulness of this approach in a concrete computational im-
plementation for concept combination.

Introduction
Commonsense knowledge and specifically the representa-
tion of everyday concepts is a crucial ingredient in many ap-
plications, ranging from the Semantic Web to NLP and gen-
eral AI. The word “commonsense” groups different aspects
of human knowledge, which permeate our experience of the
world and allow us to move therein. Commonsense knowl-
edge includes our ability to distinguish between single ob-
jects and classes of objects, to distinguish between animate
and inanimate things, but also more mundane knowledge:
the fact that fish live only in water (and normally do not have
a job), the fact that vehicles need fuel, or the fact that my dad
is necessarily born before me. Commonsense knowledge is
acquired by humans through experience and throughout life
in an almost completely effortless way. Despite the long
tradition of research (McCarthy, 1959; Lenat, 1995) inves-
tigating how to bring this kind of knowledge from human
to machine, it is still a wide-open research question. At the
same time, any progress in this field directly benefits a num-
ber of AI applications.

As a case in point, in the context of Computational Cre-
ativity the representation of commonsense knowledge is cru-
cial when dealing with Computational Conceptual Blend-
ing. In Cognitive Linguistics, Conceptual Blending has been

proposed as a general cognitive process underlying, among
others, the human ability to creatively integrate and com-
bine concepts (Boden, 1998; Fauconnier and Turner, 1998).
Accordingly, a blend is constructed by selectively mapping
the shared features of different (mental) input spaces into a
generic, shared, mental space. The blend develops then its
own emergent structure, which derives from the combina-
tion of the projected features. For humans, this process may
happen imperceptibly, by exploiting information they pos-
sess, specifically relying on their commonsense knowledge.
Arguably, some of the most interesting blends originate from
the resolution of clashes stemming from the commonsense
information which is coded into, and sometimes hidden in,
the input concepts.

Computational Conceptual Blending (CCB) aims at for-
mally interpreting and capturing the process of conceptual
blending and integration. Different, though related, frame-
works have been proposed in the literature, either to for-
mally model or to replicate the process of conceptual blend-
ing (Eppe et al., 2018; Neuhaus et al., 2014; Veale, 2019;
Ontanón and Plaza, 2010; Hedblom, Righetti, and Kutz,
2021; Gonçalves, Martins, and Cardoso, 2017). Rather ob-
viously, computational systems are forced to reason with the
information they are presented with, and to bootstrap the
clashes and the blending process in general, CCB systems
need commonsense knowledge to be represented in the in-
put spaces. Beyond the study of the heuristics involved in
the computational process of creatively blending concepts,
it is then also worth focusing on the formalisation of the
commonsense information which is needed as a propellant
to steer the whole process.

To this end, we focus here on a detailed case study of the
Leuven concept database (De Deyne et al., 2008; Ruts et al.,
2004), which is used as a source of commonsense knowl-
edge to be converted into a format which will be then suit-
able for practical application. The Leuven concept database
(LCD) contains information, gathered by a group of psy-
chologists at the University of Leuven, over the features ex-
hibited by 15 category labels (here often referred to simply
as concepts), and provides evidence on human conceptual-
isation. The conceptualisations that emerge from the LCD
do not necessarily reflect a good definition of the concepts
involved—at least not in a normative sense. It aims at be-
ing a good description of what people have in mind when
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they think about those concepts, and of the meaning they as-
sociate with them. Therefore, the database is permeated by
“commonsense information”, and exhibits some of the ba-
sic ambiguities related to the use of natural language. These
conceptualisations, therefore, constitute an excellent point
of observation on the challenges to be faced to make this in-
formation machine interpretable. We propose here a study
which addresses exactly these difficulties. In order to make
the content of the LCD available for practical application, a
process of formalisation is needed: we exploit here the Web
Ontology Language (OWL) as a prominent starting point.
Being a computational, logic-based language, OWL obvi-
ously imposes certain limitations in terms of expressivity.
The translation from the LCD to OWL thus involves a trade-
off between the language’s expressive power and the de-
sire to preserve as much information as possible. Another
boundary in the translation is set by the presence of back-
ground foundational ontology distinctions, which are used
to inform some of the formalisation choices in the process
of translation. In particular, we argue, and present some ex-
amples, that exploiting deep ontological distinctions enables
us to impose order and coherence (when possible) to the in-
formation in the LCD, helping also to disambiguate some of
the hidden meaning within the data.

Finally, we conclude the paper illustrating the practical
usefulness of this approach in a concrete computational im-
plementation for concept combination. This will here serve
as a demonstration and a possible use of the resulting for-
malised commonsense knowledge.

Related Work
Many practical AI applications require complex inferences,
which, in turn, require large common-sense knowledge
bases. Typical example are chatbots, or domotic applica-
tions, e.g. involving ‘intelligent’ cooking or cleaning assis-
tants, which need to navigate human spaces with a suffi-
cient level of the involved common sense inferences Krieg-
Brückner et al. (2015); Bateman et al. (2018). In practice,
this need has often resulted in the use of structured lexi-
cal databases, semantic networks, or linked data, such as
WordNet (Fellbaum, 2005), ConceptNet (Speer, Chin, and
Havasi, 2017) and DBpedia (Auer et al., 2007) as a link
between natural language and higher level semantic repre-
sentations. Despite their usefulness, these repositories of-
ten show some level of ambiguity, which demonstrates the
lack of a common agreement on the meaning of the lexical
entries. In order to overcome this difficulty, a number of
works have proposed different approaches to provide these
databases deeper semantic support (Fellbaum and Hicks,
2019; Silva, Freitas, and Handschuh, 2016; Gangemi et al.,
2012; Schmidt et al., 2019; Gangemi et al., 2003). The key
ideas behind those approaches is to make these repository
“ontology-like”, as far as possible.

In order to achieve this level of formalisation, many of
the approaches mentioned above appeal to foundational on-
tology (FO — such as BFO, DOLCE, GFO, SUMO, etc.)
which provide a common vocabulary through imposing fun-
damental ontological distinctions. In (Gangemi et al., 2003),

for example, a connection is drawn between WordNet’s up-
per level synsets and the foundational ontology DOLCE,
and, more recently, (Silva, Freitas, and Handschuh, 2016)
enlarged that alignment in order to include also verbs. In
(Schmidt et al., 2019), a complete manual alignment be-
tween WordNet and a different Upper Ontology (SUMO) is
proposed. Continuing that tradition, (Gangemi et al., 2012)
propose a tool for automatically typing DBpedia entities,
which relies on the alignment to both Wordnet supersenses
and a subset of DOLCE Ultra Lite classes. Crucially, these
works often use a top-down approach which propagates cer-
tain top level distinctions of the foundational ontology onto
the more general entries in the database at hand, exploiting
its internal relation (e.g. the hyponym relation).

We follow here a related but different strategy, based
on a detailed case study of the Leuven Concept Database
De Deyne et al. (2008); Ruts et al. (2004). Instead of assum-
ing a specific FO and propagating its distinction through the
database, we exploit the inverse, bottom-up, direction. We
analyse the intended meaning of the information contained
in the LCD and individuate seven modes of disambiguations,
i.e. seven high level distinctions, ranging between ontologi-
cal and cognitively relevant ones, which implicitly underlie
the content of the LCD. Once individuated, these distinc-
tions steer the analysis of the database, and thus the render-
ing choices of our translation into OWL.

We carried out the translation into OWL manually. There
exists different tools for automatic natural language to OWL
translation (Völker, Hitzler, and Cimiano, 2007; Emani et
al., 2019; Draicchio et al., 2013; Nguyen, Razniewski, and
Weikum, 2021). In order to be effective, these tools require
very clear assertions and showing a regular structure. In
contrast, the commonsense features collected in the Leuven
concept database, in most cases, do not show this kind of
regularity and lack of ambiguity that these tools presuppose.

The Leuven Concept Database
Data gathering
The Leuven concept database1 is a large-scale data set that
associates sets of features both to concepts (or categories’
labels, e.g. Bird) and to exemplars (or lexical entries, e.g.
magpie). The data collection was carried out by the ConCat
group at the University of Leuven from 2004 to 2008 (Ruts
et al., 2004; De Deyne et al., 2008), and it consists of 15 cat-
egories and 420 associated exemplars. More precisely, the
data set covers the domain of animals (birds, fish, insects,
mammals, reptiles together with amphibians, with an av-
erage of 25 exemplars for each category label, and a total
of 131 exemplars), and it collects information on the arti-
fact domain (musical instruments, tools, vehicles, cloth-
ing, kitchen utensils, weapons, for a total of 169 exemplars
over the six categories), on fruit and vegetables (for a to-
tal of 60 exemplars) and activities (professions and sports,
again for 60 exemplars). At least a thousand students were
involved in the experiments. All the material was collected
in Dutch, but also an English translation is provided to make

1Available at https://simondedeyne.me/data
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the data available for further experimental and modelling ap-
proaches.

The studies conducted at the University of Leuven are
placed in the debate between the Prototype Theory and the
Exemplar Theory (Storms, De Boeck, and Ruts, 2000), and
therefore present a series of experiments that aim to investi-
gate aspects of one or the other theory. We are here mostly
interested in the studies pertaining to a feature-generation
task, where subjects were asked to provide lists of features
in relation to the 15 category labels presented in bold above.

Participants’ responses to the feature generation task were
manually aggregated and adjusted with minimal stemming.
Information was retained on the features’ production fre-
quency, which can be considered an indirect measure of their
importance. Further, the importance of the features was also
directly assessed by asking the participants to explicitly rate
the importance of each feature in the definition of the con-
cept for which they were previously generated (De Deyne
et al., 2008). Figure 1 shows an example of the features
generated for the category label Bird (see before the column
MEAN). The table displays the features in Dutch and their
translation to English. The numbers displayed in the table
correspond to the importance ratings assigned to each fea-
ture by the participants of the experiments. The rating scale
ranged from +3 (very important feature) to −3 (very unim-
portant feature). Globally, the feature generation task for the
category label produced 28 features for the concept Bird.

Large-scale data-sets analysing the features exhibited by
different concepts are quite rare in the literature, even
though the possibility of using Amazon Mechanical Turk
has made them more frequent (Vinson and Vigliocco, 2008;
Buchanan, Valentine, and Maxwell, 2019). The LCD, how-
ever, shows some peculiarities that make it particularly suit-
able for our analysis: not only is it organised in an easily
reusable shape, which makes it useful from a practical point
of view; it also contains information about the importance
of the features collected, which makes it interesting from a
theoretical perspective, as will be explained in what follows.

The Leuven Concept-bundle
As it can be seen in the table for the concept Bird, the fea-
tures collected relate to different aspects of birds, that range
from habits (“builds nests”, “eats worms”), to body parts or
shape (“has wings”, “has a beak”), to abilities (“can fly”,
“sings”), but that also pertain to more general cultural infor-
mation (e.g, “is sometime kept as a pet”, “is sometimes eaten
by man”). A similar situation occurs for each of the concepts
analysed, and if one takes a step back and looks at the fea-
tures contained in the Leuven concept database as a whole, a
rather fascinating picture emerges. Different features reflect
different facets of the concepts involved, that in some cases
barely stand together in the same description. For instance,
some of the features of the concept Fish (“breathes under
water”, “has gills”, “lays eggs”, “lives in the sea”) suggest a
quite general definition of Fish, which relates to a somehow
biological perspective on the concept. Other features de-
scribe instead the concept Fish in its relation with humans
beings—and maybe with some subject’s personal experi-
ence: some of them (“swims in aquarium”, “is sometimes

kept as a pet”) focus on the pet dimension of Fish, while
others (“contains omega3”, “is tasty”, “sometimes smells”)
relate to the food dimension. Also, features pertaining to dif-
ferent dimensions may be considered conflicting—at least at
some level: does the fish live in the sea or in the aquarium?
Is it a pet or is it tasty? Similar considerations apply to all
the concepts in the database: a Sport is a hobby, is relaxing
and is fun, but can also be a Profession, which in turn is de-
fined as a source of stress and frustration (but also an activ-
ity which is advantageous for the society and the economy).
Clothes protect against the cold, but can be a status sym-
bol, they protect from the rain but express your personality;
a Tool is an aid, but you can injure someone with it; Vehi-
cles are polluting, but they may be environmentally friendly.
This gives us an idea of the context sensitivity of everyday
concepts (Yeh and Barsalou, 2006), but reveals also their
polysemy—the fact that those category labels are used as
umbrella words for slightly different meanings. This also re-
calls what Hofstadter (2001) called the process of chunking:
the idea that humans build their concepts by gluing several
concepts together through their lifetime, so that at the end a
concept results in “nothing but a tightly packaged bundle of
analogies”.

Taking a step forward and looking at the features more
closely in terms of formalisation possibilities, some prob-
lems quickly emerge, e.g. regarding precision. One of the
problems may be summarised as a lack of implicit knowl-
edge. This does not only refer to the lack of fundamental
categorical distinctions (see below), but also to the omission
of some of the things that subjects may have considered ob-
vious during the experiment. Subjects tend to omit some of
the most obvious features (e.g. that a fish “has two eyes”),
trying to focus on the more distinguishing ones (De Deyne et
al., 2008). Also, they fail to specify some underlying knowl-
edge, which they may consider not necessary for general
understanding—fish are said to “swim in aquarium”, com-
pressing the more detailed information “some fishes swim
in water contained in some aquarium”. Another problem is
the presence of errors within the data, most of which corre-
spond to a naı̈ve use of the “is-a” relation: a Fish is said to
be a shark, a Tool is a hammer, etc.

From the LCD to OWL Ontologies
Interpreting the features
The problems described in the section above would not
cause any issue for human understanding, which shows great
flexibility in interpreting natural language sentences. How-
ever, when the goal is to make the features machine inter-
pretable, they require some adjustments. Let us, for in-
stance, consider to translate ‘naı̈vely’ the feature “swims in
aquarium” into an OWL axiom, and to add it to an ontology
of Fish. In the ontology there could be a definition of swims,
maybe as an action which is performed only in a particular
environment—namely in water2. In order to avoid inconsis-
tencies, such as the identification of ‘aquarium’ and ‘water’,
one may need then to fully specify the meaning and function

2Unless one wants to consider a metaphorical use of the word
swim, which would make the situation even more complicated.
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Figure 1: Bird: an example of a “Feature via Category Label” table, plus annotations from our analysis. MEAN refers to the
mean of the importance associated by the subjects to the features. PF is the production frequency.

of the object ‘aquarium’, and the image-schematic relation
of containment it bears with the water.

These considerations suggest the need of a preprocess-
ing phase, which we conducted at different levels. At the
very first level, this preprocessing phase was carried out fol-
lowing the Gricean communication principle, or Coopera-
tive Principle. In the context of any language exchange, the
principle prescribes to “make your contribution such as is re-
quired (. . . ) by the accepted purpose or direction of the talk
exchange in which you are engaged” (Grice, 12 Dec 1975).
In this specific case, the purpose of the talk exchange was
the definition of the concepts proposed by the psychologists,
and the talk exchange was more precisely the experiment
completed by the participants. According to Grice, the vio-
lations of this principle, which here includes errors and im-
precisions, should be interpreted in such a way as to protect
the rationality of the speaker, according to Quine’s Princi-
ple of Charity (Quine, 1960)), which prescribes interpreting
a speaker’s statements in the most rational way possible, and
considering its best, strongest possible interpretation3.

Despite these premises, some of the features produced in
the Leuven experiments were difficult to interpret in the con-
text of the definition of the concept—sometimes because
blatantly false when stated for the whole class, sometimes
because they were related to a semantic context completely
different to the one proposed in the experiment. To give a
taste: a Fish is “a constellation” and Weapons are “used in
sport”. Some of the features, then, captured biases of our
language (and our society): a Profession “is different for

3Interestingly enough, Quine developed this principle in the
context of language translation.

men and women”, and a Kitchen Utensil “is especially used
by women”, but a Tool “is primarily used by men”. As de-
scribed in more detail above, all the features generated in
the experiments were afterwards judged in order to evaluate
their applicability to the class at hand (see again the num-
bers in Figure 1). Inspired by the prototype-theoretic notion
of salience (Rosch, 1973), and in order to exclude some of
the most controversial features, we calculated the mean of
subjects’ judgments, and excluded the entries strictly below
the threshold 0. This procedure allowed us to exclude 102
features, namely around 20% of the features.

The formalisation step
After the preprocessing step, the features are translated into
OWL axioms. The Web Ontology Language (OWL) is one
of the most widespread language for authoring ontologies.
It allows the users to write explicit and formal conceptual-
isations of a domain model. We will just sketch here the
features of the language, the interested reader may refer to
(Antoniou and van Harmelen, 2009; McGuinness and van
Harmelen, 2004) for a more in depth description.

In particular, OWL is a logic-based language: it is mapped
to Description Logics, i.e. decidable fragments of first-order
logic. This provides OWL with a clear, well defined, formal
semantics and efficient reasoning services. The reasoning
support is important not only to compute ontologies’ im-
plicit knowledge (i.e. the entailed statements), and thus to
reason over the axioms, but also to check their consistency,
the presence of unintended consequences, etc. At the same
time, efficient reasoning services require some limitations in
the expressiveness of the language. Some trade-off is then
necessary between the performance of the reasoning and the
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language’s expressive power, which should allow the user to
express large volumes of knowledge.

More precisely, OWL allows to express knowledge about
classes, instances and binary relations between instances. It
provides different constructs to declare the different entities
of the language: here we mainly deal with the constructs
class, object property and individual. A class defines a
set of individuals that share some properties; object proper-
ties are used instead to assert binary relationships between
individuals; individuals are instances of the classes. For ex-
ample, we may want to declare the class of Bird as the set of
those instances that share the features described above. All
the 15 categories described in the Leuven concept database
are indeed examples of classes. If we want to populate the
class, we may declare Tweety as an individual of the class
Bird. Consider instead the feature “builds nest”: the word
‘builds’ should be interpreted as an object property, which
relates the instances of the class Bird and the instances of the
class Nest. At the same time, the set of all entities that build
nests provides another example of a class, which Bird is a
subclass of. Classes can indeed be organised in hierarchies,
according to their generality, by means of the “subClassOf”
relation, which behaves like the subsumption relation in De-
scription Logic. We may also declare that two classes are
“disjoint”, having no common instance, and that two classes
are “equivalent”, having exactly the same instances.

The semantics of the “subClassOf” relation implies that
all the elements of the sub-class are also elements of the
super-class (it is indeed the subset relation). Asserting that
Bird is a subclass of the class of entities which build Nest,
means then that all the instances in the class of Birds build
nests, without exceptions. Obviously this is a quite strong
requirement when we are dealing with natural language for-
malisation and everyday concepts. Some of the features are
described by people by means of expressions which empha-
sise their partial applicability to the class into consideration
(e.g. sometimes, can have, etc). In other cases, this is im-
plicit in the use of everyday language (e.g. people may as-
sert that birds can fly, but this does not imply that they be-
lieve that a penguin is not a bird). Also for this reason there
has been some work recently trying to allow a more cogni-
tively grounded modelling (Porello et al., 2019; Righetti et
al., 2019, 2021a), as well as defeasible subsumption (Britz
and Varzinczak, 2017; Casini and Straccia, 2010), which al-
lows to handle exceptions and counterexamples.

Following these intuitions, the features collected in the
LCD can be grouped in different meta-categories, according
to their grammar. This classification can be thought of in
terms of Aristotle’s famous square of opposition. We can
distinguish between: i) Universal affirmative statements, i.e.
the (positive) features that apply to the whole class under
consideration. As an example, we may consider the state-
ments “a Fish is an Animal”, or “a Kitchen Utensil is a
Tool”. Those statements can be treated as simple class in-
clusion, and in First Order Logic would correspond to uni-
versal quantification (“all fish are animal”, etc). ii) Existen-
tial statements, which apply only to some instances of the
class at hand: e.g. Insect “can bite”, or Tool “can be au-
tomatised”. In First Order Logic they would correspond to

existential quantification: some insect bites, some tool is au-
tomatized, etc. iii) Universal negations, which apply again
to the whole category, but which express a negated state-
ment, like Fish “does not live on land” or Insect “does not
live long”. iv) Existential negation, of the kind “some A are
not B”, and which apply only to a subclass of the concept
under consideration: e.g. a Vegetable “is not always green”.

Table summarises the distribution of the features in the
different meta-categories. As it can be seen in the table,
most of the features enter the meta-category “Universal af-
firmative”, while the negated statements (Universal negative
and Existential negative) are very few.

Type of Statement Frequency

Universal affirmative ≈ 82%
Existential affirmative ≈ 16%
Universal negative ≈ 1%
Existential negative ≈ 0, 5%

Table 1: Features classification

Looking beyond the syntactic surface, however, within
the Universal affirmative statements, only a few (less than
10%) are true, clear universal statements, which are valid
for the whole category. Many other features (see e.g. the
column ‘Syntax’ in Table 1) look like universal statements,
but presuppose the possibility of exceptions: e.g. “Birds eat
worms” is used as a default statement about birds, but it is
possible to think of counterexamples, since not all birds are
carnivores. When translating the features into axioms, it is
desirable to distinguish between the axioms which require
a classical, non-defeasible, use of the SubClassOf relation
(e.g. Bird SubClassOf Animal), and axioms which do re-
quire a defeasible semantics (e.g. Bird SubClassOf eats some
Worm). This distinction is registered at the level of annota-
tion, and can be guided in different ways. In part, it is guided
by the information in the database: we can in fact use the
features’ production frequency and their average judgments
to take some decisions. The features which are generated
often and which get a high average rating are more likely to
be valid for the whole category. However, this strategy alone
does not always guarantee satisfactory results. The feature
“has feathers”, for instance, was produced for the concept
Bird by all the subjects involved in the experiment, and got
the highest rating. However, it would be reasonable to make
it a defeasible axiom, since e.g. many pullets do not have
feathers.

A Game of Disambiguation
Foundational or upper ontologies (FO) formalise the mean-
ing of very general terms, such as object, event, property,
quality, relation, process, etc. (Borgo, Galton, and Kutz,
2022). They provide the top-level categories that are in prin-
ciple common to many domains of application, and are im-
plicitly at work in common sense. There are a number of
different such ontologies which reflect different philosophi-
cal views on reality, ranging from a realistic stance endorsed
by BFO (Arp, Smith, and Spear, 2015) to a cognitivistic per-
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spective enabled by DOLCE (Masolo et al., 2002). While
we do not take a position here about which is the right FO
to analyse commonsense concepts, we stress that embracing
the perspective of a selected FO has important consequences
on the formal rendering of the commonsense expressions.
For the sake of this discussion and for highlighting the use
of FOs in general in representing commonsense concepts,
we exemplify how a number of features in the Leuven con-
cept database can be construed by means of a foundational
analysis. Despite the disambiguation choices we propose
here, some of the features in the database were still too id-
iosyncratic to fit modelling and logical rendering strategies,
and were therefore manually discarded.

We here combine a two-level approach. Firstly, we iden-
tify a candidate categorical statement elicited from the LCD
(e.g. All As are Bs). Secondly, we use FOs and their distinc-
tions to help in identifying the intended meaning of classes
A and B and in understanding the relevant representational
choices. Although this section is descriptive in nature, it
provides the basic rules of a game of disambiguation gov-
erned by foundational choices and representational modes.
We therefore organise the discussion along 7 basic modes
of disambiguation:

Mode 1: Rigidity and anti-rigidity Two important gen-
eral properties of classes are rigidity and anti-rigidity, cf.
Guarino and Welty (2004). A rigid class is such that ev-
ery instance of that class is necessarily an instance of that
class. For example, in Figure 1, the feature Animal can be
intended as a rigid class: a bird is an animal and, throughout
its life, cannot cease to be an animal. An anti-rigid class is a
class such that its instances eventually cease to be instances
of that class. For example, in Figure 1 we have the fea-
ture Migratory. This class can be interpreted as an anti-rigid
class, a phase of the life of the birds which has a beginning
and an end. So when we represent the Leuven entries by
means of axioms such as “all birds are animals” and “some
birds are migratory”, we can refine the meanings of these
two statements by categorising the features as rigid or anti-
rigid4. The rigidity and anti-rigidity distinction then plays a
role in the context of Universal vs Existential statements de-
scribed in the previous section. We may have statements of
the kind “all As are Bs”, where B is a rigid property, which
means all As are always Bs (e.g. all Bird are always Animal).
But we may also have Existentials of the kind “some As are
Bs”, where B is a rigid property, which again means that
“some As are always Bs” (e.g. “some Animals are Birds”).
On the other hand, both Existentials and Universals can in-
volve anti-rigid properties, e.g. “some Birds are Migratory”
and “all Mammal (mothers) breastfeed its babies”. These is-
sues are, of course, closely related to the semantic complex-
ities found in Aristotle’s modal Syllogistic (Malink, 2013).

Mode 2: Mereology An important ontological aspect is
mereology, the theory of part-whole relations. FOs usually
contain an axiomatisation of mereology, which makes the

4Handling the distinction between rigidity and anti-rigidity for
OWL formalisations is challenging due to the limited expressive
power of DLs.

meaning of parthood relations explicit. Although the part-
hood relation may be not overly manifested in the syntax of
the description of a feature, a number of entries in the LCD
contain statements about the parts of an entity. E.g. in Ta-
ble 1, “have wings” clearly indicates a parthood relation. So
the rendering of that statement may be an axiom that states
that the class of birds is included in the class of things that
are related, via the parthood relation, to the class of wings.5
The parthood relation is widespread in almost all the do-
mains of the LCD (with the exception of the concept “Pro-
fession”), and constitutes about 13% of the features. The
general ontological notion of parthood is quite abstract and,
in many cases, one of the specialised parthood relations has
to be considered, e.g. functional parthood, necessary part-
hood, temporary parthood, etc.

Mode 3: Spatio-temporal relations / Image Schemas
Many entries in the database (15%) specify possible places
in which an entity can dwell, e.g. “lives in the wild”, “found
in trees” (Bird), but also “sold in clothes shop” (Clothes) or
“is often found in action movies” (Weapon). For these cases,
FOs usually reify spatial and temporal locations as particu-
lars of the ontology and can express the fact that an entity is
located at a certain place or time. For instance, we can intro-
duce the class of entities “located in the wild”. These classes
can be analysed according to the rigidity vs anti-rigidity dis-
tinction that we introduced earlier to assess the strength of
the constrain: it may be necessary for fish to live in the wa-
ter, while only accidental (non-rigid) to live in a cage or in
the wild. Particularly salient spatio-temporal relations, and
also prevalent in the LCD, are image-schematic ones, such
as containment, support, or path-following. The importance
of image schemas in computational blending has been illus-
trated in detail by Hedblom, Kutz, and Neuhaus (2016).

Mode 4: Quality and quality spaces A number of en-
tries refer to qualities—i.e. colours, shapes, sizes, weights,
etc.—of the instances. Around 12% of the features could be
understood as qualities. For these cases, FOs like DOLCE
provide a quite sophisticated analysis of quality ascriptions,
relying on Conceptual Spaces (Gärdenfors, 2000). This ap-
proach renders the ascription of colors by introducing a re-
lation of location between a quality and its quale, e.g. be-
tween the colour of a fish and a particular value of it, such as
“bluish grey”, which belongs to a suitable conceptual space
of colours.

Mode 5: Constitution Other entries in the LCD contain
the expression “made of” which is usually associated to
what ontologists term constitution. For instance, DOLCE
has a well-developed theory of constitution that is capable
of approaching classical philosophical puzzles involving the
persistence conditions of a statue constituted by a lump of
clay. In this context, all the claims about the constitution
of objects pertain to the artifact domain: Vehicles are “made
of Metal”, Clothes are “made of Textile”, etc. Around 5%
of the features of the artefact domain fall in this category
(≈ 2, 5% when considering the whole set of features).

5Another technical issue is to specify that the bird has to have
exactly two wings, but that this assumption is defeasible.
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Mode 6: Action and ability There are entries (mostly in
the domain of animals, which constitute around 16% of the
features) that ascribe an ability to an agentive object. Agen-
tivity is sometimes intended in a broad sense, including an-
imals. In entries such as “swim”, “flutters”, “sings”, the in-
tended meaning is that the animal can perform certain types
of actions, i.e. the proper ontological category to assign is
that of ability. Other entries include the word can which is
quite challenging due to at least two meanings of can which
have been intensively studied in knowledge representation:
ability can (e.g. “Birds can fly”) and opportunity can (e.g.
“Birds can be found in trees ”, which does not indicate an
ability of the bird).

Mode 7: Functionality and affordances Other general
concepts may be found in applications of foundational on-
tologies, in mid-level ontologies, or in more specific domain
ontologies. Deciding how general a concept is may be a
matter of discussion, however we can indicate a few quite
general concepts that have applications in representing Leu-
ven entities. Functionality is a concept usually related to
artifact ontologies. Functionalities are intended to represent
the purpose or the use of an artifact. Functionality is suitable
to represent features that are expressed by means of words
like “use”, such as in “it is used to prepare Food” (Kitchen
Utensils), or “means”, as in “is a faster means of transporta-
tion” (Vehicle). Affordances (Turvey, 1992) are related to
functionality in that they suggest a possible use of the object
involved. For instance, a “Kitchen Utensil can be used to
cut things”, i.e. affords cutting. Around 20% of the features
entered this mode of disambiguation.

In Figure 1, the column ‘Modes Of Disambiguation’ shows
an example of the application of this analysis to the concept
Bird. Overall, around 15% of the features contained in the
database escaped our classification according to these modes
of disambiguation, most of which where from the domain of
activities (Professions and Sports).

Exploiting Commonsense Knowledge: The
example of concept hybridisation

We conclude the paper discussing an application of the re-
sulting formalised commonsense knowledge in a concrete
computational implementation for concept combination.

To this end, we here briefly discuss the approach
of Righetti et al. (2021b), who recently proposed an algorith-
mic modelling of the process of concept combination, lever-
aging the refinement operators described in Confalonieri et
al. (2020) (restricted to description logic ALC), and the
techniques of axiom weakening. The paper aims to imitate
the process of making sense of ‘impossible’ hybrid combi-
nations, i.e. combinations of clashing concepts into imag-
inary objects such as “a Vehicle that is a Fish”. This is
inspired by the empirical research in cognitive psychology
identifying human heuristics for combining concepts that
lack any obvious similarities (Hampton, 2017).

In the approach of Righetti et al. (2021b), concepts are
represented as formal ontologies in Description Logic, and
the combination process is, thus, rendered as an ontology in-

tegration task. Briefly, the authors propose a turn-based al-
gorithm which is initiated with two input ontologies which
need to be blended into a final ontology describing the com-
bined concept. The authors tested the procedure on the com-
bination of the concepts Fish and Vehicle to try to replicate
one of the human combinations studied in the experiments of
Hampton (2017)—namely, the Fish-Vehicle concept. In this
case, the concepts of interest to be combined are not just dis-
similar, but, when formalised in a logical language, jointly
contain obvious and sometimes hard to resolve formal in-
consistencies. When adding an axiom to the combination
causes an inconsistency, the approach of axiom weakening
is applied until a jointly consistent compromise is found.
Intuitively, a general concept inclusion axiom of the form
C ⊑ D can be weakened by either specialising the concept
C to a smaller class, or by generalising the concept D to a
larger class, w.r.t. a given reference ontology6.

In order to replicate human concepts one needs some
repository of commonsense knowledge as a source for the
input ontologies. A straightforward, encyclopedic definition
of the concept at hand, would hardly faithfully represent
what people have in mind when blending concepts. Con-
sider, for instance, the Fish definition from Wikipedia: “Fish
are aquatic, craniate, gill-bearing animals that lack limbs
with digits. Included in this definition are the living hagfish,
lampreys, and cartilaginous and bony fish as well as various
extinct related groups.”7. This definition might quite easily
be axiomatised in a formal ontology, and there exist different
tools for automatic natural language to OWL translation (see
the related work section above) which can be employed in
the presence of such clear and precise definitions. However,
when combining the concepts Fish and Vehicle, people con-
sider much more mundane knowledge. For instance, when
combining the two concepts, humans may notice that while a
Fish eats Food (to stay alive), a Vehicle needs Fuel (to move)
(Hampton, 2017). By exploiting a heuristic similar to the
analogical mapping described by Fauconnier (1997), people
would tend to generalise this information into “both Fish
and Vehicle need some kind of Energy to move”, thus cre-
ating an interesting analogy between Food and Fuel, which
would further support the integration of the two concepts
into the combination “Fish-Vehicle”.

Fortunately, this is exactly the kind of commonsense in-
formation the Leuven concept database is permeated with,
thus suggesting the concrete usefulness of a formalisation of
the concepts contained in the database for practical AI appli-
cations. To give a further tangible example, we fed the im-
plementation proposed by Righetti et al. (2021b)8 with two
concepts contained in the Leuven Database, namely Bird
and Kitchen Utensil, previously formalised in OWL exploit-
ing the disambiguation steps described in this paper. The
concept of Kitchen Utensil-Bird was also one of the exam-

6We refer to the work of Righetti et al. (2021b) for the full de-
tails about the use of axiom weakening in this context.

7https://en.wikipedia.org/wiki/Fish.
8Available at https://bitbucket.org/troquard/

ontologyutils/src/master/.
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ples exploited by Hampton (2017) in his experiments on im-
possible combinations—see Figure 3.

Besides the features contained in the database, we in-
cluded in the ontologies a few additional axioms, aiming at
replicating some of the commonsense distinctions needed to
reason about the concepts at issue but not explicitly men-
tioned by the subjects during the Leuven experiments be-
cause considered obvious or out of scope (as discussed
above). We added, for example, the information that Animal
and Tool are disjoint classes, or that if something is located
in the kitchen it cannot (not normally, at least) be located on
a tree, etc. An excerpt of one of the resulting ontologies for
the concept KitchenUtensil-Bird is shown in Figure 2.

Figure 2: A Bird which is also a Kitchen Utensil: an exam-
ple of a blend exploiting the LCD information.

The procedure described by Righetti et al. (2021b) allows
for a fine-grained selection of the combination strategies, by
allowing the choice of a preference order over the axioms as-
signed to both agents/ontologies, as well as the distribution
of turns. Also, different evaluation strategies are proposed to
evaluate the outcome of the combination. Here, the example
has just an illustrative purpose, and we set a random order
over the axioms and an equal distribution of turns. How-
ever, the output of the procedure is surprisingly similar to the
combination of the two concepts as observed in the experi-
ments described by Hampton (2017), an example of which
is presented in Figure 3.

As the output of our procedure, the Whisking Woodpecker
has a beak and wings, thus showing body parts, but it also
has artefact parts (the whisk), it is used for cooking and,
being unhygienic, it also requires some washing.

Discussion and Future Perspective
The analysis of the Leuven concept database has clearly
shown the existence of a mismatch between the syntactic
surface form and the content (or the intended meaning) of
people’s statements. On the one hand, we demonstrated this
mismatch in the context of universal statements, where peo-
ple often adopt a default reasoning strategy, and where the
meaning they intend to convey is more likely close to an

Figure 3: The Whisking Woodpecker (Redrawn illustration
as given by Hampton (2017), page 113): A woodpecker used
to whisk as imagined by one of the participants of Hamp-
ton’s experiments.

existential interpretation. On the other hand, many of the
entries in the Leuven concept database lack a syntactic trig-
ger that would help to identify their intended meaning, and
ontological analysis is required to instead find a semantic
trigger. So, for instance, the recognition of mereological as-
sertions was mostly guided by our general language compre-
hension and competence for world understanding, but it was
not manifested in the syntactical description of the features.
Ontological analysis offers the means to explore systemati-
cally the possible meanings of commonsense feature ascrip-
tions and, as a result, supports a more faithful formalisation
into OWL.

We have also highlighted the fruitful connection between
commonsense knowledge extraction and computational con-
ceptual blending. Specifically, we have illustrated the prac-
ticality of this connection in a concrete computational work-
flow and use-case. Although illustrative in purpose, the ex-
ample showed the effectiveness of the proposed method-
ology in replicating human conceptual combination as ob-
served in the context of experimental psychology. In this
context, the modes of disambiguation, as well as the syntac-
tic analysis described above, could be exploited further, as a
way to steer and guide the blending process. One may, for
instance, integrate the dialogue implementation discussed
above (Righetti et al., 2021b) to take into account such in-
formation, e.g. through the application of appropriate pref-
erence orders over the axioms of the two agents. This way
one may prefer axioms involving universal, rigid statements,
thus preserving them during the combination, and instead
prefer the weakening of default statements, thus simulating
a process similar to defeasible inference. Therefore, we plan
to develop this further in future work towards more fine-
grained evaluation metrics for blends and their creativity, in
which essence fights serendipity.
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Abstract
A wise design of time constraints is crucial for the compu-
tational realization of several creative tasks. In this paper
we focus on live generation of word associations unfolding
semantic paths modulated by contextual clues. We present
the Word-Weaving Clock, a lexical creative system perform-
ing the generation of word associations where both seman-
tic and time constraints are taken in account. The system is
meant to be used interactively as part of a live demonstration.

Introduction
Do time constraints promote creativity? And if it is true for
human creativity, does this also apply to the computational
one?

A good number of computational-creativity tasks, mostly
inspired by Margaret Boden’s seminal ideas (Boden, 1990),
are defined as a search in a conceptual space. Unfortu-
nately, search processes are time-consuming, especially in
those cases that require access to a vast amount of com-
mon sense knowledge. This affects the feasibility of tasks
in which a time-constrained performance is essential for the
appreciation of creativity. Let’s think, for example, of a mu-
sical jam session, freestyle rap, or poetry slam. There are
forms of creative brainstorming and stand-up comedy where
prompt responsiveness or interactivity are crucial aspects of
the game.

In this paper, we focus on a specific task consisting of
a live generation of word associations unfolding semantic
paths modulated by contextual clues. We present the Word-
Weaving Clock, a lexical creative system performing the
generation of word associations where both semantic and
time constraints are taken into account. Moreover, we report
the conceptual elements and the resources employed in the
design and implementation of the system. The task and the
resources upon which it was built have been kept as simple
as possible, to facilitate its performance replicability and its
potential use as a component of more complex systems. Fi-
nally, we give examples of outputs suggesting how the sys-
tem would behave as part of a live presentation.

Background
As reported by Haught and Johnson-Laird (2003), “con-
straints are at the heart of the creative process. They gov-
ern the generation of ideas”. In particular, time constraints

affect creative writing (Biskjaer et al., 2019). They should
be tuned carefully because “creativity can be compromised
by both scarcity and abundance of time” (Liikkanen et al.,
2009; Baer and Oldham, 2006).

A major issue in applying time constraints is that search
processes are necessarily time-consuming. There is no way
to reduce arbitrarily the time required to perform knowledge
discovery in a large dataset. For this reason, indexing is an
essential aspect of the design of an information retrieval al-
gorithm, as in the case of search engines (Zuze and Weide-
man, 2011). In the recent development of transfer learning,
knowledge and language models can be effectively reused in
a way to reduce machine-learning training time (Zhuang et
al., 2021). Since both writing and ideation processes are
based on the discovery and exploitation of links between
concepts, computational creativity efforts has been put into
lexical associations. Gross et al. (2012) focused the Remote
Association Test, a task in which, given three words, the
word semantically connecting all of them is required. They
implemented it through co-occurrence frequencies of word
pairs in a large textual corpus.

In our version of this task, we have two input words with
different semantic roles. The main word generates a set of
candidate words according to the relation modeling associa-
tions in the common-sense knowledge. The clue word – in-
troduced either at the beginning or, interactively, at any point
in the process – provides a semantic context and allows the
system to make a selection from the candidate words. For
instance, the main word ‘eyes’ generates ‘skin’ according
to the ‘body’ clue word, and ‘night-sight’ according to the
‘pleasure’ clue word. Most importantly, a one-second time
constraint is imposed so that a new output word is generated
every second. The overall aimed effect is providing creativ-
ity both in the interactive experience and in the generated
path of word associations. This periodic recursion in the
generation of word associations is meant to evoke the flow of
consciousness emerging as blending of semantic pulses, as
an inspiration from the notion of Damasio’s core conscious-
ness, which is seen as “created in pulses, each pulse trig-
gered by each object that we interact with or that we recall”
(Damasio, 1999).

Task Description
The task consists of the following elements:
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• Word Selection Step. Firstly, the exploration of seman-
tic relatedness, modeling associations in common-sense
knowledge, allows the system to identify a set of candi-
date words related to the input word. Next, a further con-
textual semantic constraint (the semantic slanting) allows
the system to select the output word.

• One-Second Time Constraint. It is prefixed as the one-
second time interval within which the word selection step
should be performed.

• Iteration. The word selection step is iterated so that the
output word became the input word of the next step, thus
generating an associative word path as the overall product
of the interaction. To avoid repetitions, the words in the
associative paths are removed from the candidate words
in the next word selection step.

As an example of output, the word ‘travel’ is associated,
in the system, to the word path “booking→ hotel→ casino-
hotel → jack-in-the-box → ...”. With the clue ‘happy’, the
path is “go around→make up→ know how→well-wishing
→ ...”, while with the clue ‘unhappy’, the path is “go around
→ go slow → long-suffering → ill-being → ...”. Finally,
the input word could be used as the clue word of itself, so
reinforcing association closer to its semantic domain, e.g.
producing “booking→ tour→ visiting→ shopping→ ...”.

Implementation
1. Common-Sense Associations: Word Embeddings

One of the most effective ways to implement semantic relat-
edness of words (the so-called “word similarity”) consists
of the cosine distance between word pairs represented as
vectors (Mikolov et al., 2013). To measure word similar-
ities we employ word embedding provided by Spacy1, an
open-source software library in Python for advanced natural
language processing (Hiippala, 2021; Jurafsky and Martin,
2000). In particular, we use word2vec model for word em-
bedding Jatnika, Bijaksana, and Suryani (2019) trained it on
a large-scale language model in English2. In the analysis of
word similarity, the procedure filtered word pairs with simi-
larity values greater or equal to 0.2.

2. Semantic Slanting: Clue Word

Once found a set of candidate words, all semantically re-
lated to the current word, the further selection is performed
according to the semantic relatedness with the clue word
slanting the search of associations toward a specific seman-
tic domain or connotation. The clue word could represent
an emotion or, more abstractly, a sentiment polarity (e.g.,
either positive or negative). In a possible live demonstra-
tion, the system is meant to insert or modify the clue word
at runtime, in such a way as to modulate the associative path
interactively.

1https://spacy.io
2spacy.io/models/en#en core web lg

3. Time Constraint: Indexing

We need to reduce the running time for each word selection
step below a single second. The main bottleneck is mea-
suring word similarity for all word pairs whose first term
is the input word. Word similarity search is highly time-
consuming. For instance, measuring word similarity with
Spacy takes an average time of 20 milliseconds (with a CPU
clock speed of 3.2 GHz). So measuring similarity with 3000
words is sufficient to exceed the one-second time constraint.
Oxford Dictionary has 273,000 headwords, 71,476 of them
being in current use3. So if we want to compare an input
word with all headwords, the running time would be more
than one hour and a half. Therefore, it is clear that only
smartly-designed indexing allows the system to satisfy the
one-second time constraint.

The following points summarize the choices that allowed
us to satisfy the time constraint:

1. We collected from the Web about 27600 English nouns.
We used WordNet as a tool for selecting nouns (Miller,
1995).

2. Next, we randomized the list of nouns and partitioned it
into a number of sublists of the size of about 3000 items,
then we calculated mutual similarities inside each sublist.
In this way, we were able to develop the full system (with
the time constraint) with an increasing efficiency accord-
ing to the current state of indexing.

3. Finally, we calculated similarities between different sets,
adding a subset a time until all mutual similarities were
indexed.

In general, the number of similarity measurements Nsm

for a word set of size n is:

Nsm =
(n− 1) · n

2
− 1

Therefore, the previewed overall running time for the
12000 nouns plus three subsets of 3000 items takes about
three weeks of computation. The full set of 27000 nouns
would need 84 days of computation.

As part of this research contribution, we provided the in-
dexed resource in a text file4. To implement fast indexing
and retrieval, we created a database using sqlite35 – Python
interface to SQLite6 database engine library. In the current
version of the Word-Weaving Clock, most of the contribu-
tion to running time is mostly consisting in searching the
table rows with similarity values, having the input word as
either the first or the second element of the word pair.

3https://en.wikipedia.org/wiki/List_of_
dictionaries_by_number_of_words − retrieved May
28, 2022.

4https://www.kaggle.com/datasets/
alessandrovalitutti/noun-similarity-pairs

5https://docs.python.org/3/library/
sqlite3.html

6https://www.sqlite.org/index.html
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Figure 1: Example of similarity word tree as the composition
of indexed word-similarity associations.

Examples of Outputs
Figure 1 shows an example of indexed common-sense word
associations (without semantic slanting). Starting from the
root word ‘star’, the procedure selects the node containing
the word most similar to the word in the current parent node.
Dark grey nodes contain words already included in the asso-
ciative path, thus removed from the future selections.

Table 1 compares different possible associative paths gen-
erated from the word ‘star’ and corresponding to different
clue words (from the second to the last column) or without
semantic slanting (first column). Clue words with opposite
polarity (e.g., ‘success’ vs. ‘failures’) modulate the gener-
ation of paths with positive and negative sentiment, respec-
tively (columns two and three). In particular, emotion words
with opposite polarity (e.g., ‘joy’ vs. ‘disgust’) allow the
procedure to generate paths characterized by affective va-
lence (columns four and five). Moreover, using a domain
word as a clue word (such as ‘physics’ or ‘movie’ induces a
reinforcement in the generation of words in that domain (see
columns six and seven). Finally, comparing columns one
(no clue word) and seven (‘movie’ as clue word), we can see
that semantic slanting tends to keep word associations in the
same domain, although without semantic slanting the path
can include more domains with higher semantic cohesion
(e.g. cinema and music in column 1).

We emphasize that the reported examples are generated
with a preliminary version of the similarity database. Next
versions will access associations with higher values of word
similarity and corresponding quality in the semantic cohe-
sion.

Conclusions
The Word-Weaving Clock has been conceived primarily to
stimulate interest in the study of timing in computational-
creativity tasks. Time constraints are meant to be taken into
account not only to improve user experience but also the de-
sign process itself since it challenges the designer to per-
form a wise balance between offline indexing and runtime
running. Although the main intended creative value is in
the interactivity experience that comes from a live demon-

stration of the system, the produced associative path can be
considered as an artifact exhibiting creative value per se.
A testbed version of the system could be used for the of-
fline exploration of alternate paths according to different se-
mantic and temporal parameters, for identifying values and
ranges useful to improve the interactive version. The pro-
vided dataset of similarity values on English nouns is a po-
tential handful resource for allowing researchers to further
explore common-sense associations without the need for in-
dexing.

As a possible application, time beat synchronized asso-
ciative paths could be used as a backbone for the real-time
selection of tweets or poetic lines. Semantic slanting could
be performed according to more complex semantic patterns
modeling personality traits. For example, the alternation of
positive and negative slanting words could be used to mimic
emotional instability.

Our next step in the development of the proposed sys-
tem is to explore processing threads, to make it capable of
performing both information indexing and retrieval concur-
rently. In some contexts, it would be interesting providing
the system with full autonomy in analyzing a set of texts and
building its model of word embedding, according to which
the word associations will be discovered. Finally, we intend
to explore different scenarios and user interfaces to make
the system useful as a testbed for the offline exploration of
associative paths.
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Abstract

Generating novel items with desired characteristics re-
quires creativity. One method to achieve this is through
creative transformations. Deep learning network meth-
ods provide an interesting potential substrate for this
task. This paper presents a method for network-based
generation of novel images by applying variational au-
toencoders (VAEs) to learn features, which are then
perturbed based on a class-to-class (C2C) method for
learning of inter-class similarity and difference informa-
tion, enabling generating creative samples. Our method
learns the pattern between classes, applies this pattern
to samples of a source class, and generates new samples
of a target class. This study also proposes a general ap-
proach to evaluating the creativity of sample generators
for classification domains, by evaluating the samples
generated by the generator trained in a one-shot setting.
The evaluation approach requires only classification la-
bels but not human assessments of creativity. An ex-
periment in two image domains supports that the sam-
ples generated by our method satisfy two of Boden’s
creativity criteria: being valuable (falling into desired
categories) and novel (samples show high variance).

Introduction
Advances in machine learning have yielded many success-
ful deep generative models (Pan et al. 2019). Such models
generate samples conforming to the distribution of the train-
ing data, leading to samples that are “authentic” in the sense
of substantially sharing the properties of real examples. A
surge of research in computational creativity is applying
generative deep learning methods while inducing novelty—
and even surprise—for the sake of creativity, as described in
the surveys of Franceschelli and Musolesi (2021) and Broad
et al. (2021). For example, the creative adversarial network
proposed by Elgammal et al. (2017) is a generative adver-
sarial network (GAN) that generates artwork that is realistic
but also deviates from style norms. Similar work has in-
duced creativity in GANs by introducing additional goals
(loss functions) beyond the original adversarial loss (e.g.
StyleGAN (Karras, Laine, and Aila 2018) and (Sbai et al.
2018)). Following StyleGan, Nobari, Rashad, and Ahmed
(2021) proposed a systematical method to modify GANs to
automatically generate novel designs without human inter-
vention. Generally, variational auto encoder (VAE) methods

are less suited for creativity tasks because their reconstruc-
tion loss aims to mimic the data distribution within a learned
latent space and it is difficult to reflect other goals in the cor-
responding loss function. However, these latent spaces can
be manipulated to induce creative results (e.g. MusicVAE
(Roberts et al. 2018b) and sketchRNN (Ha and Eck 2017)).

Characterizing the creativity of AI systems requires crite-
ria for assessing the creativity of a process or of a system’s
results within a task context. Developing such criteria is
nontrivial and has received considerable attention (Wiggins
2021). Boden (1991) provides three criteria for assesssing
the creativity of outputs of a process: value, novelty, and
surprise. Many researchers have continued this school of
thought, refining and expanding on these criteria (Wiggins
2006; Draper 2010).

This paper addresses creativity as it applies to generating
new samples for a target class when training samples are
limited. We consider a sample (generated or not) to be valu-
able if it fits in the target class, and novel if it is different
from the observed samples of the target class. According to
Boden, surprise can happen when the sample is unexpected
(which requires a prior expectation entity). We do not con-
sider surprise when evaluating our model.

This paper makes two contributions. First, we present an
algorithm for generating creative samples in a classification
domain. The algorithm uses a method we call a class-to-
class variational autoencoder (C2C-VAE), which learns a
latent space of the difference patterns between samples of
all classes. The C2C-VAE then samples new differences
from this latent space, and applies the difference to exist-
ing samples in the original conceptual space to generate new
samples. Second, we address the general question of how
to evaluate the creativity of sample generators for classifi-
cation in a one-shot setting. We propose an approach which
we call GOF/TOM—“Generated On Few, Tested On Many.”
A generator is trained in a zero, one, or few-shot setting
where samples of a target class are trimmed from the train-
ing set. The generator is then used to generate new samples
of the target class. Meanwhile, an oracle is trained on the
untrimmed dataset to evaluate the generated samples. Be-
cause the generator has limited examples of the target class,
its ability to generate satisfactory unseen samples of the tar-
get class can be used as measure for its creativity. This is
used to evaluate the C2C-VAE.
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We begin by discussing related techniques for generating
and measuring computational creativity. We then present
our C2C-VAE approach for generating creative samples, and
introduce our GOF/TOM approach for evaluating creativ-
ity. Finally, we evaluate C2C-VAE on two data sets, MNIST
(LeCun and Cortes 2010) and Fashion-MNIST (Xiao, Ra-
sul, and Vollgraf 2017), using the GOF/TOM approach. In
the two data sets, C2C-VAE successfully generates samples
that are valuable and novel with respect to its training data,
making a case for the potential of C2C-VAE as a creative
approach. We examine the limitations of C2C-VAE and pro-
pose methods for addressing them in future work.

Background
Active Divergence with Generative Deep Learning
In her seminal work, Boden (1991) identifies three forms of
creativity: combinatorial, exploratory and transformational.
Combinatorial creativity generates new ideas by combining
old ones. Exploratory and transformational creativity both
involve a conceptual space, where the former explores the
conceptual space while the later alters it, potentially causing
a paradigm shift (Wiggins 2006; Franceschelli and Musolesi
2021).

Franceschelli and Musolesi (Franceschelli and Musolesi
2021) consider VAEs and GANs to perform exploratory cre-
ativity, as they both sample from a conceptual space. GANs
can be also be transformational. As an example, in CANs
(Creative Adversarial Networks), the discriminator deter-
mines both whether a sample image is art or not and its artis-
tic style, while the generator tries to generate art and also
generates deviations from original style norms. GANs can
even be combinatorial. For example, StyleGAN can achieve
style mixing by combinig the latent codes of two samples at
multiple different levels of detail.

A CycleGAN is a image-to-image translation technique
that can translate an image of one class into an image of an-
other, e.g. modifying the image of a horse h into that of a
zebra z using a translation function Z (or conversely from
a zebra into a horse, using a function H). A CycleGAN is
trained with two loss functions: 1) An adversarial loss trains
the generators Z and H to generate quality images (so that
a horse h can be translated into a realistic zebra Z(h)); 2) A
cycle-consistency loss ensures the transition can go back-
and-forth (so that the horse-translated zerba Z(h) can be
translated back to a horse H(Z(h)) similar to the original
horse h). The artist Helena Sarin uses CycleGAN to gener-
ate creativity-related artwork (NVIDIA 2021).

Our proposed model is based on variational autoencoders
(VAEs) (Kingma and Welling 2013). A VAE is comprised of
an encoder and a decoder, both implemented as neural net-
works. The encoder takes samples as inputs and compresses
them into a Gaussian distribution of lower-dimension em-
bedding vectors in a latent space. The decoder takes an
embedding vector and recovers the original input sample.
Regularity—the property of similar samples having similar
representations—is encouraged in the latent space because a
sample is encoded as a distribution of embeddings, instead
of a single embedding as in autoencoders (the forerunners of

VAEs).
Features extracted by VAE can be manipulated by per-

turbation and even vector arithmetic for creative results.
For example, MusicVAE (Roberts et al. 2018b) has the
ability to “adjust the number of notes in a melody by
adding/subtracting a note density vector to/from the latent
code” (Roberts et al. 2018a). Similarly, sketchRNN can
“subtract the latent vector of an encoded pig head from the
latent vector of a full pig, to arrive at a vector that repre-
sents a body. Adding this difference to the latent vector of
a cat head results in a full cat (i.e. cat head + body = full
cat)” (Ha and Eck 2017). The effects of such modification
over VAE embeddings are not guaranteed and only partially
understood. As noted by Ha and Eck (2017), such analogy
is only possible when the embedding distribution is smooth
and any interpolation between two embeddings is coherent.
This study attempts to model the differences between pairs
of embeddings extracted by VAE.

In the taxonomy of active divergence by Broad et al.
(2021), this study proposes a method of chaining models.
The method is a combination of a standard VAE with a sec-
ondary VAE (C2C-VAE) that explores the learned represen-
tation of feature differences.

Class-to-class Approach
Classification methods commonly consider the similarity
of new instances to instances in a class. The Class-to-
class (C2C) approach considers both similarity and differ-
ence. It assumes that there exist inter-class patterns be-
tween each pair of classes, and the samples from the two
classes are consistently similar in some features and dif-
ferent in some other features. For example, zebras and
horses have the similarity of both belonging to the Equidae
family, and the difference that zebras have stripes while
horses do not. The inter-class patterns, once learned, can
be used to classify a query based on instances from an-
other or multiple other classes (Ye 2018a; Ye et al. 2020;
2021).

We hypothesize that inter-class patterns can also be used
in computational creativity. A system that learns inter-class
difference patterns can intentionally apply the patterns to
modify a sample. For example, knowing that zebras have
stripes and horses do not, the system can modify a horse im-
age by replacing its texture with black-and-white stripes and
thus create a new zebra image.

The C2C approach is highly related to GAN methods. For
example, CycleGAN is trained on unpaired image-to-image
data from one class to another and can generate zebra im-
ages from horse images (Zhu et al. 2017). GAN methods
are mostly end-to-end. For example, CycleGAN generates
an output image from an input image, and the inter-class
pattern is integrated into the procedure of the model and is
applied automatically in the forward pass of the neural net-
work. C2C methods work with the inter-class pattern di-
rectly. For example, the method to be presented in this study
uses the feature differences between two samples as both
inputs and expected outputs of an variational autoencoder.
This difference provides more flexibility to introduce cre-
ativity. More specifically, our approach can choose an inter-
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class pattern as the modification and also choose a sample to
apply this modification.

Measurement of Creativity

Franceschelli and Musolesi (2021) survey multiple cre-
ativity measures implemented via machine learning algo-
rithms. Our method, GOF/TOM (“generated on few, tested
on many”), fits within the formalization of the generate
and test framework (Toivonen and Gross 2015), in which
the system uses a generative function to generate sam-
ples and an evaluation function to evaluate the samples.
The authors describe three works (Varshney et al. 2013;
Norton, Heath, and Ventura 2010; Morris et al. 2012) that fit
in this framework.

Varshney et al. (2013) proposes a system that generates
creative recipes. The novelty of a recipe is evaluated based
on Bayesian surprise, the difference between a prior proba-
bility distribution of recipe and a posterior probability distri-
bution after a new recipe is observed. The value of a recipe is
evaluated by a model predicting pleasantness of scent from
its ingredients and flavor compounds in those ingredients.

Ritchie (2007) describes that creativity can come from an
inspiring set, which is a set of usually highly valuable sam-
ples used to train or configure the generator. Gervás (2011)
expands on this by splitting an inspiring set into a learning
set, which informs the construction of the generator, and a
reference set, which is used to evaluate the novelty of gener-
ated samples. Similarly, Morris et al. (2012) uses an inspir-
ing set (crockpot recipes) to generate samples via a genetic
algorithm and to evaluate the quality of generated sample by
training a multilayer perceptron to predict user ratings from
a sample.

Creativity Inspired Zero-Shot Learning

The goal of a zero-shot learning task for classification is to
train on seen classes and then predict the class label of a
sample from an unseen class (or samples from seen and un-
seen classes in generalized zero-shot learning). Elhoseiny
and Elfeki (2019) implemented a creativity inspired zero-
shot learning algorithm. In that work, both visual and se-
mantic information are available for seen classes but only
semantic descriptions are available for unseen classes. The
authors introduce a creativity inspired zero-shot learning
method which trains a discriminator to differentiate between
real and fake images and also classifies an image into seen
classes. It also trains a generator to generate realistic images
based on texts describing seen classes and realistic yet hard-
to-classify (high entropy over seen classes) images from
“hallucinated” texts. This training goal drives the genera-
tor to explore the latent space of texts with two objectives:
1) Generate samples that are realistic; 2) Generate samples
from hallucinated texts. These properties enable the genera-
tor to generate realistic images based on the descriptions of
unseen classes.

Creative Sample Generation with a
Class-to-class Variational Autoencoder

This paper proposes a class-to-class variational autoencoder
(C2C-VAE) approach to generating creative samples in the
context of classification—that is, generating creative sam-
ples falling within desired categories (e.g., generating im-
ages for creative versions of a given letter of the alphabet).
For this task, the C2C-VAE approach learns the difference
pattern between pairs of samples of two different classes.
Four spaces are involved in this task: the original sample
space L1, the feature space L2, the space of feature differ-
ences L2′, and the space of feature difference embeddings
L3. As a precondition, C2C-VAE relies on a means to tran-
sition between L1 and L2, more specifically, to extract a
feature f(s) from a sample s and also to recover a sample s
from feature f(s).

For our testbed system (illustrated in Figure 1), we train
a traditional VAE on the training data and use the encoder
f to extract features and the decoder f ′ to recover samples.
Given a pair of samples from different classes, s1 ∈ C1 and
s2 ∈ C2, a VAE can extract their features f(s1) and f(s2) in
the space L2. The feature difference f∆(s1, s2) in the space
L2′ can be calculated as f∆(s1, s2) = f(s1) − f(s2), an
element-wise subtraction between two feature vectors. The
space L2′ can be thought of as the complement of the space
L2, whence the name L2′.

C2C-VAE is based on the class-to-class assumption that
the feature differences (in space L2′) from one class to an-
other class follow a consistent pattern. This pattern can be
represented as an embedding vector (or a distribution of em-
beddings) in another latent space L3. The C2C-VAE is itself
another variational autoencoder with an encoder g that en-
codes a feature difference f∆ in L2′ to an embedding g(f∆)
in L3 and a decoder g′ that decodes an embedding g(f∆)
back to a feature difference f∆. Note that both the VAE
encoder f and the C2C-VAE encoder g are variational en-
coders that encode an input to a distribution of embeddings.
This is to ensure regularity in the latent space L2 and L3.
For simplicity, the encoder f (or g) can be thought of as
extracting one feature (or a feature difference embedding)
from an input.

Because there exist multiple pairs of classes and each pair
Ci−Cj has its own unique pattern, a C2C-VAE either learns
only one pattern, reflecting a specific pair of classes Ci−Cj ,
or learns multiple patterns by conditioning its encoder and
decoder with extra parameters indicating Ci and Cj . In our
tests, we take the later approach. Therefore, the C2C-VAE
presented here is actually a conditional variational autoen-
coder (Sohn, Lee, and Yan 2015).

Training a C2C-VAE
A C2C-VAE is trained using the following procedure:
• Train a traditional VAE with encoder f and decoder f ′.
• Assemble training pairs: Randomly collect 10000 pairs

of samples during every training epoch. For each sample
pair si (of class Ci) and sj (of class Cj), extract their
features f(si) and f(sj), calculate their feature difference
f∆(si, sj) = f(si)− f(sj).

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

316



encoder f

reconstruction loss +  
Regularizer (gaussian)

sample s1

encoder f
sample s2

decoder f'

f(s1)

f(s2)

encoder g

reconstruction loss +  
Regularizer (gaussian)

feature
difference fd

decoder g'difference encoding 
g(<fΔ, C1,C2>)
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recovered
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C1 + C2

fΔ = f(s1) - f(s2)

VAE C2C-VAE

Figure 1: A VAE extracts (recovers) a feature from (to) a sample. A C2C-VAE extracts (recovers) an embedding from (to) a
feature difference. L1 entities are marked with rectangles, L2 and L2′ entities with circles, and L3 entities with diamonds.

• Train C2C-VAE with the vector < f∆, Ci, Cj >: The en-
coder g (conditioned on the class pairs) learns to encode
the input to embedding g(< f∆, Ci, Cj >). The decoder
g′ (also conditioned on the class pairs) learns to decode
the embedding back to f ′

∆ = g′(g(< f∆, Ci, Cj >), <
Ci, Cj >). Both g and g′ are trained to minimize the
reconstruction loss and the KL-divergence between the
prior distribution (in this case, a Gaussian distribution)
and the distribution of embeddings g(< f∆, Ci, Cj >).
The loss function for C2C-VAE is:

loss =||g′(g(< f∆, Ci, Cj >), < Ci, Cj >)− f∆||2
+KL[g(< f∆, Ci, Cj >), N(0, 1)]

Just as a VAE can generate new samples of the original
space L1. A C2C-VAE can generate new feature differences
in L2′, which in turn can be used to modify features in L2.
The modified features can then be recovered as new sam-
ples in L1. More specifically, A C2C-VAE can be used to
generate a new sample sj of a target class Cj by adapting
an existing sample (called as the source sample) using the
following procedure:

• Choose a source sample si of class Ci in the space L1.
Get its feature f(si) in the space L2.

• Sample an embedding g(< f∆, Ci, Cj >) from the
Gaussian distribution N(0, 1) in space L3. Decode this
embedding to get a feature difference f ′

∆ = g′(g(<
f∆, Ci, Cj >), < Ci, Cj >) in the space L2′.

• Apply the feature difference f ′
∆ in L2′ to f(si) in L2, to

get the target sample feature f(sj) = f(si)− f ′
∆ in L2.

• Decode the target sample feature f ′(f(sj)) to the sample
space L1

This procedure touches each of Boden’s three proposed
aspects of creativity. It is exploring the space L3 of differ-
ence patterns, combining a feature difference with another
feature in L2, and transforming the sample in L1.

In Boden’s original definition, the boundary between ex-
ploratory and transformational creativity is blurred. For this
reason, Wiggins (2006) refines Boden’s original framework
by identifying two rule sets defining the conceptual space (in
our previous terminology, this is L1, perhaps even L2.): the

rule set R that constrains the space and the rule set T that
traverses the space. Transformational creativity can emerge
from either transforming R, leading to a new conceptual
space, or T , leading to new traversal in the same concep-
tual space. Under Wiggins’ definition, C2C-VAE is applying
T -transformation, where samples in the original conceptual
space are modified by difference patterns sampled by C2C-
VAE.

From the perspective Boden’s three criteria of creativity,
we hypothesize that C2C-VAE can generate realistic feature
differences leading to valuable (within-category) samples,
thanks to the regularity offered by both VAE and C2C-VAE.
C2C-VAE provides three means for achieving novelty: 1)
sampling in the space L3, allowing variation in the feature
difference; 2) diversifying the source sample and adapting
from different samples or classes; 3) sampling in the space
L2, allowing variation in the feature of the source sample.
Our testbed system focuses on the first means for creativity.

Evaluating Creativity for One-Shot
Classification Domains

We consider automated evaluation of creativity of gener-
ated samples in a classification domain in which a generator
can learn to generate samples from data and a classifier can
learn to classify samples. We propose a creativity evalua-
tion approach named GOF/TOM (for “generate on few, test
on many”). The approach is applicable to multiple forms of
generators (e.g. VAE, GAN). Although we describe it in a
classification task domain (as we focus on evaluating C2C-
VAE), this approach could be applied to regression or other
task domains as well.

Given a data set, a class is chosen as the target class. Data
samples of that class are called target samples. Some or all
target samples are removed from the training set, creating a
zero/one/few-shot setting (for simplicity, we will ignore the
differences between the three settings and refer them as the
one-shot setting), where the target data is not available to
the generator in its entirety. Then the generator is trained on
the trimmed training set. Meanwhile, a separate model (e.g.
classifier) is trained on the untrimmed data set. Because the
model sees target samples unknown to the generator, we call
it the oracle. There can exist multiple oracles serving differ-
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ent purposes, as in our experimental evaluation.
After training of both the generator and the oracle, the

generator is used to generate new target samples. The oracle
can facilitate the evaluation of the generated sample on the
three aspects of creativity (Boden 1991). We assume that
the oracle is implemented using deep learning or other tech-
niques enabling extraction of features for the assessment of
novelty and/or surprise.

Value The oracle classifies the generated samples. We
consider the generator able to generate valuable samples if
it can consistently generate samples of the target class. The
accuracy of the generator is the percentage of the gener-
ated samples falling into the intended class. High accuracy
means highly valuable generator.

Novelty The oracle can extract features of the samples into
a latent space. The latent space needs to be smooth so that
similar samples are close together and different samples are
distant from each other. The generated samples are novel
if their extracted features show variety. For our experiment,
we use the activation of the embedding layer of an VAE as
the feature values extracted for each sample. The variance
of the features is used as the measure of the variety of the
samples generated.

Surprise A generator achieves surprising results if it can
consistently generate samples of the target class that are
unexpected. Existing measures of surprise are surveyed in
Franceschelli and Musolesi (2021). Surprise is beyond the
scope of this paper and the capability for C2C-VAE to gen-
erate surprising samples is left for future research.

Uniqueness and Benefits
Our evaluation method differs from those mentioned earlier
in a few ways: The untrimmed data set is not the same as
the inspiring set (Ritchie 2007) because the data contained
are not necessarily creative; The generator learns from the
trimmed data set and its knowledge of the target class is de-
liberately limited. Even if the untrimmed data set is inspir-
ing, its trimmed version may not be; Instead of using a refer-
ence set as in Gervás (2011), the oracle classifier is used to
evaluate the samples; Unlike the many evaluations such as in
Norton, Heath, and Ventura (2010) and Morris et al. (2012),
the oracle classifier does not require user rating data or other
human assessment of artistry or creativity. It requires only
classification labels, which are more widely available.

Methods (Gervás 2011; Morris et al. 2012) that use some
(portion of) inspiring set for the evaluation integrate evalu-
ation within the creative system. The creative system filters
generated samples by evaluation. However, GOF/TOM esti-
mates is envisioned as a tool for after-the-fact evaluation of
the system’s performance.

Caveats
In GOF/TOM, the generator is trained in a one-shot setting
and then its generated samples are evaluated by an oracle
trained using the untrimmed data set. There are three im-
plications: 1) If the task domain is truly one-shot, then the
construction of the oracle is impossible, due to the lack of

additional data. 2) GOF/TOM may be less suitable for gen-
erators with weaker one-shot learning capability. 3) The
method assesses value based on classifications by the oracle
and novelty based on features generated by the oracle; such
features could potentially be used for assessing surprise as
well. The usefulness of all three measures depends on how
well the oracle has learned from the training data.

A concern for any automated evaluation of creativity is
whether it truly captures the important characteristics. We
believe that the use of accuracy as a proxy for value, and
variance as a proxy for novelty, is reasonable in the domains
used for the evaluation. However, these measures may miss
important aspects of creativity for some domains. More
work is needed on the measures to apply.

Evaluation
We carried out experiments on two data sets, using the
GOF/TOM approach to evaluate the creativity of C2C-VAE.
The first data set is the MNIST dataset of hand-written dig-
its from 0 to 9. The second is the fashion-MNIST dataset
of 10 classes of clothing and accessories. Each of MNIST
and fashion-MNIST is provided with predetermined splits
for training (60,000 samples) and testing (10,000 samples)
data sets; these were used for training and validation. Each
sample is a 28x28 grayscale image, associated with a label
from 10 classes. The oracle classifier and the VAE are both
trained with the full data set. The two data sets are chosen
because a traditional VAE can extract features from them.

In all experiments, each class is successively chosen as the
target class. For comparison with C2C-VAE, we also trained
a conditional VAE (CVAE). The CVAE is trained to generate
a sample conditioned on an additional parameter controlling
the class of the sample generated. During testing, both C2C-
VAE and CVAE generate samples of the target class.

System Design
The oracle for value is a resnet18 (not pretrained) net-
work, of which the first layer is replaced with a convo-
lutional layer with (in channels = 1, out channels =
64, kernel size = (7, 7), stride = (2, 2), padding =
(3, 3), bias = False), and the last layer is replaced with
a linear layer with 10 outputs for classifications.

The VAE follows a standard design. The encoder
of the VAE is composite of two consecutive convo-
lutional layers (out channels = c, kernel size =
4, stride = 2, padding = 1) and (out channels = c ∗
2, kernel size = 4, stride = 2, padding = 1), where
c = 64. A linear layer for mean and another linear layer
for log variance follow the convolutional layers and extract a
distribution of features from the output of the convolutional
layers. A feature is a vector of dimension 32. The decoder
of the VAE reverses the design of the encoder: It consists of
a linear layer and two consecutive convolutional layers. The
input and output dimensions are the reverse of their corre-
sponding encoder layers, other parameters being equal. The
VAE is trained with standard reconstruction loss and KL-
divergence loss: Lossvae = lossrecon +KL-divergence

The VAE’s encoder f serves as a feature extractor for the
C2C-VAE and also as the oracle for novelty. The resnet18
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(a) MNIST (b) Fashion-MNIST

Figure 2: Average Samples Constructed by the VAE

classifier can also extract features but the feature space is not
as smooth as that of the VAE.

The C2C-VAE has its own encoder and decoder. Given
a pair of samples, their features are extracted by the VAE
and their class labels are one-hot encoded. The encoder
takes the feature difference and the two class labels as input.
The input is passed to a fully connected RELU layer with
(out features = 32). A linear layer for mean and another
linear layer for log variance follow and extract a distribution
of embeddings, which are of 10 dimensions. The decoder
takes an embedding and the two class labels as input. The
input is passed to two consecutive linear layers to recover a
feature difference similar to the original.

The CVAE has a very similar architecture to the VAE,
except it is modified to be conditioned on the class label.
Specifically, the encoder and the decoder use the same con-
volutional layers, but their linear layers that interact with
features also take in the class labels as extra inputs.

The C2C-VAE can only generate a new sample by adapt-
ing a source sample. We choose an average sample savg (see
Figure 2) from each class C (other than the target class) as
the source sample by the following procedure:

• Select all n samples s1 - sn of the class C;

• Calculate the average of their features avg(Σf(si)) =
(Σn

i=0f(si))/n;

• Use the decoder f ′ to recover the average sample
f ′(avg(Σf(si))).

In addition to the reconstruction loss, both the C2C-VAE
and the CVAE are learning to minimize a KL-divergence
loss with a Gaussian distribution (µ = 0, σ = 1). This
means that they are both trained to project their correspond-
ing input to the Gaussian distribution. Although their inputs
and embeddings carry different meanings (The CVAE takes
input from L1 while the C2C-VAE takes input from L2′),
we note that their embedding distributions are intended to be
the same Gaussian. This also means that we could compare
their performance with regard to the standard deviation std
of the Gaussian. The experimenter can make either model
produce more or less various samples by tuning std, con-
trolling the distribution from which the model is sampling
from. The higher std is, the wider the distribution becomes,
and the generated samples lose value (accuracy) but gain va-
riety. Note that the C2C-VAE can also introduce additional
novelty by altering the source sample, but this comes at a
further cost of stability of the results (discussed in the Dis-
cussion and Future Work section).

(a) C2C-VAE (b) CVAE

Figure 3: MNIST samples generated by the models trained
under normal setting. std = 1. Both models demonstrate
valuable and various samples.

(a) C2C-VAE (b) CVAE

Figure 4: Fashion-MNIST samples generated by the models
trained under normal setting. std = 1. Both models demon-
strate valuable and various samples.

Comparison between the C2C-VAE and the CVAE
Under the Normal Setting Before examining the mod-
els under the GOF/TOM setting, we present some results
under the normal setting to provide a backdrop for compar-
ison. Under the normal setting, all models are trained on
the untrimmed data set. In all figures of generated samples,
column j represents the samples generated for class Cj . In
all the figures of generated samples by the C2C-VAE, un-
less otherwise specified, the (i, j), where i ̸= j, sample is a
sample generated by choosing the average sample of class
Ci, sampling a feature difference from class i to class j,
and applying this feature difference to the chosen sample;
Additionally, the (i, i) sample (on the diagonal) is an aver-
age sample of class Ci. In all the figures of samples by the
CVAE, column j represents samples generated by random
sampling in class Cj .

Figures 3 and 4 illustrate that both C2C-VAE and C-VAE
produce valuable and varied samples. Because the models
have seen various samples of the target class during training,
the variety here is not equivalent to novelty (but it will be in
GOF/TOM evaluation).

Figure 5 illustrates the tradeoff between value (measured
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(a) C2C-VAE (b) CVAE

Figure 5: Under the normal setting in MNIST, both C2C-
VAE and VAE trade off accuracy and variance as std is ad-
justed. Results are similar for the normal setting in fashion-
MNIST

by the accuracy of samples generated judged by the oracle
for value) and variety (measured by the variance of the fea-
tures extracted by the oracle for novelty). Under the normal
setting, the two models share similar tradeoffs.

Under the GOF/TOM Setting Our specific implementa-
tion of the GOF/TOM setting trims all samples of a tar-
get class except one average sample. We choose the av-
erage sample to better represent target class. Both CVAE
and C2C-VAE are trained with the trimmed data set. Dur-
ing each training epoch, 10% of the training batch is this
one-shot sample while 90% is randomly chosen from other
samples (CVAE trains on the batch directly while C2C-VAE
trains on pairs from the batch). This design counters the im-
balanced classes caused by trimming. Therefore the CVAE
learns about the target class from only the average sample,
while the C2C-VAE learns from pairs of this sample and
samples of other classes.

In contrast to the figures of generated samples under the
normal setting, the figures presented in this section follow an
additional rule: Column j is generated by models which are
trained under the one-shot setting, where all samples except
the average sample of class j are removed during training.
Because the models have only seen a single sample of the
target class during training, any variety of generated samples
of the target class is equivalent to novelty.

When std = 1, the C2C-VAE generates novel—thus
creative—samples while the CVAE can only generate simi-
lar samples, as shown in Figures 6 and 7.

Figures 8 and 9 illustrate the tradeoff between value (mea-
sured by the accuracy of samples generated judged by the
oracle for value) and novelty (measured by the variance of
the features extracted by the oracle for novelty). C2C-VAE
exhibits an accuracy and variance tradeoff as std is tuned.
For a given level of variance, CVAE needs a bigger std
change at a bigger cost of accuracy than C2C-VAE. For ex-
ample, CVAE needs std = 4 to gain the same variance as
C2C-VAE for std = 1 in MNIST, and std = 4.5 to gain the
same variance as C2C-VAE (std = 1) in fashion-MNIST.
When std is so high, the quality of the images is very poor,
as shown in Figure 10.

(a) C2C-VAE (b) CVAE

Figure 6: MNIST samples generated by the models trained
under one-shot setting. std = 1. Intuitively, C2C-VAE gen-
erates more creative samples.

(a) C2C-VAE (b) CVAE

Figure 7: Fashion-MNIST samples generated by the models
trained under one-shot setting. std = 1. Intuitively, C2C-
VAE generates more creative samples.

Discussion and Future Work
Conditions for Success of the C2C-VAE Method
The applicability of the C2C-VAE method depends on three
conditions: (1) There exists a VAE that can extract features
of samples, (2) there exists a C2C-VAE that can extract em-
beddings of feature differences of two classes, and (3) the
generated feature differences can be applied to a chosen
sample. Condition (1) depends on properties of VAEs and
is beyond the scope of this paper.

Condition (2) can fail if the feature differences between
two classes do not conform to a single pattern. When two
classes each have wide distributions, the difference between
the two distribution can have very high variation, decreasing
effectiveness of the C2C approach (Ye 2018b). For exam-
ple, drawings in the Quick, Draw! dataset vary considerably
within classes. For example, a cat or dog may be drawn with
a head only, or with a body, or with limbs and a tail.

Even if condition (2) holds, C2C-VAE can be sensitive to
the choice of source sample, causing the failure of condition
(3). C2C-VAE can generate creative samples by generating
from different source samples, while at the risk of generating
bad samples (see Figure 11).
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(a) C2C-VAE (b) CVAE

Figure 8: Under the one-shot setting in MNIST, C2C-VAE
can trade off accuracy and variance when std is tuned. For
a given level of variance, CVAE needs a bigger std change
at a bigger cost of accuracy than C2C-VAE.

(a) C2C-VAE (b) CVAE

Figure 9: Under the one-shot setting in fashion-MNIST,
C2C-VAE can trade off accuracy and variance when std is
tuned. For a given level of variance, CVAE needs a bigger
std change at a bigger cost of accuracy than C2C-VAE.

In the procedure for generating new samples using C2C-
VAE, the choice of a source sample si and the choice of a
feature difference embedding and its subsequently induced
feature difference f ′

∆ are currently two independent choices.
There could (and perhaps even should) exist some depen-
dency between the two choices. As a future direction, both
conditions (2) and (3) may be resolved by conditioning the
C2C-VAE on the source sample.

Relationship to CycleGAN
C2C-VAE and CycleGAN are completely different tech-
niques but share many foundational assumptions. Cycle-
GAN assumes a pattern between two classes and trains
translation functions (generators) on all possible pairs be-
tween two classes to learn it. The reconstruction loss of
C2C-VAE (that the feature difference can be recreated) cor-
responds to the cycle-consistency loss of CycleGAN (that
the sample can be recovered). The reconstruction loss of
the VAE which C2C-VAE depends upon for feature extrac-
tion (a realistic sample can be reconstructed from a feature)
corresponds to the adversarial loss of CycleGAN (the recov-
ered sample is realistic). The two models are similar in their
foundations, but C2C-VAE works with the space L2′ while
CycleGAN works with the space L1 (and arguably L2).

GOF/TOM can benefit from GAN. In its current design,
the oracle for value often classifies a generated sample confi-
dently with high activation score even if it is of poor quality
by human perception. As a future direction, the oracle might

(a) MNIST (std = 4) (b) Fashion-MNIST
(std = 4.5)

Figure 10: To gain variance, CVAE requires greatly in-
creases std, sacrificing quality of generated samples

(a) Generated by Modifying
Average Samples

(b) Generated by Modifying
Random Samples

Figure 11: If the source samples are randomly selected,
C2C-VAE might generate bad samples. Here std = 0, so
variance is solely due to the choice of source samples.

be integrated with a discriminator of GAN to better distin-
guish poor samples.

Conclusion
Creativity from Inter-Class Patterns

Network-based models provide exciting mechanisms for
modeling creativity in AI systems. Existing work on gen-
erative methods for creativity can be seen as oriented pri-
marily towards the conceptual space of samples, while C2C-
VAE exploits the relationship between samples. If existing
approaches look at the foreground of conceptual space L2,
C2C-VAE looks at the background L2′, in order to bring
that background to bear as additional information to facil-
itate creative sample generation in one-shot settings. The
presented experiments support that for a creative image gen-
eration task, C2C-VAE can achieve high novelty—variance
in generated samples—while maintaining accuracy.
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Abstract

Recent advances in deep learning, such as powerful generative
models and joint text-image embeddings, have provided the
computational creativity community with new tools, opening
new perspectives for artistic pursuits. Text-to-image synthesis
approaches that operate by generating images from text cues
provide a case in point. These images are generated with a la-
tent vector that is progressively refined to agree with text cues.
To do so, patches are sampled within the generated image, and
compared with the text prompts in the common text-image
embedding space; The latent vector is then updated, using gra-
dient descent, to reduce the mean (average) distance between
these patches and text cues. While this approach provides
artists with ample freedom to customize the overall appear-
ance of images, through their choice in generative models, the
reliance on a simple criterion (mean of distances) often causes
mode collapse: The entire image is drawn to the average of all
text cues, thereby losing their diversity. To address this issue,
we propose using matching techniques found in the optimal
transport (OT) literature, resulting in images that are able to
reflect faithfully a wide diversity of prompts. We provide
numerous illustrations showing that OT avoids some of the pit-

falls arising from estimating vectors with mean distances, and
demonstrate the capacity of our proposed method to perform
better in experiments, qualitatively and quantitatively.

Introduction
The computational creativity community has been at the fore-
front of engaging with recent advances in deep learning,
adopting early on generative models that are able to produce
high-quality text and images. Such models offer varying
degrees of realism and control to the artist, enabling the gen-
eration of results with artistic value. Recent advances have
brought forward models that can produce images from nat-
ural language prompts, using pre-trained image generative
models guided by text descriptions (Radford et al. 2021). The
computational creativity community has seized this oppor-
tunity, has shared large bodies of code (Burton-King 2021;
Murdock 2021a) and generated a large body of artwork, some
of which has been curated online (Snell 2021; Murdock ).

These tools are favoured by artists because they can shape
generation in various ways: For instance, a relevant genera-

(a) Generated images from two-prompts using our method. (Left) “Walt
Disney World.” and “a daytime picture of Tokyo.” (Right) “A painting of
cat.” and “A painting of dog.”.
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(b) The architecture of our work. Iteratively, the loss is com-
puted forward (marked by→) and the gradient is calculated
backward (marked by←) to update the latent variable z.

Figure 1: Our method illustrated with generated images and the architecture. In contrast, the existing method would fail with
these two-prompts, producing images with less diverse features (left) or a painting with much different art style than single
prompt (right). This is because the existing method of taking the mean cannot treat different parts of the image separately, and
vector arithmetic in the latent space introduces uncontrollable changes in the semantics. Detailed analysis can be found in text.
All figures in this paper are generated using pre-trained CLIP and VQGAN models, both publicly released under MIT license.
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tive model can be used in that the style of pieces of art that
can be produced can be efficiently guided by selecting a rel-
evant generative model G. While this degree of freedom is
useful, little has changed on how text prompts are handled in
that pipeline:

Images can be generated using the following pipeline: The
user supplies a generative model G and a text prompt t. An
initial latent vector z is sampled randomly; the fit between its
corresponding image x = G(z) and the desired prompt t is
quantified using their distance in a common CLIP embedding
space; In order to minimize that distance, z is updated itera-
tively using gradient steps. Because both the CLIP embed-
ding and G are differentiable, gradients for these distances
are obtained using automatic differentiation.

In practice, a few more tricks are needed to produce con-
vincing images. To accommodate the important artistic re-
quirement that multiple concepts appear in images, several
text prompts are allowed, but are pre-aggregated in embed-
ding space to result in a composite prompt vector. Next,
rather than consider the entire image against that composite
prompt vector, several patches with random size, orientation
and placement are sampled within the image x, and are then
compared with the composite prompt, before these distances
are averaged to form the overall loss.

These tricks rely therefore on aggregations: the mean of
various prompt embeddings is used to define a single target
prompt, and the various distances of all patches to that target
are also reduced to their average. We argue, and we show
later in the paper, that this reliance on averages can cause sev-
eral issues, causing notably generated images to have parts
that are uniformly closer to all prompts, thus defeating the
original motivation of using multiple prompts to obtain artis-
tic images with diverse objects. Another important drawback
of averaging prompt embeddings is that it can potentially
introduce uncontrollable changes in semantics, with a mean
prompt embedding falling in a region of the embedding space
with no corresponding meaning.

We propose to address this issue by treating the embed-
ded patches of generated image and texts as vectors sampled
from two probability distributions, and to use computational
optimal transport (OT) (Peyré and Cuturi 2019) to find the
best matching between them. As its name suggests, OT
tries to find the minimal total effort required to “move” all
patches towards texts, using the pairwise distance as the
cost for measuring said effort. OT brings two advantages
over simply taking the mean: (1) Since patches are ran-
domly sampled, it encourages the intrinsic diversity inside
a single generated image. (2) OT does not involve vector
arithmetic in the latent space, sidestepping issues that may
arise from the non-existing semantic of a mean prompt vec-
tor. Concretely, we use Sinkhorn’s Algorithm (Cuturi 2013;
Séjourné et al. 2019) for the matching, in a way that is
efficient and, most importantly, differentiable using OTT-
JAX (Cuturi et al. 2022). Such differentiability is crucial to
allow the computation of gradient all the way back to z.

Bringing all pieces together, our proposed use of OT en-
ables the generation of images that are diverse and with-
out the issue of unwanted extra semantics, as demonstrated
empirically in the paper. Furthermore, since our proposed

method only changes how pairs of (patch, prompt) distances
are recombined, it is orthogonal to other existing parts of the
pipeline, and consists, implementation-wise, in a simple drop-
in replacement of mean operations by optimised matchings
(incidentally, taking means can be interpreted as the most
naive approach conceivable to match pairs). We start this
paper with a background section, needed to detail next our
methodology, which is illustrated and validated in various
experiments that showcase its performance, and explain why
it is able to solve several issues arising from an over-reliance
on mean distances and mean prompt embeddings.

Background
In this section, we review two pillars of our work, prompt-
guided image generation and differentiable optimal transport.
We argue in this paper that combining both is crucial to
address issues we observe in existing generation methods.

Prompt Guided Image Generation
A notable trend in the field of computational creativity is to
guide image generation using natural language as prompts.
These text-to-painting synthesis tools allow artists to specify
the content of a painting using prompts from natural lan-
guages. This text-driven generation has revolutionized the
computational generation of artworks, as evidenced in online
curated collections (Snell 2021; Murdock ). These advances
are made possible by combining two innovations from deep
learning:

Powerful image generative models. Such models include
recent generative adversarial networks (GANs) (Karras,
Laine, and Aila 2019; Karras et al. 2020; Karras et al.
2021), variational autoencoders (van den Oord, Vinyals, and
Kavukcuoglu 2017) and diffusion models (Ho, Jain, and
Abbeel 2020; Song, Meng, and Ermon 2020; Nichol and
Dhariwal 2021; Dhariwal and Nichol 2021), that can pro-
duce images with high fidelity and diversity. Formally, this
process can be denoted as x = G(z) where the generative
model G : Rdz → Rh×w×3 converts a latent space variable
z ∈ Rdz to an RGB image of height h, weight w and 3 color
channels. x ∈ Rh×w×3. z could be further manipulated to
allow generating more suitable x (Li, Jin, and Zhu 2021),
allowing artist to control the generation of artworks that fall
in desired genres (Jin et al. 2017).
Joint modeling of images and natural language. This idea has
been long in the making (Thomee et al. 2016; Li et al. 2017),
but only recently given a convincing implementation thanks
to progress in natural languages modeling (Raffel et al. 2019;
Brown et al. 2020), and notably the ability to embed jointly
images and text so well that the need for task-specific fine-
tuning is eliminated, as shown in CLIP (Radford et al. 2021).
CLIP provides two jointly-trained, differentiable encoders,
EI : Rh×w×3 → Rd and ET : T → Rd, for image and
text respectively. We do not further elaborate the domain of
text T as it is not the focus of this work. Formally, given an
image x and a text t, and a distance function D : Rd×Rd →
R+ the encoded image u = EI(x) and the encoded text
v = ET(t) are in a common comparable space U = Rd,
and D(u, v) measures the similarity between x and t. In the
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case of CLIP that is trained with cosine distance, practically
D could be chosen as cosine distance or geodesic distance,
both effectively measuring the angle between the two vectors
and being trivially differentiable. Ideally, text-driven image
generation is now feasible by iteratively adjusting the latent
space vector z, to minimize D(u, v), the distance between the
encoded image x = G(z) and encoded user-specific prompt
t. As G, EI and D are differentiable, z could be updated
using gradient Descent: z ← z − γ∇zF (z) where ∇zF is
the gradient of F defined as F (z) = D(EI(G(z)), ET(t))
and γ is a learning rate.

Using a distance from a single image to a single prompt
is usually too restrictive. Therefore, and in practice, the dis-
tance is computed over pairs of multiple images and texts
as follows: On the image side, n patches (a.k.a. cutouts.
We use these two terms interchangeably), which we de-
note as x1, · · · , xn = S(x) are randomly sampled from
image x in the fashion of image data augmentation (Shorten
and Khoshgoftaar 2019). We assume xi ∈ Rh×w×3 still
holds since we can trivially add a resizing step at the end
of augmentation. This practice serves as a regularizer to
ensure numerical stability and avoid fitting into regions
of z where G has bad support. On the text side, m text
prompts, denoted as t1, · · · , tm, are often considered, which
allows artists to explore the possibilities of art by combin-
ing multiple texts as directions. Again, they are encoded
accordingly, giving u1, · · · , un : ui = EI(xi) ∈ Rd and
v1, · · · , vm : vj = ET(tj) ∈ Rd. These pairwise distances
are then combined to form a loss, which is

F (z) = MeanD(z)
def
=

1

mn

∑

1≤i≤n,1≤j≤m

D(ui, vj), (1)

and thus the gradient ∇zF reads

∇zF =


 ∑

1≤i≤n

∂MeanD
∂ui

∂ui

∂xi

∂xi

∂x


 ∂x

∂z
(2)

where
∂MeanD

∂ui
=

1

nm

∑

1≤j≤m

∂D(ui, vj)

∂ui

∂ui

∂xi
= ∇xEI(xi),

∂x

∂z
= ∇zG(z)

(3)

and ∂xi/∂x is defined as long as the random sampling is
differentiable w.r.t. the input image x which is often the case
of data augmentations. This framing of text-driven generation
has been applied to different generators G, yielding a variety
of artistic results: using unconditional GAN generation, like
BigGAN (Murdock 2021a), VQGAN (Burton-King 2021)
and SIREN (Murdock 2021b); conditional generation using
GAN, such as StyleCLIP (Patashnik et al. 2021), that enables
editing existing images. In addition to GANs, it can also be
applied to Diffusion models (Crowson 2021; Kim and Ye
2021; Nichol et al. 2021).

Differentiable Optimal Transport
Optimal transport (OT), as its name suggests, can be under-
stood as finding an efficient way to ‘move’ or ‘transport’, the

mass from a probability distribution to another distribution.
We borrow notations from the survey book (Peyré and Cuturi
2019) and focus on one of the canonical OT formulations,
one that was proposed in (Kantorovich 1942). A discrete
measure with weights a on locations u1, · · · , un would be
denoted as α =

∑
1≤i≤n aiδui

, where notation δu stands for
a Dirac mass at location u. Similarly, for weights b on loca-
tions v1, · · · , vm we have β =

∑
1≤j≤m bjδvj . A possible

way to map a discrete measure α onto β, given a cost ma-
trix C ∈ Rn×m

+ , can be represented with a coupling matrix
P ∈ Rn×m

+ , where the amount of mass transported from the
i-th location in α to j-th location in β is stored as Pi,j . The
set of admissible couplings, U, is defined through a and b as

U(a, b)
def
=



P ∈ Rn×m

+ :
∑

j

Pi,j = a,
∑

i

Pi,j = b



 ,

These row- and and column-sum constraints for P indicate
that the entire mass from α is indeed transported to β. Kan-
torovich’s problem of interest is

L(a, b,C)
def
= min

P∈U(a,b)
⟨C,P⟩ def

=
∑

i,j

Ci,jPi,j ,

which can be solved using linear programming, notably net-
work flow solvers. The linear programming route, while
well established, has a few drawbacks: it is slow, with an
unstable solution. A possible workaround is to add an en-
tropic regularization term, where the entropy of P reads
H(P)

def
= −∑i,j (P )i,j(log(Pi,j) − 1). The regularized

problem reads:

Lϵ(a, b,C)
def
= min

P∈U(a,b)
⟨C,P⟩ − ϵH(P).

This regularization has several practical virtues: the regu-
larized problem can be solved efficiently with Sinkhorn’s
Algorithm (Cuturi 2013; Séjourné et al. 2019), a fast iterative
algorithm that only uses matrix-vector arithmetic. Another
advantage, equally important in our setting, is that this ap-
proach, as implemented in OTT-JAX (Cuturi et al. 2022)
results in fully differentiable quantities. Namely, assume that
the cost matrix C is provided in the form of a differentiable
function resulting in entries Ci,j

def
= C(ui, vj). Then the

gradient of Lϵ w.r.t. ui exists and is defined everywhere:

∀i, 1 ≤ i ≤ n,

∥∥∥∥
∂Lϵ

∂ui

∥∥∥∥ <∞. (4)

Not that the optimal solution P ϵ corresponding to Lϵ can
also be differentiated w.r.t. any of the relevant inputs, using
the implicit function Theorem (Krantz and Parks 2002), as
proposed in OTT-JAX (Cuturi et al. 2022), but this is not used
in this paper because we rely on Danskin’s Theorem (Danskin
1966) (a.k.a Envelope Theorem) to differentiate Lϵ w.r.t. C.

Methodology
Our motivation comes from the concern arising from using
an averaged loss MeanD. By focusing on means, all sampled
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(a) Our Proposed Method (OT) (b) Baseline (Mean)

Figure 2: The generated image from two prompts: “Walt Disney World.” and “daytime picture of Tokyo.” Compare with the
baseline, our methods generates images with better diversity (Disney-like architecures vs. city scense) while blending them well.

patches are encouraged to move uniformly to the mean of all
prompts. This undermines the very motivation of introducing
multiple prompts, which is to allow artists to obtain spatial
diversity in the generated images, with various areas reflect-
ing the diversity prompts. Furthermore, taking the mean
in the embedding space introduces gradients in unwanted
directions. Since the locations in the embedding space are
associated with semantics, doing so may introduce uncontrol-
lable, redundant semantics. To make things worse, the mean
arithmetic effectively assumes an Euclidean space, which is
inconsistent to the CLIP model that is trained with cosine
distance in the embedding space.

To address these issues, it is possible to devise an arith-
metic in non-Euclidean Space. However, finding a proper
choice that works well with the rest of pipeline is not trivial
and warrants a separate study. Instead we propose to elim-
inate the undesired simplifications brought by mean arith-
metics, to replace MeanD in Equation 1 with an optimal
transport loss,

F = Lϵ(a, b, [D(ui, vj)]i,j) (5)

where ai = 1/n and bj = 1/m, and the cost matrix C is
populated with pairwise distance D evaluations. Now, the
gradient ∇zF reads

∇zF =


 ∑

1≤i≤n

∂Lϵ

∂ui

∂ui

∂xi

∂xi

∂x


 ∂x

∂z
. (6)

Comparing with Equation 2, the only different term is ∂Lϵ

∂ui

which is also defined as in Equation 4. Along with other
terms (see Equation 3), all terms are defined, and thus we
know that ∇zF is also well-defined and can be used in the
iteratively updating of z:

z ← z − γ∇zF

In doing so, the above mentioned issues are solved for the
following reasons:

OT Treats different patches differently. As OT matches
patches and text prompts, it naturally introduces a distinct
treatment of patches according to their distances to text
prompts. As the patches are randomly sampled, it encourages
the intrinsic diversity inside a single generated image.

OT does not involve arithmetic in the latent space. OT re-
lies on distances, but does not use averages in embedding
spaces. Therefore it does not produce synthetic prompts
in embeddings space that may not correspond to semantics.
Furthermore, OT is agnostic to how distances are defined:
any distance, other than cosine distance or geodesic distance,
could be used to populate matrix C.

Experiments
In this section, we highlight a few possibilities brought for-
ward by using our methodology when handling multiple text
prompts. Due to the creative nature of text-to-image synthe-
sis, there is no standard measuring stick, such as classification
accuracy, to provide a simple comparison between methods.
Nevertheless, we consider a few tasks that can help us gain
insight into the novelty, the properties and the behavior of
our method. We consider:

Generated Image. Naturally the foremost task is to show the
generated image x with multiple text prompts t1, · · · , tm. In
this task, we focus on whether the generated image represents
the text prompts in a way that is distinctive and subjectively
recognized by human viewers.

Patches (Cutouts) from Generated Images. Our method im-
proves the diversity of patches through increasing the corre-
lation between the distribution of randomly sampled patches
and multiple text prompts, as we identify as a source of
issues from existing practices. In this task, we show the
patches and organize them by text prompt. Formally, we
show the n patches x1, · · · , xn sampled from x, and group
xi by j∗ = arg minj D(ui, vj), the closest text prompt in
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(a) Patches (cutouts) from our method (OT) (b) Patches (cutouts) from baseline (Mean)

Prompt 0 : Walt Disney World.
36 out of 64 cutouts are closer to Prompt 0.

Prompt 1 : A daytime picture of Tokyo.
28 out of 64 cutouts are closer to Prompt 1.

(c) Prompts closer to each prompt, in our proposed method (OT)

Prompt 0 : Walt Disney World.
49 out of 64 cutouts are closer to Prompt 0.

Prompt 1 : A daytime picture of Tokyo.
15 out of 64 cutouts are closer to Prompt 1.

(d) Prompts closer to each prompt, in baseline (Mean)

Figure 3: The cutouts (patches) from generated images in Figure 2, for both our proposed method (OT) and the baseline. We
show in (a) and (b) the sampled patches. Then in (c) and (d) we group these patches by the closer (measure by D) prompt they
are to. Due to space constraints, we only show the number of each group and six patches that are mostly closet.

the embedding space.

Tangent of Patches (Cutouts) on Cost Plane. We identify
the issue materialize in the way gradient information is pass
from F back to patches, which is ∂MeanD/∂ui part in Equa-
tion 2, and propose to use Lϵ

C such that the ∂Lϵ
C/∂ui part in

Equation 6, is better.
To quantitatively qualify such property, a few extra delibera-
tions are needed. Concretely, we first define

ϕ(ui) : Rd → Rm def
= [D(ui, v1), · · · , D(ui, vm)],

which is by definition a differentiable mapping from the
aforementioned embedding space Rd to Rm, a m-d space of
distances to prompts where the j-th element is the distance

to prompt j. As ∂Lϵ
C/∂ui ∈ Tui (the tangent space of Rd at

ui), the pushforward by ϕ at ui is defined as dϕ : Tui
Rd →

Tϕ(ui)Rm such that when applied to the gradient,

wi = dϕ(∂Lϵ
C/∂ui) (7)

is in the tangent space of Rm. Intuitively, wi is a m-
dimensional vector whose j-th element denotes the com-
ponent of gradient that moves the i-th patch towards the j-th
text prompt.

Comparing our Method with the Baseline for Two
Prompts Setting
In this experiment, we focus on a scenario with M = 2
prompts, “Walt Disney World.” and “daytime picture of
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(a) Our method (OT) (b) Baseline (Mean)

Figure 4: Tangent after pushforward of the gradients on each patch (cutout) in the embedding space to the cost plane. Each blue
dot is a patch (cutout), and intuitively, its coordinate shows the distance to one of two prompts, while its arrow shows the force of
gradient that pushes it towards the prompts. On the left side, in our method the force of gradient pushes patches to prompts with
different “mix ratio”, promoting the intrinsic diversity in the generated image from which patches are sampled. On the right side,
in the baseline all patches are pushed for the same mix of prompts, thus leading to less diversity. Formally, the exact form and
motivation for the tangent could be found mathematically in Equation 7 and its discussions.

Tokyo.” We compare two models, our proposed approach
with Optimal Transport (Equation 5) and the baseline using
Mean (Equation 1), with the purpose of investigating the
behavior of these methods and the difference made by our ap-
proach. We keep all other configurations the same. Namely,
we use a pre-trained VQGAN (Esser, Rombach, and Ommer
2021) on Imagenet dataset, N = 64 randomly sampled patch,
and 1000 iterations of updating z. We organize the conducted
tasks as explained before.

Generated Image and Patches (Cutouts) from it. In Figure 2
we show the generated image from both methods. Also in
Figure 3 we show the patches (cutouts) sampled from the
generated images at the end of all iterations.
We observe that OT helps generate images where patches
(cutouts) are more balanced (36/28 vs 49/15). Furthermore,
OT’s results are more diverse for two prompts. For OT,
patches close to “Walt Disney World.” are more like close-
ups and patches close to “A daytime picture of Tokyo.” are
mostly zoomed-out. As patches are randomly done, it reflects
the intrinsic property of generated images.

Tangent of Patches (Cutouts) on Cost Plane. We push-
forward gradients on the patches’ embedding space to this
cost plane, as explained in Equation 7, and show the results in
Figure 4. We observe that our method using OT clearly shows
that the positions in the cost plane reveal negative correlation,
which means that different parts of the generated images are
successfully encouraged to provide contribution to the simi-
larities to different promoters. This is cross-verified by the
“fan out” of tangents pushed forward to the cost plane, which
shows the divergent gradients providing patch-specific direc-
tions in updating. In contrast, baseline methods are simply
learning to be the mean of two prompts’ embeddings, as the
tangents show the uniformed gradient direction which does
not distinguish between different prompts.

Our Method’s Behavior with Multiple Prompts
Having comparing our OT-based method with the baseline
on the two prompts setting, we shift our focus to the scenario
where our method is applied to multiple prompts. As this is
we designed our method to expose fine differentiation among
prompts, it becomes interesting to investigate such behavior
when the number of prompts increases. In doing so, we
consider totally M = 6 prompts, numbered from P0 to P5:

∗ P0: Impressionism / Edgar Degas/ Landscape at Valery-
sur-Somme

∗ P1: Impressionism Laszlo Mednyanszky/ Landscape in
the Alps (View from the Rax)

∗ P2: Romanticism / J.M.W. Turner/ The Lake, Petworth,
Sunset; Sample Study

∗ P3: Romanticism / George Stubbs/ Hound Coursing a Stag

∗ P4: Realism / Alexey Venetsianov/ In the Fields. Spring

∗ P5: Realism / Alexey Venetsianov/ A Peasant Woman
with Scythe and Rake

and as the prompts suggest, we use a pre-trained VQGAN on
WikiArt dataset consisting mostly of paintings. The purpose
is to both show that our method could be applied to generative
models trained from different genre data, and also that the
painting allows easier qualitative comparison of both objects
and artistic styles. As the same setting mentioned above,
N = 64 randomly sampled patch, and 1000 iterations of
updating are used. We conduct tasks as explained before.

Generated Image. In Figure 5, we show in the first group
the generated images corresponding to these prompts indi-
vidually, and in the second group the generated images by
combining prompts using our proposed method. We observe
that our method is capable of composing the instructions
from several prompts, in terms of styles and objects, into the
same canvas.
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(a) P0: Impressionism / Edgar
Degas/ Landscape at Valery-sur-
Somme

(b) P1: Impressionism Laszlo
Mednyanszky/ Landscape in the
Alps (View from the Rax)

(c) P2: Romanticism / J.M.W.
Turner/ The Lake, Petworth, Sun-
set; Sample Study

(d) P3: Romanticism / George
Stubbs/ Hound Coursing a Stag

(e) P4: Realism / Alexey Venet-
sianov/ In the Fields. Spring

(f) P5: Realism / Alexey Venet-
sianov/ A Peasant Woman with
Scythe and Rake

(g) P0 (h) P0 + P1 (i) P0 + P1 + P2

(j) P0 + P1 + P2 + P3 (k) P0 + P1 + P2 + P3 + P4 (l) P0 + P1 + P2 + P3 + P4 + P5

Figure 5: The generated images from multiple (6) prompts, labeled P0 to P5. (a) - (f): The first group of 6 images are generated
using each one prompt respectively, as a controlling group. (g) - (i): The second group of 6 images are the generated images with
multiple (1 to 6) prompts respectively from our proposed method, each one of which using a combination of multiple problems
specified in the caption.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

330



(a) P0 and P1 (b) P1 and P2 (c) P0, P1 and P2

(d) P0 and P1 (e) P1 and P2 (f) P2 and P3 (g) P3 and P4

(h) P0, P1 and P2 (i) P1, P2 and P3 (j) P2, P3 and P4

Figure 6: Tangent, representing the gradients on patches (cutouts) after they are pushed forward to Cost Plan. The first group is
for the generation with 3 prompts and the second group is for the generation with 6 prompts, showing in 2D and 3D slices.

Tangent of Patches (Cutouts) on Cost Plane. In Figure 6,
we show that the good behavior on tangent remains even for
multiple prompts. This means that our method is capable
of guiding generating images that are diverse in its contents
w.r.t. multiple prompts.

Conclusion and Future Work
In this paper we discuss the problem in dealing with multiple
text prompts in the setting of text-driven image generation
for computational creativity setting. We then propose to
address the issue using OT (Optimal Transport) between
sampled patches in the generated image and multiple text
prompts, and show its theoretical motivation and quantitative
and qualitative empirical results highlighting the advantage
brought by our proposed method.

One of the advantages in our method is that it is in theory
orthogonal to other parts in the whole text driven image
generation pipeline, as we show primarily that it works for
VQGAN trained on several datasets. We envision that future
work would investigate leveraging our proposed method to
other drastically different forms of generative method, such
as diffusion models. Another possible future direction may
principally study the combination of optimal transport and

adaptive sampling where in our proposed work only random
sampling is used for simplicity.
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Abstract

Generative AI techniques like those that synthesize im-
ages from text (text-to-image models) offer new possi-
bilities for creatively imagining new ideas. We inves-
tigate the capabilities of these models to help commu-
nities engage in conversations about their collective fu-
ture. In particular, we design and deploy a facilitated ex-
perience where participants collaboratively speculate on
utopias they want to see, and then produce AI-generated
imagery from those speculations. In a series of in-depth
user interviews, we invite participants to reflect on the
generated images and refine their visions for the future.
We synthesize findings with a bespoke community zine
on the experience. We observe that participants often
generated ideas for implementing their vision and drew
new lateral considerations as a result of viewing the gen-
erated images. Critically, we find that the unexpected
difference between the participant’s imagined output
and the generated image is what facilitated new insight
for the participant. We hope our experimental model
for co-creation, computational creativity, and commu-
nity reflection inspires the use of generative models to
help communities and organizations envision better fu-
tures.

Introduction
New methods in generative machine learning, such as
GANs, have created an explosion of opportunities and pos-
sibilities for computational creativity. One possibility GANs
afford is the empowerment of people in casual creation
(Compton and Mateas, 2015; Epstein et al., 2020a; Berns
and Colton, 2020). For such casual creation, text-to-image
models built on technologies like CLIP (Radford et al.,
2021) have enormous promise by providing people an in-
tuitive and user-friendly possibility space to query GAN-
generated images via prompts (see Colton et al. (2021) for an
overview). With such a technology, what are the possibilities
for human creativity, and how might these applications im-
pact communities? One opportunity for these text-to-image
models is to aid in imaginative idea visualization (Colton
et al., 2021) as a way to bootstrap the creative process. An
issue of particular relevance to this goal is the inherent va-
riety/fidelity trade-off of generative models: as the outputs
of models become more realistic, they become less diverse
(Ramesh et al., 2022). Yet it remains unclear how this trade-

off impacts downstream tasks like imaginative idea visual-
ization. On one hand, high-fidelity outputs might provide
helpful details for how a given idea might be actually im-
plemented. On the other, “happy accidents” from diverse
but low-fidelity outputs might help evolve an idea via lateral
thinking.

To explore how these two possibilities trade off, we de-
sign, deploy, and evaluate a computational creativity system
for imagining and visualizing new ideas. Participants collab-
oratively speculated on utopian ideas for the future. These
speculations were then fed as text prompts into a generative
AI model to visually manifest them. We conducted a series
of user interviews to learn about the experience from par-
ticipants, and surface key themes. In this paper, we present
a field report of the experience and use the system to trace
broader questions about the social and collaborative aspects
of creativity, such as when generative visual imagery can
inspire ideas about the future, and how the variety/fidelity
trade-off in generative models might impact creativity.

This work builds on the tradition of speculative design and
design fiction, which use design to imagine and prototype al-
ternative worlds (Dunne and Raby, 2013). The social nature
of the collaborative speculation allows individuals to build
these alternative worlds together. Furthermore, it explores
how organizations or communities could use speculative de-
sign and design fiction to chart a course for the future.

There are several key contributions in this field report.
First, we introduce a novel approach to prompt engineering,
which leverages collaborative speculation from a facilitated
co-design experience, rather than a single individual sourc-
ing the prompts. Second, we highlight the importance of
high-variance, low-fidelity images in inducing creative in-
sights. Finally, we highlight the potential for computational
creativity to aid in community dialogue and the collective
elicitation of an organization’s values. We explore this pos-
sibility by creating a zine to document and synthesize the
findings, which we then present back to the community.

Methods
On October 8th, 2021, we organized a facilitated co-design
experience at a solarpunk1-themed event at the MIT Media

1Solarpunk is an artform and aesthetic that imagines near-
distant futures where humans have become climate change-
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Lab, which had over 400 RSVPs. Participants in the exercise
paired up and responded to the following prompt: “How will
we re-imagine the following categories in utopia? Team up
with someone, and each pick one of the following sectors:
(see Table 1). Brainstorm how the future could be better at
their intersection! Pick up a leaf and write your vision down
on it. Add any visual representation you want. Tape the
leaves to a stalk, add a flower, and put them in the solarpunk
garden together!”

Money Medicine Cities Transportation
Space Agriculture Music Environment

Economy Relationships Family Healthcare
Arts Civil rights Fashion Infrastructure

Trade Social justice Oceans Natural land & Wildlife
Education Government Energy Community

Table 1: The 20 sectors used for prompt generation. Pairs of
participants picked two to blend.

After co-creating their visions, participants placed their
flowers with the vision written on it in the solarpunk garden
(Figure 1). A total of 32 visions of the future were co-
created by over 64 participants.

Figure 1: Solarpunk garden where participants placed their
written visions. The garden was conceptualized as a “seed
vault,” a place for hopeful seeds for the future to be stored
and preserved.

Next, we took the 32 visions, and ran them through VQ-
GAN+CLIP, a common model of text-to-image synthesis.
This produced visual representations of the participants’ vi-
sions, and served as the output of the speculation experience.
We then used these images for evaluation of the paradigm
and incorporated them into a zine for additional community
impact.

Evaluation via user interviews To evaluate the expe-
rience of facilitated speculation augmented with genera-
tive AI, we conducted a series of ten 15-20 minute semi-
structured interviews from March 30th to April 11th, 2022
about 10 unique visions both in person and by video chat.

First, to measure relatedness between prompt and image,
we tested if participants could recognize the image gener-
ated by their prompt. For each participant, we paired the im-
age that corresponded to their prompt with three additional
images from other prompts and presented the set of four to
the participant in random order. We invited participants to

resilient and learned to live in harmony with nature.

identify the image generated from the prompt they wrote in
the original activity. Regardless of their answer, we then re-
vealed the correct image. We then asked questions related to
their interpretation of the image, starting by asking them to
describe what they saw. Based on directions from this ini-
tial description, we then asked follow-up questions about if
and how the image differed from their expectations. Finally,
we asked if the participant had ideas for a follow-up prompt
that better reflected their vision. After interviews were com-
plete, we coded them using standard qualitative coding prac-
tices for themes that emerged across conversations (Saldaña,
2013) .

Results
While all loosely related to the solarpunk theme, the written
prompts from participants in the original activity had a re-
markable amount of diversity. Some participants generated
futuristic ideas, while others called for a return to traditional
wisdom or practices. Four exemplary images, with their cor-
responding prompts are shown in Figure 2.

User Interviews We conducted 10 interviews with indi-
viduals who participated in the original activity. We focused
our interviews to participants who remembered the conver-
sation they had from several months prior and still recalled
the vision that they wrote down.

We coded our 10 participant interviews for major themes
distilled through repeated interviewing. In the process of
synthesizing recurring themes across conversations, we no-
ticed that many participants gleaned new insight as a result
of viewing the image. We recorded when participants men-
tioned new information gleaned about their original idea af-
ter viewing the generated image. A majority of participants
reported gaining new ideas as a result of viewing the image
generated by their prompt, and this new information fell into
two main categories.

The first was the emergence of new, unexpected ideas
for implementing the vision they had written (40% of inter-
views, n = 4). For example, the creator of the prompt “Bio-
philic vertical gardens lining neighborhood roads, creating
function and beautiful public spaces” already had a “pretty
concrete” image of what their vision could look like given
that biophilic community gardens already exist. However,
they had imagined “pumps and tubes” as a visual feature
given the complex engineering required to create such gar-
dens. When viewing the generated image, the creator noted
that the wall looked like it was made of a “natural, rocky
substrate” rather than one with exposed hydroponic engi-
neering (see Figure 2, left). This lead the participant to note
that perhaps the wall of the garden could in fact be beauti-
ful and natural-looking as well as functional, and that this
aesthetic would be an improvement over exposed pipes.

The second main area of insight participants reported in
interviews related to generating unexpected connections be-
tween a vision and lateral concepts (40%, n = 4). For ex-
ample, the prompt “Public spaces: solidarity-building. The
intersection of oceans and relationships. Publicly accessible
oceanic vistas” generated an image of humans on a beach
(see Figure 2, center left). Something like sand is present,
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Figure 2: Four images from the following prompts: Biophilic vertical gardens lining neighborhood roads, creating function
and beautiful public spaces (left), Public spaces: solidarity-building. The intersection of oceans and relationships. Publicly
accessible oceanic vistas (center left), Holistic traditional medicine as an art form (center right), Dye the ocean purple to
prevent global warming (right)

but the lack of an actual ocean in the image was surprising to
the prompt’s creator. However, the repeated visual motif of
people in relationship yielded a new perspective for the cre-
ator, who then reflected on the importance of relationship for
organizing in public space. This was not a framing he had
not been considering as central to this prompt before being
presented with the image. The lack of ocean in an image
generated from a prompt with two references to the ocean
could be considered low-fidelity and ultimately undesirable
behavior from VQGAN+CLIP. Yet the unexpectedness of
the image led the prompt’s creator in a new direction that
was ultimately valuable for ideation. As a result, we con-
sider this a happy accident in the context of this exercise in
social dreaming.

In another example, the participant who wrote “Holistic
traditional medicine as an art form” reported noticing the
centrality of hands as a visual motif in the image (see Figure
2, center right). Her interpretation was that the hands made
the image “focused on the making process” and that the im-
age “emphasizes labor.” She reported that the human labor
aspect behind traditional medicine was not a major associa-
tion she had with the topic before viewing the image.

Most (80%, n = 8) interviewees mentioned at least one
idea for a follow-up prompt to refine the image or clarify
their vision. For example, the biophilic garden image fea-
tured a visual element on the bottom left that looked like
a road. The prompt’s creator noticed the curb and said
they might use language like “neighborhood path” instead
of “road” to generate an image with explicitly pedestrian
streets in the future.

Despite the fact that it was easy for participants to identify
the image created from their prompt (90%, n = 9) out of a
set of random images, most participants interpreted the gen-
erated images as being either partly or substantially different
from what they imagined prior to seeing the image (70%, n
= 7). Three interviewees that did not gain any new insight
from viewing the images were concerned that the image was
too abstract to be useful. On the other hand, two other par-
ticipants commented that they specifically appreciated the
“whimsical” image of a technical concept.

“When the place inspires the zine inspires the place”2

In the wake of the solarpunk event, we created a zine outlin-
ing the project and showcasing all the co-written visions and
corresponding GAN images to aid in community reflection
(see Figure 3). We printed over 500 copies and distributed
them to community stakeholders. As community members,
we wanted to give these images back to the community, hop-
ing they would act as a mirror for additional conversation
and “close the loop” of the reflective process.

The event, co-creation experience, and zine all came at a
time when our organization was emerging from the throes
of the pandemic and actively setting its strategy and vision
for the next decade and beyond. At such a critical inflection
point, the combination of these three elements had several
key cultural impacts. First, there was the physical aspect of
people coming together to imagine and plant the seeds for
the future after a long period of pandemic-induced isolation.
Second, in an organization with varied interests and prior-
ities, the process of brainstorming through images helped
visualize and synthesize collective threads across the orga-
nization. Finally, cementing the images in familiar, tangible
form of printed media provided a snapshot for both dissemi-
nating the outputs and orienting discussion around the orga-
nization’s future (Pérez y Pérez and Ackerman, 2020). The
zine has since been used to communicate interests and pri-
orities to both visitors and external stakeholders.

Discussion
Initially, we predicted a main contribution of this work
would be designing a tool to concretize visions that teams
co-created. We found that occasionally the image did mean-
ingfully crystallize a vision for the future in a literal way,
and many participants noted the image gave them ideas for
ways to implement their vision. However, we often found
that it was the unexpected differences between the prompt
and the generated image’s interpretation of it that yielded
new insight for and excitement from participants. This sug-
gests that it was the high-variance, low-fidelity behavior of

2Quote by Sidebody https://www.instagram.com/p/
CbtJnWlloui/
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Co-creating 
Utopias

EDITORS NOTE
�ese AI-generated speculations from the 2021 
party ended up being remarkably prescient, aligning 
with many of the solarpunk breakthroughs of the 
past century. As sea levels rose, urban planners in 
the early 2030’s used the newly created oceanfront 
space as adaptive sites for solidarity building and 
processing climate-related trauma. Also, one cannot 
fail to see the similiarities with the the great 
purple-iron sea fertilization of 2037, which restored 
phytoplankton levels and the whale population to 
historic levels. �ere also seems to be the 
forecasting of the dance powered transit of 
UnceUnceRails in 2039, which offered a new energy 
source derived from human sweat and good vibes. 

mycelial network  online

Public spaces: 
solidarity-building. �e 

intersection of oceans and 
relationships. Publicity-- 
accessible oceanic vistas.

Dye the ocean purple to 
prevent global warming

29

Learning about 
final frontiers 

(ocean & space) by living in 
them

“It's the year 2100. �e climate apocalypse 
already happened and we need to start over 

living in harmony with nature. Your mission 
tonight: you must approach the seed vault. 
You will use what you find there to plant in 

the solarpunk garden and help reboot 
humanity.”

Visitors were welcomed to the 99F solarpunk utopia with these 
words. �rough the evening,  dozens made pilgrimage to the seed 
vault, a display drawing on the visual language and concept from 
the Svalbard Global Seed Vault founded in the early 2000’s. 

Our motivation: if you were granted the challenge and 
opportunity to reboot humanity, what seeds would you plant? 
Attendees of 99F communed in an exercise to co-envision our 
future at the seed vault. �eir mission: work with a partner to 
combine disparate fields and co-create a better vision of the 
future, representing that vision with a seedling composed of 
words and images.

What can chaotic music do for 
your mind?

23

EDITORS NOTE
�e 2020s was a fascinating decade in Earth's history. 
Revelations about the spiritual bankruptcy of 
technology, coupled with ecological and sociological 
tumult, led to a time of deep collective soul searching, 
and consequently, renewal. No place was this more 
evident than the MIT Media Lab, a techno-utopian 
citadel of human-machine symbiosis. �e early years of 
this decade were not kind to the Media Lab. Myopic 
thinking, scandal, and economic decline meant that it 
could no longer ride on its own coat tails of prestige and 
provocation. Instead, it used this period to radically 
reinvent itself, charting a new course for a future where 
humans could live in harmony with nature. 

An emerging body of historical evidence suggests that 
the Media Lab was at the epicenter of the broader 
solarpunk shift of the 2020’s. We all know that this 
rapid time of societal transition 100 years ago was a 
huge inflection point for Earth culture: the 
commitments made that decade to ecological 
sustainability, ethical methodologies for space 
exploration, and geodesic architecture rippled through 
the rest of the century, and perhaps even made �e 
Growing possible. �rough the lens of archeological 
resurveillance, this volume traces the early solarpunk 
transformation of the Media Lab, from the nascent 
seeds planted at a party in the early 2020’s to its 
culmination with the establishment of Media Lab Mars 
in 2050. �ese varied accounts offer historical lessons 
and insight of how techno-utopianists from antiquity 
grappled with a rapidly changing environment.

mycelial network  online

THE ANNALS OF 
FUTURE ARCHEOLOGY 

1521

Figure 3: Cover and four select pages from the Seedvault zine. Written in the style of speculative fiction, the zine takes place
in the year 2121, recounting an event that took place 100 years ago and how the previous 100 years unfolded from there.

VQGAN+CLIP that yielded these unexpected and whimsi-
cal differences, which in turn induced novel and creative in-
sights. This finding has important implications for the de-
sign of image synthesis systems for computational creativ-
ity. As new systems become increasingly realistic (such as
new models like DALL-E 2 (Ramesh et al., 2022)), there
is a danger that this increased fidelity will come at the cost
of these unexpected quirks that we found actually sparked
positive lateral thinking in our participants.

By offering a low-friction and provocative new way to
integrate visual storytelling with community engagement,
text-to-image models with collaboratively sourced prompts
have an opportunity for cultural and organizational impact.
This approach could be used in contexts as diverse as craft-
ing organization mission statements, co-designing commu-
nity interventions, and facilitating a mediation process.

There are, however, dangers to such an approach. For one,
AI-generated images are bounded by training data, which
inherits historical biases and cultural practices (Ganimals
Blog, 2020; Crawford and Paglen, 2019). Therefore uncriti-
cally relying on model outputs as an “oracle” may entrench
users in existing inequities and stereotypes, rather than free-
ing them to envision radical new possibilities. Relatedly, if
such an approach becomes commonplace, there is the risk
that such visualization strategies could be a crutch if used
too much, with users becoming overly reliant on a machine’s
vision of the future rather than their own. Finally, there is the
risk that anthropomorphizing the AI can undermine human
credit and responsibility (Epstein et al., 2020b).

It is also important to reflect on the notion of “utopias,”
which we used to frame this collaborative speculation. Lit-
erally meaning “no place” in the original Greek, utopias rep-
resent idealized non-existent or impossible societies. Rarely
in utopian thinking are questions like “A utopia for whom?”
or “A utopia at what cost?” considered, which in turn leads
to imagined futures that are culturally homogeneous and can
perpetuate existing inequities. Furthermore, the very con-
cept of utopias imagines a future society different from and
evolved upon the current one, a notion rooted in endless
growth, a potentially colonial and capitalistic value (Morri-

son, 2017). Rather than envisioning radical new alternatives
to be manifested, many indigenous cultures instead hold a
worldview that humans are a part of a complex web of eco-
logical relationships that can exist an a perpetual steady-
state equilibrium (Kimmerer, 2013; Sepie, 2017). In the
prompts we received, we saw varied interpretations of and
priorities for utopias: some participants longed for a re-
turn to local economies or traditional medicine, while oth-
ers dreamt of futuristic space suits and wind turbines. Fi-
nally, it is important to note that utopias are but one frame
for imaginative idea visualization. While we used the idea
of utopia to foster brainstorming about the future, we believe
the paradigm could instead focus inward for any community
or space looking to collaboratively speculate about its future.

Our work has several limitations which open up exciting
possibilities for future work. For one, we focused on one
particular community – the MIT Media Lab, a technology-
focused research institution embedded in a university. Fu-
ture work could explore how this approach works for other
communities with distinct cultures and practices, and how
the effectiveness of the approach varies across community
contexts. In addition, we relied on analog media throughout
the process: from handwritten prompts by participants and
a paper zine distributed in person to us showing participants
generated images asynchronously in the evaluation phase.
Future work could explore digital versions of these meth-
ods, such as an online interface for collaborative prompt
generation, an online gallery for the prompts and their cor-
responding images, or real-time dialogue with a generative
model. We also did not include in-depth explanation for how
the generative model worked. Future work should consider
more explicitly users’ understanding of the involved tech-
nology, as well as consider other types of models, such as
physically-informed models of climate futures (Lütjens et
al., 2021b,a) or those that integrate across larger, more com-
plex systems (Lavin et al., 2021). Finally, there is the possi-
bility of using this method in diverse settings. We hope that
this approach could be applied to other community contexts,
whether it be designs for a local community garden or bold
new tactics to fight the global climate emergency.
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Abstract
Previous Computational Social Creativity work has im-
proved the performance of automated creators using so-
cial mechanics inspired by human behavior. However,
these simulations have often focused on generic or as-
sumed human behaviors rather than on specific anthro-
poligical data. In this work we take a more focused ap-
proach by comparing simulated social behavior to ob-
served behavior in large social networks of human cre-
ators. We analyze social patterns among human creators
by defining metrics for social behavior within creative
communities and collecting data for three online com-
munities of creators: Scratch, FanFiction, and r/ArtCrit.
We introduce the Architecture for Multi-Agent Creative
Societies (AMACS), a modeling tool which controls the
social activity of automated creators and can be adapted
to any creative discipline. We demonstrate AMACS’s
ability to recreate a wide range of network-level social
behaviors, including the behaviors observed in three hu-
man societies.

Introduction
Social interaction has long been understood to be an es-
sential component of the creative process (Csikszentmihalyi
2014; Boden 1992; Glăveanu 2013; Jennings 2010). Social
interactions help creators in many disciplines by facilitating
encouragement, correction, inspiration, and mentorship. A
creator’s social circles provide opportunities to test out new
ideas, collaborate, and hone skills. This is true in disciplines
ranging from pottery to programming to dance.

Past research on the role of social interaction in the cre-
ative process has typically taken one of two approaches.
The first approach has been to analyze social networks of
creators directly and identify quantitative and qualitative
trends relevant to specific facets of creativity (Sylvan 2007;
Sylvan 2010; Xu and Bailey 2012; Crain and Bailey 2017;
Marlow and Dabbish 2014; Campbell et al. 2016; Evans
et al. 2017; Pace et al. 2013). The second approach has
been to simulate networks of creators in fully automated so-
cial environments (Linkola and Hantula 2018; Hantula and
Linkola 2018; Gómez de Silva Garza and Gero 2010; Green-
field and Machado 2009; Alnajjar and Hämäläinen 2018;
Hämäläinen, Alnajjar, and others 2019). These simulations
tend to focus on generic or assumed rules of human be-
havior rather than on quantitative data, and while they have

the potential to inform our understanding of human creativ-
ity (Saunders and Bown 2015) they are often more con-
cerned with improving the performance of simulated cre-
ators. Surprisingly, these approaches have rarely - if ever -
been mixed. Researchers have attempted to observe or sim-
ulate the social behavior of creators, but not both.

In this work we combine these two approaches of measur-
ing and simulating user behavior. To our knowledge it is the
first attempt to quantitatively measure and then replicate the
social behaviors of creators acting in a social network. This
data-driven and focused approach allows for more meaning-
ful analysis of simulated creators, making simulation a vi-
able tool for understanding human creativity and potentially
improving automated creative social systems.

We also introduce an Architecture for Multi-Agent Cre-
ative Societies (AMACS), a simulation architecture imple-
mented in Python that controls the social activity of auto-
mated creators and can be adapted to any creative discipline.
We make AMACS publicly available and hope it will act as a
common test bed for future researchers experimenting with
social mechanics for automated creative agents.

Related Work
Many researchers, both in the field of psychology and in arti-
ficial intelligence, have sought to define and understand the
role of social interaction in creativity. For example, Csik-
szentmihalyi (2014) argued that creativity is only possible
when a creator interacts with a domain of cultural knowl-
edge and a field of peers, making creativity an inherently
social process. Boden (1992) discussed creativity in terms
of conceptual spaces, which she defined as being “familiar
to (and valued by) a certain social group” rather than belong-
ing solely to an individual. Jennings (2010) proposed using
socialization as a tool for increasing the autonomy of sim-
ulated creators. Glăveanu’s framework of creativity (2013)
elevated the importance of socialization in creativity by in-
cluding audience as a key member of the creative process.

Parallel to the effort to define the social aspects of creativ-
ity has been the effort to quantitatively observe them, specif-
ically in online social environments. Sylvan (2007; 2010)
used the term ‘Online Community of Creators’ (OCOCs) to
describe social network sites where creators share and re-
ceive feedback on their work. She selected two OCOCs -
The Village and Scratch - and attempted to track how ideas
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spread through these online communities by finding quali-
ties correlated with influential individuals and artifacts. Xu
and Bailey (2012) analyzed interactions between users in the
online photography critique community PhotoSIG, focus-
ing specifically on critique mechanisms. Crain and Bailey
(2017) analyzed how users engage with criticism on three
art critique subreddits, focusing on the quality of feedback
and how it impacted a creator’s willingness to iterate on
published artifacts. Marlow and Dabbish (2014) investi-
gated how users of Dribble gradually become more skilled at
their craft. Campbell and associates (Campbell et al. 2016;
Evans et al. 2017) also explored how OCOCs allow creators
to improve, framing their findings with a model they call
distributed mentoring. Pace et. al. (2013) mapped theories
concerning more traditional (i.e. offline) creative communi-
ties to OCOCs while analyzing the role of leaders in the Etsy
community.

There has also been much work done to simulate the
social behavior of creators, a task which Saunders and
Brown (2015) describe as ‘Computational Social Creativ-
ity’. Hantula and Linkola (Linkola and Hantula 2018;
Hantula and Linkola 2018) study collaborator selection in
a simulated society of image-generating agents with various
changing tastes. Gómez de Silva Garza and Gero (2010)
introduce a network in which agents are engaged in either
creating or evaluating simple visual designs. Greenfield and
Machado (2009) use the same distinction between agents,
calling their agents ‘artists’ and ‘critics’. Critics in their sys-
tem compare agent-generated artifacts to human-generated
ones via representative vectors. Alnajjar and Hämäläinen
(2018; 2019) use a social network which contains only a
master and an apprentice. The master generates training data
for the apprentice and curates a dataset of human-generated
examples for the apprentice to learn from.

There are examples in which multiple simulated agents
work together to generate a single artifact (Pérez y Pérez et
al. 2010; Boyd, Hushlak, and Jacob 2004; Wright, Purver,
and others 2020). Because these social networks are focused
only on collaborating (rather than sharing and evaluating fin-
ished artifacts, forming relationships, etc.) they fall outside
the scope of the creative societies we are interested in here.

To our knowledge, the present work is the first attempt
to both observe and simulate the social interactions between
creators, an important bridge between these previously dis-
jointed approaches. It also introduces the first discipline-
agnostic simulation tool for creative societies of which we
are aware. Our hope is that this combined approach and the
accompanying software package will add more meaning and
focus to future approaches at social simulation.

Analyzing Creative Societies
The purpose of this work is to create a data-driven simula-
tion of the social behaviors of creators. In order to validate
that simulations are acting in a human-like manner, we need
a framework for analyzing and describing both human and
automated societies so that different societies can be mean-
ingfully compared with one another.

To this end we introduce a quantitative analysis frame-
work that consists of four metrics: Creator to Agent Ratio,

Reciprocity, Clustering, and Attention Concentration (each
defined below). These metrics were chosen because they
each affect the experience of individual agents and can be
calculated based on publicly available information as de-
scribed below.

Creator to Agent Ratio (CAR) is the percentage of com-
munity members that create original artifacts (paintings,
songs, programs, etc.) as opposed to only commenting on
the artifacts of others. CAR is defined as |C|

|A| × 100, where
C is the set of all creators in the network and A is the set of
all agents (both creators and non-creators) in the network.

A network’s CAR is important in defining the relationship
between creators and fans. A high CAR can make it difficult
for creators to build audiences because the have more com-
petition, while a low CAR might make it difficult for fans to
find creators they like.

Reciprocity is the tendency for an agent to return the fa-
vor when another agent gives feedback on one of their arti-
facts. In an online setting, feedback can include comments,
‘Likes’, or any other publicly observable recognition of the
artifact. We define reciprocity as P (A ▷ B | B ▷ A) × 100,
where A and B are distinct creators in the network and X▷Y
denotes that an agent X has provided feedback for an artifact
generated by agent Y at some point in the past.

Reciprocity describes one way in which network agents
form relationships with one another. If agents are inclined
to reciprocate positive attention or feedback, then it becomes
easier for a relationship to form out of a single agent’s desire
for a connection. High reciprocity also means that a network
rewards good behavior through reciprocation, which incen-
tivizes agents to be generous with one another.

Clustering is the tendency for an agent to be friends with
its own friends-of-friends. Highly clustered networks indi-
cate the presence of cliques and sub-communities within the
larger network. The definition of clustering depends on a
definition of ‘friendship’, which takes different forms in dif-
ferent types of communities. For consistency, we notate that
two distinct agents A and B are friends using A ⋄ B and
say that A ⋄ B ⇐⇒ (A ▷ B) ∩ (B ▷ A). In other words,
if two creators have commented on each others artifacts at
least once each, we call them friends.

Given a definition of friendship, we define clustering as
P (B ⋄C |A⋄B,A⋄C)×100 for any three distinct creators
A, B, and C in the network. This is equivalent to the global
clustering coefficient for graphs if we consider each agent as
a node and each friendship as an undirected edge.

A network’s clustering rate can serve as an indicator
for how opinions and ideas spread through a population
of agents (Malik and Mucha 2013; Centola 2010; Jackson
2019). Tight clusters can cause agents to become more sim-
ilar to their direct contacts, but they can also insulate agents
and slow the spread of globally popular beliefs (Granovetter
1973).

Attention Concentration measures how popular the
most popular artifacts in the network are, where popularity
is defined as the volume of comments received. We mea-
sure attention concentration using the Gini coefficient (Gini
1912), a metric commonly used to describe the wealth in-
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Figure 1: Visualization of the Gini Coefficient, used to mea-
sure the concentration of attention within a network of cre-
ators. The curved line shows the percentage of all comments
received by the corresponding percentage of artifacts, which
are sorted by ascending popularity. The diagonal line shows
a hypothetical society where all artifacts receive an equal
number of comments. The Gini Coefficient is the area of A
divided by the sum of the areas of A and B.

equality of a population. We refer to (Dorfman 1979) for a
mathematical definition, but a basic explanation is provided
in Figure 1. The Gini Coefficient can be understood as a real
number in the range [0, 1] where 0 indicates that all artifacts
receive an equal amount of feedback and 1 indicates that all
feedback is directed at a single artifact.

Attention concentration can be a significant pain point for
human creators, especially in online environments. Xu and
Bailey (2012) found that over 80% of artifacts on a photog-
raphy sharing community received fewer comments than av-
erage users considered useful, while other artifacts received
many comments. If most attention is being directed at a
small handful of popular artifacts, it can be difficult for new
creators to feel engaged with the network.

Data Collection
In order to understand the social behavior of human com-
munities, we apply this analysis framework to several com-
munities of creators. Our purpose is to collect quantitative
data that can then be used to validate simulations of social
behavior. In this work we focus on online communities of
creators that are large, include mechanisms for artistic cri-
tique in the form of comments, and permit legal scraping
of user and artifact data. After considering nearly a dozen
communities, we select three that best fit the above criteria:
Scratch, FanFiction, and the r/ArtCrit community on Red-
dit. These communities are oriented towards programming
projects, creative writing, and visual artwork respectively.

To collect data for Scratch, we use a Selenium-based web
scraper to collect several thousand of the most recent arti-
facts published in the ‘Music’ category of coding projects.
For each recent project we then find the user who created
that project and collect data on each project published by

Table 1: Observed behavior in three online communities of
creators using four network-level metrics.

Community CAR Reciprocity Clustering AC
Scratch 17.1 1.2 6.3 0.901

FanFiction 23.2 11.0 15.6 0.762
r/ArtCrit 59.6 0.5 1.0 0.489

that user. For each project we collect the project ID and the
list of all users who have commented on that project. We col-
lect a total of 91,506 projects and 82,952 comments posted
by 39,631 users.

Following (Milli and Bamman 2016), we scrape FanFic-
tion data using Python-generated HTTP requests and parse
responses with the BeautifulSoup library. We select 32 of
the most popular book ‘canons’ (the original works that Fan-
Fiction stories are based on) and scrape all stories and com-
ments related to those canons, excluding anonymous com-
ments. We collect 189,076 stories and 7,789,744 comments
posted by 387,253 users.

We access r/ArtCrit data using Cornell University’s Con-
voKit toolkit (Chang et al. 2020). The dataset includes
14,201 posts and 33,451 comments made by 11,992 users.
We filter out posts or comments made by users who have
since deleted their accounts (as these are effectively anony-
mous), comments that are responses to other comments
rather than to posts, and comments made by the same user
as the post being commented on.

Anonymized copies of the collected data are available
upon request. In accordance with the privacy policies of
Scratch and FanFiction, this anonymized data will include
only the metadata necessary to calculate the four metrics de-
scribed above, not user data or content of the posted artifacts
or comments themselves. All scraping that we performed
was in accordance with the respective site policies.

Human Analysis Results
The results of applying our framework to these three com-
munities are found in Table 1. We note that there is a wide
variance in the behavior of these three communities. For
example, r/ArtCrit’s CAR is more than double the other two
communities’ and FanFiction has a much higher Reciprocity
and Clustering rate than the other two. Further analysis of
these results are provided in (Andrus 2021), but for our pur-
poses here we are primarily interested in recreating these
quantitative behaviors in a simulated environment.

AMACS: the Architecture for Multi-Agent
Creative Societies

Having observed several human creative societies, we are
now prepared to simulate them. To this end we introduce
AMACS: the Architecture for Multi-Agent Creative Soci-
eties. AMACS is a flexible, task-agnostic architecture im-
plemented in Python that defines how automated agents gen-
erate and evaluate creative artifacts. It also defines how
agents form relationships with and are influenced by one an-
other. Any designer who desires to use AMACS to simulate
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the behavior of agents in a given creative discipline need
only implement functions for evaluating and generating ar-
tifacts within that discipline; AMACS handles the rest, in-
cluding content discovery, social mechanics, and the chang-
ing aesthetic tastes of agents. We hope that it will serve
as a test bed and reference point for future researchers who
wish to perform experiments in a common setting. The
full AMACS implementation and three example instanti-
ations are provided online at https://github.com/
bandrus5/amacs.

AMACS Methodology
An AMACS network, similar to previous simulated creative
societies (Hantula and Linkola 2018; Linkola and Hantula
2018; Gómez de Silva Garza and Gero 2010; Greenfield and
Machado 2009), is composed of a pool of agents capable of
generating and evaluating creative artifacts. Agent aesthetic
tastes change over time as agents interact with and are influ-
enced by one another. Unlike previous works, an AMACS
network can be implemented for any creative task (e.g. writ-
ing poetry, designing furniture, or composing music), and it
includes hyperparameters that can be tuned to elicit specific
human-like behaviors.

Following Hantula and Linkola (Hantula and Linkola
2018), each agent in an AMACS network has individual aes-
thetic tastes represented by numeric scores. In Hantula and
Linkola’s simulations, which use image generation as the
creative task, each agent’s tastes are represented by a single
number that corresponds to their preferred value along some
evaluative spectrum such as Symmetry, Contrast, etc. We
expand this evaluative paradigm with a multidimensional
“artifact space”. Unlike in Hantula and Linkola’s simula-
tions, the AMACS artifact space can have as many dimen-
sions as needed, and all agents share the same artifact space.
We consider the artifact space to be an application of Bo-
den’s conceptual space (Boden 1992), albeit a relatively
simple one.

Each dimension of the artifact space corresponds to some
evaluative function. The nature of these evaluation functions
will depend on the creative task of the network. For exam-
ple, in a music-generation AMACS network, dimensions of
the artifact space might correspond to tempo, key, and sen-
timent. Dimensions can represent binary distinctions (e.g.
whether or not a poem conforms to a 5-7-5 syllabic pattern)
or real value measurements (e.g. the type-token ratio of a
short story). They can even be unbounded (e.g. the length
of a song), though in many cases there will be an inherent
lower and upper limit (e.g. the percentage of image pixels
that are blue cannot fall outside the range [0, 100]).

Points within the artifact space can be used to describe
both artifacts and agent preferences. Each artifact is as-
signed a score vector S which situates that artifact within
the artifact space. We represent an agent’s preferences with
a taste vector T and a taste weight vector W . T describes
which point within the space the agent considers to be ‘per-
fect’, and W allows the agent to scale the artifact space and
choose which dimensions it cares most about. S, T , and W
each have the same dimensionality as the artifact space.

Some dimensions of the artifact space may have a “cor-
rect” answer, meaning that all agents share the same taste
values in those dimensions. This allows an AMACS de-
signer to enforce artistic constraints, such as that all poems
must rhyme or that all songs must be in a major key. In the
other dimensions agents are free to set their own tastes, giv-
ing them creative freedom to choose, for example, the key a
song is written in or the dominant color used in a painting.
The fact that agents are fixed in some dimensions and not in
others allows for a shared understanding of which artifacts
are valid but individual understanding of which artifacts are
good. This is partially inspired by Wiggins’s (2006) rule
sets R and T for constraining and traversing a conceptual
space respectively. In AMACS, agents and artifacts are con-
strained in membership dimensions (analogous to Wiggins’s
R) and are free to traverse attribute dimensions (analogous
to Wiggins’s T ). Future work may attempt to simulate more
transformative creativity by allowing agents to ignore mem-
bership dimensions of the artifact space under specific con-
ditions or invent new attribute dimensions and add them to
the global artifact space. This latter approach was described
but not implemented by Ventura (2019).

On each network time step, each existing agent has an
opportunity to generate a new artifact, analogous to a hu-
man creator sharing a new piece of artwork with their social
network. The decision of whether to produce an artifact is
based on whether the agent produced anything on the pre-
vious time step and the average value of W , which along
with scaling the artifact space is used to model the agent’s
confidence in its own tastes.

Once all agents have had an opportunity to generate arti-
facts, each agent evaluates a small number of artifacts from
the current or past time steps. Each agent is given a list
of recommended artifacts, and the agent randomly samples
from the recommendations based on its own criteria. It then
evaluates each chosen artifact a using the following value
definition:

value(a) = −
n∑

i=1

|Si − Ti| ∗Wi (1)

where n is the number of dimensions in the artifact space
and S is the vector representing a’s location in the artifact
space. This is equivalent to the negative weighted Manhattan
distance between T and S.

The agent can then choose whether to leave publicly ob-
servable feedback for the artifact, which can take several dif-
ferent forms. The simplest form of feedback, which we use
in our experiments, is a binary feedback system analogous
to the ‘Like’ button found on many online platforms for cre-
ators. If an agent’s evaluation of an artifact falls above some
threshold, the agent gives the artifact a ‘Like’ and the evalu-
ation is classified as favorable. A more ambitious feedback
system could include agents leaving some sort of comment
on the artifact with details about what they liked or didn’t
like. Alternatively, an agent could provide feedback on an
artifact by editing it to something the evaluating agent likes
better and sharing the ‘enhanced’ version of the artifact with
the original creator. We leave these more complex mecha-
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nisms to future work.
The final process on each time step is for agents to adapt

based on what they’ve experienced on the current time step.
First, agents change their taste weights to reflect their chang-
ing confidence. Taste weights go up if agents received posi-
tive feedback from their peers and/or they evaluated artifacts
that they liked. Otherwise taste weights go down. Next,
agents have a small probability of changing their tastes. The
higher their taste weights, the lower probability their tastes
will change. If an agent chooses to change its tastes, it typ-
ically moves towards its most recently evaluated artifacts,
although in some cases it will move away. Finally, agents
choose whether or not they will generate an artifact on the
next time step. All changes to tastes and taste weights hap-
pen independently in each dimension of the artifact space.

In our experiments we initialize each AMACS network
with a pool of 42 agents with random tastes and taste
weights. We run the network for 30 time steps, adding 4 new
agents to the network on each time step to simulate the com-
munity growing over time. There are many other population
mechanics that could be explored in future work depending
on the specific human behavior being simulated.

We increase AMACS’s flexibility by defining 11 hyper-
parameters that affect agent behavior, specifically in how
they select new artifacts to interact with. Each hyperparam-
eter loosely corresponds to design decision that community
administrators control, which makes them useful for tuning
AMACS networks to resemble specific communities. They
are:

• Agent Taste controls how personalized the recommen-
dations made to AMACS agents are. This is analogous
to the level of customization on websites used by human
creators to find new content.

• Creator Familiarity controls how much an AMACS
agent prefers to review artifacts created by other agents is
has interacted with in the past, regardless of whether those
interactions were positive or negative. Creator Favora-
bility is similar, but it includes only positive interactions.

• Mutual Contact controls an agent’s preference to review
artifacts created by other agents who share a mutual con-
tact. Mutual Friend is similar, but it includes only con-
tacts where most interactions have been positive.

• New Artifact controls the extent to which AMACS pro-
motes artifacts generated on the most recent time steps.

• Popular Artifact controls whether AMACS promotes ar-
tifacts based on their number of positive reviews.

• New Creator controls the extent to which AMACS pro-
motes artifacts generated by agents who have not gener-
ated many artifacts in the past.

• Popular Creator controls the extent to which AMACS
promotes artifacts generated by agents who have gener-
ated other popular artifacts.

• Gratitude controls an agent A’s willingness to view arti-
facts generated by agent B because B has done the same
for A in the past. Note that this is highly related with the
concept of Reciprocity introduced in the previous section,

but in AMACS Gratitude only becomes Reciprocity when
the reciprocated reviews end up being positive.

• Recommender Ranking controls an agent’s willingness
to evaluate the first artifacts that are recommended to them
as opposed to considering many options.

We experiment with the effects of each of these hyperpa-
rameters and show how they can induce specific behaviors
later in the paper.

AMACS Instantiations
In order to demonstrate the diversity of tasks to which
AMACS can be applied we present three instantiations,
each focused on a different creative discipline. Creating a
new AMACS instantiation is as simple as implementing the
agents’ generation process and defining an artifact space by
writing evaluation functions. The examples provided here
are relatively simple, allowing us to focus on the social me-
chanics of AMACS rather than the generation and evalu-
ation details which will vary from application to applica-
tion. AMACS is equally capable of modeling interactions
between creative agents with more sophisticated processes
than those described here.

We provide only brief descriptions of the creative tasks
and the evaluation functions used in each instantiation. Fur-
ther details on how agents generate and evaluate artifacts can
be found in the AMACS code repository.

AMACS for Image Generation In this AMACS instan-
tiation agents generate 16x16 grayscale images. All agents
try to generate images that are symmetrical and that have
a small cross pattern in any of the four corners. We note
that these constraints are arbitrary and were chosen only
to demonstrate the idea of a universal aesthetic standard
amongst agents. There are two dimensions along which
agents can choose their tastes: the overall brightness of the
image and the average contrast between columns in the im-
age. Generation is accomplished using a genetic algorithm.

AMACS for Title Generation In this AMACS instanti-
ation agents generate plausible titles for academic papers.
“Plausibility” was measured using two methods: a neu-
ral network trained on 46,198 examples, and hand-coded
rules designed to detect failure modes of the neural net-
work. Agents chose their own tastes along three dimensions,
each measuring the degree to which artifacts belong in one
of three subclasses: Computer Science papers, Medicine
papers, and Humanities papers. Each dimension is mea-
sured with an LSTM trained to detect whether a title be-
longs to the corresponding subclass. We train the LSTMs
separately (though on overlapping data) so that a single ti-
tle could theoretically score high on all three classifiers, al-
though it is easier to earn a high score on just one. See El-
gammal et. al. (2017) for a demonstration of why subclass
membership is a powerful consideration for creative agents.
Title generation is accomplished using a genetic algorithm.

AMACS for Policy Generation Agents in this AMACS
instantiation create policy look-up tables for a robot con-
trol problem inspired by (Mitchell 2009, p. 130–142). In
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Figure 2: Full range of behavior observed in AMACS using
all three instantiations and both SPM and TPM. AMACS
demonstrates considerable flexibility in Reciprocity, Clus-
tering, and Attention Concentration. It has limited flexibility
in the Creator to Agent Ratio metric.

our version of this problem, a simulated robot lives in a 4
x 4 grid with blue and red trash scattered throughout. The
AMACS agents compose instructions for the robot on how
to navigate through the world and collect trash. All agents
want to help the robot avoid running into walls, and each
agent gets to choose the percentage of red and blue trash the
robot collects. Agents generate policies using a genetic al-
gorithm. We also implemented a Monte Carlo Tree Search
approach for policy generation, but found that it was slower
and caused agents to be less satisfied with their own artifacts.

Demonstrating the Flexibility and
Applicability of AMACS

Given the human social behavior data and the simulated net-
works described earlier, we are ready to quantitatively vali-
date that AMACS is capable of exhibiting human-like social
behavior. Specifically, in this section we will demonstrate
that by manipulating AMACS hyperparameters we can in-
duce a wide range of behaviors, including the behaviors ob-
served in human communities. Our purpose is not to demon-
strate that AMACS always acts the same way as human or
responds to stimuli in the same way as humans; rather, we
seek to show that AMACS has enough flexibility that it can
be coaxed into demonstrating the same network-level behav-
ior as specific human social networks.

Experiment Setup
We discover the range of possible AMACS behavior with
two sets of experiments in which we manipulate the 11 hy-
perarameters described in the previous section. In the first
set of experiments, we change one hyperparameter’s value at

a time while keeping all other hyperparameter values fixed,
which we refer to as Single Parameter Modulation (SPM).
In the second set of experiments we introduce more noise by
randomly and independently modulating the values of all 11
hyperparameters simultaneously, which we refer to as Total
Parameter Modulation (TPM).

To perform SPM, we define a set of hyperparameter val-
ues V = {-20, -10, -1.0, -0.5, 0.0, 0.5, 1.5, 2.0, 10, 20,
30, 40}. The purpose in selecting these specific values is to
measure what happens when we go far below, slightly be-
low, slightly above, and far above a default value of 1.0. We
refer to the set of all hyperparameters as P . For each hyper-
parameter p ∈ P and each hyperparameter value v ∈ V , we
produce a combination c of network inputs where p is set to
v and all other hyperparameters are set to 1.0. For each gen-
erated combination c, we run all 3 AMACS instantiations 4
times, after which we record the four resultant network-level
metrics. In total this requires 1,584 network runs.

To perform TPM, we split V into two subsets, VS = {-1.0,
0.5, 0.0, 0.5, 1.0, 1.5, 2.0} and VL = {-20, -10, 0, 10, 20, 30,
40}, where S and L stand for “small” and “large” and refer
to the magnitudes of the included values. For each subset,
we generate 700 random combinations of hyperparameter
values in which each value is used 100 times for each hyper-
parameter. The purpose of splitting V into two subsets for
TPM is to avoid situations in which large value changes in
one hyperparameter drown out small value changes in other
hyperparameters, i.e. we first modulate all hyperparameters
on a small scale and then again on a large scale. We run each
combination of hyperparameters for 30 generations each on
all 3 AMACS instantiations. In total this involves 4,200 net-
work runs.

Between SPM and TPM we perform a total of 5,784 net-
work runs. Collectively these give us a broad understanding
of the types of behavior AMACS is capable of modelling.

Simulation Results
Figure 2 shows the full range of metric values observed in
all AMACS runs. We can see that AMACS is remarkably
flexible with respect to observed Reciprocity and Clustering
values; AMACS has produced the full range of possible val-
ues, and the spread is wide enough that no possible value
can be classified as an outlier. AMACS also exhibits a fairly
wide Attention Concentration spread, with values ranging
from 3.6 to 86.5 including outliers. AMACS appears to be
the least flexible in its Creator to Agent Ratio (CAR). The
vast majority of AMACS runs had CARs less than 20, and
even the highest magnitude outlier is only 55.5. This is lower
than the r/ArtCrit CAR, meaning that some human behavior
is outside the range of what AMACS can produce, at least
with the instantiations and hyperparameters tested here. Fu-
ture efforts to model a wider spread of CAR behaviors may
consider changing the rules for how agents choose whether
to be creators.

In order to validate AMACS’s relevance as a tool for
modelling human behavior, we compare AMACS runs to
the human communities analyzed (Scratch, FanFiction, and
r/ArtCrit). For each community we find the AMACS run
which was the most similar to human behavior in each indi-
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Figure 3: Comparison of AMACS behavior to the Scratch
community. The blue shaded area represents human behav-
ior. The red and green lines show the AMACS runs most
similar to the human community in each individual metric
and over all four metrics, respectively. The purple line shows
average AMACS behavior and is included for reference.

vidual metric and which was the most similar over all four
metrics (measured with Euclidean distance). These results
are visualized in Figures 3-5. We see that AMACS does
fairly well at replicating the behavior of the Scratch and Fan-
Fiction communities, including nearly matching Scratch’s
remarkably high Attention Concentration. It is less suc-
cessful at replicating r/ArtCrit’s behavior, particularly in the
CAR metric which, as noted earlier, is where AMACS is cur-
rently the least adaptable. AMACS is largely able to repli-
cate the behavior of these three communities, indicating that
it will likely be successful at modelling many other human
creator networks.

Implications for Human Creators
The described parameter modulation experiments demon-
strate the range of possible AMACS behaviors, but they also
enable us to analyze the quantitative relationships between
each hyperparameter and each network-level metric. Under-
standing these relationships is helpful for future AMACS de-
signers hoping to induce specific behaviors from automated
agents. This information can also help administrators of hu-
man creative communities to maximize the experiences of
their members, provided that AMACS trends hold for hu-
man communities as well. Trends found in AMACS are not
guaranteed to exist in human communities, but they indicate
possibilities that may warrant further investigation.

To analyze the effects of each hyperparameter, we find the
Pearson correlation between each hyperparameter and each
network-level metric over all 5,784 network runs described
above. Results are shown in Figure 6.

The strongest correlation observed is between the Popu-
lar Artifact hyperparameter (AMACS’s tendency to promote
popular content) and Attention Concentration. This is unsur-
prising, as recommending popular artifacts creates a positive
feedback loop that keeps a few artifacts at the center of atten-

Figure 4: Comparison of AMACS behavior to the FanFic-
tion community. The blue shaded area represents human be-
havior. The red and green lines show the AMACS runs most
similar to the human community in each individual metric
and over all four metrics, respectively. The purple line shows
average AMACS behavior and is included for reference.

tion. This relationship matches the recommendation in (Xu
and Bailey 2012) that administrators of online communities
of creators can spread attention by increasing the personal-
ization of user’s ‘Browse’ or ‘Explore’ pages, as opposed
to only recommending globally popular artifacts. New Ar-
tifact (AMACS’s tendency to promote new content) shows
a strong negative correlation with Attention Concentration,
indicating another possible way that online platforms could
spread attention when increased personalization is not pos-
sible.

The strongest indicator of a network’s Reciprocity is the
Gratitude hyperparameter (which represents how willing an
agent is to review a peer’s work because that peer has given
positive reviews in the past). If administrators of online plat-
forms want to increase the reciprocity of their communities,
they might consider adding features that encourage grati-
tude, such as notifying users of generous actions and en-
couraging them to return the favor. For example, when a
Reddit user receives a new follower, they receive a notifi-
cation saying “[USERNAME] just followed you. Go check
them out to learn more about them.” This type of call to
action encourages gratitude and, by extension, reciprocity.

For Clustering, the strongest indicator is the Mutual Con-
tact hyperparameter (which controls an agent’s desire to
view artifacts created by agents with whom they share a
mutual contact). There are two ways an administrator of
an online social platform might use this information to in-
crease Clustering. The first is by explicitly calling out the
existence of mutual contacts in the site’s UI. Facebook does
this by listing the number of mutual friends user’s have with
each other, encouraging users with many mutual friends to
connect. The second, more subtle approach is to use mu-
tual contacts in determining which artifacts to recommend
to a user on their “Browse” or “Explore” pages, which many
social media sites already do.

Perhaps the most surprising strong correlation is between
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Figure 5: Comparison of AMACS behavior to the r/ArtCrit
community. The blue shaded area represents human behav-
ior. The red and green lines show the AMACS runs most
similar to the human community in each individual metric
and over all four metrics, respectively. The purple line shows
average AMACS behavior and is included for reference.

Agent Taste (the personalization of AMACS’s artifact rec-
ommendations) and Creator to Agent Ratio. AMACS agents
become creators when they are confident in their own tastes,
so the most likely reason for this correlation is that increased
personalization leads to increased confidence, as agents con-
sistently find artifacts that reinforce their current tastes.

Out of the eleven hyperparameters tested, ten showed sta-
tistically significant correlations with at least one metric, and
8 showed significant correlations with more than one metric.

We look forward to future work that may validate the de-
gree to which these trends hold for human societies and dis-
cover other ways in which modelling tools can help inform
our understanding of human behavior.

Ethical Considerations
One might reasonably ask if it is wise to study the ways in
which community administrators can induce desired behav-
iors in their communities, as this might be interpreted as ma-
nipulation. The authors of this paper believe that studying
the power of platform administrators in a public and aca-
demic setting adds transparency and accountability to the
larger discussion of ethical platform administration. Design
decisions affect users whether we understand their effects
or not; this line of research empowers administrators to be
more deliberate and thoughtful with the influence they al-
ready have. It is our hope that educating both users and ad-
ministrators will help both parties make decisions that are
beneficial to everybody.

Conclusion
In this work we have introduced a data-driven and task-
agnostic architecture for modelling the social behavior of
creative agents. We have studied real-world communities
of creators and replicated many of their behaviors in an au-
tomated setting using AMACS: the Architecture for Multi-

Figure 6: Pearson correlation between each hyperparameter
and metric in AMACS. Darker colors indicate larger magni-
tudes, and ∗ indicates significant relationships (α = 0.01).

Agent Creative Societies. AMACS is designed to be flexible
and user-friendly, and we hope it will provide a useful test
bed and common setting for future experiments. Future ar-
eas of improvement could include defining more robust and
descriptive metrics for understanding network-level social
behavior, collecting data on more human creator communi-
ties, and investigating the experience of individual network
participants rather than analyzing aggregated data.

We look forward to future work that will use socialization
both to improve the efficacy of artificial creative agents and
also “to contribute to the understanding of human creativity”
(Saunders and Bown 2015). Learning from from human be-
havior, as we have done here, has the potential to improve
our models and the performance of computational creativity
systems. Using real-world data to validate automated sys-
tems also allows information to flow the other way; phenom-
ena that emerge in our simulations give us clues about how
human creativity may work. We hope that this and future
work continues to improve the experience of human creators
and the performance of automated ones.
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Reprinted in Memorie di Metodologica Statistica (Ed.
Pizetti E.
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[Hämäläinen, Alnajjar, and others 2019] Hämäläinen, M.;
Alnajjar, K.; et al. 2019. Modelling the socialization of
creative agents in a master-apprentice setting: The case of
movie title puns. In Proceedings of the 10th International
Conference on Computational Creativity. Association for
Computational Creativity.

[Hantula and Linkola 2018] Hantula, O., and Linkola, S.
2018. Towards goal-aware collaboration in artistic agent
societies. In Proceedings of the Ninth International Con-
ference on Computational Creativity ICCC 2018, Sala-
manca, 25-29 June. Association for Computational Creativ-
ity (ACC).

[Jackson 2019] Jackson, M. O. 2019. The Human Network:
How Your Social Position Determines Your Power, Beliefs,
and Behaviors. Vintage.

[Jennings 2010] Jennings, K. E. 2010. Developing creativ-
ity: Artificial barriers in artificial intelligence. Minds and
Machines 20(4):489–501.

[Linkola and Hantula 2018] Linkola, S., and Hantula, O.
2018. On collaborator selection in creative agent societies:
An evolutionary art case study. In International Conference
on Computational Intelligence in Music, Sound, Art and De-
sign, 206–222. Springer.

[Malik and Mucha 2013] Malik, N., and Mucha, P. J. 2013.
Role of social environment and social clustering in spread
of opinions in coevolving networks. Chaos: An Interdisci-
plinary Journal of Nonlinear Science 23(4):043123.

[Marlow and Dabbish 2014] Marlow, J., and Dabbish, L.
2014. From rookie to all-star: Professional development in a
graphic design social networking site. In Proceedings of the

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

347



17th ACM Conference on Computer Supported Cooperative
Work & Social Computing, 922–933.

[Milli and Bamman 2016] Milli, S., and Bamman, D. 2016.
Beyond canonical texts: A computational analysis of fanfic-
tion. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, 2048–2053.

[Mitchell 2009] Mitchell, M. 2009. Complexity: A Guided
Tour. Oxford University Press.

[Pace et al. 2013] Pace, T.; O’Donnell, K.; DeWitt, N.;
Bardzell, S.; and Bardzell, J. 2013. From organizational
to community creativity: Paragon leadership & creativity
stories at etsy. In Proceedings of the 2013 Conference on
Computer Supported Cooperative Work, 1023–1034.
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Abstract

To achieve a creative society, it is important to maintain
a diversity of values. However, due to automatic align-
ment of values, maintaining diverse values is a chal-
lenge. We propose that the noise, i.e, the uncertainty
in understanding others’ values, may play a key role in
realizing a creative society by moderating values align-
ment. In addition, the potential effects of noise may
be affected by the social perception bias at the soci-
etal level. To study the dynamics of values diversity
resulting from peer interactions with noise and percep-
tion bias, we present a hybrid opinion dynamics model,
in which values is represented as both continuous and
discrete categories. We simulate online social network-
ing with various levels of noise and perception bias.
We found that the positive effects of noise are twofold:
it helps to moderate the alignment process of values
within a group and to improve the social inclusiveness
of extremism views. We conclude that noise contributes
to preventing social fragmentation and monolithiciza-
tion, and therefore plays a key role in realizing a cre-
ative society.

Introduction
A vision of the future of our society is the “Creative Soci-
ety”, in which the co-creation, instead of economy, is con-
sidered to be the core of the social systems (Iba 2016). Co-
creation is a creative activity that requires collaboration be-
tween multiple individuals. Previous researchers noted that
including members with diverse backgrounds in creative ac-
tivities can create a more inclusive atmosphere and lead to
better outcomes (Mannix and Neale 2005; Hawlina, Gille-
spie, and Zittoun 2019). At the societal level, maintaining a
diversity of values (i.e., ideological beliefs such as conserva-
tive/liberal) could also create an inclusive social atmosphere
and benefit social co-creation. Therefore, maintaining di-
verse values can facilitate the realization of a creative soci-
ety.

Meanwhile, maintaining diverse values is a challenge due
to social alignment. In social-cognitive science, social align-
ment refers to the alignment of minds and bodies in social in-
teraction (Gallotti, Fairhurst, and Frith 2017), which can be
an automatic and unconscious process (Chartrand and Bargh
1999). When understand others’ values, unconscious align-
ment of values may occur, negatively affecting the diversity

of values.
We propose that one effective factor that can counteract

the negative effects of social alignment is the noise, i.e.,
the uncertainty, when understanding the values of others.
In a modern society, we understand others’ values mainly
through their messages posted on online social networks
sites (SNS). Usually, the noise is considered negative, as
it can produce misunderstanding and cause severe prob-
lems in many cases. Hence, a goal of technology develop-
ment (e.g., annotation, labeling) is to reduce the influence of
noise (Souri, Hosseinpour, and Rahmani 2018). However,
too low noise may strengthen the values alignment and thus
have negative impacts on realizing a creative society.

This study aims to clarify the potential role of noise in
maintaining diverse values. We hypothesize that the role
of noise is affected by the societal level of social percep-
tion bias. Social perception bias refers to one’s bias when
perceiving the values of others, which can have different di-
rections related to social categorization (e.g., distinguishing
between ingroup and outgroup (Brewer 1999)). The societal
level of such a bias could be considered as a distinguishing
characteristics varied by culture and society. In a society
with high-level social perception bias, the understanding of
others is more easily biased by the perceiver’s own values.
Social perception bias can affect the understanding of oth-
ers’ values and therefore can play a role in the alignment of
values.

This work focuses on the potential effects of online
social networking on the alignment of values. We fol-
lowed the KISS (Keep It Simple, Stupid) principle to
study computational social creativity (Saunders and Bown
2015). We developed a multi-agent model for modeling
online social networking and the alignment of values in
societies with various bias levels. In our model, each
agent has its values, represented in a hybrid way, i.e., as
both a continuous numerical value and a discrete cate-
gory (e.g., Leftism/Centrism/Rightism in politics, Central-
ization/Neutral/Localism in digital products/services). The
agents are uniformly distributed in a virtual space and read
messages posted by their neighbours who have similar ser-
vice networking preferences (e.g., the frequency of using
specific social networking sites). By reading a message, an
agent perceives the values of the message poster and may ad-
just its own values accordingly. We modeled the values with
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well-established categories and remains stable at the indi-
vidual level (e.g., individual attitudes towards certain policy
issues (Carsey and Layman 2006)), which is consistent with
the social intuitionist view (Haidt 2001). Hence, the social
alignment is bounded, i.e., an agent only align its own val-
ues within the same category and thus always stick to that
category.

We simulated online social networking under different
levels of noise, which is related to the development of in-
formation technology. We analyzed the dynamics of values
diversity and discussed potential role of noise.

Model
This work presents an opinion dynamics (OD) model, which
are agent-based models adapted from physics to study the
formation of opinions or beliefs. We used a hybrid design,
i.e., the opinions are represented in both discrete and con-
tinuous ways, similar to the three-state CODA (Continuous
Opinions and Discrete Actions) model (Martins 2010). To
better reflect the nature of social values, we made two ma-
jor changes. First, the agents in the CODA model perceive
others’ opinions as discrete numbers, while we use a contin-
uous design. Second, the updates of the opinions is bounded
by the agents’ initial value categories. The fixed-category
design enables the study on the interactions between groups
with well-established opinion categories.

In our model, multiple agents are aligned in 1-dimension
space, which is the simplest case of uniformly distributed
social networks. The position of agents is fixed during the
simulation. Each agent has an opinion about the sense of
values. For an agent i, its values is represented as both a
continuous numerical value vi and a discrete category oi.
The vi is represented as a real number within the interval
(0, 1). The oi is represented as an element in the finite set
{1, 2, 3}, corresponding to three positions of values: the two
ends of the spectrum (i.e., vi ≤ 1/3 and vi > 2/3) and the
neutral position (i.e., 1/3 < vi ≤ 2/3). The category oi is
fixed in a simulation.

At each time step, every agent reads a message posted
by a random neighbor within a distance L, which represents
the differences in their social networking preferences. We
set L = 20 in this work. As we use a 1-dimension setting,
this setting means that an agent can see the posts made by
20 other agents with closest social networking preferences.

When the agent i reads a message by the neighbor j, the
values of j is perceived by i as both a numerical value v′j and
a category o′j . The v′j is computed first, and then the o′j is set
accordingly. The v′j is a random value following the uniform
distribution within the interval Dij , which is determined by
the true value (vj), the noise level (B), and the perceiver’s
bias towards the poster j (δij):

Dij = (vj −B + δij , vj +B + δij) (1)
The parameter B is a variable within the interval (0, 0.5),

which produces a random offset from the true value. The
setting of B > 0 corresponds to inevitable noise in the un-
derstanding of others. When B ≥ 0.5, the values corre-
sponding to the neutral position 0.5 would be perceived as
any values in the whole space [0, 1].

The perceiver bias produces a biased offset from the true
value, which is related to the distance between the values vi
and vj :

δij =





|vi − vj |1/k if vi − vj < −λ,
or 0 ≤ vi − vj < λ

−|vi − vj |1/k if − λ ≤ vi − vj < 0,

or λ ≤ vi − vj

(2)

, where the λ is a threshold for determining the bias direc-
tion, and k represents the societal level of social perception
bias. The threshold λ represents the boundary between in-
group and outgroup categorization (see Figure 1, the dashed
line). When the distance between vi and vj is smaller than
λ (on the left of the dashed line), v′j tends to be similar to
vi. Otherwise, v′j tends to be different from vi. In this study,
we set λ = 0.5, which corresponds to a balanced catego-
rization when the regions of inclusions and exclusions are
symmetrical.

Figure 1: The effect of the bias level k. Dashed line shows
the threshold λ.

The parameter k is a variable within the interval (0, 1),
which determines the relationship between the values dif-
ferences and the biased offset (see Figure 1). A smaller k
corresponds to a society where the understanding of others
is less susceptible to the perceiver’s own values.

Following the computation of v′j and o′j , if the message
poster j appears to belonging to the same category as the
perceiver i, i.e., oi = o′j , i would adjust its values to align
with j. First, the numerical value at the time step t is com-
puted as:

vi(t+ 1) = vi(t)− µ(vi(t)− v′j(t)) (3)

, where µ defines the speed of alignment, which is set to 0.3
(a moderate speed) in this study. The updates of vi follows
a bounded design, i.e., i will do nothing if oi ̸= o′j . Hence,
i will never change the category oi, and the numerical value
vi will be kept within the boundary of the initial category.

Simulation Results
Using the proposed model, we run simulations with various
settings of noise level (B) and bias level (k). In all runs,
the number of agents (N ) was 3000, which were divided
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equally into three groups (Group A, B, and C). At the be-
ginning of each run, for the agents in Group A, B, and C,
the initial category (ox) was fixed to 1, 2, and 3, respec-
tively, while the initial numerical value (vx) was set to ran-
dom numbers following a uniform distribution in the interval
(0, 1/3), (1/3, 2/3), and (2/3, 1), respectively.

A qualitative analysis is performed to examine potential
effects of noise on the society behavior at low- and high-
level of bias. We found that low noise affects the behavior
of low- (k = 0.33) and high-biased (k = 0.90) societies
in different ways. The changes of population histogram in
typical runs at various noise levels (0.01, 0.05, 0.10, and
0.30) are plotted in Figure 2 and Figure 3, corresponding to
the low- and high-level bias settings, respectively.

Figure 2: Changes of population histogram in typical low
bias (k = 0.33) runs. Four panels corresponds to various
noise levels (B). Color bar indicates the population.

At the low bias level, a decrease in noise level leads to a
convergence of each group’s values toward the center of re-
spective groups. At the high bias level, the results are differ-
ent among groups. For the extremism groups (Group A and
C), a decrease in noise level did not only lead to a conver-
gence of values towards the group center, but also bring the
distance between extremism groups closer and thus result in
a narrower range of values. For the centrism group (Group
B), however, diverse values could be observed at low noise
levels.

In the quantitative analysis, we first analyzed the overall
diversity of values by computing the Shannon Index (e) of
the numerical value (vx) for the whole population in the so-
ciety. To compute e, we divided the interval (0, 1) into 50
equal-width segments. Then the Shannon Index at the time
step t was computed as:

e(t) = −
S∑

i=1

pi(t) log(pi(t)) (4)

, where S is the segments space covering (0, 1), and pi is the
number of agents who held values with a numerical value
within each segment.

Figure 3: Changes of population histogram in typical high
bias (k = 0.90) runs. Four panels corresponds to various
noise levels (B). Color bar indicates the population.

Each run lasted for 1000 time steps. As showed in the
results from typical runs, this setting is sufficient for the so-
ciety to reach a stable state. We measured the final diversity
in a run by the Shannon Index at the final step. We analyzed
the averaged results of 30 runs.

For a low-level bias and a high-level bias settings, the
overall diversity in relation to the noise level is plotted in
Figure 4 Left. Within each group, the relationship between
noise level and local diversity of values is plotted in Figure 4
Middle. At various noise levels, the effects of noise on the
range of values (measured by the standard deviation) is plot-
ted in Figure 4 Right.

Despite minor differences, the negative effects of low
noise on the overall diversity did not differ noticeably in
both magnitude and trend. In contrast, there is a difference
in the noise effects on local diversity of values under dif-
ferent settings. At a low-level bias setting, low noise nega-
tively affected local diversity in all three groups equally. At
a high-level bias setting, the negative effects of low noise
on local diversity in the extremism groups (Group A and C)
was more drastic. For the centrism group (Group B), how-
ever, lowering noise could lead to a dramatic increase in the
local diversity of values. Meanwhile, we also found a differ-
ence in the noise effects on the values range under different
settings. At a low-level bias setting, low noise had little ef-
fects on the standard deviation of values. That is, at various
noise levels, the range of values was maintained. At a high-
level bias setting, lowering noise resulted in a decrease in
the standard deviation of values. That is, the range of values
became narrower at low levels of noise.

Discussion
In general, our results suggest that, regardless of the societal
level of social perception bias, a certain degree of noise (i.e.,
uncertainty) when understanding others’ values through on-
line social networking is necessary for maintaining the di-
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Figure 4: Left: Overall values diversity at different noise levels (B) under low- and high-level bias (k) settings. Middle: Local
values diversity in each group in relation to noise (B) at low- and high-level bias (k). Right: Standard deviation of values in
relation to noise (B) at low- and high-level bias (k).

versity of values, which is a key to achieving a creative so-
ciety. Moreover, depending on the bias level of social per-
ception in a society, the mechanism underlying the observed
effect of noise may vary.

In societies with low levels of bias, there are fewer cat-
egorization errors caused by perceiver bias (see Figure 1).
Values alignment occurs mainly within a group, while in-
teractions between different groups are suppressed. In this
case, low levels of noise can strengthen social fragmentation
(see Figure 2). Thus, when the bias level of social perceiving
is low, noise may be necessary for maintaining the overall
values diversity by influencing the values alignment within
a group, i.e., by maintaining local diversity of values.

For societies with high bias levels, since the perceiver’s
own values have a greater impact on the understanding of
values, neighboring groups can influence each other. The
alignment of values occurs not only within the groups, but
also between the centrism groups and the groups on the two
ends of the spectrum. This result is consistent with previ-
ous findings on the attraction from moderate opinions in the
three-option CODA model (Martins 2010). We found that
the inter-group attraction is strengthened at high bias level.
Thus, a low level of noise can strengthen the social monolith
(see Figure 3).

In a low-noise condition, the alignment of values reduces
the internal diversity of the extremism groups. However,
probably, for the centrism group, the effect of alignment
can be counteracted by the attraction between neighboring
groups, which could even lead to an increase in local diver-
sity. Meanwhile, the attraction strengthened by low-noise
leads to the convergence of the extremism groups toward the
centrism group, thus narrowing the range of values. There-
fore, when the bias level is high, noise not only affects
the alignment process of values within groups, but also af-
fects the interactions between neighboring groups, thus con-
tributes to the overall diversity of values.

Our definition of noise and bias is compatible with the
concepts proposed recently by Kahneman, Sibony, and Sun-
stein (2021). In their work, the noise in social perception
was considered a “flaw” that should be reduced as much as
possible. In contrast, this study shows that noise can ef-
fectively reduce the negative effects of social alignment on

diversity of values, thus contributing to a more inclusive so-
cial atmosphere and facilitating the realization of a creative
society. In particular, our results suggest that noise is more
important for societies with high bias levels of social per-
ception. In a high biased society, values alignment is more
likely to occur, thus creating a social mainstream, making it
much more difficult to maintain the range of values, i.e., the
inclusiveness of society, without the help of noise.

Conclusion

Noise exists in the understanding of others’ values. How-
ever, in modern online social networking, the noise has been
greatly reduced by technological developments in the pur-
suit of communication accuracy. Through computer simu-
lations, we demonstrated the downside of too little noise to
realize a creative society, i.e., a reinforcement of social frag-
mentation and monolithicization. Our results suggest that
noise plays a key role in maintaining the diversity of social
values by preserving local diversity and social inclusiveness.
In this sense, noise could be considered as a key factor in re-
alizing a creative society.

It should be noted that this study only considered the ef-
fect of typical online social networking on the changes of
values. It is unknown to what extent our results can be gen-
eralized to other forms of social interaction. Meanwhile, the
formation and evolution of values would also be affected by
other factors than social interaction. Therefore, the evidence
and boundaries of the present findings need to be examined
by future studies.

Nevertheless, this work adds to the literature emphasizing
the importance of alternative information in social cogni-
tion (Salvi et al. 2021). In addition, this study contributes to
future social creativity studies using simple and reproducible
models of opinion dynamics. We demonstrated that opinion
dynamics models can be used to study social creativity re-
sulting from peer interactions. Future works interesting in
the interactions between internal and external opinions could
develop variants of our model using dynamic categories. We
believe that these works could lead to a better understanding
of the mechanisms of social creativity.
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Abstract 

This paper proposes a discussion on bias and its place 
in Computational Creativity research. Recent develop-
ments in Artificial Intelligence research have become 
more cognizant of the dangers and pitfalls in not recog-
nising and addressing unseen biases within algorithmic 
systems. As many such methods are used for creative 
tasks, we propose that, as a community, we must con-
sider bias possibilities and the implications they could 
have on the outputs and outcomes of research from this 
community. 

 Introduction 
Despite many writings, experiments and discussions on the 
topic, Creativity is still a poorly defined concept. Trying to 
compute a poorly defined concept is immediately fraught 
with difficulties. Despite this persistent ambiguity, the field 
of Computational Creativity (CC) has been examining this 
problem for many years. Some of the main arsenal for this 
task have been methods and tools based in Machine Learn-
ing (ML) and Artificial Intelligence (AI). Such tools have 
been shown in recent years to be susceptible to various 
ethical issues, including, but not limited to detrimental 
bias. So we ask: Is bias within CC inevitable? And if it is, 
is this a bad thing? 
 This may be a complex question, but it is one worth con-
sidering. Despite academic and policy approaches to ad-
dress Bias in AI as detailed in the following section, Big 
Tech have not always taken such matters as seriously as 
they should. While Google set up an Ethical AI Team in 
2018, the controversial firing of Timnit Gebru in Decem-
ber 2019, and subsequent firing of Margaret Mitchell, who 
both co-led this Ethical AI Team, for refusing to withdraw 
a paper that criticised the use of large language models, 
demonstrates that this is a controversial topic that will not 
be easily solved (The Irish Times, 2021). Despite public 
outcry and an open letter of support for Gebru (Medium, 
2020), Google did not reverse their decision, nor did they 
offer support in response to the harassment that subsequen-
tially erupted towards the researchers on social media 
(Schiffer, 2021).   

 Bias, fairness and ethics are vitally important considera-
tions for all applications of AI, and CC research is not ex-
empt. In this short discussion paper, we propose a number 
of areas from which to consider bias in CC. First we con-
sider bias, in its multiple forms and how it has been treated 
in AI. Then we look at the various types of algorithms that 
have been typically used in CC and consider if they are all 
as susceptible as each other. Finally we consider Creativity 
itself and how it may be rooted in biased decision making. 

What is Bias? 
As humans we all have inherent biases; when presented 
with a choice we have tendencies to lean towards one out-
come, whether that is based on preference, exposure, belief 
or something intangible. Biases can be either conscious or 
subconscious. But, while the notion of bias invokes a very 
negative context, our innate biases are not inherently bad.  
 When it comes to trying to define bias, there appears to 
be no one standard clear definition. Dictionary definitions 
can include reference to prejudices: ‘Inclination or preju-
dice for or against one person or group, especially in a way 
considered to be unfair.’ (Lexico, 2022) or distortion: ‘Sys-
tematic distortion of results or findings from the true state 
of affairs, or any of several varieties of processes leading 
to systematic distortion.’ (A Dictionary of Public Health, 
2007). Yet one of the seminal papers on bias in judgment 
refers to it as ‘..decisions based on beliefs concerning the 
likelihood of uncertain events’ (Tversky and Kahneman, 
1974). Thus, a bias is simply a decision, one that is in-
formed, either correctly or incorrectly, by some a priori 
belief or understanding we already possess. While the dic-
tionary definitions define bias in terms of unfairness and 
distortion, the truth is that every day we use heuristics to 
make sense of the world around us. If we had no biases, 
our opinions of the world would be akin to white noise. 

Detrimental Bias 
Biases help us make decisions and form part of our person-
alities; it is when we encounter discriminatory bias that 
such judgments can be unfair, illegal or dangerous towards 
some in our society. As humans, we have inherent biases, 
and there is a strong potential for us to bring these biases 
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into any algorithmic system we may create or deploy. The 
potential for algorithms to mirror human biases in decision 
making has been identified as one of the most straight for-
ward ethical challenges in implementing AI in healthcare 
(Char, Shah and Magnus, 2018). For this reason there has 
been much academic research in to the types of biases that 
may be found or introduced to algorithmic systems in re-
cent years (Mehrabi et al., 2021) along with methods 
aimed to mitigate these effects (Bellamy et al., 2019). 
 The problem of detrimental bias within AI systems is 
also increasingly being identified by regulatory authorities. 
NIST have recently published a standard on identifying 
and managing bias in AI (National Institute of Standards 
and Technology- US Department of Commerce, 2022) and 
IEEE plan to release the P7003 standard on Algorithmic 
Bias Considerations later this year (Koene, Dowthwaite 
and Seth, 2018). Bias, fairness and trustworthiness all con-
tribute to the ethical implementation of AI. Ethics is an 
even larger consideration than that of bias, and many 
guidelines have been proposed to ensure ethical implemen-
tation of AI such as those proposed by the European 
Commission on the ‘Ethics Guidelines for Trustworthy AI’ 
(European Commission, 2019), although those proposed by 
the European Commission on are critical of these guide-
lines (Gille, Jobin and Ienca, 2020). 

Fairness 
If we remove all discriminatory biases from an algorithmic 
system we should be able to consider it fair. But, similar to 
bias, fairness is concept that is colloquially understood but 
difficult to universally define (Gajane and Pechenizkiy, 
2017). Nevertheless many strides have been made to ad-
dress fairness in AI including the development of fairness, 
accountability and transparency machine learning 
(FATML) (Veale and Binns, 2017). This study proposed 
three methods for addressing this: trusted third parties 
could be selective with data, online collaborative platforms 
with diverse organisations could promote fairness and un-
supervised learning techniques could allow a fairness hy-
pothesis be built for selective testing. Chen et al. noted that 
many ML models focus on balancing fairness and accura-
cy, but they argued that fairness should be evaluated in 
context of the given data and through data collection and 
study, rather than through constraint of the model (Chen, 
Johansson and Sontag, 2018). Binns further considered the 
nature of fairness and what it means for a ML algorithm to 
be fair by considering existing works on moral and politi-
cal philosophy (Binns, 2018). This study questioned should 
fairness equate to equal opportunity for everyone or focus 
on minimising harm to the most marginalised. Such studies 
note that while many approaches to fairness in ML focus 
on data preparation, model-learning and use of the system, 
there is still much to be learned about the nature of fairness 
and discrimination before we can understand how applied 
ML can address this.  

Algorithmic Bias 
A variety of ML and AI techniques have been used to emu-
late Creativity over the years. Is any one more or less prone 
to bias than the other? 

The Data-driven 
The explosion of deep learning and in particular Convolu-
tional Neural Nets (CNN) has been largely fueled by the 
creation of and accessibility to large image datasets. Such 
methods are commercially very favourable, but due to un-
balanced, badly labelled datasets these are some of the 
most problematic systems in relation to detrimental bias. 
Birhane et al. discuss several dangers from ill-considered 
data curation practices including justice, consent and ethi-
cal transgressions (Birhane and Prabhu, 2021). Many det-
rimental biases are found to be discriminatory in relation to 
sensitive or protected characteristics such as race, gender 
etc. For this reason these characteristics are often not made 
available, although simply removing such characteristics 
from datasets has been shown to exacerbate rather than 
solve the issue, as latent relationships between other, non-
sensitive attributes, can cause proxies that lead to the same 
biases (Chen et al., 2019). Some methods have been pro-
posed to use these proxies as a way to identify and mitigate 
against biasing against these characteristics (Lahoti et al., 
2020). 
 When considering bias in an AI system, the data does 
seem like the primary culprit as the source of bias; a sys-
tem can only learn and reproduce the data and patterns it is 
given. But there are more aspects to consider. A recent 
systematic review found that Data-driven innovation (DDI) 
suffers from three major sources of bias: data bias, method 
bias and societal bias (Akter et al., 2021). Thus, even in 
systems that are driven by the data, we should consider 
other internal design mechanisms and external influencing 
factors that can lead to detrimental bias. 
 
The Evolutionists 
Evolutionary Computation (EC) comprises a family of 
heuristic search methods based on Darwin’s theory of sur-
vival of the fittest. A population of random solutions to a 
given problem is created and then iteratively improved 
(‘evolved’) over a series of generations. This improvement 
is driven by a fitness function – an evaluation measure of 
each individual derived by the creator of the algorithm. 
Such EC methods have been widely used in creative sys-
tems such as music, art and design (EvoSTAR, 2022).  
 EC systems may also work with large datasets, but there 
are further design decisions within their architectures that 
could lead to bias. Most notably it is the choice of fitness 
function that will dictate which individuals are deemed 
more fit and are hence given a better change of surviving 
to the next generation. This creates a statistical bias in fa-
vour of individuals that conform to the fitness defined. For 
objective, measurable tasks, this may be what is expected, 
but for subjective creative tasks, might this be creating an 
unwanted, or unexpected bias within the system? 
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Objective Search 
Many other systems such as Generative Adversarial Net-
works (Elgammal et al., 2017) among others have been 
used in the generation and study of creative artefacts and 
procedures. While they may differ in their architecture and 
style, one commonality among AI systems is that they each 
aim towards a specific objective. That may be to reduce an 
error, reach a goal or solve a problem, but a system must 
have an objective to train and aim towards. 
 The problem with such methods for creative tasks is that 
the best objective is not always easy to define. How would 
one pre-define the best melody, sketch or poem? A better 
search method may be to search for novelty rather than a 
pre-specified objective. Novelty search proposes that the 
optimal solution to a problem can be found when looking 
for a different solution or when looking for no particular 
solution at all (Lehman and Stanley, 2010). If you are 
searching for novelty, rather than an objective, it may be 
less likely that your search will be biased. 

Creative Bias 
The above may lead us to believe it is the AI, ML and 
computational tools we use that cause bias within a system. 
But what of the aesthetic, ever elusive, Creativity that we 
chase? Is Creativity itself susceptible to, or even dependent 
on, bias? 
 Like bias and fairness, Creativity is a concept that is 
understandable by most, yet hard to define in a generalized 
context. So, in effect, we are trying to ascertain if an ill-
defined concept is susceptible to an undefined phenome-
non. But, as noted above, we do have an innate understand-
ing of what bias is and how it affects our judgments. In a 
similar manner we do have ways of measuring Creativity. 
It has been proposed that to identify Creativity the system 
must be able to display novelty and value (Boden, 1998). 
Novelty At its most absolute meaning, novelty is an unbi-
ased concept; either something is new or it is not. Howev-
er, often what is meant by novelty is that it is new to the 
creator. An individual does not have to create something 
new to the world to have displayed creativity. Personal or 
P-Creativity is as valid as Historical H-Creativity. In this 
sense, the novelty of P-Creativity could be biased to the 
individual. 
Value The value of a creative artefact is surely a biased 
measurement. The monetary value of an aesthetic artefact 
is measured by what the highest bidder is willing to pay for 
it. Such a measure is surely influenced by styles, fashion, 
popularity and a wealth of other immeasurable external 
biases, along with the internal biases of the buyers. Of 
course, the monetary value is only one, very superficial, 
measure of an artefact’s worth. A generated piece may 
have artistic, academic, historical, personal or many other 
forms of value. But it is likewise difficult to imagine how 
such a measured value could be determined without any 
biases.  

 

CC Evaluation 
It has been noted numerous times, that evaluation does not 
take enough precedence in CC experiments (Jordanous, 
2012). This is likely due to the complexity of defining 
what creativity is; how can one measure what you cannot 
define? Nevertheless, evaluation methods for creativity in 
computational systems have been proposed. However, 
many such methods center on human evaluations and 
judgments which are costly and may lead to limitations 
(Loughran and O’Neill, 2016). Using human evaluators is 
costly in both time and money. Furthermore, if we 
acknowledge that our human biases are subjective to our 
preferences then we must accept that any human evaluator 
will evaluate towards their own personal preferences. If 
someone is adjudicating the creativity of a music genera-
tion system, it is difficult to confirm they are judging the 
system on its creativity and not merely how much they like 
the melody it produces. When judging creative artefacts, 
humans tend to mistake what they subjectively ‘like’ for 
what it objectively ‘good’. 
 For accurate human based evaluation, you must ascer-
tain their expert knowledge in the given domain. For those 
judging music, for instance, you should determine how 
many years of formal music training they have had. Such 
data may help group certain subjects together, but you 
must acknowledge this training may not remove a bias but 
simply introduce new ones. Classically trained musicians 
may expect, and then favour, outputs of a high musical 
quality, or music technology students may expect high 
production value. Even the most experienced adjudicator is 
still subject to their own learned opinions and biases. 

Crowdsourcing 
With online resources, it is now quite simple and cost-
effective to evaluate on a large cohort of people as 
Crowdsourcing platforms are increasingly being used for 
creative tasks (Oppenlaender et al., 2020). However, using 
large, unregulated crowds to evaluate a creative artefact 
will surely introduce bias. If you are not sure what demo-
graphic your audience is from or what bias profile they 
have, how can you use their personal preferences as any 
evaluation of merit? If, instead of paying for a platform, 
you merely share an online evaluation survey yourself, you 
are introducing this into a personal circle of people who 
are, most likely, highly interested or trained in the specific 
field that you are interested in. In other words, if you creat-
ed an online survey to evaluate your generated music, how 
would a random set of people around the globe judge this 
music in comparison to those on your Twitter feed? 

Discussion 
As noted earlier, bias is not an intrinsically bad word, or 
concept; our biases are simply based on heuristics that we 
need to make decisions. If we consider how we approach 
the development of a CC system, we must make a number 
of decisions before we even start development such as: 
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• The domain(s) within which we will develop and/or 
test the system; 

• The representation used; 
• The algorithm(s) employed; 
• The validation method(s). 

Each of these decision will be influenced by the developers 
education, experience, personal background and prefer-
ences. And many of these choices will require further, 
more intricate choices along the way – what genre of music 
will your system compose? What architecture will you use 
for implementation? Many of these choices are subjective 
and have no definitive best answer; we do not know the 
exact number of neurons an ANN must have to make a 
picture ‘creative’. The fact is that we require the freedom 
to make these choices in order to have the scope to even 
investigate what it means to be creative. Our learned 
tendencies, preferences or biases  may be necessary for us 
to find creativity in all the mundaneness out there. 
 In saying that, we know that AI will mimic human be-
haviors, even the worst of them. Therefore, it is still vitally 
important that we consider any harmful biases or discrimi-
nations that may be emulated by our systems. It is such 
detrimental biases that we must identify, evaluate and mit-
igate against.  

Detrimental Bias in Creative Systems 
We have considered biases in relation to CC in this paper, 
but where might the most detrimental biases be found in 
our community? 
Demographic As a computer science field, we must 
acknowledge the lack of women represented in the CC 
community. Likewise, we must be aware of underrepresen-
tation of other ethnical and minority groups. Such a ho-
mogenous demographic is missing out on significant po-
tential contributions to our field. This is not an easy prob-
lem to tackle, nor is it unique to CC. However, active and 
meaningful steps aimed at increasing the diversity within  
CC research could only benefit the quality and range of our 
outputs. We would encourage the CC community to active-
ly discuss what measures could be taken to address this. 
Training Data Historically, artists have been predomi-
nantly male. Hence the training databases, in art, music 
etc., will have already been curated from a male-generated 
perspective. If a system is learning from data that has been 
created predominantly by men, then the female perspective 
within the training data is missing. It would be difficult to 
ascertain to what extent this may bias a system, but it is 
worth consideration. For example, in visual art, there is a 
strong bias towards the female nude form as opposed to the 
male form. While acceptable, typical or even encouraged 
in its day, this is certainly a bias in subject matter. In a sim-
ilar manner, many training artefacts would be assumed to 
be biased towards Western style – unless the given study 
explicitly states otherwise. 
Domain CC research can be undertaken in almost any 
problem domain, as many problems require critical, crea-
tive thinking. Despite the fact that much early research in 
creativity was illustrated using logical tasks, it has been 

noted that there has been a lack of studies on scientific and 
logical problems in more recent years (Loughran and 
O’Neill, 2017). If creativity is not dependent on the appli-
cation domain, we must acknowledge that an over-
representation in one domain over another may introduce a 
bias within the field in general. The consideration of new 
application fields may attract new researchers into the field 
and develop creativity research into new areas.  
Complexity Systems that have more complex representa-
tion or require and utilise a lot of domain-specific infor-
mation may appear more impressive and hence be judged 
to be more creative. We must ensure not to be biased to-
wards more complex systems or become overly impressed 
by flashy displays. 
Bias Types Mehrabi et al. identify 22 types of bias that can 
be found in ML systems (Mehrabi et al., 2021). While 
there are many other works discussing types of bias that 
may be possible within such systems and, arguably, no 
such list could ever be exhaustive, this is an excellent re-
source to consider the types of biases your system may be 
susceptible to. When developing your creative system, it is 
worth reviewing each bias type to determine if your pro-
posed system may be detrimentally susceptible to these, or 
other, biases. 

Conclusions 
As a field within AI, CC researchers should be aware of 
the possibilities and dangers that bias could pose to their 
work. This short paper is only intended to start the discus-
sion around biases within CC systems and how we must be 
vigilant to recognise, acknowledge and, if necessary, miti-
gate against such biases. We recognise that, as humans, our 
biases form part of our personalities – our likes and dis-
likes lead us to make creative choices. We must assume 
that these biases can, and in some cases should, be passed 
on to the systems that we develop. These systems generate 
creative artefacts through the targets, fitness, datasets or 
benchmarks that we use in their development. We must be 
aware that the preferences and biases we have learned or 
inherently own, can be integrated, either consciously, or 
unconsciously, into our developed systems. 
 As scientists, we all wish for the most comprehensive, 
fair and accurate conclusions to our own undertakings. We 
can only achieve this if we ensure we question the deci-
sions and assumptions we make, at each step of our own 
processes. 
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Abstract

In the past decade, the application of Artificial Intel-
ligence (AI) techniques to autonomously generate cre-
ative content or to support human creativity has gained
interest from the scientific community. The generative
models that have been proposed in the literature are
changing the agency and dynamics of our art practices.
A less explored area in the intersection of AI and cre-
ativity includes the indirect impact of AI on our cre-
ativity through content moderation algorithms on social
media. Such algorithms tend to censor artistic pieces
that display nudity, acting as inhibitors of human cre-
ativity. In this paper, we present a research agenda to
tackle this challenge from a cultural and gender per-
spective, and we propose that a human and humanities-
centered approach is necessary to develop AI systems
that positively impact artistic practices.

Introduction
Social media platform adoption has grown exponentially in
the past decade. Today, it is estimated that over 4.6 bil-
lion people in the world are active social media users1. For
many of their users, these platforms have become the main
source not only of social interactions, information and news
(Walker and Matsa 2021), but also of their creative produc-
tion and exposure to artistic content.

Artificial Intelligence (AI)-based algorithms are perva-
sive in social media platforms, to e.g. provide a personal-
ized experience to their users, enable content search, tar-
get advertisements or automatically edit/filter images and
videos. Content moderation2 algorithms are a prominent ex-
ample (Chen 2021). Protecting online users –particularly
minors– from damaging content (e.g. violence, terrorism,
hatred or pornography) is essential. Thus, most social me-
dia platforms publish community guidelines that define their
content moderation policies. However, the immense volume
of content posted and consumed daily on these platforms
(e.g. over 90 million photos are posted on Instagram ev-
ery day and more than 1 billion videos are viewed on Tik-
Tok daily) have led social media companies to heavily rely

1https://datareportal.com/reports/digital-2022-global-
overview-report

2Content moderation refers to the automatic prioritization, fil-
tering, shadow-banning or censuring of content by means of AI-
based algorithms.

on AI-based algorithms for content moderation. Beyond in-
appropriate content, these algorithms tend to censor artistic
pieces that display nudity –even when their intent is clearly
non-sexual– constraining not only the freedom of expression
of artists but also the cultural experiences of users.

Social media censorship concerns several aspects of our
society and it is applied on a variety of artistic expressions.
However, in this debate paper, we focus solely on the cen-
sorship of artistic nudity and we hypothesize that such cen-
sorship has a negative impact on the creative freedom of
artists and on the broad diffusion of artistic content, eventu-
ally harming the users that they are trying to protect. As an
example of such an impact, the Vienna museums created in
2021 an account on OnlyFans, an adult-only platform, after
seeing their most famous artworks (by known artists, such
as Schiele, Munch or Modigliani) repeatedly banned on In-
stagram, TikTok, and Facebook (Hunt 2021). The bound-
ary between artistic nudes and pornography is highly de-
bated among art theorists and sociologists (Vasilaki 2010;
Patridge 2013; Eck 2001) and such an ambiguity is at the
base of the cultural issue that we are addressing in our re-
search.

In addition to the impact on the users of the platforms,
several authors in the Computational Creativity (CC) com-
munity have argued that creativity needs to be situated and
embodied in specific conditions to flourish (Saunders and
Bown 2015; Guckelsberger et al. 2021). Considering so-
cial networks as a possible example of such an embodiment,
censorship can have an impact on the inspiration for creative
work not only for human authors but also for autonomous or
co-creative systems that are immersed in this virtual envi-
ronment, changing the nature of the artefacts that the system
would be exposed to (Ritchie 2007). This negative impact
of AI algorithms on social media contrasts the efforts of the
scientific community, which in the past decade has shown
great interest towards the development of AI algorithms that
automatically generate art or assist humans in their creative
processes. However, there is yet limited work in understand-
ing the impact that such AI algorithms have on the cultural
identity of our society. We believe that this subject deserves
more attention from the computational creativity commu-
nity. Hence, this short debate paper.
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Related Work
Social media is redefining the art world, from the market-
ing to the creation and curation of art. While these new
dynamics and the democratization of art could be positive
(Polaine, Street, and Paddington 2005), some authors claim
that social media platforms have a negative impact on artis-
tic production (James 2014) and creativity (Sharlow 2015).
Manovich provides an overview of the connection between
AI algorithms and the cultural ecosystems, emphasizing that
the pervasiveness of AI algorithms is shaping our aesthetic
decisions in creative media (Manovich 2018).

The algorithmic censorship of nudity on social media
has been studied by several scholars, who have highlighted
the disproportionate impact of such censorship on feminist
artists (Faust 2017), and have explored the adopted artis-
tic techniques to circumvent it (Olszanowski 2014). In re-
cent years, artistic movements have emerged to publicly
denounce the issue, such as Don’t Delete Art3 and Artists
Against Censorship4. These initiatives and research related
to this topic are of crucial importance to raise public aware-
ness and to highlight the anthropological and sociological
consequences of artistic censorship in social media. How-
ever, to the best of our knowledge, none of the existing ini-
tiatives address algorithmic censorship of art from a multi-
disciplinary perspective, including a technical analysis of the
functioning of the content moderation algorithms.

AI-based algorithmic content moderation poses sev-
eral societal challenges: first, such proprietary, machine
learning-based algorithms are developed and maintained by
private companies with clear economic incentives. Thus,
their unprecedented power on defining our culture is exer-
cised without any guarantee that it reflects the interests of
society at large (Elkin-Koren 2020). Second, the automated
decisions made by such algorithms are not always explain-
able and transparent, particularly if based on deep learning
models. Third, algorithms are not foolproof and might not
only make mistakes but also be fooled (Elkin-Koren 2020).
Fourth, while historically controversial artistic content could
be publicly discussed and debated, today artists have a lim-
ited ability to respond to censorship by social media plat-
forms. Given the lack of transparency, it is hard to engage in
a public debate if the reasons why certain content is banned
are unknown. In contrast to related work, we propose a
comprehensive research agenda on algorithmic censorship
of art. Our objectives include an in-depth analysis of ex-
emplary censored content, and the design of socio-technical
solutions to mitigate such censorship.

AI and Art Censorship: A Historic Perspective
Nudity in the arts is historically considered one of the defin-
ing aspects of mankind’s creativity (Deprez 2020). However,
artistic nudes have been perceived, appreciated and accepted
differently throughout history. Ancient Greeks conceived
nudity as an expression of inner excellence, elevating hu-
mans from the realm of the flesh to the realm of Gods. In
the Middle Ages, the same representations were perceived

3https://dontdelete.art/
4https://www.artistsagainstcensorship.com/

Figure 1: Synthetic sketch of the key elements within
the creative ecosystem. Left, non-hierarchical arrangement
among these elements before the advent of social media and
AI; Right, transformation of the relationships in the context
of AI algorithms used on social media.

as obscene and sinful. In this period, classic paintings were
covered and statues mutilated (Deprez 2019).

The two aforementioned examples suggest that an un-
derstanding of the cultural context and ideals is necessary
to embrace and appreciate the value of an artistic nude.
Such context generally involves four key elements (cri-
tique/theory/context, market, public/observer and creators)
to yield the creative product, as depicted in Figure 1. His-
torically (Figure 1, Left), these elements have been or-
ganized in a non-hierarchical structure, with connections
among them. Depending on the artistic movement and the
historic moment, one of these elements (for example the cri-
tique/theory) might have been more prominent that the rest
in defining the environment for creativity (Montaner 1999).
Studies in history of art identify and define the links and
relations (depicted as arrows in the Figure) between the ele-
ments, and articulate a discourse about the artistic produc-
tion from the perspective of different disciplines, includ-
ing philosophy, morality, religion, politics, economics and
aesthetics. Identifying the key elements and their relation-
ships is crucial to develop a critical viewpoint of each cre-
ative framework, and to propose alternatives to it (Ramirez
1998). Today, these elements play new roles: the public is
not simply a consumer, but it may become the product, i.e.
the creation. Moreover, AI algorithms do not simply act as
the creators (generating artistic content) but they can be, at
the same time, the critics (deciding what is acceptable, and
what is not) in a non-transparent way. We hypothesize that
the ubiquity of opaque AI algorithms that impact the roles
and links between the essential elements of the artistic cre-
ation environment hinders human creativity.

Art history is rich in examples of creative practices arisen
from transgression and provocation towards existing ide-
als of morality. One such example is Michelangelo: de-
spite working at the service of the Papacy, he depicted sev-
eral nude figures in the iconic Sistine Chapel placing his
masterpiece at risk of destruction (Vasari 1550). Unfortu-
nately, disruptive artistic content might become an increas-
ingly rarer phenomenon in our contemporary cultural envi-
ronment (depicted in Figure 1, Right). AI algorithms, in
fact, have the potential to not only influence one link in the
diagram of the Figure 1, but simultaneously impact all the el-
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Figure 2: Three examples of censored images. Authors from
left to right: Caroline Krabbe (collected through our survey),
Adey (available on the Artists Against Censorship website),
Udaentro (available on the Don’t Delete Art website).

ements in the creative environment (Kulesz 2018). As a con-
sequence, the traditional non-hierarchical structure morphs
into a hierarchical organization where the Market lies on the
top of the hierarchy, as the ultimate driver of the process, and
therefore, as a fundamental agent in the creative decision-
making process. Social media platforms are establishing a
sort of monopoly to share content to the public. Algorithmic
moderation on such platforms suffers from several important
limitations: among others, we hypothesize that the utilized
algorithms are unable to appreciate the value of an artwork
or to understand the intent and context in which it is realized.
As a consequence, social media leave no space for what is
blurred (Kosko 1999) or faint (Vattimo 1988), drawing more
defined –and yet invisible– lines between the acceptable and
the unacceptable. In such a binary environment, breaking
the rules is becoming harder, if not impossible.

AI and Art Censorship: Research Agenda
Given the importance of nudity in our artistic expression, we
propose a research agenda on the topic of AI and algorithmic
art censorship, articulated around four research questions.

RQ1: Pervasiveness of algorithmic censorship on
social media
The first research question focuses on the pervasiveness of
artistic nudity censorship on social medial platforms, its
scope and characteristics.

Quantitative research in this domain is limited by the lack
of representative, publicly available data, due to the propri-
etary nature of the social platforms and their content moder-
ation algorithms. Hence, the first step in our research agenda
entails reaching out to artist communities to collect a large
corpus of censored artworks from social media. We are both
establishing collaborations with relevant artists who have
experienced censorship of their work and collecting addi-
tional examples of censored art through an online survey5,
which we launched in March of 2022.

The goal of this collection is to have a solid basis to
shed light on the functioning of the content moderation al-
gorithms and provide valuable feedback to artists as to why
their content might have been shadow-banned or censored.

5https://ellisalicante.org/censorship

Preliminary analyses on the artworks that we have gath-
ered to date reveal examples that depict female nudity with
naivete (see first example in Figure 2), nudity without any
sexual intent (see second example in Figure 2), or nudity
that is already censored by the artist (see third example Fig-
ure 2). These pictures illustrate the extent of the issue that
we plan to computationally analyze through the dataset.

RQ2: Human vs algorithmic censorship
The second research question aims to investigate the differ-
ences between the moral ideals embedded in today’s content
moderation algorithms and the human perception of art.

In 2021, the Facebook papers provided evidence that
Meta maintains a white list of users6 for which such content
moderation rules do not apply. The inclusion in such a white
list depends on the number of followers and popularity of
a particular user. To highlight the market-driven decisions-
making processes of content moderation algorithms, we plan
to design and deploy a user study to collect ground truth on
the appropriateness of the censored images (included in the
dataset previously collected) when compared to other non-
censored images displaying nudity. This research question
aims to highlight the ability of people to recognize artistic
intent in art and to show the existence of double standards on
social media platforms. Given the broad reach of social me-
dia platforms across the planet, this user study will include
a diverse set of participants from different cultural contexts
to reflect the diversity of users in the platforms.

RQ3: Improved content moderation algorithms
Once we have a deeper understanding of the challenge, we
plan to develop intent and context-aware content moderation
algorithms that are able to distinguish artistic nudes from
pornography.

Note that most of the social media platforms today do not
explicitly ban artistic nudity in their community guidelines7.
The discrepancy between the intent of the platforms and the
actual censorship suggests that these algorithms are not yet
refined enough to replace human moderators. In this regard,
there is a need to develop content moderation algorithms that
are intent and context-aware, combining different modalities
(e.g. images and text) and leveraging inferred insights from
the user study developed to address RQ2. Unfortunately, the
existing ambiguity between artistic nudes and pornography
is usually not taken into account by researchers developing
algorithms for adult-content recognition (Wang et al. 2018;
Chen 2021). We argue that an exploration of this issue could
offer an opportunity in the field of Computational Creativity.
In particular, the development of better content moderation
algorithms for artistic nudity could leverage and improve
the internal processes of evaluation in CC systems (Ventura
2017).

RQ4: Gender perspective
With RQ4, we address this topic with a gender perspective.
The focus here is on studying the impact of such algorithms

6https://www.wsj.com/podcasts/the-journal Episode 1
7https://transparency.fb.com/it-it/policies/community-

standards/adult-nudity-sexual-activity
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on the cultural identity of women.
Throughout human history, women have been objectified

in visual creative expressions (Barolsky 1999). While this
pattern reappears with varied connotations in different his-
toric time periods, the broad use of AI-based algorithms
on social media could have unprecedented negative conse-
quences for women. Remarkable feminist movements –such
as Free the Nipple and The Guerrilla Girls (Pollen 2021)–
have tried to raise social awareness about this issue.

In 1975, Mulvey (Mulvey 1975) identified the so called
male gaze in Hollywood movies. This concept refers to a
masculine heterosexual perception of women, who are de-
picted as objects of sexual desire, to satisfy what is known
as scopophilia (i.e. the pleasure in looking). The concept
of male gaze is still debated in today’s visual culture. With
the rise of social media, the male gaze has been argued to
be stronger than it has ever been (Oliver 2017). We hy-
pothesize that the censorship of female artistic nudes (and
nipples, in particular) by AI algorithms has a role in this
phenomenon. Today’s AI algorithms on social media may
be seen as socio-technical phenomena that automate culture
through technology, perpetrating and possibly even ampli-
fying human biases (Sezen 2020; Schroeder 2021). In par-
ticular, the censorship of female artistic nudity may be re-
lated to the conception of women as objects of pleasure.
Because of this conception, female manifestations of nudity
are frequently perceived as pornographic acts (Volkers 2020;
Ibrahim 2017; Are 2021). This bias affects the freedom of
expression of artists who are not conforming with the male
gaze and that use female nudity to stand against the patriar-
chal sexualization of feminine bodies. Thus, we believe that
the intersection between AI, social media, female nudity and
art deserves to be further studied with a multi-disciplinary
approach and a gender perspective.

Conclusion
In this paper we advocate for a research agenda focusing
on the interplay between AI-based content moderation algo-
rithms and art censorship on social media, and its implica-
tions on artistic production, creativity and the cultural iden-
tity of women. We have identified four broad research ques-
tions that would need to be addressed to fully understand
such an interplay. These research questions (for example,
the importance of having intent and context-aware content
moderation algorithms) would need to be tackled before the
widespread deployment of these technologies. Such a prior
analysis would also entail interdisciplinary teams with ex-
perts from a variety of fields within the humanities and com-
puter science (Crossick 2020). We emphasize the need to
broaden the views of this research field, including both com-
puting and non-computing disciplines (e.g. sociology, media
studies, art history, anthropology) in the research agenda to
develop technical solutions that are socially acceptable and
responsible.
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Vasari, G. 1550. Le vite de’ più eccellenti architetti, pittori,
et scultori italiani, da Cimabue insino a’ tempi nostri.

Vasilaki, M. 2010. Why some pornography may be art.
Philosophy and Literature 34(1):228–233.

Vattimo, G. 1988. The End of Modernity: Nihilism and
Hermeneutics in Post-Modern Culture. Polity Press in As-
sociation with B. Blackwell.

Ventura, D. 2017. How to build a cc system. In ICCC,
253–260.

Volkers, R. 2020. Perverse media: How instagram limits the
potential of feminist art, last access: 31 may 2022.

Walker, M., and Matsa, K. E. 2021. News consumption
across social media in 2021, last access: 19 may 2022.

Wang, X.; Cheng, F.; Wang, S.; Sun, H.; Liu, G.; and Zhou,
C. 2018. Adult image classification by a local-context aware
network. In 2018 25th IEEE International Conference on
Image Processing (ICIP), 2989–2993.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

363



Evaluation of Curriculum Learning Algorithms using Computational Creativity
Inspired Metrics
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Abstract

Curriculum learning, especially in robotics, is an active
research field aiming to devise algorithms that speed up
knowledge acquisition by proposing sequences of tasks
an agent should train on. We focus on curriculum gen-
eration in reinforcement learning, where various meth-
ods are currently compared based on the agent’s perfor-
mance in terms of rewards on a predefined distribution
of target tasks. We want to extend this singular charac-
terization of existing algorithms by introducing metrics
inspired by notions from the field of computational cre-
ativity. Namely, we introduce surprise, novelty, interest-
ingness, and typicality that quantify various aspects of
tasks stochastically proposed by the curriculum learning
algorithms for the learner to train on. We model pro-
posed tasks with Gaussian mixture models which en-
able their probabilistic interpretation, and use Hellinger
distances between distributions and training rewards in
formulation of the proposed metrics. Results are pre-
sented for eight curriculum learning algorithms show-
casing differences in prioritization of various aspects
of task creation and statistically different mean metric
values when comparing agent’s best and worst training
runs. The latter finding is not only useful for analysis of
existing algorithms, but potentially also provides guid-
ance for design of future curriculum learning methods.

Introduction
The idea of introducing tasks of increasing difficulty from
the perspective of a student has a history in human learning
(Oudeyer, Kaplan, and Hafner 2007) and teaching (Prideaux
2003), but similar ideas in machine learning have recently
gained in popularity due to their ability to reduce the number
of samples necessary for training or improvement in the final
performance. Reinforcement learning algorithms often pro-
hibit real-world applications due to inability to solve com-
plex tasks from small number of agent’s interactions with
the environment, which is precisely why use of curricula has
been popular in that domain.

While many practical advancements have been made in
this field (Portelas et al. 2020; Gupta, Mukherjee, and Na-
jjaran 2022), not many authors provide a theoretical analy-
sis of their work. Some ideas about how curriculum learn-
ing works have been proposed by Bengio et al. (2009),
suggesting that curriculum enables learning of smoothed

convex functions first, allowing to reach a dominant (and
possibly global) minimum before the loss function one is
optimizing grows more complex. Kroemer, Niekum, and
Konidaris (2021) also add that in practice, curriculum might
enable the reinforcement learning agent to collect infor-
mative non-sparse rewards and thus aid training. Xu and
Tewari (2021) on the other hand argue that in addition to
above optimization benefits, statistical benefits are also im-
portant — curriculum algorithms can control the amount
of variance the learning algorithm experiences, leading to
faster convergence.

Analysis from the perspective of optimization theory pro-
vides an useful insight into inner-workings of the current
curriculum learning algorithms, but are not the only way
one should try to improve understanding of their character-
istics. While theoretical analyses such as those in the previ-
ous paragraph are rare, we have not come across any works
in the field of reinforcement learning pertaining evaluation
and comparison of existing curriculum learning methods in
terms other than accumulated agent’s reward in the envi-
ronment. Approaching evaluation by quantifying proper-
ties of generated curricula could provide insight into which
approaches for curriculum generation work better and why,
in addition to providing grounds for design of future algo-
rithms.

Metrics introduced in this paper aim to fill the aforemen-
tioned gap. We do not analyse existing algorithms in terms
of optimization theory, but instead evaluate them using met-
rics inspired by work from the field of computational cre-
ativity. Contributions of this paper are the following:

• We introduce surprise, novelty, typicality and interesting-
ness for evaluation of curriculum learning algorithms in
the scope of reinforcement learning. The metrics evaluate
the tasks proposed by the algorithms from the perspective
of the learning agent and are formulated using probabilis-
tic measures ensuring their interpretability.

• We evaluate existing state-of-the-art curriculum learning
approaches using our metrics. This provides insight into
differences in prioritization of different aspects of curricu-
lum generation and possible basis for future algorithms.
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Related Work
In the scope of computational creativity, many frameworks
and specific metrics have been proposed for evaluating cre-
ativity in the past. Computer generated artefacts that are
evaluated using computational creativity metrics can be
characterized across multiple dimensions and the exact for-
mulations depend on their context. While the definitions dif-
fer across the field, there are existing metrics such as nov-
elty (Boden 2004; Ritchie 2007; Elgammal and Saleh 2015;
Canaan et al. 2018), surprise (Maher 2010; Grace and
Maher 2014; Canaan et al. 2018), quality (Ritchie 2007),
value (Boden 2004; Maher 2010; Elgammal and Saleh 2015;
Canaan et al. 2018) or interestingness (Schmidhuber 2009;
Canaan et al. 2018), among others, that each aim to provide
means for evaluation of creative artefacts.

Boden (2004) introduced criteria describing new, sur-
prising and valuable ideas as creative. She differentiated
between what newness is to one person (P-creativity) or
the whole human history (H-creativity), where the former
guides the definition of our metrics. Many subsequent au-
thors formulated some of their metrics based on her defi-
nition (Maher 2010; França et al. 2016). Wiggins (2006)
bases his computational creativity formulation on Boden’s
work, but argues that the notion of surprise is redundant.
Ritchie (2007) proposed assessment of creativity through
novelty and quality in addition to matching the criteria of
typicality. In our work, we take his idea of the latter as a
measure of how well the artefact class in question is repre-
sented by the produced items. His definition of novelty is
also useful for our formulation, since it describes produced
item’s dissimilarity to the already known artefacts. This def-
inition of novelty is also similar to the one in Maher (2010).

While Wiggins (2006) doesn’t differentiate between nov-
elty and unexpectedness, some authors find it useful to sepa-
rate the two. Unexpectedness, or surprise, can be defined
as change of the generated artefacts compared to the re-
cent past (Maher 2010; Grace and Maher 2014). Canaan
et al. (2018) also differentiate between novelty and surprise,
describing the former as a dissimilarity between collection
of artefacts (distance-based novelty) and the latter as a mea-
sure of how much a generated sample differs from model’s
expectation. Surprise is also termed learning-based novelty
in their work.

Schmidhuber (2009) describes a comprehensive theory of
subjective beauty, interestingness, surprise and novelty pro-
viding a formulation of creativity. He starts by defining
beauty from the perspective of an agent, describing it as a
signal compressible to a large degree — in other words, find-
ing it simple — and goes on to outline interestingness as a
change in the perceived beauty. This is a template for our
definition of interestingness as well. The formulation from
Canaan et al. (2018) is also relevant, where the measure is
defined as a specific value range of novelty. They stress the
idea behind Wundt curve (Wundt 1874), explaining that too
little or too much novelty might lead to uninteresting arte-
facts. Lastly, Reehuis et al. (2013) relate interestingness to
learning progress, which is related to our formulation of this
metric.

In the scope of practical applications, França et al. (2016)

and Varshney et al. (2019) implement novelty as a Bayesian
surprise. Bayesian surprise is large whenever the impact
of new data on the prior distribution is large (Franceschelli
and Musolesi 2021). Novelty can also be based on sim-
ple distance measures like in Morris et al. (2012) and Ma-
her (2010). Quality and value can on the other hand be
evaluated using artificial neural networks (Morris et al.
2012), distance between nodes in a graph (Elgammal and
Saleh 2015) or associations of an artwork with its descrip-
tion (Norton, Heath, and Ventura 2010).

Curriculum Generation in Reinforcement
Learning

The use case of our proposed metrics is in the scope of au-
tomatic curriculum generation. While curricula can be used
in many machine learning fields, we focus specifically on its
use in reinforcement learning. Before continuing to our pro-
posed metrics, we therefore introduce the framework within
which they are utilized.

Reinforcement Learning
Reinforcement learning (RL) is defined in the scope of
Markov Decision Process (MDP) denoted by a tuple
MRL = (SRL,ARL, RRL,PRL, γRL), with SRL being
state space, ARL action space, RRL reward function, PRL

the state transition probabilities (i.e. environment dynam-
ics) and γRL the discount factor prioritizing long-term plan-
ning (Sutton and Barto 2018). In a reinforcement learning
algorithm, an agent performs an action a ∈ A upon expe-
riencing state st ∈ S, receiving a new state st+1 and a re-
ward r = RRL(st, at, st+1) in return. The goal is to find
the optimal policy π∗ that maximizes the expected reward
for every possible state (Sutton and Barto 2018). In ad-
dition to searching for the optimal policy π∗, solutions to
auxiliary objectives have to be found: state value function
Vπ(st) and state-action value function Qπ(st, at), that es-
timate achieved reward under current policy until the end
of an episode. These functions are used to search for the
optimal policy, for example by greedy selection of actions
leading to highest expected rewards, or as a guiding signal
for policy gradient algorithms.

Curriculum Learning
As implied in the previous paragraph the agent interacts with
the environment by performing actions. However, in order
to learn the optimal policy, it has to randomly explore its ac-
tions and the state space. Curriculum learning (CL) aims to
narrow down this exploration space by bounding it to sub-
tasks that an agent should master first (Narvekar et al. 2020).
Automatic curriculum learning, to which the methods eval-
uated in this paper belong, generates curricula algorithmi-
cally depending on agent’s progress. The problem of finding
the sequence of tasks that lead to fastest learning and best
performance can be seen as finding the optimal policy for
a secondary MDP MCL = (SCL,ACL, RCL,PCL, γCL),
where SCL are representations of agent’s policy or knowl-
edge, ACL control task difficulty, RCL is the reward func-
tion, e.g. the accumulated agent’s reward on a target task
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distribution Ptarget (Narvekar and Stone 2019). The target
task distribution Ptarget entails all possible subtasks that we
want our agent to generalize over. Within MCL, γCL prior-
itizes immediate versus long-term consequences of the cho-
sen tasks.

Above definition describes the problem to be solved in
curriculum learning, but says little about actual implemen-
tations. In practice, exhaustively searching for an optimal
curriculum is often intractable and can take longer than
training the agent without curriculum to achieve the same
performance (Narvekar and Stone 2019). Researchers thus
utilize various heuristics to simplify search for good solu-
tions. In this regard, the notion of learning progress has
been a valuable measure for choosing suitable subtasks to
train from in the past (Baranes and Oudeyer 2010; Moulin-
Frier, Nguyen, and Oudeyer 2014; Portelas et al. 2020;
Colas et al. 2019). Learning progress is defined as the (ab-
solute) difference of collected rewards over time in some
part of the task space Tenv . For example, RIAC (Baranes
and Oudeyer 2010), Covar-GMM (Moulin-Frier, Nguyen,
and Oudeyer 2014) and ALP-GMM (Portelas et al. 2020)
all use such criteria in their frameworks, varying how they
split the task space — across one (RIAC) or multiple (Covar-
GMM and ALP-GMM) dimensions — or how they imple-
ment learning progress — through covariance between re-
wards and time (Covar-GMM) or absolute difference be-
tween new and old rewards (RIAC and ALP-GMM). How-
ever, not all methods rely on learning progress for selection
of task parameters. ADR (Akkaya et al. 2019) expands the
distribution from which the task parameters are sampled by
some δ depending on whether the agent achieved sufficient
performance on current subtasks. Klink et al. (2020) on
the other hand propose Self-Paced curriculum learning al-
gorithm, taking a probabilistic approach to gradually expand
the task parameter distribution towards target one by weight-
ing the loss term of their algorithm according to the agents
performance. With the increasing popularity of generative
adversarial networks, GoalGAN (Florensa et al. 2018) and
Setter-Solver (Racaniere et al. 2019) algorithms take advan-
tage of competition between subtask proposition and sub-
task suitability estimation modules. We evaluate most of the
approaches outlined in this paragraph using our proposed
metrics.

A common trait of the previously outlined algorithms
is the mechanism by which they generate a curriculum.
They all control the environment difficulty through sub-
task selection. This is performed by sampling task pa-
rameters for environment initialization from the task space
Tenv . That being said, other ways of generating curric-
ula also exist (Schaal 2006; Andrychowicz et al. 2017;
Zhou et al. 2019; Zhang, Abbeel, and Pinto 2020). The way
task parameters are sampled during evaluation is determined
by Ptarget which is usually normally (Klink et al. 2020) or
uniformly (Portelas et al. 2020) distributed.

Framing in the Context of Computational
Creativity
In order to bridge the gap between curriculum learning
and computational creativity, it is useful to frame the for-

mer in the context of the latter. For this reason, we
turn to Wiggins (2006), who formalized Boden’s (2004)
model of computational creativity. He defines it as a tuple
(U ,L, [[·]], ⟨⟨·, ·, ·⟩⟩,R, T , E), where U is the universe of all
concepts, L is the language used for expressing acceptable
concept space R, concept search algorithm T and concept
evaluation function E . Functions [[·]] and ⟨⟨·, ·, ·⟩⟩ are func-
tions that apply rulesetR and generate concepts usingR, T
and E , respectively.

Within the above formulation, space of all subtasks in a
curriculum learning framework can be framed as U , while
R bounds this space to the target task distribution or sub-
tasks achievable by the agent. T can then be an algorithm
modelling the curriculum, and E is the curriculum evalua-
tion metric. The latter is usually the agent’s reward achieved
during testing, but can also be learning progress or criteria
of validity, feasibility and coverage (Racaniere et al. 2019).
Metrics, proposed in the next section can also belong to the
set E . Lastly, function [[·]] filters tasks not conforming to
R thus bounding possible subtasks to some subspace, and
function ⟨⟨·, ·, ·⟩⟩ generates the actual curriculum. Language
L is in our case a set of real numbers describing specific sub-
tasks.

Proposed Metrics
We define four metrics for evaluation of curriculum genera-
tion algorithms in relation to the agents learning to perform a
specified task. For three out of four metrics we use Hellinger
distance (Hellinger 1909) between various distributions to
capture the changing nature of the underlying task sampling
process. The distance is defined as:

H(f, g) =

√
1

2

∫ (√
f(x)−

√
g(x)

)2
dx, (1)

where f and g are probability density functions correspond-
ing to the two distributions we want to measure the distance
between. Hellinger distance has some advantageous prop-
erties compared to other probability-based distance mea-
sures: it is for example symmetric and bound to an interval
0 ≤ H(f, g) ≤ 1, which simplifies the comparison and in-
terpretation of our results. We split the raw task parameters
into windows of fixed sizes as described in the Task Parame-
ter Prepocessing section, forming the basis for computation
of the following metrics.

Surprise, novelty and typicality are all based on the afore-
mentioned distance measure. The central idea behind sur-
prise and novelty revolves around measuring short- and long
term changes of proposed tasks, while typicality aims to cap-
ture their overlap in regards to the target task distribution.
Our formulation of surprise and novelty is largely inspired
by Maher (2010) by taking an idea of surprise as a measure
of change in the distribution expectation compared to the re-
cent past, and novelty describing the difference between the
new and already existing data.

We define surprise as:

St = H(Pt, Pt−1), (2)
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and novelty as:

Nt =
1

t

t−1∑

k=0

H(Pt, Pk), (3)

where P above denotes probability density functions of dis-
tributions fitted at specified time-points. Surprise captures
changes between two sequential distributions at time t and
t− 1, while for novelty, we compute mean changes between
tasks in t-th window compared to the distributions of all
windows prior to it. At t = 1, the definition of novelty is
equal to surprise, but they measure a different quantity as t
grows larger. Note, that above definitions are only sensible
for t > 0.

For typicality, we turn to Ritchie (2007), who formulated
it as a measurement of the extent the produced item is an
example of the artefact class in question. With slight abuse
of this notion, we take the task distribution Ptarget that de-
limits the scope of problems we want our agent to be able to
solve and measure its distance from distribution of tasks Pt:

Tt = 1−H(Pt, Ptarget). (4)
This formulation yields high typicality when the distance be-
tween some task parameter and target distribution is low. In
our experiments, task parameters underlying the distribution
Pt are bounded by Ptarget. The latter is in our case uni-
formly distributed and in such settings this metric measures
what might be better denoted as coverage. However, in gen-
eral, Ptarget could follow any other distribution, so we keep
referring to it as typicality in this paper.

Lastly, the interestingness is defined according to the rea-
soning behind such metric in Schmidhuber (2009). This
is the only metric that does not look at the proposed task
parameter distributions themselves, but is instead computed
from agent’s received rewards during training. It measures
the change in agent’s collected rewards in a particular pe-
riod of training, assuming that the underlying task parame-
ter distribution is not exhibiting sudden changes. This way,
our proposed measure is related to the change of simplicity
from the perspective of an agent, as proposed by Schmid-
huber (2009).

A naive approach entailing simple subtraction of rewards
in the first and second halves of the window has problems
with taking into account changing number signs and is not
bounded to any specific interval. In order to remedy this
issue we use cumulative density function to bound the inter-
estingness values. First, let’s assume that the rewards col-
lected in a specified time period are normally distributed.
Cumulative density function Φ is then defined as (Walck
2007):

Φ

(
x− µt

σt

)
=

1√
2π

∫ x

−∞
e−

x2

2 , (5)

where x is an input variable, and µt and σt are in our case the
mean and standard deviation of the rewards collected during
training within a particular period t. After splitting that pe-
riod in half, we obtain µ1/2 and µ2/2 corresponding to re-
spective means of the two halves. These statistics are finally
used to compute interestingness:

It = ϕ

(
µ2/2 − µt

σt

)
− ϕ

(
µ1/2 − µt

σt

)
. (6)

The use of cumulative density function ensures that each of
the above terms is bound to an interval [0, 1] and supports
the notion that large deviations of µ1/2 and µ2/2 from the
mean µt will result in larger absolute value of interesting-
ness. When µ2/2 > µ1/2 the interestingness will be positive,
while in the other case its value will be negative, bounding
the metric to an interval [−1, 1].

Experiments
The metrics proposed above are used for evaluation of re-
sults of various curriculum learning algorithms. This section
describes the benchmark setup from which the results were
obtained, in addition to necessary prepossessing steps en-
abling treatment of task parameters guiding agent’s training
in a probabilistic manner.

Figure 1: An example of raw task parameters (left), and
GMM means and standard deviations after preprocessing
(right) for every episode of training. Values of obstacle spac-
ings are in blue and values for their heights are in orange.

Task Parameter Prepocessing
As outlined in the Curriculum Learning section, curriculum
learning methods evaluated using proposed metrics oper-
ate by proposing task parameters used for environment ini-
tialization and thus controlling its difficulty. As the agent
progresses, various approaches estimate distributions from
which these initialization parameters are sampled. Some al-
gorithms sample from uniform (Akkaya et al. 2019) or (mul-
tiple) Gaussian (Moulin-Frier, Nguyen, and Oudeyer 2014;
Portelas et al. 2020; Klink et al. 2020) distributions, while
others might use a more complex sampling scheme (Flo-
rensa et al. 2018; Racaniere et al. 2019). To enable compu-
tation of our metrics, we model the distributions of sampled
task parameters during agent’s learning using Gaussian mix-
ture models (GMMs). Without knowledge of the real under-
lying distributions, this provides a reasonable estimate and
a basis for probabilistic interpretation of the task parameter
sampling process. This way, the process is not oversimpli-
fied as it would be if the normal distribution was assumed
across all evaluated task distributions. This allows our use
of Hellinger distance as a measure of change between two
algorithms and subsequent analysis.

To capture the underlying distribution from which task pa-
rameters are sampled at different time-points during train-
ing, we split them into smaller windows wt (t ∈ [0, 40]).
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Figure 2: Top: an image of the agent in the environment and the two parameters controlling its difficulty. Bottom left: rewards
collected during periodic testing while training. Bottom right: testing rewards for the highest and lowest 10 % of learners.

An example of raw task parameter data is seen in Figure 1
(left) and respective splits with fitted GMMs are seen in Fig-
ure 1 (right). Figures show the evolution of two task param-
eters used for controlling the difficulty of the agent moving
through the environment. These two parameters control ob-
stacle heights and spacings and are visualized in Figure 2
(top).

Each window size in Figure 1 corresponds to the time it
took an agent to perform 500000 steps, resulting in a varying
number of episodes in each window. Since the task param-
eters are sampled per episode, this also results in windows
apparently varying in size in Figure 1 (right). GMMs with
up to 5 components are fitted on the task parameters in each
window and the one with the largest Akaike information cri-
terion (Sakamoto, Ishiguro, and Kitagawa 1986) is kept for
further analysis. This is a metric that quantifies how well the
GMMs fit the underlying data.

Experimental Setup
TeachMyAgent benchmark (Romac et al. 2021) provides
a framework for evaluation of various curriculum and rein-
forcement learning algorithms in two environments in mul-
tiple training configurations. It tests 7 curriculum learning
algorithms in addition to the random baseline. The cur-
riculum generation algorithms available in the TeachMyA-
gent benchmark and also used for evaluation of our met-
rics are ALP-GMM (Portelas et al. 2020), ADR (Akkaya
et al. 2019), Self-Paced (Klink et al. 2020), Goal-
GAN (Florensa et al. 2018), Setter-Solver (Racaniere et
al. 2019), RIAC (Baranes and Oudeyer 2010) and Covar-
GMM (Moulin-Frier, Nguyen, and Oudeyer 2014). They are
already briefly outlined in Curriculum Learning section. We

take their results from the StumpTracks environment (Porte-
las et al. 2020), which is illustrated in the Figure 2 (top).
The environment consists of an agent being tasked to learn
to walk in environments with varying obstacle heights and
spacings.

TeachMyAgent authors also introduced multiple agent
embodiments and training configurations. We evaluate our
metrics on results using a bipedal walker with an uniform
target task distribution Ptarget bounded to the interval [0, 3]
for obstacle height and [0, 6] for obstacle spacing. Data used
in our analysis entails task parameters used for initializa-
tion of environments for each episode and respective accu-
mulated rewards in addition to cumulative rewards obtained
during each testing period.

As mentioned before, the agent’s performance is periodi-
cally tested in the environment initialized with the parame-
ters from the target task distribution Ptarget. Figure 2 shows
the average performance during testing phases of the learn-
ing agent depending on curriculum learning algorithm used
(bottom left) or its overall performance (bottom right). This
illustrates that the differences between each curriculum gen-
eration method are in this case relatively small, but best and
worst performances vary more substantially. Notice, how
some algorithms in Figure 2 (bottom left) perform worse
than the random baseline; this is in line with the results pre-
sented by Romac et al. (2021).

Each curriculum learning method in Figure 2 and the
Results section was evaluated on results obtained from 64
experiment runs each using a different random seed. The
points at which the agent is tested serve for splitting the task
initialization parameters proposed by the curriculum learn-
ing algorithms into smaller windows. The best and worst
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Figure 3: Metric values through agent training for all tested algorithms. It can be seen that every algorithm yields a different
progression of metrics.

10 % of experiment runs used for visualization in Figures 2
and 5 are obtained by taking the distribution of mean col-
lected test rewards and extracting bottom and top perform-
ers. This results in 52 samples in each group. We use
Welch’s t-test with α = 0.05 with Bonferroni correction to
evaluate statistically significant differences in metric values.
For computation of Hellinger distances we use Monte-Carlo
integration with 1000 samples, yielding a reasonably low er-
ror.

Results
Our metrics can be evaluated from two viewpoints presented
in the following subsections. One perspective takes evolu-
tion of the metric values over various curriculum learning
algorithms and thus provides the means for their compari-
son, while the other concentrates on agent’s performance re-
gardless of the underlying curriculum generator, highlight-
ing changes between better and worse training runs.

Comparison of Curriculum Learning Algorithms
Figure 3 shows resulting values of our metrics depending on
the algorithm they were evaluated on. At first glance, there
are considerable differences between algorithms giving each
of them a particular silhouette. Metrics usually vary the most
at the beginning of training, and later stabilize at some value.
We speculate their fast convergence is a consequence of the
fact that over time the subset of tasks to be mastered gets
smaller which is mirrored in the differences in their distribu-
tions. Self-Paced and Setter-Solver curriculum generation

algorithms are an exception to this rule where novelty and
typicality metrics don’t converge like described. Results
obtained from training with random curriculum show met-
ric values when task parameters are uniformly distributed
throughout training. Typicality, measuring the similarity be-
tween proposed and target task distributions, is in this case
consistently the highest, but not equal to 1 due to inability
of Gaussian mixture models to accurately capture uniform
target task distribution. This is also the reason why the typ-
icality for random curriculum is consistently high — there,
the subtasks are sampled uniformly from the target task dis-
tribution.

Regardless of the algorithm they are evaluating, novelty
and surprise hold similar values at the beginning of train-
ing, and grow more dissimilar later. Since the distribution
underlying random curriculum generation doesn’t change in
the course of training, its surprise and novelty hold consis-
tent values in the lower end of the spectrum. Interestingly,
as seen in the Figure 4, ADR holds similar or lower values
in this metrics and Self-Paced curriculum learning algorithm
starts with a relatively high value of surprise but converges to
around 0.1. In general, RIAC seems to hold values close to
the ones obtained by the random curriculum and also leads
to similar agent’s performance as seen in the Figure 2. ALP-
GMM and Covar-GMM show the highest novelty of the pro-
posed subtasks, and generally hold similar metric values.

Comparing standard deviations in Figure 3, some algo-
rithms (ALP-GMM, Setter-Solver, RIAC and randomly gen-
erated curriculum) exhibit smaller diversities of the com-
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Figure 4: Results measuring tested algorithms shown by the metrics used. It can be seen that interestingness has the least
variation across all curriculum learning algorithms.

puted measures, while others are more variable across ex-
periment runs. Overall, interestingness seems to change be-
tween evaluated algorithms the least, which is clearly seen in
Figure 4. From this perspective, it is not as useful for eval-
uation of curriculum learning algorithms as the other met-
rics. Most variability in this metric comes at the beginning
of learning, when the agent’s knowledge consistently starts
improving. When comparing metrics other than interesting-
ness between each other, it can be seen that they take dis-
tinctly different values and are in this sense not redundant.

Best- and Worst-performing Experimental Runs
As the differences between performances depending on the
chosen algorithm are relatively small, this is not a suitable
viewpoint for evaluation of curricula characterized by our
metrics in regards to agent’s performance. As shown in
Figure 5, all metrics except interestingness consistently ex-
hibit statistically different means when evaluated in regards
to the best and worst training runs: 2.017 × 10−16 < p <
4.306×10−4 for surprise, 2.36×10−15 < p < 4.728×10−4

for novelty and 6.272× 10−11 < p < 4.584× 10−4 for typ-
icality. Interestingness is not consistently significant with
p-values 1.693×10−2 < p < 36.056. Surprise, novelty and
typicality exhibit higher values with better learners. Visi-

ble trend in evolution of surprise and typicality is not obvi-
ous, but it is more clearly present when measuring novelty.
Namely, with better performing learners it starts at a lower
value and stabilizes around 0.45, a trend not present with
evaluation of the bottom 10 % of the learners.

The lack of perceived trend might on one hand come
from large diversity of surprise, novelty and typicality across
training runs, also visible in relatively large variability of
these metrics across algorithms in Figure 4. On the other
hand, the metrics in general seem to stabilize at some value,
which could also provide an explanation for the lack of
trends on the graphs.

Interestingness is an exception in regards to patterns de-
scribed in the above paragraphs. As was already seen in Fig-
ure 4, the metric shows low variability between curriculum
generation algorithms, and is also not consistently signifi-
cantly different in Figure 5. At the beginning of training, the
interestingness stays similar across the two groups, but later
settles at lower values for both groups. The values of bet-
ter performing learners turn out to stabilize lower and have
smaller standard deviation compared to the worse perform-
ing ones.

Since interestingness measures agent’s progress during
training, larger values correspond to faster learning of the
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Figure 5: Mean metric values and standard deviations during agent’s training for best and worst 10 % performing learners.
Stars at the bottom of plots denote statistically significant changes.

tasks given in a particular time-period. This shows that
fast improvements on specific subtasks during training don’t
translate into better performing agents on the target task dis-
tribution used during evaluation — our findings show that
the opposite is true. This would imply that the tasks, even
though they are labeled as more interesting by our metric,
are perhaps less relevant for agent’s progress on the target
task.

Conclusion
This paper formulates metrics inspired by notions from the
field of computational creativity and uses them for eval-
uation of curriculum learning algorithms. Results show
that our metrics exhibit informative characteristics from two
points of view: (i) as the means to differentiate and char-
acterize curricula generated by different algorithms and (ii)
distinguish more successful training runs from the less suc-
cessful ones.

The differences between best and worst performing learn-
ers highlight that higher values of surprise, novelty and typi-
cality, and lower values of interestingness, are generally ben-
eficial for learning and its overall performance. Higher sur-
prise signifies that more sudden changes in task distributions

are beneficial, which also holds for coverage of the target
task distribution implied by results for novelty and typical-
ity. Interestingness results are less interpretative in our case,
but suggest that proposing tasks resulting in larger values of
this metric doesn’t translate into better overall performance.

The property of interestingness to unsuccessfully capture
what it was intended for is one of the shortcomings of our
work. Furthermore, more tests should be conducted to deter-
mine how the proposed metrics correlate with actual under-
lying tasks that we are trying to model; notice how our ap-
proach is not concerned with mechanisms behind curriculum
generation, subtask order or learner choice. Some of these
issues could be remedied by conducting more detailed anal-
ysis using all results provided by the TeachMyAgent bench-
mark, and also obtaining some of our own.

Shortcomings aside, we want to stress that the results still
provide a good starting point for design of future curriculum
learning algorithm; for example, the selection of subtasks
could be guided by balancing the values of the proposed
metrics. This way, the utilization of our metrics could serve
as a guiding criteria for determination of suitable subtasks
that the agent should train on and contribute to the future of
algorithmic curriculum generation.
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Wundt, W. M. 1874. Grundzüge der physiologischen Psy-
chologie, volume 1. Wilhelm Engelmann.
Xu, Z., and Tewari, A. 2021. On the statistical benefits of
curriculum learning. arXiv preprint arXiv:2111.07126.
Zhang, Y.; Abbeel, P.; and Pinto, L. 2020. Automatic cur-
riculum learning through value disagreement. Advances in
Neural Information Processing Systems 33.
Zhou, B.; Zeng, H.; Wang, F.; Li, Y.; and Tian, H. 2019. Ef-
ficient and robust reinforcement learning with uncertainty-
based value expansion. arXiv preprint arXiv:1912.05328.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

373



How to Report the Contributions of a CC System?

Anna Kantosalo, Simo Linkola, and Tomi Männistö
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Abstract

We argue that the lack of well established reporting
practices for applied Computational Creativity systems
is hindering progress in the field. We consider that
the current lack of reporting details – and variation in
form and content – makes it difficult for third parties
to reliably evaluate and compare systems based on pub-
licly available information. This hinders forming an un-
derstanding of the similarities, differences and relative
qualities of these systems. We propose a set of building
blocks for robustly reporting the contributions of com-
putationally creative systems to promote visibility and
clarity in the field.

Introduction
The field of Computational Creativity (CC) is growing and
reaching new levels of maturity. As the field attracts new au-
diences and new participants, it needs to make the research
approachable and easy to understand through transparency.
One of the key issues for transparency in applied creative
systems is establishing field specific reporting practices. As
the field matures, we have seen some gradual change to-
wards better reporting practices. For example, Jordanous
(2012b) has suggested practices for reporting CC evaluation.
However, no comprehensive guide exists so far to support
structuring CC reports for various audiences considering the
basic elements of an applied system from a CC perspec-
tive. Therefore, we sketch out building blocks to support
the transparent reporting of applied creative systems. These
building blocks can be directly applied to support authoring
specific sections of an applied CC paper.

Applied CC is set apart from theoretical CC, consisting
of philosophy and methods of CC, by its focus on imple-
menting systems that generate, evaluate or both generate and
evaluate creative artefacts. The systems can be autonomous,
interact with humans, or consist of several (autonomous)
agents interacting with each other. They are often built to
demonstrate a specific new CC method and increasingly de-
ployed in real world contexts to aid real world creators. We
outline reporting principles for such applied systems to im-
prove communication within the field of CC and with the
general public.

We argue that good reporting of applied creative systems
should support transparency (see e.g. Fidler and Wilcox

(2022) or Tearse, Wardrip-Fruin, and Mateas (2010)), which
is a requirement for reproducibility (see e.g. Fidler and
Wilcox (2022)) and allows for system comparison. As a
stretch goal we consider that great reporting practices should
also support communication to scientists, practitioners and
the general public and relate new discoveries to previous
progress in the field, following principles previously found
useful in design science (Johannesson and Perjons 2014).

We propose three building blocks to support good report-
ing practices for applied creative systems. These building
blocks can help authors to decide what to include in their
applied CC research papers. Our aim is to supplement exist-
ing writing guides from related fields. Our building blocks
are tailored to include aspects specific to creative systems,
such as definitions for creativity. We next present our con-
tributions and then discuss how they connect to general prin-
ciples of good research and current practices in the field.

Building Blocks for Describing
Computationally Creative Systems

We consider that at the heart of a successful applied CC pa-
per is a robust description of the CC system and its contri-
butions. We argue that the description of the system and its
evaluation should go hand in hand with a definition of cre-
ativity fit for the context the system operates in. It is the
mapping between this definition and the system description
that allows the reader of an applied CC paper to contextu-
alise the system and its contributions in the larger framework
of CC research. We discuss these three parts in detail below.

Building Block 1: Definition of Creativity
A working definition of creativity allows the reader of the
applied CC paper to situate the work within the larger scope
of the CC field. A well chosen definition also allows readers
from other, connected disciplines, as well as laypeople to
understand how the applied research connects to our general
understanding of creativity. In short, a well selected working
definition for creativity manages the reader’s expectations.

What sets a working definition of creativity apart from a
general definition of creativity is that the definition does not
need to be exhaustive: It can focus on a specific aspect of
creativity, which is of interest to the researchers developing
the applied system, or the domain the system operates in.
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The best working definitions are short and refer to the larger
body of literature on defining creativity (see e.g. Runco and
Jaeger (2012)).

The authors of the applied CC paper should explicitly
argue how the working definition of creativity connects to
the creativity goals of the system. These are goals directly
linked to the creativity of the system. If creativity is not the
main goal, or the only goal of the system, authors should ar-
gue how the creativity goals significantly support the other
goals of the system. For example the goal of a co-creative
system may be to aid a user in a design task. This goal can
be attained in many ways, but an important sub-goal, di-
rectly linked to creativity, could be the generation of valu-
able and novel design suggestions for the user. This way,
in addition to setting expectations, motivating research, and
connecting new research to existing research on CC, an ex-
plicit working definition of creativity promotes the transpar-
ent selection of suitable evaluation criteria for a CC system
(Jordanous 2012b).

Building Block 2: System Description
A successful description of a CC system consists of several
parts. The importance of each part depends on the the scope
of the system, the stage of its life-cycle and system goals.
Defining these explicitly is important to direct the readers’
attention, manage expectations, limit scope, and set the con-
text of the work.

The scope of the system should clarify if it is a full system,
a part of a larger system or possibly a system embedded in
a larger context or ecosystem of other systems. The sys-
tem life-cycle stage should describe if the system is new, or
a more established one, setting the expectations for the de-
scription and evaluations of the system. Finally, the system
goals should connect to the chosen creativity goals and the
definition of creativity.

The Generation-Evaluation Process. Typically a com-
putationally creative system includes a part that generates
creative outputs. The description of the generator should
be detailed enough to enable the reproduction of a similar
generator. The authors should at least answer the following
questions: What kind of artefacts does the generator pro-
duce? What are the properties, and desired properties of the
artefacts? What methods does the generator use to produce
the artefacts? What kind of an architecture does the genera-
tor have and how does it connect to the rest of the system?
Which data sets (or inspiring sets) does the generator use?
If the system relies on a generative model requiring train-
ing, how was the model trained and what kind of parameters
were used? If pre-trained models were used, what were they
trained with and why are these models suitable for the cre-
ative purpose?

Correspondingly, many creative systems contain an inter-
nal evaluation component, or a component evaluating the
creative contributions of other members of creative collec-
tives. The evaluator should be documented with similar
scrutiny to the generator.

If the generator and/or the evaluator are key contributions
of the paper, the description of them must help the readers

to understand how they work exactly. This requires compar-
ing the generator/evaluator to existing generators/evaluators,
which either produce or evaluate artefacts of the same kind
or use similar processes in different domains, and explicitly
pointing out the differences. If the generator or the evalu-
ator consists of multiple parts, ablation studies are a good
way to show how each of the subcomponents of the genera-
tor/evaluator affect the produced artefacts. This may require
building mock or dummy implementations of each of the
subcomponents. While ablation studies may seem like extra
work, they tremendously support the transparency and com-
parison of the systems, and should be seriously considered
in any system where the generator and/or the evaluator is
part of the contributions.

Interfaces & Communication. For systems that interact
either with humans or other systems, documenting the in-
teraction interfaces is equally important. A short use case
and/or a diagram illustrating how a human (or a machine)
would interact with the system can be used to describe
many aspects of an interface in an easy to understand man-
ner. For visual interfaces this can be augmented with im-
ages and samples of other types of interface modalities can
be included in external materials, such as video or audio.
Whether a system interacts with a human or another sys-
tem, it is also important to consider the following questions:
Why does the system communicate with others? How does
it happen? With whom? What kind of information is sent,
and received? And finally, what triggers communication?

System History. Depending on the life cycle stage of the
system some amount of the history of the system may be
required for understanding it. History is especially impor-
tant for studies building on existing systems: What version
of the system is used? How does it differ from previous
versions of the same system? In most cases it is good to ex-
plicitly answer the question: ”What is the new contribution
this version of the system makes (also for creativity)?” For
papers that primarily demonstrate improvements to existing
systems, it is important to also document changes made to
the algorithms and models used in detail. The reader should
have a clear idea how the system components are changed
compared to older versions and what the expected (or as-
sessed) benefits of the changes are.

Ideally the history can also include core elements of the
design process of the system: What important design deci-
sions were made during the development of the system and
how do they support the system goals and its creativity? A
design decision can be for example what data set is used as
an inspiring set for the system. It is important to document
the expected benefits of the chosen approach with respect to
the creativity goals of the system.

Finally an increasing number of systems learn and change
during their life-cycle. These adaptive systems should de-
scribe also what changes during the run of the system, how
the changes are triggered, and what contributes to them.

Building Block 3: Evaluation & Contributions
Evaluation in CC can refer to several different concepts: In-
ternal evaluations conducted by the computationally creative
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system, or external evaluations aimed at summative or for-
mative judgements of the quality and development areas of
the system, possibly in a specific context. Similarly eval-
uation can be conducted by not only the system itself, but
by system developers, or a third party, such as experts or
laypeople. Full details on methods of evaluating applied CC
systems is beyond the scope of this paper and there are sev-
eral perspectives to evaluation that can be taken, including
not only the evaluation of the creativity of the system, but
also the fit of the system in the overall creative context it op-
erates in. We refer the interested reader to Agres, Forth, and
Wiggins (2016) or Jordanous (2012b) for more detail. Here
we focus on evaluation as a relevant part of communicating
the contributions of an applied CC system.

At minimum, documentation of an evaluation should ex-
plain what is evaluated, by whom, how, where and why.
These questions help readers to assess if the evaluation of
a system is robust, if it generalises to other audiences and
contexts, possible sources of bias and if the evaluation is
relevant. The documentation of the procedure also allows
for reproducing the evaluation or conducting a similar eval-
uation on another system contributing to reproducibility and
comparison of CC systems.

To be meaningful and relevant, the evaluation must be tied
to the creativity goals of the system. As a core, extraordinary
claims demand extraordinary evidence, therefore the chosen
evaluation method and metrics should support the claims
the authors of the system make about its creativity. This
means the authors should document what metrics were used
in the evaluation of the system and how do these link to the
goals of the system and the chosen definition of creativity.
So far there are very few established evaluation metrics pre-
sented in the field and some authors develop their own met-
rics or loan metrics from related fields. Echoing Jordanous,
(2012b) it is important to establish why these metrics work
in the chosen context so that the relevance of the evaluation
can be assessed. Similarly, for an author to claim a system is
creative, it is also important to document the self-evaluation
metrics used by the system.

Discussion
We start with a brief discussion of the scientific objectives
of the building blocks. We then discuss how the building
blocks fit to the larger context of academic writing advice
and connect with reporting practices from related fields.

We consider applied CC research as a discipline under the
umbrella of Design Science. Similar to applied CC research,
Design Science is a research paradigm that seeks explana-
tions, predictions and descriptions for the current world, by
actively trying to improve it through the creation of new sys-
tems (Johannesson and Perjons 2014, p.1).

Scientific Objectives for the Building Blocks
The purpose of our building blocks is to support three key
ideas: transparency, reproducibility, and comparing contri-
butions within CC. We consider that current weaknesses in
reporting threaten these ideals and therefore hold back the
progress of the field.

Transparency is a facet underlying the other two key ideas
we wish to support. With transparency we refer to making
information about the analysis and methods used accessible
to the reader in a way that supports constructing an unbiased
understanding of the applied CC system. The content of the
blocks supports attaining this goal as the reader of a paper
following the suggested block structure is more easily able
to find the related information and make meaningful com-
parisons between systems.

Transparency is closely related to reproducibility in em-
pirical science. Lack of transparency and completeness
in method reporting (Fidler and Wilcox 2022) or datasets
(Tearse, Wardrip-Fruin, and Mateas 2010) hinders reproduc-
ing previous experiments and the re-creation of systems. In
addition, lack of transparency can render some CC evalua-
tion methods useless, and impede with the independent eval-
uation of systems and research results.

For example Ritchie’s (2007) criteria for evaluating cre-
ative outputs requires knowing the inspiring dataset used by
the generator, as well as having access to a sufficient sample
of results. If these are not stated, an independent evaluator
cannot evaluate the applied CC system built by another, hin-
dering for example, the use of the system as a baseline for
future evaluations.

Similarly important for independent evaluation is to know
the objectives of the research and the definition for the type
of creativity the researchers are striving to implement with
their system; In her seminal paper on standardised evalua-
tion in CC Jordanous (2012b, p.1) argues for ”stating what it
means for a particular computational system to be creative,
deriving and performing tests based on these statements”.
The lack of defining creativity makes it difficult especially
for a layperson to evaluate creativity (Jordanous 2012b),
which may limit the use of applied CC research results by
general audiences. Therefore, announcing a working defini-
tion for creativity would improve both use and verification
of results, but still many applied CC papers only make im-
plicit assumptions about creativity.

Moreover, applied CC research seems to rarely record and
publish negative results. Jordanous’ evaluation of five CC
presentations showed that developers typically focus on a
few specific aspects of creativity, leaving multiple aspects
impossible to review (Jordanous 2012a, pp.217-219). Only
in one case of the five systems Jordanous’ evaluated with her
colleague was information sufficient to give a poor review of
an aspect of creativity (Jordanous 2012a, pp.217). By point-
ing out their working definition on creativity, authors can
communicate their focus to the external evaluator, as well as
more reliably report also their negative findings on a specific
aspect of creativity.

Reproducibility of experiments is a cornerstone of credi-
ble science. The so-called replication crisis brought the va-
lidity of results in medical, life and behavioral sciences into
question in the 2010s (Fidler and Wilcox 2022). The def-
inition of reproducibility varies between fields (Fidler and
Wilcox 2022), here we refer to the ability to redo computa-
tions or whole experiments in principle and in practice, with
the expectation of producing the same or sufficiently similar
results. It can be further described as conceptual replications
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focused on verifying underlying hypotheses and direct repli-
cations aimed at controlling for samples, artifacts, fraud or
generalization (Fidler and Wilcox 2022).

Similar to design science, replication in applied CC re-
search can foster the accumulation and development of de-
sign theories and to encourage the reuse of designed sys-
tems and existing theories (Brendel et al. 2021). Currently
the failure to reuse systems and connect studies to existing
knowledge is limiting the contributions and effect of design
science research (Brendel et al. 2021). We find this to be
true for applied CC research as well: Especially the lack of
robust documentation hinders progress and replication in the
field, valuable knowledge lost, when specific systems loose
their financial support and the systems and the related infras-
tructure is abandoned. It is of immediate concern that many
of these tools cannot be reproduced as sufficient documen-
tation of their development is not provided.

Replication studies in applied CC research are very
scarce, and difficult to conduct as well. One of the few stud-
ies that could be considered a replication study in applied
CC, is the re-creation of the Minstrel system reported by
Tearse, Wardrip-Fruin, and Mateas (2010). This attempt to
reconstruct a seminal system in computational story gener-
ation struggled with lack of original documentation, as for
example the dataset used by Turner in developing the origi-
nal system was undocumented. We argue that there are sev-
eral other system, the recreation of which would be impos-
sible, as we lack not only the data used in their creation, but
sometimes also sufficient detail of the system architecture
and implementation.

Finally, the lack of robust documentation hinders compar-
ing contributions made within CC. This can mean the com-
parison of computationally creative systems overall, com-
parison of systems within the same creative subdomain, or
even the comparison of a system with its earlier installa-
tions. The practical development of systems is driven espe-
cially by formative feedback (Jordanous 2012b). More doc-
umentation is required for formative evaluation tools such
as SPECS (Jordanous 2012b) to be applicable to systems by
outside evaluators. Alternatively, evaluations conducted by
researchers themselves should be reported more openly and
thoroughly. Similarly, for the purposes of scientific integrity,
different editions of the same system should clearly docu-
ment differences among the different editions of the system
so that specific data can be connected with a specific imple-
mentation of the system creating a more robust system his-
tory benefiting practitioners in developing similar systems in
the future.

The Building Blocks as Writing Advice
The building blocks suggested above could also be alterna-
tively titled as a CC system documentation checklist, for
they are largely based on the authors’ experiences in par-
ticipating in peer reviewing processes for papers describing
CC systems. The critique presented most often seems to deal
with establishing what it means for the system to be creative
(Block 1), documenting the generation procedures in enough
detail (Block 2), or showing a meaningful evaluation of the
results (Block 3).

The blocks are also linked to the larger concept of aca-
demic writing advice. As we consider the field of applied
CC inherently as a part of design science, the CC system
including the generator naturally becomes one of the key
items to document in research communications. Here we
have only focused on aspects related to CC specifically. We
therefore refer the interested reader to more specific advice
on writing papers for design science (Johannesson and Per-
jons 2014, p.153-154).

We are also aware that as a multidisciplinary paradigm ap-
plied CC research has a lot to draw from related disciplines.
We would for example argue that to a degree the adoption
of neural nets in the generators offers great chances to draw
from well established documentation practices in that spe-
cific area of artificial intelligence. Similarly in building
interactive or co-creative computational systems, we have
learned and adopted practices of evaluation with humans
from interaction design. The purpose of this writing guide
is therefore not to be definite, but we hope it works together
with experiences from other disciplines to support a more
robust reporting practice in applied CC research.

Conclusions and Future Research
While we do not particularly focus on evaluation here, it
is clear that the diverse reporting practices contribute to the
’methodological malaise’ in CC evaluation identified by Jor-
danous (2012b) and others. The lack of sufficient, accurate
and accessible reporting of CC systems is contributing to
a situation where reproduction of systems, and transparent
evaluation by third parties, or the comparison of different
systems or the different editions of the same system cannot
be conducted. This hinders progress as we cannot leverage
the full potential of applied CC research and build on the
findings and work of others, establishing a robust, continu-
ous base of evidence for improving machine creativity.

We have suggested three building blocks: a definition of
creativity, description of the CC system and its evaluation to
support applied CC researchers in communicating the con-
tributions of their systems to different audiences. To further
support transparency in CC research we encourage develop-
ing more formal languages for the description of CC systems
in ways that can also be archived for future research. This
could include experimenting with existing descriptive lan-
guages like UML, or ontologies such as OWL. We would
also like to encourage authors to share implementations of
applied CC systems. Good implementations could be gath-
ered and made accessible online for example similar to the
deep learning Model Zoo1 project. In the future, we intend
to conduct a literature review to further examine the weak
points in the reporting practices of applied CC systems.

Author Contributions
The original idea for the paper came from the authors AK
and SL. AK wrote the majority of the paper with SL. TM
commented on the idea and the draft, with insights on docu-
mentation in software engineering and defining the scope of
the work.

1https://modelzoo.co/ accessed 23rd of May 2022.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

377



Acknowledgments
Funded by Academy of Finland (Grant #328729). We would
like to thank our colleagues Dr. Anna Jordanous and Prof.
Hannu Toivonen and the anonymous reviewers for their
comments on the draft.

References
Agres, K.; Forth, J.; and Wiggins, G. A. 2016. Evalua-
tion of musical creativity and musical metacreation systems.
Comput. Entertain. 14(3).
Brendel, A. B.; Lembcke, T.-B.; Muntermann, J.; and
Kolbe, L. M. 2021. Toward replication study types for de-
sign science research. Journal of Information Technology
36(3):198–215.
Fidler, F., and Wilcox, J. 2022. Reproducibility of Scien-
tific Results. In Zalta, E. N., ed., The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stanford Univer-
sity, Spring 2022 edition.
Johannesson, P., and Perjons, E. 2014. An Introduction to
Design Science. Springer International Publishing, 1st ed.
2014. edition.
Jordanous, A. 2012a. Evaluating computational creativ-
ity: a standardised procedure for evaluating creative sys-
tems and its application. Ph.D. Dissertation, University of
Sussex.
Jordanous, A. 2012b. A standardised procedure for evalu-
ating creative systems: Computational creativity evaluation
based on what it is to be creative. Cognitive Computation
4(3):246–279.
Ritchie, G. 2007. Some empirical criteria for attributing cre-
ativity to a computer program. Minds and Machines 17:76–
99.
Runco, M. A., and Jaeger, G. J. 2012. The standard defini-
tion of creativity. Creativity Research Journal 24(1):92–96.
Tearse, B.; Wardrip-Fruin, N.; and Mateas, M. 2010. Min-
strel remixed: Procedurally generating stories. Proceedings
of the AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment 6(1):192–197.

Proceedings of the 13th International
Conference on Computational Creativity (ICCC’22)
ISBN: 978-989-54160-4-2

378




