
A proposal for automatic harmony analysis with Minimalist syntax

Sean P. Anderson
Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, Michigan, USA

seanpaul@umich.edu

Abstract
Recent work on the Identity Thesis for Music and
Language (Katz and Pesetsky 2011; Mukherji 2014)
provides fertile ground for formalizing and simulating
computational, process-level models of musical com-
position. Within the Minimalist Program (Chomsky
2014), Anderson (2020) simulated a generative model
of tonal harmony and structure. However in open-
composition tasks the model fails to accurately capture
Western tonal harmony. This is likely because of the
model’s reliance on hand-designed rules. We propose to
learn the core Agree function, which determines when
Merge applies, as a symbolic program by optimizing
over the J.S. Bach Chorales dataset. A more accurate
Minimalist harmony model would be valuable to music-
language identity research. Additionally, a successful
model could analyze harmonic structure and assist arti-
ficial composition systems via dataset augmentation.

Motivation
The question of music-language identity has been debated
for centuries (Mukherji 2014). Despite noting clear relation-
ships between music and language, Lerdahl & Jackendoff
(1983) notably claimed that music does not have a syntax.
However, the Minimalist program in generative linguistics
(Chomsky 2014) provides a new understanding of syntax
as a derivational instead of a representational system. This
new view of language encouraged further interest in music-
language identity and the formulation of the Identity Thesis,
stipulating on both the equivalence of music and linguistic
theory and a shared computational system for music and lan-
guage in the mind (Katz and Pesetsky 2011; Mukherji 2014;
Anderson 2020). These new perspectives on the presence
of syntax in music rely on the Minimalist idea of repeated
application of an operation Merge, which recursively builds
syntax trees out of lexical items (Katz and Pesetsky 2011;
Collins and Stabler 2016). Importantly, these lexical items
are not the same between music and language, and therefore
are not the focus of the above works.

Within this paradigm, (Katz and Pesetsky 2011;
Rohrmeier 2007; Mukherji 2014) have each analyzed a por-
tion of Tebe Poem, an 18th century choral piece written by
Dimitri Bortniansky. These works asserted chords as lexical
items upon which syntax operates. Anderson (2020) demon-
strated that a simplified formalization of Minimalist syntax

(Collins and Stabler 2016) coupled with syntactic features
based on (Mukherji 2014) makes similar predictions on the
hierarchical chord structure of Tebe Poem while improving
in some aspects. Furthermore, Anderson (2020) formulate a
distribution over harmonic orderings with hierarchies given
an initial lexicon of chords. They sampled from this dis-
tribution in an Open-composition task, demonstrating the
model’s ability to generate both sensible chord prolonga-
tions and insensible ones.

The goal of such a model is to formulate a “type 2: Com-
mon properties of pieces within an idiom” (Katz and Peset-
sky 2011) grammar. Any discrepancy between the gram-
mar’s assignments and the existence of human-composed
pieces (within the idiom addressed, e.g. Western tonal mu-
sic) would motivate improvements. The model in Anderson
(2020) demonstrated clear discrepancies with Western Tonal
harmony as a result of its reliance on hand-designed features.

The proposed project aims to improve on the tonal hierar-
chy model of (Anderson 2020) as a ”type 2” grammar (Katz
and Pesetsky 2011). The objective is to fit an Agree function
to a corpus of human-composed chord progressions. Since
the Agree function is in the form of a symbolic procedure,
search for the best-fitting Agree function could be framed as
a program synthesis problem (Gulwani et al. 2017).

A successful project would make the following contribu-
tions:

1. improve upon syntactic models of tonal harmony.

2. work towards better testing grounds for music-language
identity theses.

3. provide richer data augmentation for the benefit of statis-
tical/neural models of tonal composition.

The recent years have seen a plethora of increasingly suc-
cessful music composition systems. For instance, the use
of transformers has increased neural approaches’ abilities to
capture long-term structure (Huang et al. 2018). One of
the best performing neural models in the J.S. Bach Chorales
dataset is TonicNet (Peracha 2020). Peracha (2021) demon-
strate that neural models can be improved by training on
augmented datasets. A successful model with our approach
could provide hiearchical descriptions of harmonic activity
of chorales in the training set. It is possible that neural mod-
els of tonal composition, trained with this richer set of infor-

mation, could more effectively capture harmonic relation-
ships in tonal music.

Methodology
We plan to take an existing Minimalist model of tonal har-
mony (Anderson 2020) and replace the Agree function with
a program sketch. For the reader’s convenience, core por-
tions of the model are described below.

Dataset
We plan to use the J.S. Bach Chorales dataset, available at
(https://github.com/czhuang/JSB-Chorales-dataset) (Huang
et al. 2019). This dataset includes a piano-roll representation
of 300+ chorales, but does not include chord annotations.
Following (Peracha 2020), we can generate chord annota-
tions using the music21 toolkit (Cuthbert and Ariza 2010).
Since our model works with harmony only, the dataset for
our model is just the resulting chord sequences.

Lexicon
Definition (lexicon). A lexicon is a finite set of Stufen.

The Anderson (2020) model assumes that tonal music
makes use of a lexicon containing Schenker’s Stufen (pl.)
A Stufe is an abstract entity behind the scale and chords of a
particular key (Schenker 1973, 133-153). For our purposes
it is simply a numerical object:
Definition (Stufe). A Stufe is a 4-tuple <c5, c3, root, type>
where “c5” is a circle of fifths feature, “c3” is a circle of
thirds feature, and “root” is the note name of the Stufe it
represents, which essentially is the name of the chord that
this Stufe will realize when uttered in a surface. “type” is one
of {“Major”, “minor”, “diminished”}. These are discussed
in more detail below.

c3 and c5 serve as syntactic features of a Stufe, and are
uniquely defined by the root and type of the object. We use
brackets to denote “accessing” a feature value from a Stufe

object. For example, if C = <+00, +03, “C”, “Major”>,
C[c5] = +00. Following (Mukherji 2014), each Stufe ac-
quires its c5 features by its location in the Circle of Fifths
(Mukherji 2014) (Figure 1). The c5 features enable the com-
mon harmonic progression V-I observed in tonal music. For
instance in Western tonal music, adjacent Stufen could be
ordered in the negative direction (e.g. G = +01 to C = +00)
based on parameterization of Agree (defined below). Since
both triad chords and seventh chords typically operate this
way in tonal music, we hypothesize that both triads and sev-
enth chords (e.g. C Major and C7) are instantiations of the
same Stufe, one of type “Major” (Mukherji 2014).
Definition (c5). c5, called a circle of fifths feature, is an
integer in the interval [-12, +12], which corresponds to a
location on the Circle of Fifths. We use “+00” to refer to the
tonic.

Since many chord progressions are not simple traversals
of the Circle of Fifths, we include a c3 feature. For instance,
in the C Major scale, the F Major triad often functions as
a IV chord leading to a V chord. This progression could be
made legal by a covert, or invisible, progression from F Stufe

Figure 1: Circle of Fifths with c5 features, reprinted with permis-
sion from Mukherji (2014, 338). Each Stufe is related to others
by intervals of a perfect fifth. Top: Major Stufen, Bottom: minor
Stufen. Diminished Stufen and c3 values not pictured.

to a d Stufe via a thirds-based relationship (Mukherji 2014).
Looking at the Circle of Fifths, d has a c5 value of +02,
which could lead to a G Stufe. Notably F-d-G (functionally:
IV-ii-V) does occur in Western Tonal music.

Definition (c3). c3, or circle of thirds feature, is an integer
value in the interval [-12, +12]. If a Stufe S is of type “Ma-
jor,” S[c3] = (c5 + 3) mod 12, or the c5 value the Stufe

would have if its root was a minor third below its own. If S
is of type “minor,” S[c3] = (c5 + 3) mod 12 also, which
is the c5 value of its parallel major Stufe. If S is of type “di-
minished,” S[c3] = (c5 + 8) mod 12, or the c5 value Stufe

would have if its root was a major third below its own.

Typically, diminished chords including F#o are followed
by one of four chords, including G Major (the triad with root
a half step up). With a minimal modification—the addition
of D, a major third below the root F#—the diminished chord
becomes a D7, which would have a c5 value of +02, adjacent
to G’s. The c3 definition for diminished Stufen is a signifi-
cant simplification of the harmonic nature of these chords; a
more accurate feature space would probably be required for
success in this problem.

Generating harmonic analyses
We refer the reader to (Anderson 2020) for a full description
of the model. Below we define the core operations Select,
Merge, Filter, and our program sketch for Agree (Collins
and Stabler 2016).

Definition (Select). Let S be a stage in a derivation S =
<LA, W>. If lexical token A 2 LA, then Select(A, S) =
<LA - {A}, W [{A}>.

Definition (Merge*). Given any two distinct syntactic ob-
jects A, B, Merge(A, B) = (A, B). (p. 47)

Importantly, the result of Merge is itself a Syntactic Ob-
ject (SO). For this project Merge can operate on any two
distinct Syntactic Objects, which includes items ”contained”
(in Collins and Stabler (2016, 46)) within other items to be
merged together, resulting in “Internal Merge.”

Definition (Agree*). Operation Agree(SO1, SO2) operates
on Syntactic Objects SO1 and SO2. Agree is a program
sketch, or a program with holes that need to be filled by
a search algorithm. Agree(SO1, SO2) takes the following
form:

�1 _ �2 _ ... _ �n

where �i is a boolean formula of the form:
Labels(SO1)[c#] - Labels(SO2)[c#] == k
where # 2 {3, 5} and k 2 {�1, 0, 1}. n is a hyperpa-

rameter that will be additionally investigated.
Labels returns the SO of the right-most leaf of the input

tree (Anderson 2020). Agree determines when Merge can
apply. # and k denote holes that will be paramerized during
program synthesis.

To determine if a derivation is a viable harmonic prolon-
gation, we use the Filter operation:
Definition (Filter*). Let SO = (H, I) and I = (J, K) be syn-
tactic objects. Filter(SO) = True iff the following conditions
are met:

(i) Label(SO)[c5] = LeftLeaf(SO)[c5],
(ii) Label(J)[c5] = Label(SO)[c5] + 1

Filter(SO) = False otherwise.
LeftLeaf returns the label of the left-most leaf in the SO

tree (Anderson 2020). Filter simply enforces the piece to be-
gin with the tonic and have a full cadence at the end. Earlier
work in the Identity Thesis espouses the importance of ca-
dences to determining listener’s interpretation and even for-
malizes their requirement in models of musical syntax (Ler-
dahl and Jackendoff 1983; Katz and Pesetsky 2011).
Definition (Derive*). Procedure Derive(LA) takes as input
a Lexical Array of Stufen and proceeds (informally) as fol-
lows:

1. Instantiate a derivation by loading all chord objects under
consideration (the lexicon)

2. Select Stufen randomly into the workspace (i.e. asserting
they will appear in resulting progression).

3. Over all syntactic object pairs that satisfy Agree, pick
ones at random and apply Merge.

4. When there is one SO remaining, apply Filter. If Filter
returns true, then the derivation succeeds, and the chord
ordering is the SO’s leaves read from left to right. If not,
the derivation crashes and we start over.

Searching for an Agree function
Searching for an Agree function (given n) would amount to
searching over parameterizations of the Agree sketch. To
surmount the computational costs of enumerative search, an
appropriate algorithm needs to be selected, such as those
used in program synthesis (Gulwani et al. 2017). The spec-
ification for a synthesis iteration could come in the form of
input-output examples, where the input is a set of chords in
a phrase from one of J.S. Bach’s chorales, and the output is
the correct ordering of those chords.

However, synthesis may be difficult since 1) the dataset
includes only positive examples, and 2) checking whether

a chord ordering would be valid according to a completed
Agree function is not straightforward. One strategy is to
execute Derive(LA) on the set of Stufen present in the or-
dering for many iterations until the correct ordering appears
(demonstrating its validity) or a cutoff is reached (suggest-
ing the ordering is invalid and the Agree function fails). This
could be inefficient. Another is to parse the ordering di-
rectly using the Agree function, which requires inverting the
model. Additionally, c3 and c5 features will likely not be
enough to accurately depict harmonic prolongations present
in the J.S. Bach Chorales. Further exploration of other fea-
tures, for instance crafting Circle of 2nds, 4ths, 6ths and 7ths
features, may be necessary.

Evaluation A resulting parameterization of Agree will de-
termine a set of valid chord progressions. Evaluation of a
resulting algorithm would include the proportion of chord
orderings in J.S. Bach Chorales that are contained in the re-
sulting set. Additionally, examination of the chord orderings
deemed valid and outside of the Chorales would be qualita-
tively useful.

References
Anderson, S. 2020. A linguistic model of minimalist syntax
composes tebe poem.
Chomsky, N. 2014. The minimalist program. MIT press.
Collins, C., and Stabler, E. 2016. A formalization of mini-
malist syntax. Syntax 19(1):43–78.
Cuthbert, M. S., and Ariza, C. 2010. music21: A toolkit for
computer-aided musicology and symbolic music data.
Gulwani, S.; Polozov, O.; Singh, R.; et al. 2017. Program
synthesis. Foundations and Trends® in Programming Lan-

guages 4(1-2):1–119.
Huang, C.-Z. A.; Vaswani, A.; Uszkoreit, J.; Shazeer, N.;
Simon, I.; Hawthorne, C.; Dai, A. M.; Hoffman, M. D.; Din-
culescu, M.; and Eck, D. 2018. Music transformer. arXiv

preprint arXiv:1809.04281.
Huang, C.-Z. A.; Cooijmans, T.; Roberts, A.; Courville, A.;
and Eck, D. 2019. Counterpoint by convolution. arXiv

preprint arXiv:1903.07227.
Katz, J., and Pesetsky, D. 2011. The identity thesis for lan-
guage and music. URL http://ling. auf. net/lingBuzz/000959.
Lerdahl, F., and Jackendoff, R. 1983. A generative theory of

tonal music. MIT Press.
Mukherji, S. 2014. Generative musical grammar-a minimal-
ist approach. PhD Diss. Princeton University.
Peracha, O. 2020. Improving polyphonic music models with
feature-rich encoding. In Proceedings of the 21st Int. Society

for Music Information Retrieval Conference.
Peracha, O. 2021. Js fake chorales: a synthetic dataset of
polyphonic music with human annotation. arXiv preprint

arXiv:2107.10388.
Rohrmeier, M. 2007. Modelling dynamics of key induction
in harmony progressions. In Proceedings of the 4th Sound

and Music Computing Conference, 82–89.
Schenker, H. 1973. Harmony. Cambridge: The MIT Press.

