
Competitive Language Games as Creative Tasks with Well-Defined Goals

Brad Spendlove and Dan Ventura
Computer Science Department

Brigham Young University
Provo, UT 84602 USA

brad.spendlove@byu.edu, ventura@cs.byu.edu

Abstract
Creative computer systems grapple with challenging
tasks that exist within effectively endless combinato-
rial spaces. Further complicating these already diffi-
cult tasks is the fact that the goal of high-quality cre-
ative output is itself nebulous. A creative domain with
concrete goals would therefore be a fruitful domain
for studying computational creativity. We propose that
competitive language games are just such a domain—
they require creativity but also feature concrete win and
loss states. We present an analysis of creative agents
that play one such game: Codenames, a 2016 board
game of communicating hidden information via single-
word clues. Our model-agnostic framework allows us to
compare agents that utilize different language models.
We present our findings and discuss how future compu-
tational creativity research can continue to explore com-
petitive language games.

Introduction
AI agents pursue a goal within an environment. Creative
computational (CC) systems are AI agents that seek to gen-
erate or identify high-quality creative artifacts within the en-
vironment of an effectively endless combinatorial space. A
plethora of potential output artifacts exists within that space,
each with varying levels of quality. CC systems, therefore,
often contend with the unique challenge of seeking a goal
that is not well defined.

The space of all possible artifacts for any given human
creative domain is so large that defining a goal for a creative
agent can be as difficult as building the agent that pursues
that goal. Because human creativity is extremely complex,
and its mechanisms are only partially understood, CC sys-
tems’ goals must necessarily be abstractions. The degree to
which those abstractions represent the goals of real-world
creativity corresponds to the maximum creative potential of
systems that use them.

Thus, seeking or developing better defined creative goals
is a fruitful avenue for computational creativity research.
Enter board games. Concomitant with the boom in mod-
ern board gaming (Jolin 2016) is the rise of new social,
language-based games in which participants use their cre-
ativity to come up with clues, guesses, and deceptions.

Classic guessing games such as Guess Who and newer
games like Mysterium (Nevskiy and Sidorenko 2015) re-

quire players to reason and make verbal guesses about im-
ages. Hidden role games like Werewolf and Spyfall (Ushan
2017) are freer form and involve players talking with one
another to deduce others’ hidden roles while keeping their
own a secret. These games all involve reasoning, creativity,
and language skills but critically also include clear objec-
tives and win/lose states. Playing these games is a creative
task with the well-defined goal of winning the game. We
propose that they are therefore ideal candidates for compu-
tational creativity research.

In this paper, we present and analyze a creative system
that plays Codenames (Chvátil 2015), winner of the presti-
gious Spiel des Jahres in 2016.1 Codenames is a word-based
guessing game in which two teams play on a shared grid
of 25 word cards drawn randomly from a large deck. One
player from each team serves as a “spymaster” who must
give their teammates one-word clues corresponding to cer-
tain words on the board that are assigned to each team, secret
to all except the spymasters. Clues are phrased as a single
word and a number, indicating how many cards the clue is
intended to relate to.

The teammates then discuss the clue and select word cards
on the grid to guess one at a time until they either guess in-
correctly or pass. A correct guess identifies one of the team’s
assigned words. An incorrect guess accidentally identifies
one of the opposing team’s words, a neutral word belonging
to neither team, or an “assassin” word that results in instant
game loss. Teams take turns giving clues and guessing un-
til one team wins by identifying all of their assigned cards
(perhaps with inadvertent assistance from their opponents)
or the opposing team guesses the assassin.

Figure 1 shows an example of a Codenames board of 25
word cards. Previously guessed words are covered with col-
ored tiles corresponding to their hidden roles: blue and red
for the opposing teams, grey for neutral, and black (out of
frame) for the assassin.

The spymaster’s role is to come up with one-word clues
that elegantly identify multiple correct words while exclud-
ing incorrect words. Importantly, the spymaster’s clues are
not restricted in any way other than by simple rules about
not using words on the cards or acronyms, etc. This task
requires knowledge of what each word means and how they

1https://www.spiel-des-jahres.de/spiele/codenames/

Figure 1: An example Codenames board, showing covered
and uncovered word cards.
Credit: Skip McIlvaine, boardgamegeek.com, CC0 license.

relate to one another. The role of spymaster is easy to at-
tribute creativity to—clues must often navigate tricky posi-
tive and negative relationships, and human players can rec-
ognize particularly clever or helpful clues.

The spymaster’s teammates who guess based on the clues
have a less open-ended task, as it is restricted to linking the
clue word to one word card at a time. This role requires
relatively less creativity, but it is still a non-trivial language
task for humans and computer systems.

In order to complete either of these tasks, an agent must
have an understanding of how words both positively and
negatively associate with one another. Using that knowl-
edge, the spymaster searches for a clue word that their
guessers will most likely associate with a chosen subset of
the team’s word cards while avoiding associations with in-
correct word cards. The guesser uses a similar language fac-
ulty to guess word cards that most closely relate to the clue.

In this paper, we present a framework for a system that
completes those tasks to play Codenames in both the spy-
master and guesser roles. We explore how different models
perform at these tasks in competition against one another,
with the goal of demonstrating how competitive language
games can serve as useful test beds for creative systems.

Creativity in Codenames
The spymaster’s task involves elements of puzzle and prob-
lem solving, and we may view the potential for creativity in
solving the task through that lens. The skills required of a
good spymaster player are related to problem framing (Guil-
ford 1956; Dorst 2011) and re-representation (Ohlsson 1992;
Veale 2006), both of which are well-known to facilitate cre-
ativity.

It is important to realize that even though the output pro-
duced by the spymaster is a single clue word (and an asso-
ciated number), the artifact which the spymaster is creating
is not a word. Rather, it is something like a multi-word rela-
tionship graph (including both positive and negative connec-
tions). The spymaster uses skills such as those mentioned
above, as well as, of course, their knowledge of language to
create this graph structure, which, in a more traditional cre-

ative setting, would constitute the output artifact. To make
this a game, the artifact is instead obfuscated, with only the
clue word and number giving hints about its structure. The
guessing players’ job is, essentially, to re-create this rela-
tionship graph from the clues and use it to identify words
assigned to their team.

Serendipitously, it is this gamification of creativity that af-
fords us a well-defined, if indirect, measure of creativity in
the form of game outcomes. While in many traditional cre-
ative settings, artifact value is often very difficult to measure,
the appeal of Codenames—and other competitive language
games—is that the value metric is (at least) strongly corre-
lated with the win/loss outcome. This serves as a powerful
proxy for evaluating the creativity of the system itself, or at
least one critical element of it.

Creative domains are characterized by their extremely
large combinatorial spaces, which are a prerequisite for nov-
elty. The word relationship graphs that are key to playing
Codenames are simpler than other types of artifacts such
as literature or visual art, but they are nevertheless complex
enough to be considered in the same class as metaphors or
short jokes and witticisms—domains which make a strong
case that creativity can be manifest where artifacts take the
form of a small number of words connected in a clever or
surprising way.

Related Work
We use language models to provide the word association fac-
ulties that our Codenames player agents need. In particular,
we use word2vec and GPT-2. We make use of word2vec’s
word embeddings and both GPT-2’s word embeddings and
text generation capabilities.

Word embeddings are a way to represent words as vectors
such that vectors that are close to each other occur in simi-
lar contexts in text. The distributional hypothesis posits that
words that occur in similar contexts have similar semantic
meanings (Harris 1954). This hypothesis is the basis for dis-
tributional semantics (Sahlgren 2008), a theory that forms
the basis for word embedding models. A model built on this
theory is a natural fit for use in playing Codenames because
words that appear in similar contexts are likely to be associ-
ated with one another in a way that will help players guess
related words.

A word embedding model is trained on a corpus of text to
encode the relative contexts of the words in the corpus into
a vector space. Word2vec (Mikolov et al. 2013a) is a neural
network model that learns word associations in this man-
ner. The word2vec model we use implements a skip-gram
and negative sampling unsupervised learning model, which
learns to predict the context for a given word in the corpus. It
is trained to build an embedding that minimizes the distance
between a word and its context while maximizing the dis-
tance between a word and a hallucinated (random) context.
The weights that are trained with this method are treated as
the vector space into which words are embedded.

GPT-2 (Radford et al. 2019) is a powerful, large lan-
guage model (LLM) that implements a transformer archi-
tecture (Vaswani et al. 2017). This unsupervised train-
ing method uses attention mechanisms to focus learning on

small but important parts of the training corpus. GPT-2 has
been demonstrated to perform well at a variety of tasks such
as summarization, translation, question answering, and text
generation. It is notable, however, that the model was not
trained on any of those tasks explicitly. Its attention-based
language model learns implicitly to complete such tasks via
training to predict text from a prompt.

GPT-2 can be used (with varying degrees of success) as
a general-purpose model by providing it a text prompt that
describes a task to be completed. The model generates out-
put that it predicts to be a likely continuation of the prompt.
This output is highly dependent on the prompt, giving rise to
a new and still-developing discipline known as prompt engi-
neering (Liu et al. 2021). A common form for LLM prompts
is listing a handful of complete examples of the task to be
solved and then providing an incomplete task for the model
to complete.

Prompt engineering is now an integral part of natural lan-
guage processing using LLMs. Recent projects like Prompt-
Source (Bach et al. 2022) facilitate the sharing of prompts
for various tasks, allowing the research community to build
upon past successes and find more useful prompts.

We built our word2vec agents with the Gensim implemen-
tation (Řehůřek and Sojka 2010), using “pre-trained vectors
trained on part of the Google News dataset (about 100 bil-
lion words)” (Mikolov et al. 2013b). Our GPT-2 agents used
HuggingFace GPT-2 Small (124M parameters) (Wolf et al.
2020).

Methodology
To experiment with using Codenames as a test bed for
creative language systems, we built an agent-agnostic
game playing framework and implemented language model-
agnostic AI player agents for both the spymaster and guesser
roles. As this work is focused on language-based creativity,
we use the same rudimentary decision-making process for
all the agents we experimented with. There are undoubtedly
many possible improvements to their strategies, but they are
reasonable for the purposes of this research. By keeping the
agents’ strategies static, we are better able to isolate the ef-
fect of using different language models.

All of the code described in this section can be found in a
public GitHub repository. 2

Defining the Codenames Task
The Codenames game board is a set G of 25 word cards
drawn from a deck of size 400 (for play, the cards are ar-
ranged in a 5x5 grid). G is partitioned into four subsets:
T , an unknown set of target words, P , an unknown set of
opponent words, N , an unknown set of neutral words and
A = {a}, an unknown singleton set that contains an assas-
sin word. G = T ∪N ∪P ∪A represents an instance of the
game with |G| = 25, |T | = 9, |P | = 8, |N | = 7, |A| = 1.3

2https://github.com/gbspend/codenames
3This admits

(
400
25

)
= 3.374984143967 × 1039 unique

draws, each of which admit
(
25
9

)(
16
8

)(
8
7

)
= 2042975 ×

12870 × 8 = 210, 344, 706, 000 possible games, for a total of
7.099100475174× 1050 unique games.

Figure 2: The high-level information flow of our Codenames
framework.

While the set of cards G is public knowledge, its partition-
ing is not; this information is initially only available to the
two teams’ spymasters, who have access to a secret key.

Let U be the set of cards whose partition membership is
currently unknown. Initially, U = G. The object of the
game is for the spymaster to help their teammates discover
which words are in T before the opponent discovers which
words are in P and without discovering the identity of word
a. Teams alternate playing in rounds. Whichever team plays
first will have nine words to guess, while the other will have
eight (note that for convenience and without loss of general-
ity, we assume |T | = 9).

Play proceeds in the following manner. The active team’s
spymaster generates a clue c = (w, k) consisting of a clue
word w ∈ W \ G and a number 0 < k ≤ |T |, where W is
the set of all English words4 and k = |I| where I ⊆ T is a
secret set of words to which the spymaster intends the clue
to correspond. I itself changes every round, depending on
the spymaster’s strategy, and is not recorded in the game.

Given a clue word w, the guesser may then make a maxi-
mum of k+1 guesses. The guesser’s task is to guess a word
v ∈ U whose partition membership is then revealed (by cov-
ering it with one of four tile types), removing it from U (by
removing it from its secret partition). If v ∈ T , the team
guessed correctly and may pass or guess again as long as
they have not exceeded k + 1 guesses for the current round.
The round is over if the guesser has used all of their guesses,
if they pass, if T = ∅, or if v /∈ T . If v = a or P = ∅ (mean-
ing they guessed the assassin word or their opponents’ final
word), the team loses the game. If T = ∅, they win the
game. Otherwise, play passes to the other team. This pro-
cess of playing rounds repeats until one team wins.

Codenames Framework
We built a framework for playing teams of Codenames
agents against one another. Figure 2 shows a diagram
of our framework’s architecture. The Game module ran-
domly determines which team will play first, sets up the
board and secret key, and begins the gameplay loop. In

4We assume W excludes acronyms and proper nouns.

Figure 3: Information flow in our two types of Codenames
agents. Note that the language task modules are pluggable.

each round, the Game module passes the current board state
b = (T, P,N,A) to the active team’s spymaster. The spy-
master agent returns a clue c = (w, k). That is, the spy-
master agent implements a function σ : B → C, where
B = 2T × 2P × 2N × 2A is the set of possible game board
states5 and C = W × N|T | the set of possible clues.

The Game module then passes c and U to the active team’s
guesser agent, which returns its guess v. That is, the guesser
agent implements a function γ : C → U . Depending on the
conditions described above, the Game module determines
whether the active team may guess again, if the round has
ended, or if the game is over. At the end of the game, the
Game module outputs a result that indicates which team won
and includes the board, the key, and the history of player
actions for convenience in later analysis.

Spymaster AI
The spymaster’s task is to choose an intended set I ⊆ T and
a clue word w. To play effectively, it must balance maximiz-
ing both |I| and its estimated likelihood that w will induce
a guess v such that v ∈ I . Playing very safely by giving
clues that correspond to exactly one word card will likely
lead to a low number of incorrect guesses but may progress
too slowly to beat the opposing team. Conversely, choosing
a clue that tries to represent too many of the team’s word
cards at once will likely lead to a vague clue that will con-
fuse or mislead the spymaster’s teammates.

Recall that guessing incorrectly ends that team’s turn at
best and at worst reveals one of the other team’s target
words for them or loses the game immediately by guess-
ing the assassin. Thus, it is also helpful to consider the set
X = N∪P∪A of words with which the clue word w should
not be associated.

Figure 3 gives a diagram of our spymaster AI agent that
implements the function σ. It generates combinations of
words to consider for I and passes each combination, along

5The notation 2S is shorthand for the power set of S.

with X , into its word association module. That module (de-
scribed below) returns a list of candidate clue words along
with a confidence score for each. The agent selects the can-
didate with the best confidence as its clue word w. Our spy-
master’s procedure for choosing I relies on the heuristic that
a clue representing between two and four words is a reason-
able balance of reserved and aggressive play.6

In the case that only one of the team’s word cards remains
uncovered, it is trivial to select I = T . In all other cases,
the spymaster AI will use the set J = {J ∈ 2T | 2 ≤
|J | ≤ 4} to query a word association module (WAM), which
computes a function α(J , X) = (w, k) = c. The spymaster
then passes the returned clue c to the game module.

Word Association Module (WAM)
To implement α, the WAM uses the sets J,X to construct
an abstract parameterized family of scoring functions σJ,X :
W → R that maps a word u ∈ W 7 to a confidence score
reflecting how well u is positively associated with the words
in J and negatively associated with the words in X .

Given σ, we compute α as follows. For each J ∈ J :
1. rank order W by the score σJ,X(u),∀u ∈ W

2. put the top m words into a candidate set CJ

3. compute µJ = 1
|C|

∑
u∈C σJ,X(u)

Next, find the set with the highest average confidence score,
J∗ = argmaxJ∈J µJ and, from its associated candidate
words, CJ∗ , find the word with the highest score, w∗ =
argmaxu∈CJ∗ σJ,X(u). Finally, return the tuple (w, |J∗|).

By choosing the combination J∗ with the highest aver-
age confidence, the model favors combinations that are more
closely related altogether, even though another combination
may have a single candidate word with higher confidence.

The primary language faculty required to play Codenames
is knowledge of the relationships between words, both pos-
itive and negative. Knowing which words positively relate
to each other is a necessary baseline skill, and understand-
ing negative relationships between words is important for an
agent to perform well.

For example, two Codenames word cards are “ambu-
lance” and “doctor”. These words are closely related, but if
“ambulance” was one of a team’s word cards (that is, “am-
bulance” ∈ T) and “doctor” was the other team’s [or the
assassin] (“doctor” ∈ X or “doctor” = a), it would be impor-
tant to exclude clue candidates that positively associate with
“doctor”. In that scenario, “siren” or “fast” would likely be
a better clue than “emergency” or “injury”.

Thus in this example, when J ⊆ T contains “ambulance”,
we desire σJ,X(“siren”, k) > σJ,X(“injury”, k).

6As stated in the Codenames rulebook: “Getting four words
with one clue is a big accomplishment.”

7While this likely is technically incorrect, in the sense that any
language model is likely subject to some out-of-vocabulary words,
the language models used here support large enough vocabularies
that they render the point basically moot—word2vec has a vocab-
ulary size of 500K words, and GPT-2 uses a vocabulary of 50K
sub-word tokens that likely translates to a functional word-level
vocabulary even larger than that of word2vec.

The WAMs we experiment with are intended to serve as
good players regardless of whether their teammates are hu-
man or other black-box AI players. Thus, a relevant con-
sideration is whether the clues generated by the WAM are
understandable to a broad audience. An obscure clue word
and/or uncommon relationships to the word cards would
likely confuse or mislead the spymaster’s teammates. For
this reason, statistical language models are a good fit for this
task. We leverage them for both types of WAM.

We reiterate that the spymaster AI is designed to use any
word association module that computes α, independent of
how the WAM models language or how it uses the model
to generate clues—the WAM can implement the function
family σ in any way that maps words to scores. We imple-
ment three different versions: two that use a scoring function
based on cosine similarity between word embeddings and
one that uses conditional probabilities from autoregressive
text generation by a language model.

Word Embedding WAMs
Both word2vec and GPT-2 feature word embeddings which
are well suited to word relationship tasks because they allow
semantic word comparisons using simple geometric, vector-
based operations.

We built two word association modules that use word2vec
and GPT-2 embeddings, respectively, to compute σ. Words
are converted to real-valued embedding vectors using a
language-model-specific embedding function υ : W → Rd.
For a word u, positive word set J and negative word set X ,
σJ,X is then computed using cosine similarity between the
word vector υ(u) and a mean set vector µJ,X :

σJ,X(u) =
µJ,X · υ(u)

||µJ,X || ||υ(u)||
where

µJ,X =

∑
v∈υ(J) v −

∑
v∈υ(X) v

|J |+ |X|
where we slightly abuse notation by overloading υ to em-
bed a set of words into a set of embedding vectors. Note
that this embedding function is the only language-model-
specific component of this approach—word2vec and GPT-2
learn their embedding spaces in different ways.

Text Generation WAM
Text generation is a powerful function of the GPT-2 lan-
guage model. For our third implementation, we built a word
association module that uses text generation to construct
σJ,X . To generate text, GPT-2 takes a prompt and gener-
ates tokens that are, according to its model, likely to follow.
We designed prompts that state that a list of words related
to an input word will follow, ending with a colon, followed
by a comma-separated list of such words. The last line of
the prompt ends after the colon, prompting GPT-2 to com-
plete what comes next with an appropriate list. Here is an
example of such a prompt; note that all three lines comprise
a single prompt:

This is a list of words related to ambulance: paramedic,
emergency, doctor.

This is a list of words related to boat: water, fish, cap-
tain.
This is a list of words related to school:

We experimented with three such prompt templates for
use in the spymaster AIs. Each prompt asks GPT-2 to list
words related to an input. The first prompt asks for words
related to a single (positively associated) word. The second
asks for words that are positively associated with two words.
The third asks for words that are positively associated with
one word and negatively associated with another. Because
J and X can contain more than one or two words, we iter-
ate over all possible template completions using words from
J and X to construct the set C of possible generated com-
pletions. Let πi(Y) be the prompt created by adding the
tuple of words Y to template type i and let Zi(Y) be the set
of words generated by GPT-2 when prompted with πi(Y).
Then, for the first template type (one positive association),

C =
⋃
u∈J

Z1(u)

for the second template type (two positive associations),

C =
⋃

(u,v)∈J×J

Z2((u, v))

and for the third template type (one positive and one negative
association),

C =
⋃

(u,v)∈J×X

Z3((u, v))

In the case that |J | = 1 or X = ∅, the module defaults to
the single positive prompt template.

Each of these prompts is templated to allow for arbitrary
input words, and the generated text is post-processed to ex-
tract only words in a comma-separated list. Any other out-
put is discarded. The list is then filtered so that only valid,
nonduplicate Codenames clues remain (e.g. single words
that do not contain any of the word cards in U). The set of
words that remains is included in the candidate set C.

For a word u, positive word set J and negative word set
X , σJ,X is then computed using the generative model’s con-
ditional probability for u:

σJ,X = p(u|πi(Y)) for Y a valid tuple from J,X for type i

Table 1 shows examples of each prompt template. The
first and second columns list the template inputs: a single
positive association, two positive associations, and one pos-
itive and one negative association. The third column shows
the complete prompt with GPT-2’s generated completion
text. The input words are shown in italics, and the generated
text in bold; all other text is the template. Note that any new-
lines are explicitly contained in the template or generated
text. The final column shows the result of post-processing
the generated text to extract valid clue candidates.

The GPT-2 model is not fine-tuned; its output relies solely
on the prompt. The open-ended nature of text generation
means that it is susceptible to noise in the output. We found
that using a small number of template inputs reduced that

Positive Negative Templated Prompt + Generated Text Candidates

cook
This is a list of words related to ambulance: paramedic, emergency, doctor.
This is a list of words related to boat: water, fish, captain.
This is a list of words related to cook: urn, fire, vessel.

urn, fire, vessel

hospital, spell

This is a list of words related to flag and state: country, government, county.
This is a list of words related to mammoth and pyramid: ancient, large, heavy.
This is a list of words related to bridge and skyscraper: concrete, blueprint, tall.
This is a list of words related to hospital and spell: crisis, catastrophe, crisis, disaster.

crisis, catastrophe,
disaster

lock carrot

This is a list of words that are related to ambulance but not doctor: siren, engine, fast.
This is a list of words that are related to bat but not duck: cave, night, fur.
This is a list of words that are related to queen but not king: regina, woman, wife.
This is a list of words that are related to lock but not carrot: urn, house, castle, castle.
This list is the closest of the

urn, house, castle

Table 1: Examples of the prompt templates used in our three text generation word association modules. The positive and
negative inputs are inserted into the templates which GPT-2 then uses to generate the bolded text. That text is post-processed
to extract a list of valid candidate clues.

noise, which is reflected in our three templates. As such,
both of the positive-only templates disregard X . We ex-
perimented with how well each template performed while
making these trade-offs.

We also experimented with different wordings for the
prompt templates, for example beginning each line with
“These words are related to...” instead of “This is a list of
words related to...” We discuss why we chose the wording
and number of inputs for the final prompt templates in a later
section.

Guesser AI
As discussed previously, the task of the spymaster’s team-
mates is to guess which word cards the clue is intended to
represent. Therefore, the guesser agent is simpler, and the
module requires only a word embedding model to calculate
it. Figure 3 includes a diagram of our guesser AI. The agent
uses its word similarity module to choose the word u∗ ∈ U
that is most related to the clue c = (w, k), again using cosine
similarity:

u∗ = argmax
u∈U

υ(u) · υ(w)
||υ(u)|| ||υ(w)||

We note that this guessing process disregards the number
k provided in the clue. While that is additional information
that the guesser could leverage, we believe that this sim-
plified approach is sufficient for the research task at hand,
namely the exploration of different language models as cre-
ative Codenames players. From this perspective, the spy-
master is the more interesting agent and was therefore the
focus of our experiments. Furthermore, whatever informa-
tion the clue number provides is supplementary to the asso-
ciations between the clue word and the word cards. At most,
it could be used to refine the language module’s association
scores.

GPT-2’s text generation function is open-ended; it can
generate any tokens that appeared in its training corpora.
Therefore, the likelihood of the model generating the spe-
cific words found on the board is very low. We experimented

with building prompts for the guessing task. For example
(again, all four lines comprise one prompt):

Which of the words ambulance, shoe, and Moscow is
most closely related to siren? ambulance
Which of the words chick, China, and bolt is most
closely related to lightning? bolt
Which of the words opera, casino, pilot is most closely
related to fancy? opera
Which of the words India, needle, shop is most closely
related to sharp?

In this example, the intended result is that GPT-2 gener-
ates “needle” as the next word. We tested whether the in-
tended word appeared at all before the first generated new-
line character. Our experiments showed that GPT-2 gener-
ated the intended word in less than 5% of trials. We therefore
did not build a GPT-2 text generation guesser at this time.

Model Comparison
As discussed above, the word association tasks that are re-
quired to play Codenames, especially in the spymaster role,
provide opportunities for creativity. Each of our player
agents includes a pluggable, language model-driven module
that serves as the creative heart of its playing procedure. By
comparing these modules within the well-defined creative
space of a competitive language game, we can concretely
reason about their performance.

To make these comparisons, we built a lightweight test
harness that plays games of Codenames between two teams
of agents. These games are played using the same list of
word cards available in the retail game. Each team consists
of a spymaster agent and a guesser agent who are agnostic
to the implementation of the agents they are playing with
and against. Codenames can be played with a small team of
guessers collaborating to guess their spymaster’s clues, but
teamwork between guesser agents is outside the scope of
this work. The fundamental task of testing language models
in this game setting can be adequately explored with a solo
guesser.

To provide benchmarks for the agents’ performance, we
implemented simple guesser agents that guess randomly or
cheat. The random guesser agent serves as a lower bound on
acceptable performance for an AI agent. The cheat guesser
agent simply guesses n correct words each round, then
passes. This serves as a rough but easy-to-compute pace
against which to compare each agent.8 A benchmark team
consists of either a random or cheat guesser agent paired
with a trivial spymaster agent that returns a dummy clue that
the guesser disregards.

We created teams out of every pairing of spymaster
and guesser AI agents, regardless of their underlying lan-
guage models. These teams were played against one an-
other and the benchmark agents, and their win/loss ratios
were recorded. The name of each team is given as “[spy-
master]4[guesser]”, meaning the spymaster is making clues
fo(u)r the guesser. “w2v” stands for word2vec, “gpte” stands
for GPT-2 embedding model, and “gptp” stands for GPT-
2 prompt (text generation) model. The six teams were
w2v4w2v, w2v4gpte, gpte4w2v, gpte4gpte, gptp4w2v, and
gptp4gpte. Each team played 30 games against every other
team and 30 games against a random team, a cheat team with
n = 1, and a cheat team with n = 2.

Results
In this section, we report the results of our experiments.
Our primary objective is to demonstrate that a competitive
language game task allows for quantifiable comparison be-
tween agents. By powering our player agents with language
association modules, we show by extension how such mod-
ules can be evaluated with concrete performance metrics.

We ran experiments using three spymaster agents and
two guesser agents, in addition to the cheat and random
benchmark agents. The two guesser agents were built on
word2vec and GPT-2 word embeddings. The spymasters
used word2vec word embeddings, GPT-2 word embeddings,
and GPT-2 text generation, respectively, to perform word as-
sociation tasks. The text generation spymaster could fur-
ther be configured to use one of the three prompt templates
shown in Table 1.

GPT-2 Prompt Comparison
We compared the performance of the three prompt templates
by playing text generation agents (paired with both guessers)
against cheat benchmarks with n = 1 and n = 2 as well
as the random player. Table 2 shows the results of playing
10 games between those teams. Each template performed
similarly against the random player, with most teams being
able to beat it consistently. Similarly, all teams performed
uniformly poorly against the cheat benchmarks. In the tests
that follow, we used the template with one positive input as
the prompt for the GPT-2 text generation module.

Comparing Agent Teams
By playing our various teams of agents against one another,
we can judge their relative performance at the word asso-

8Anecdotally, it seems a human team would find a cheat agent
with n = 3 challenging and struggle to ever beat one with n = 4.

Prompt Guess Cheat 1 Cheat 2 Rand

1 positive
w2v 0-10 0-10 6-4
GPT-2 1-9 0-10 7-3

2 positive
w2v 0-10 0-10 7-3
GPT-2 0-10 0-10 5-5

pos + neg
w2v 0-10 0-10 9-1
GPT-2 0-10 0-10 4-6

Table 2: Win-loss ratio results of playing different text gen-
eration spymasters against benchmark agents, each using
one of the three prompt templates.

Figure 4: Heatmap of win/loss ratios after 30 games for each
team of Codenames agents playing against one another and
the unintelligent benchmark agents.

ciation task. The benchmark cheat and random agents pro-
vide a more objective performance measure. Figure 4 shows
the win/loss ratio for each combination of agents playing 30
games against every other team and the benchmark agents.
A darker color indicates a higher win rate for the team on
the y-axis versus the team on the x-axis. Recall that we did
not implement a GPT-2 text generation guesser. We also did
not play a team of agents against a team of the same agents.

Looking at the results, we can see that the word2vec
spymaster and guesser team performed best overall. Con-
versely, the team of the GPT-2 text generation (“gptp”)
spymaster and GPT-2 embedding guesser was the weak-
est. Most teams beat the random agent at least half of the
time, with gpte4gpte and gptp4gpte teams losing as often
as they won against it. None of the teams could consis-
tently win against the cheat agents, but the word2vec spy-
master/guesser team was able to beat the cheat with n = 1
about a third of the time.

Finally, we note that these tests are automated and can be
carried out on any new or modified agent to test its perfor-
mance at the creative spymaster task under the same circum-
stances. This will allow for easy evaluation and comparison

as improved models are developed in the future.

Discussion
Our experiments with Codenames AI agents serve a dual
purpose: to present an initial attempt at designing agents to
play the game; and (more importantly) to demonstrate that
a competitive language game is a creative domain with a
unique capability for evaluating agents.

Our Codenames Agents
It is somewhat surprising at first blush that word2vec out-
performed GPT-2 word embeddings at playing Codenames.
This may be attributable to differences in how the two mod-
els are trained. Word2vec’s skip-gram and negative sam-
pling model is trained under circumstances that are very sim-
ilar to the task of finding words associated with an arbitrary
set of positive and negative concepts. GPT-2, while not un-
suited for the task at hand, is trained to more generally min-
imize cross entropy in its language model. Perhaps training
or fine-tuning a transformer module using skip-grams and
negative sampling would bring their power to bear on this
more specific task.

This surprising result was demonstrated very clearly by
the test methodology of playing a competitive game with
the two models. This serves as another example of how
this creative task is useful to CC research. Additionally, im-
proved future spymaster agents can be tested against these
same models to evaluate their performance.

Designing a word association module using GPT-2 text
generation relied heavily on prompt engineering. Prompting
the model with examples in the form of a comma-separated
list resulted in the generated text taking a similar form. This
allowed for consistent input to the post-processor to extract
clue candidates.

More challenging was engineering a prompt template that
harnessed the power of the language model to generate high-
quality word associations. As described previously, we set-
tled on three prompt templates that sought associations with
one word, two words, and one positive and one negative
word. By contrast, the word embedding models calculated
word associations using an arbitrary number of positive and
negative word embedding vectors.

We found that increasing the number of input words in
the template tended to increase the noise of the generated
text without improving the quality of its associations. How-
ever, the results reported in the previous section show that
the GPT-2 text generation module prompted with one posi-
tive input performed about as well as the GPT-2 word em-
bedding model.

The Future of Codenames as a Creative Task
Successfully playing Codenames requires robust knowledge
of relationships between words, but the input and output for
player agents are single words or lists of words. This stands
in contrast with a game like Werewolf which requires more
complete communication skills as players attempt to figure
out hidden roles. There is a smaller conceptual distance be-
tween the language model and the agent’s performance play-
ing Codenames.

Playing a competitive game allows for automated and
easy-to-compare metrics for modules with open-ended
tasks, such as using GPT-2 text generation to compute word
associations. Further, by first building a Codenames test har-
ness, we were able to quickly test and compare prompts. For
example, we found that prompts beginning with “This is a
list of words related to...” gave better results than those be-
ginning with “These words are related to...”.

The nature of competitive language games like Code-
names allows for future improved and novel agents to be
tested under identical conditions to the ones presented here.
We foresee an improving field of creative Codenames agents
that can be tested automatically against one another.

Bodily and Ventura present an argument for increased so-
cial consciousness of CC systems, especially as they eclipse
human performance (2020). This is largely motivated by the
triumph of AlphaGo over a top-ranked human player at Go,
which is a creative task with a “well-defined and universally-
recognized way of comparing” performance.

Codenames does not have the same depth, history, or au-
dience that Go has, but it is quite popular in its own sphere.
It shares a similar potential for creativity but operates in the
domain of language. Creativity in language domains is a
valuable and well-studied aspect of computational creativity,
and Codenames could serve as a test bed to develop creative
language modules that could be exported for use in those
more traditional domains.

These arguments for Codenames as a valid and useful cre-
ative domain apply to other competitive language games as
well. We encourage the research community to seek out and
experiment with such games as well-defined creative tasks.

Conclusion

A common difficulty in systematizing creativity is identify-
ing an accurate and concrete goal. High-quality creative out-
put is difficult to quantify, and abstractions or estimations
are usually required. We argue that competitive language
games such as Codenames are a useful creative domain be-
cause they feature well-defined win and lose states while still
allowing for creative expression.

We present a test framework for playing games of Code-
names between AI agents both to describe a new creative
system and to demonstrate the efficacy of the domain itself.
This framework is modular to allow for any player agent to
be evaluated and includes benchmark agents to provide more
objective performance metrics.

Each creative domain provides unique challenges and new
perspectives on what creativity is, how to reason about it,
and what tools facilitate computational creativity. Adding
competitive language games to CC’s suite of canonical cre-
ative domains will allow for more rigorous evaluation and
comparison of its creative systems. There is more to cre-
ativity than winning a game, but in the face of a dearth of
concrete measures of creative performance, competitive lan-
guage games can serve as a valuable proxy for such evalua-
tion.

Author Contributions
Both authors planned and designed the system, B.S. wrote
the code and ran experiments, and both authors contributed
to the writing.

Acknowledgements
None.

References
Bach, S. H.; Sanh, V.; Yong, Z.-X.; Webson, A.; Raffel, C.;
Nayak, N. V.; Sharma, A.; Kim, T.; Bari, M. S.; Fevry, T.;
Alyafeai, Z.; Dey, M.; Santilli, A.; Sun, Z.; Ben-David, S.;
Xu, C.; Chhablani, G.; Wang, H.; Fries, J. A.; Al-shaibani,
M. S.; Sharma, S.; Thakker, U.; Almubarak, K.; Tang, X.;
Tang, X.; Jiang, M. T.-J.; and Rush, A. M. 2022. Prompt-
source: An integrated development environment and reposi-
tory for natural language prompts. arXiv:2202.01279.
Bodily, P., and Ventura, D. 2020. What happens when a
computer joins the group? In Proceedings of the 11th Inter-
national Conference on Computational Creativity,, 41–48.
Chvátil, V. 2015. Codenames. Kladno, Czech Republic:
Czech Games Edition. Board Game.
Dorst, K. 2011. The core of ‘design thinking’and its appli-
cation. Design studies 32(6):521–532.
Guilford, J. P. 1956. The structure of intellect. Psychological
bulletin 53(4):267.
Harris, Z. S. 1954. Distributional structure. Word 10(2-
3):146–162.
Jolin, D. 2016. The rise and rise of tabletop gaming. The
Guardian. Accessed: 2020-10-05.
Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; and Neubig,
G. 2021. Pre-train, prompt, and predict: A systematic sur-
vey of prompting methods in natural language processing.
arXiv:2107.13586.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
arXiv abs/1301.3781.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In Advances in Neural
Information Processing Systems, volume 26, 3111–3119.
Nevskiy, O., and Sidorenko, O. 2015. Mysterium. Paris,
France: Libellud. Board Game.
Ohlsson, S. 1992. Information-processing explanations of
insight and related phenomena. Advances in the Psychology
of Thinking 1:1–44.
Radford, A.; Wu, J.; Child, R.; Luan, D.;
Amodei, D.; and Sutskever, I. 2019. Lan-
guage models are unsupervised multitask learners.
https://d4mucfpksywv.cloudfront.net/
better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.
Řehůřek, R., and Sojka, P. 2010. Software framework for
topic modelling with large corpora. In Proceedings of the

LREC 2010 Workshop on New Challenges for NLP Frame-
works, 45–50. Valletta, Malta: ELRA.
Sahlgren, M. 2008. The distributional hypothesis. Italian
Journal of Disability Studies 20:33–53.
Ushan, A. 2017. Spyfall 2. Moscow, Russia: Hobby World.
Board Game.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in Neural Information
Processing Systems, volume 31, 6000–6010.
Veale, T. 2006. Re-representation and creative analogy:
A lexico-semantic perspective. New Generation Computing
24(3):223–240.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.;
Davison, J.; Shleifer, S.; von Platen, P.; Ma, C.; Jernite,
Y.; Plu, J.; Xu, C.; Scao, T. L.; Gugger, S.; Drame, M.;
Lhoest, Q.; and Rush, A. M. 2020. Transformers: State-
of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, 38–45. Online:
Association for Computational Linguistics.

