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Abstract

Recent advances in generative machine learning, par-
ticularly in the area of text-to-image synthesis, have
created huge potential for co-creative systems. It is
non-trivial, however, to adapt algorithms intended to
generate images that match a given prompt to suit the
task of effective collaboration with humans. This pa-
per presents initial experimentation towards developing
an agent that can work cooperatively with a human de-
signer in the task of drawing. We do so by utilizing Con-
trastive Language Image Pretraining (CLIP) to guide
the drawing’s semantic meaning on a drawing comple-
tion process, and fidelity terms to enforce geometric
alignment (with what would be the user’s in-progress
sketch). Preliminary results are presented as a proof
of concept, attesting that drawing outputs are both di-
verse and identifiable as matching the provided prompt,
which we interpret as steps towards co-creativity.

Introduction
The traditional conception of the role of a computer within
a creative process is that of a tool: precise, effective, and
unobtrusive. But today’s AI-driven capabilities have started
to bend the barrier between tools and collaborators, as re-
flected on recent studies in Human-Computer Co-Creative
Processes (Kantosalo et al. 2020). In this work, we seek to
test that barrier further, exploring how generative AI models
can be applied to develop co-creative systems that can help
designers sketch. There have been many amazing sketching
systems developed in the last decade (Davis et al. 2016;
Karimi et al. 2018), but several questions remain unan-
swered before those systems could be applied in practice:
Can a co-creative sketching system work towards a user-
specified goal? Can it both respect the user’s progress and
propose modifications when needed? Can it propose small,
diverse steps towards completion rather than one-shot auto-
complete a drawing? We tackle the task of building a co-
creative agent that can answer some of these questions in
the affirmative.

For a co-creative drawing agent to be able to be truly co-
operative in this context, it should not only be able to pick up
on a partial design made by the user, but also to somewhat
grasp a sense of its semantic meaning, and produce an out-
put consistent with the user’s end goal. Until recently, im-

age generation models were only capable of producing out-
puts based on simple, specifically trained conditioning labels
(Mirza and Osindero 2014). But there has been rapid recent
progress in context-agnostic models trained in huge datasets,
that have an ability to translate the meaning of complete sen-
tences into images, such as CLIPDraw (Frans, Soros, and
Witkowski 2021), and Dall-E (Ramesh et al. 2021).

Our goal in this work is to make progress towards systems
with which users can engage in dialogue during creative col-
laboration, fluidly discussing both strategic and tactical as-
pects of their emerging design (Bown et al. 2020).

We present a co-creative drawing model that can complete
a user’s design by taking advantage of CLIPDraw’s ability to
produce drawings aligned with the semantic meaning of the
desired output’s description. To this we add loss terms for
building on a user’s partial sketch and penalising drawing
outside a (user-specified) region (see Figure 1).

Related Work
Our co-drawing model builds on CLIPDraw (Frans, Soros,
and Witkowski 2021), which built on CLIP (Ramesh et al.
2021), which in turn built on ConVIRT (Zhang et al. 2020).

CLIP and ConVIRT
Contrastive training is based on the following idea: let us
consider a batch of (text, image) pairs, {(tn, In)}n=1,...N ,
paired in the sense that the text tn describes the image In.
Then, two functions g and f mapping text and images (re-
spectively) to a latent space RD are built using appropriately
chosen Neural Network (NN) architectures. These functions
are trained to minimize a loss function based on the cosine
distance between the image and the text (and vice versa).

Lc(tk, Ik)
.
= − log

exp ⟨g(tk), f(Ik)⟩/τ∑N
n=1 exp ⟨g(tk), f(In)⟩/τ

,

where ⟨·, ·⟩ denotes the cosine similarity and τ > 0 is a
scale parameter. Finding g and f minimizing Lc essentially
means we are fitting g and f so that tk is mapped closer to Ik
than any other image on the batch. The same is done, using
a complementary loss function, to ensure f(Ik) is closer to
g(tk) than to the mapping of any other text within the batch.
The result is a shared embedding of both images and text
prompts into a space where similarity can be measured be-
tween any combination of either. As soon as it was released,



Figure 1: Co-Drawing Model schema: Three different losses are computed on three instances of the pipeline, and the set of
Bézier curves x that defines the drawing is optimized with respect to the sum. This ensures parametric similarity with the given
curve set x̄, consistency with the partial drawing h(x̄) and compliance with the semantic meaning g(t̄).

CLIP became the focus of a vital and diverse community
of online artistic exploration of its capabilities. Much of
this exploration was based around generating images from a
GAN that match a particular prompt (Liu and Chilton 2021).

CLIPDraw
Of most interest to our goal of co-creative drawing is the
recent coupling of the CLIP-based semantic loss (i.e. match
to a provided prompt) with a differentiable rasteriser (Li et
al. 2020). The resulting system, CLIPDraw, generates an
image that fits a provided prompt by manipulating a set of
Bézier curves (Frans, Soros, and Witkowski 2021).

Let us denote by B the space of Bézier curves and let
h : X → I be the aforementioned differentiable function
that maps the set of finite subsets of B to the image space.
Then, given a set x of Bézier curves, it is possible to build a
gradient descent optimization method as:

x← x+ η∇x⟨g(t), f ◦ h(x)⟩, (1)

where η > 0 is the learning step.
Put simply, this lets us find a vector drawing that matches

a given text prompt, thus enforcing semantic meaning to our
model’s outputs.

Co-Creative Drawing
Key to co-creative drawing is modifying existing partial
sketches. A first instinct upon seeing how CLIPDraw works
might be to just let it draw over our partially completed
design, since a simple sum over h(x) would preserve the
model’s differentiability. There are two issues with this ap-
proach. Firstly: CLIPDraw can (and often will) simply draw
over the partial drawing, completely disregarding the user’s
design. Secondly, the opposite is also a problem: if the agent
is prevented from making any adjustments to the user’s in-
put, then it becomes inflexible.

With this in mind, we start by formally defining our partial
sketch as a set of Bézier curves x̄ ∈ X , and a text prompt t̄
as a string describing the desired end result of our drawing.
In practice this partial drawing would be something like an
SVG image created by a user.

Curve Fidelity
Let us denote by K0 the number of Bézier curves in x̄ and
by Ka the number of additional curves we are going to allow
the agent to draw. Finally, let x be the variable associated to
the total set of K = K0 +Ka curves in the model. The idea
is that the first K0 curves produced by the method resemble
those of the provided sketch, and we can enforce that by
adding the following term to the cost function:

Lb(x, x̄)
.
=

K0∑
k=1

3∑
m=1

λm∥x̄(m)
k − x

(m)
k ∥2, (2)

where the index m = 1, . . . , 3 represents one of three vari-
able types: color, coordinates or width, and λm > 0 are
regularization parameters, dependant on the type of variable.
More specifically, x(1)

k ∈ RDk is a vector containing the path
coordinates, x(2)

k ∈ [0, 1]4 is a vector with the RGBA com-
ponents of the color of the trace, and x

(3)
k > 0 represents the

width of the trace.
By using this penalisation term, we enforce x to keep the

original traces from the partial sketch. Furthermore, by tun-
ing the λm parameters, we can control the strength of this
constraint, setting large values to strictly maintain the origi-
nal traces, and smaller values to allow the agent to sensibly
move, adjust the width or change the color of the traces.

Drawing within a specified region
Despite the above constraints that enforce similarity on the
curves, our agent might still “choose” to draw over the user’s
partial sketch. To overcome this, we define a region Ω of the
canvas where the agent is allowed to draw, by penalizing im-
age discrepancies outside of it. In practice we envisage that
this could be provided by the user, or potentially suggested
automatically through a process analogous to neural atten-
tion.

Notice we want to penalize discrepancies, but not prohibit
them. Breaking the rules should always be possible during
creative processes, if there is a good reason to do so. To



Figure 2: On the left, a user’s partial sketch x̄. After that, the outputs h(x̂) obtained with three random initializations of
additional Bézier curves, using the prompt t̄ =“A red chair” and the drawing area Ω set as the top half of the canvas.

Algorithm 1 Co-Creative Drawing
Set xk = x̄k, ∀k = 1, . . . ,K0.
Let xk ∼ U [0, 1], ∀k = K0 + 1, . . . ,K.
Establish a drawing region Ω.
while ∥h(x)− h(x(p))∥2F > δ
x(p) ← x
x← x− η∇xL(x; t̄, x̄)

return h(x)

accomplish this we define an additional cost function as:
Li(x, x̄)

.
= α∥h(x̄)− h(x)∥2L2(Ωc), (3)

where α > 0 is a regularisation parameter, and ∥ · ∥L2(Ωc)

is the L2 norm defined in the complement of the drawing
region Ω.1 Here again, the fidelity of the image outside the
designated drawing area can be enforced (or relaxed) by in-
creasing (or decreasing) the value of α.

Algorithm
Finally, we can add the terms on (2) and (3) to the cosine
distance (see Figure 1) to build our overall cost function as

L(x; t̄, x̄)
.
= −⟨g(t̄), f ◦ h(x)⟩+ Lb(x, x̄) + Li(x, x̄).

The goal is now to find a solution x̂ minimizing L. Even
though differentiable, L is non-convex and hence finding a
global minimum is an intractable problem. Nonetheless, we
have found using a gradient descent approach such as (1)
often yields good results in practice, and hence we propose
to use the method summarised in Algorithm 1.

While the existence of local minima is considered a prob-
lem in most settings, it is the opposite here. A high-quality
solution x̂ within our framework can be understood as one
with a low value L(x̂; t̄, x̄), while a set of diverse solutions
corresponds to a set of elements within different regions of
X . This means that the set of highest-quality diverse solu-
tions is a set of local minimizers, and hence a subset of the
possible convergence points of the proposed algorithm.

Results
Although creativity is a very tricky concept to define, let
alone measure, there is certain consensus on the conjunc-
tion of value/utility/quality and novelty/originality/diversity

1Better, more complex penalisation functions may be feasible
and will be explored in future work.

being a good approximation to assess it (McCormack and
Gambardella 2022). Both dimensions, however, have their
own subjectivity, so we attempt to operationalise them in
ways that make sense for co-creative drawing.

As a first intuitive test of our method, we drew a par-
tial sketch, defined a very simple drawing region, ran Al-
gorithm 1 and inspected the outputs (see Figure 2). These
images were obtained by providing the agent with a sketch
of a stool, and asking it to draw on the top half of the can-
vas to match the description “A red chair”. As a first-order
measure of quality: if you the reader were readily able to
recognise the drawings as red chairs without reading the cap-
tion, then we can attest some subjective standard of quality.
Some scribbles appear in the background, which are a con-
sequence of the original CLIP having been trained mostly
with natural images, with complexly textured backgrounds.
Even ignoring the scribbles, there is also (again, naively)
some degree of diversity present among the four chairs, for
example in their orientations or the height of their backs.

Quality Assessment
As a simple yet robust way of assessing the quality of the
outputs we checked whether CLIP itself recognises the gen-
erated drawings as matching the prompt. CLIP can be used
as a classifier, with 2343 nouns from its corpus as labels.2
Evaluating 100 samples from the tasks in Figs 2 and 3 ac-
count for a 98% recognition rate for the categories “chair”
and “hat”, with a confidence of 69.9% ± 19.6%. This ac-
curacy and confidence (estimated as a softmax probability
over the very large set of labels) is quite encouraging as a
first assessment: our drawings are at least recognisable as
the objects they are supposed to be.

Diversity Assessment
Quantifying diversity is yet another task without a stan-
dardised method, but recent papers (McCormack and Gam-
bardella 2022) aim to measure it using the intermediate lay-
ers of Convolutional Neural Networks (CNNs). It has been
shown that different layers encode geometric properties at
different scales, which can capture the “style” of images
(Ecker, Bethge, and Gatys 2015). Bearing this in mind, we

2Ideally, we would want to use a different NN architecture, but
to the best of our knowledge, CLIP is the most complete domain-
agnostic image classifier currently available.



User-drawn samples

Agent-drawn samples

Figure 3: On the left, the mean standard variation over each layer’s neuron activations for the 10 tested samples. On the right,
some samples of the hat-design task outputs as completed by the users and the agent.

propose to use the variability of the activation of intermedi-
ate CNN layers as a measure of diversity.

We provided 10 human subjects with the same partial
sketch of a person wearing a hat, and asked them to com-
plete the design as they wish (some samples can be seen in
Figure 3). We then put the images through the CNN pro-
posed in (Simonyan and Zisserman 2014) and got the out-
puts of the five intermediate layers used in Style Transfer.
We computed the standard deviation over the 10 samples
for every neuron, and averaged over every layer, getting five
points of comparison. We then did the same with 10 ran-
domly generated samples from our model. Comparing the
two sets (see Figure 3) shows that our generated samples
have a higher variance. Although we cannot assure how
well these measurements align with our intuitive notion of
diversity, the results do suggest at least comparable, if not
higher than inter-human design diversity in our results. Of
course, this small-scale study has limitations: we neither
asked our human subjects to be diverse nor did we recruit
skilled milliners to design for us.

Conclusions

We have introduced a model intended for a designer to inter-
act with a sketch-generation agent. Preliminary quantitative
results account for the model being capable of producing di-
verse and quality drawings. Qualitatively, the process and its
outputs show potential as a useful fit for co-creative drawing.

The proposed idea is flexible enough to explore the use of
other image generative models as the core of the co-creative
agent. Future work shall also deal with the formalization
and expansion of the introduced experimental setting.
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Li, T.-M.; Lukáč, M.; Gharbi, M.; and Ragan-Kelley, J.
2020. Differentiable vector graphics rasterization for editing
and learning. ACM Transactions on Graphics 39(6):1–15.
Liu, V., and Chilton, L. B. 2021. Design guidelines for
prompt engineering text-to-image generative models. arXiv
preprint arXiv:2109.06977.
McCormack, J., and Gambardella, C. C. 2022.
Quality-diversity for aesthetic evolution. arXiv preprint
arXiv:2202.01961.
Mirza, M., and Osindero, S. 2014. Conditional generative
adversarial nets. arXiv preprint arXiv:1411.1784.
Ramesh, A.; Pavlov, M.; Goh, G.; Gray, S.; Voss, C.; Rad-
ford, A.; Chen, M.; and Sutskever, I. 2021. Zero-shot text-
to-image generation. In International Conference on Ma-
chine Learning, 8821–8831. PMLR.



Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Zhang, Y.; Jiang, H.; Miura, Y.; Manning, C. D.; and Lan-
glotz, C. P. 2020. Contrastive learning of medical visual
representations from paired images and text. arXiv preprint
arXiv:2010.00747.


