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Abstract

Curriculum learning, especially in robotics, is an active
research field aiming to devise algorithms that speed up
knowledge acquisition by proposing sequences of tasks
an agent should train on. We focus on curriculum gen-
eration in reinforcement learning, where various meth-
ods are currently compared based on the agent’s perfor-
mance in terms of rewards on a predefined distribution
of target tasks. We want to extend this singular charac-
terization of existing algorithms by introducing metrics
inspired by notions from the field of computational cre-
ativity. Namely, we introduce surprise, novelty, interest-
ingness, and typicality that quantify various aspects of
tasks stochastically proposed by the curriculum learning
algorithms for the learner to train on. We model pro-
posed tasks with Gaussian mixture models which en-
able their probabilistic interpretation, and use Hellinger
distances between distributions and training rewards in
formulation of the proposed metrics. Results are pre-
sented for eight curriculum learning algorithms show-
casing differences in prioritization of various aspects
of task creation and statistically different mean metric
values when comparing agent’s best and worst training
runs. The latter finding is not only useful for analysis of
existing algorithms, but potentially also provides guid-
ance for design of future curriculum learning methods.

Introduction
The idea of introducing tasks of increasing difficulty from
the perspective of a student has a history in human learning
(Oudeyer, Kaplan, and Hafner 2007) and teaching (Prideaux
2003), but similar ideas in machine learning have recently
gained in popularity due to their ability to reduce the number
of samples necessary for training or improvement in the final
performance. Reinforcement learning algorithms often pro-
hibit real-world applications due to inability to solve com-
plex tasks from small number of agent’s interactions with
the environment, which is precisely why use of curricula has
been popular in that domain.

While many practical advancements have been made in
this field (Portelas et al. 2020; Gupta, Mukherjee, and Na-
jjaran 2022), not many authors provide a theoretical analy-
sis of their work. Some ideas about how curriculum learn-
ing works have been proposed by Bengio et al. (2009),
suggesting that curriculum enables learning of smoothed

convex functions first, allowing to reach a dominant (and
possibly global) minimum before the loss function one is
optimizing grows more complex. Kroemer, Niekum, and
Konidaris (2021) also add that in practice, curriculum might
enable the reinforcement learning agent to collect infor-
mative non-sparse rewards and thus aid training. Xu and
Tewari (2021) on the other hand argue that in addition to
above optimization benefits, statistical benefits are also im-
portant — curriculum algorithms can control the amount
of variance the learning algorithm experiences, leading to
faster convergence.

Analysis from the perspective of optimization theory pro-
vides an useful insight into inner-workings of the current
curriculum learning algorithms, but are not the only way
one should try to improve understanding of their character-
istics. While theoretical analyses such as those in the previ-
ous paragraph are rare, we have not come across any works
in the field of reinforcement learning pertaining evaluation
and comparison of existing curriculum learning methods in
terms other than accumulated agent’s reward in the envi-
ronment. Approaching evaluation by quantifying proper-
ties of generated curricula could provide insight into which
approaches for curriculum generation work better and why,
in addition to providing grounds for design of future algo-
rithms.

Metrics introduced in this paper aim to fill the aforemen-
tioned gap. We do not analyse existing algorithms in terms
of optimization theory, but instead evaluate them using met-
rics inspired by work from the field of computational cre-
ativity. Contributions of this paper are the following:

• We introduce surprise, novelty, typicality and interesting-
ness for evaluation of curriculum learning algorithms in
the scope of reinforcement learning. The metrics evaluate
the tasks proposed by the algorithms from the perspective
of the learning agent and are formulated using probabilis-
tic measures ensuring their interpretability.

• We evaluate existing state-of-the-art curriculum learning
approaches using our metrics. This provides insight into
differences in prioritization of different aspects of curricu-
lum generation and possible basis for future algorithms.



Related Work
In the scope of computational creativity, many frameworks
and specific metrics have been proposed for evaluating cre-
ativity in the past. Computer generated artefacts that are
evaluated using computational creativity metrics can be
characterized across multiple dimensions and the exact for-
mulations depend on their context. While the definitions dif-
fer across the field, there are existing metrics such as nov-
elty (Boden 2004; Ritchie 2007; Elgammal and Saleh 2015;
Canaan et al. 2018), surprise (Maher 2010; Grace and
Maher 2014; Canaan et al. 2018), quality (Ritchie 2007),
value (Boden 2004; Maher 2010; Elgammal and Saleh 2015;
Canaan et al. 2018) or interestingness (Schmidhuber 2009;
Canaan et al. 2018), among others, that each aim to provide
means for evaluation of creative artefacts.

Boden (2004) introduced criteria describing new, sur-
prising and valuable ideas as creative. She differentiated
between what newness is to one person (P-creativity) or
the whole human history (H-creativity), where the former
guides the definition of our metrics. Many subsequent au-
thors formulated some of their metrics based on her defi-
nition (Maher 2010; França et al. 2016). Wiggins (2006)
bases his computational creativity formulation on Boden’s
work, but argues that the notion of surprise is redundant.
Ritchie (2007) proposed assessment of creativity through
novelty and quality in addition to matching the criteria of
typicality. In our work, we take his idea of the latter as a
measure of how well the artefact class in question is repre-
sented by the produced items. His definition of novelty is
also useful for our formulation, since it describes produced
item’s dissimilarity to the already known artefacts. This def-
inition of novelty is also similar to the one in Maher (2010).

While Wiggins (2006) doesn’t differentiate between nov-
elty and unexpectedness, some authors find it useful to sepa-
rate the two. Unexpectedness, or surprise, can be defined
as change of the generated artefacts compared to the re-
cent past (Maher 2010; Grace and Maher 2014). Canaan
et al. (2018) also differentiate between novelty and surprise,
describing the former as a dissimilarity between collection
of artefacts (distance-based novelty) and the latter as a mea-
sure of how much a generated sample differs from model’s
expectation. Surprise is also termed learning-based novelty
in their work.

Schmidhuber (2009) describes a comprehensive theory of
subjective beauty, interestingness, surprise and novelty pro-
viding a formulation of creativity. He starts by defining
beauty from the perspective of an agent, describing it as a
signal compressible to a large degree — in other words, find-
ing it simple — and goes on to outline interestingness as a
change in the perceived beauty. This is a template for our
definition of interestingness as well. The formulation from
Canaan et al. (2018) is also relevant, where the measure is
defined as a specific value range of novelty. They stress the
idea behind Wundt curve (Wundt 1874), explaining that too
little or too much novelty might lead to uninteresting arte-
facts. Lastly, Reehuis et al. (2013) relate interestingness to
learning progress, which is related to our formulation of this
metric.

In the scope of practical applications, França et al. (2016)

and Varshney et al. (2019) implement novelty as a Bayesian
surprise. Bayesian surprise is large whenever the impact
of new data on the prior distribution is large (Franceschelli
and Musolesi 2021). Novelty can also be based on sim-
ple distance measures like in Morris et al. (2012) and Ma-
her (2010). Quality and value can on the other hand be
evaluated using artificial neural networks (Morris et al.
2012), distance between nodes in a graph (Elgammal and
Saleh 2015) or associations of an artwork with its descrip-
tion (Norton, Heath, and Ventura 2010).

Curriculum Generation in Reinforcement
Learning

The use case of our proposed metrics is in the scope of au-
tomatic curriculum generation. While curricula can be used
in many machine learning fields, we focus specifically on its
use in reinforcement learning. Before continuing to our pro-
posed metrics, we therefore introduce the framework within
which they are utilized.

Reinforcement Learning
Reinforcement learning (RL) is defined in the scope of
Markov Decision Process (MDP) denoted by a tuple
MRL = (SRL,ARL, RRL,PRL, γRL), with SRL being
state space, ARL action space, RRL reward function, PRL

the state transition probabilities (i.e. environment dynam-
ics) and γRL the discount factor prioritizing long-term plan-
ning (Sutton and Barto 2018). In a reinforcement learning
algorithm, an agent performs an action a ∈ A upon expe-
riencing state st ∈ S, receiving a new state st+1 and a re-
ward r = RRL(st, at, st+1) in return. The goal is to find
the optimal policy π∗ that maximizes the expected reward
for every possible state (Sutton and Barto 2018). In ad-
dition to searching for the optimal policy π∗, solutions to
auxiliary objectives have to be found: state value function
Vπ(st) and state-action value function Qπ(st, at), that es-
timate achieved reward under current policy until the end
of an episode. These functions are used to search for the
optimal policy, for example by greedy selection of actions
leading to highest expected rewards, or as a guiding signal
for policy gradient algorithms.

Curriculum Learning
As implied in the previous paragraph the agent interacts with
the environment by performing actions. However, in order
to learn the optimal policy, it has to randomly explore its ac-
tions and the state space. Curriculum learning (CL) aims to
narrow down this exploration space by bounding it to sub-
tasks that an agent should master first (Narvekar et al. 2020).
Automatic curriculum learning, to which the methods eval-
uated in this paper belong, generates curricula algorithmi-
cally depending on agent’s progress. The problem of finding
the sequence of tasks that lead to fastest learning and best
performance can be seen as finding the optimal policy for
a secondary MDP MCL = (SCL,ACL, RCL,PCL, γCL),
where SCL are representations of agent’s policy or knowl-
edge, ACL control task difficulty, RCL is the reward func-
tion, e.g. the accumulated agent’s reward on a target task



distribution Ptarget (Narvekar and Stone 2019). The target
task distribution Ptarget entails all possible subtasks that we
want our agent to generalize over. Within MCL, γCL prior-
itizes immediate versus long-term consequences of the cho-
sen tasks.

Above definition describes the problem to be solved in
curriculum learning, but says little about actual implemen-
tations. In practice, exhaustively searching for an optimal
curriculum is often intractable and can take longer than
training the agent without curriculum to achieve the same
performance (Narvekar and Stone 2019). Researchers thus
utilize various heuristics to simplify search for good solu-
tions. In this regard, the notion of learning progress has
been a valuable measure for choosing suitable subtasks to
train from in the past (Baranes and Oudeyer 2010; Moulin-
Frier, Nguyen, and Oudeyer 2014; Portelas et al. 2020;
Colas et al. 2019). Learning progress is defined as the (ab-
solute) difference of collected rewards over time in some
part of the task space Tenv . For example, RIAC (Baranes
and Oudeyer 2010), Covar-GMM (Moulin-Frier, Nguyen,
and Oudeyer 2014) and ALP-GMM (Portelas et al. 2020)
all use such criteria in their frameworks, varying how they
split the task space — across one (RIAC) or multiple (Covar-
GMM and ALP-GMM) dimensions — or how they imple-
ment learning progress — through covariance between re-
wards and time (Covar-GMM) or absolute difference be-
tween new and old rewards (RIAC and ALP-GMM). How-
ever, not all methods rely on learning progress for selection
of task parameters. ADR (Akkaya et al. 2019) expands the
distribution from which the task parameters are sampled by
some δ depending on whether the agent achieved sufficient
performance on current subtasks. Klink et al. (2020) on
the other hand propose Self-Paced curriculum learning al-
gorithm, taking a probabilistic approach to gradually expand
the task parameter distribution towards target one by weight-
ing the loss term of their algorithm according to the agents
performance. With the increasing popularity of generative
adversarial networks, GoalGAN (Florensa et al. 2018) and
Setter-Solver (Racaniere et al. 2019) algorithms take advan-
tage of competition between subtask proposition and sub-
task suitability estimation modules. We evaluate most of the
approaches outlined in this paragraph using our proposed
metrics.

A common trait of the previously outlined algorithms
is the mechanism by which they generate a curriculum.
They all control the environment difficulty through sub-
task selection. This is performed by sampling task pa-
rameters for environment initialization from the task space
Tenv . That being said, other ways of generating curric-
ula also exist (Schaal 2006; Andrychowicz et al. 2017;
Zhou et al. 2019; Zhang, Abbeel, and Pinto 2020). The way
task parameters are sampled during evaluation is determined
by Ptarget which is usually normally (Klink et al. 2020) or
uniformly (Portelas et al. 2020) distributed.

Framing in the Context of Computational
Creativity
In order to bridge the gap between curriculum learning
and computational creativity, it is useful to frame the for-

mer in the context of the latter. For this reason, we
turn to Wiggins (2006), who formalized Boden’s (2004)
model of computational creativity. He defines it as a tuple
(U ,L, [[·]], ⟨⟨·, ·, ·⟩⟩,R, T , E), where U is the universe of all
concepts, L is the language used for expressing acceptable
concept space R, concept search algorithm T and concept
evaluation function E . Functions [[·]] and ⟨⟨·, ·, ·⟩⟩ are func-
tions that apply ruleset R and generate concepts using R, T
and E , respectively.

Within the above formulation, space of all subtasks in a
curriculum learning framework can be framed as U , while
R bounds this space to the target task distribution or sub-
tasks achievable by the agent. T can then be an algorithm
modelling the curriculum, and E is the curriculum evalua-
tion metric. The latter is usually the agent’s reward achieved
during testing, but can also be learning progress or criteria
of validity, feasibility and coverage (Racaniere et al. 2019).
Metrics, proposed in the next section can also belong to the
set E . Lastly, function [[·]] filters tasks not conforming to
R thus bounding possible subtasks to some subspace, and
function ⟨⟨·, ·, ·⟩⟩ generates the actual curriculum. Language
L is in our case a set of real numbers describing specific sub-
tasks.

Proposed Metrics
We define four metrics for evaluation of curriculum genera-
tion algorithms in relation to the agents learning to perform a
specified task. For three out of four metrics we use Hellinger
distance (Hellinger 1909) between various distributions to
capture the changing nature of the underlying task sampling
process. The distance is defined as:

H(f, g) =

√
1

2

∫ (√
f(x)−

√
g(x)

)2

dx, (1)

where f and g are probability density functions correspond-
ing to the two distributions we want to measure the distance
between. Hellinger distance has some advantageous prop-
erties compared to other probability-based distance mea-
sures: it is for example symmetric and bound to an interval
0 ≤ H(f, g) ≤ 1, which simplifies the comparison and in-
terpretation of our results. We split the raw task parameters
into windows of fixed sizes as described in the Task Parame-
ter Prepocessing section, forming the basis for computation
of the following metrics.

Surprise, novelty and typicality are all based on the afore-
mentioned distance measure. The central idea behind sur-
prise and novelty revolves around measuring short- and long
term changes of proposed tasks, while typicality aims to cap-
ture their overlap in regards to the target task distribution.
Our formulation of surprise and novelty is largely inspired
by Maher (2010) by taking an idea of surprise as a measure
of change in the distribution expectation compared to the re-
cent past, and novelty describing the difference between the
new and already existing data.

We define surprise as:

St = H(Pt, Pt−1), (2)



and novelty as:

Nt =
1

t

t−1∑
k=0

H(Pt, Pk), (3)

where P above denotes probability density functions of dis-
tributions fitted at specified time-points. Surprise captures
changes between two sequential distributions at time t and
t− 1, while for novelty, we compute mean changes between
tasks in t-th window compared to the distributions of all
windows prior to it. At t = 1, the definition of novelty is
equal to surprise, but they measure a different quantity as t
grows larger. Note, that above definitions are only sensible
for t > 0.

For typicality, we turn to Ritchie (2007), who formulated
it as a measurement of the extent the produced item is an
example of the artefact class in question. With slight abuse
of this notion, we take the task distribution Ptarget that de-
limits the scope of problems we want our agent to be able to
solve and measure its distance from distribution of tasks Pt:

Tt = 1−H(Pt, Ptarget). (4)
This formulation yields high typicality when the distance be-
tween some task parameter and target distribution is low. In
our experiments, task parameters underlying the distribution
Pt are bounded by Ptarget. The latter is in our case uni-
formly distributed and in such settings this metric measures
what might be better denoted as coverage. However, in gen-
eral, Ptarget could follow any other distribution, so we keep
referring to it as typicality in this paper.

Lastly, the interestingness is defined according to the rea-
soning behind such metric in Schmidhuber (2009). This
is the only metric that does not look at the proposed task
parameter distributions themselves, but is instead computed
from agent’s received rewards during training. It measures
the change in agent’s collected rewards in a particular pe-
riod of training, assuming that the underlying task parame-
ter distribution is not exhibiting sudden changes. This way,
our proposed measure is related to the change of simplicity
from the perspective of an agent, as proposed by Schmid-
huber (2009).

A naive approach entailing simple subtraction of rewards
in the first and second halves of the window has problems
with taking into account changing number signs and is not
bounded to any specific interval. In order to remedy this
issue we use cumulative density function to bound the inter-
estingness values. First, let’s assume that the rewards col-
lected in a specified time period are normally distributed.
Cumulative density function Φ is then defined as (Walck
2007):

Φ

(
x− µt

σt

)
=

1√
2π

∫ x

−∞
e−

x2

2 , (5)

where x is an input variable, and µt and σt are in our case the
mean and standard deviation of the rewards collected during
training within a particular period t. After splitting that pe-
riod in half, we obtain µ1/2 and µ2/2 corresponding to re-
spective means of the two halves. These statistics are finally
used to compute interestingness:

It = ϕ

(
µ2/2 − µt

σt

)
− ϕ

(
µ1/2 − µt

σt

)
. (6)

The use of cumulative density function ensures that each of
the above terms is bound to an interval [0, 1] and supports
the notion that large deviations of µ1/2 and µ2/2 from the
mean µt will result in larger absolute value of interesting-
ness. When µ2/2 > µ1/2 the interestingness will be positive,
while in the other case its value will be negative, bounding
the metric to an interval [−1, 1].

Experiments
The metrics proposed above are used for evaluation of re-
sults of various curriculum learning algorithms. This section
describes the benchmark setup from which the results were
obtained, in addition to necessary prepossessing steps en-
abling treatment of task parameters guiding agent’s training
in a probabilistic manner.

Figure 1: An example of raw task parameters (left), and
GMM means and standard deviations after preprocessing
(right) for every episode of training. Values of obstacle spac-
ings are in blue and values for their heights are in orange.

Task Parameter Prepocessing
As outlined in the Curriculum Learning section, curriculum
learning methods evaluated using proposed metrics oper-
ate by proposing task parameters used for environment ini-
tialization and thus controlling its difficulty. As the agent
progresses, various approaches estimate distributions from
which these initialization parameters are sampled. Some al-
gorithms sample from uniform (Akkaya et al. 2019) or (mul-
tiple) Gaussian (Moulin-Frier, Nguyen, and Oudeyer 2014;
Portelas et al. 2020; Klink et al. 2020) distributions, while
others might use a more complex sampling scheme (Flo-
rensa et al. 2018; Racaniere et al. 2019). To enable compu-
tation of our metrics, we model the distributions of sampled
task parameters during agent’s learning using Gaussian mix-
ture models (GMMs). Without knowledge of the real under-
lying distributions, this provides a reasonable estimate and
a basis for probabilistic interpretation of the task parameter
sampling process. This way, the process is not oversimpli-
fied as it would be if the normal distribution was assumed
across all evaluated task distributions. This allows our use
of Hellinger distance as a measure of change between two
algorithms and subsequent analysis.

To capture the underlying distribution from which task pa-
rameters are sampled at different time-points during train-
ing, we split them into smaller windows wt (t ∈ [0, 40]).



Figure 2: Top: an image of the agent in the environment and the two parameters controlling its difficulty. Bottom left: rewards
collected during periodic testing while training. Bottom right: testing rewards for the highest and lowest 10 % of learners.

An example of raw task parameter data is seen in Figure 1
(left) and respective splits with fitted GMMs are seen in Fig-
ure 1 (right). Figures show the evolution of two task param-
eters used for controlling the difficulty of the agent moving
through the environment. These two parameters control ob-
stacle heights and spacings and are visualized in Figure 2
(top).

Each window size in Figure 1 corresponds to the time it
took an agent to perform 500000 steps, resulting in a varying
number of episodes in each window. Since the task param-
eters are sampled per episode, this also results in windows
apparently varying in size in Figure 1 (right). GMMs with
up to 5 components are fitted on the task parameters in each
window and the one with the largest Akaike information cri-
terion (Sakamoto, Ishiguro, and Kitagawa 1986) is kept for
further analysis. This is a metric that quantifies how well the
GMMs fit the underlying data.

Experimental Setup
TeachMyAgent benchmark (Romac et al. 2021) provides
a framework for evaluation of various curriculum and rein-
forcement learning algorithms in two environments in mul-
tiple training configurations. It tests 7 curriculum learning
algorithms in addition to the random baseline. The cur-
riculum generation algorithms available in the TeachMyA-
gent benchmark and also used for evaluation of our met-
rics are ALP-GMM (Portelas et al. 2020), ADR (Akkaya
et al. 2019), Self-Paced (Klink et al. 2020), Goal-
GAN (Florensa et al. 2018), Setter-Solver (Racaniere et
al. 2019), RIAC (Baranes and Oudeyer 2010) and Covar-
GMM (Moulin-Frier, Nguyen, and Oudeyer 2014). They are
already briefly outlined in Curriculum Learning section. We

take their results from the StumpTracks environment (Porte-
las et al. 2020), which is illustrated in the Figure 2 (top).
The environment consists of an agent being tasked to learn
to walk in environments with varying obstacle heights and
spacings.

TeachMyAgent authors also introduced multiple agent
embodiments and training configurations. We evaluate our
metrics on results using a bipedal walker with an uniform
target task distribution Ptarget bounded to the interval [0, 3]
for obstacle height and [0, 6] for obstacle spacing. Data used
in our analysis entails task parameters used for initializa-
tion of environments for each episode and respective accu-
mulated rewards in addition to cumulative rewards obtained
during each testing period.

As mentioned before, the agent’s performance is periodi-
cally tested in the environment initialized with the parame-
ters from the target task distribution Ptarget. Figure 2 shows
the average performance during testing phases of the learn-
ing agent depending on curriculum learning algorithm used
(bottom left) or its overall performance (bottom right). This
illustrates that the differences between each curriculum gen-
eration method are in this case relatively small, but best and
worst performances vary more substantially. Notice, how
some algorithms in Figure 2 (bottom left) perform worse
than the random baseline; this is in line with the results pre-
sented by Romac et al. (2021).

Each curriculum learning method in Figure 2 and the
Results section was evaluated on results obtained from 64
experiment runs each using a different random seed. The
points at which the agent is tested serve for splitting the task
initialization parameters proposed by the curriculum learn-
ing algorithms into smaller windows. The best and worst



Figure 3: Metric values through agent training for all tested algorithms. It can be seen that every algorithm yields a different
progression of metrics.

10 % of experiment runs used for visualization in Figures 2
and 5 are obtained by taking the distribution of mean col-
lected test rewards and extracting bottom and top perform-
ers. This results in 52 samples in each group. We use
Welch’s t-test with α = 0.05 with Bonferroni correction to
evaluate statistically significant differences in metric values.
For computation of Hellinger distances we use Monte-Carlo
integration with 1000 samples, yielding a reasonably low er-
ror.

Results
Our metrics can be evaluated from two viewpoints presented
in the following subsections. One perspective takes evolu-
tion of the metric values over various curriculum learning
algorithms and thus provides the means for their compari-
son, while the other concentrates on agent’s performance re-
gardless of the underlying curriculum generator, highlight-
ing changes between better and worse training runs.

Comparison of Curriculum Learning Algorithms
Figure 3 shows resulting values of our metrics depending on
the algorithm they were evaluated on. At first glance, there
are considerable differences between algorithms giving each
of them a particular silhouette. Metrics usually vary the most
at the beginning of training, and later stabilize at some value.
We speculate their fast convergence is a consequence of the
fact that over time the subset of tasks to be mastered gets
smaller which is mirrored in the differences in their distribu-
tions. Self-Paced and Setter-Solver curriculum generation

algorithms are an exception to this rule where novelty and
typicality metrics don’t converge like described. Results
obtained from training with random curriculum show met-
ric values when task parameters are uniformly distributed
throughout training. Typicality, measuring the similarity be-
tween proposed and target task distributions, is in this case
consistently the highest, but not equal to 1 due to inability
of Gaussian mixture models to accurately capture uniform
target task distribution. This is also the reason why the typ-
icality for random curriculum is consistently high — there,
the subtasks are sampled uniformly from the target task dis-
tribution.

Regardless of the algorithm they are evaluating, novelty
and surprise hold similar values at the beginning of train-
ing, and grow more dissimilar later. Since the distribution
underlying random curriculum generation doesn’t change in
the course of training, its surprise and novelty hold consis-
tent values in the lower end of the spectrum. Interestingly,
as seen in the Figure 4, ADR holds similar or lower values
in this metrics and Self-Paced curriculum learning algorithm
starts with a relatively high value of surprise but converges to
around 0.1. In general, RIAC seems to hold values close to
the ones obtained by the random curriculum and also leads
to similar agent’s performance as seen in the Figure 2. ALP-
GMM and Covar-GMM show the highest novelty of the pro-
posed subtasks, and generally hold similar metric values.

Comparing standard deviations in Figure 3, some algo-
rithms (ALP-GMM, Setter-Solver, RIAC and randomly gen-
erated curriculum) exhibit smaller diversities of the com-



Figure 4: Results measuring tested algorithms shown by the metrics used. It can be seen that interestingness has the least
variation across all curriculum learning algorithms.

puted measures, while others are more variable across ex-
periment runs. Overall, interestingness seems to change be-
tween evaluated algorithms the least, which is clearly seen in
Figure 4. From this perspective, it is not as useful for eval-
uation of curriculum learning algorithms as the other met-
rics. Most variability in this metric comes at the beginning
of learning, when the agent’s knowledge consistently starts
improving. When comparing metrics other than interesting-
ness between each other, it can be seen that they take dis-
tinctly different values and are in this sense not redundant.

Best- and Worst-performing Experimental Runs
As the differences between performances depending on the
chosen algorithm are relatively small, this is not a suitable
viewpoint for evaluation of curricula characterized by our
metrics in regards to agent’s performance. As shown in
Figure 5, all metrics except interestingness consistently ex-
hibit statistically different means when evaluated in regards
to the best and worst training runs: 2.017 × 10−16 < p <
4.306×10−4 for surprise, 2.36×10−15 < p < 4.728×10−4

for novelty and 6.272× 10−11 < p < 4.584× 10−4 for typ-
icality. Interestingness is not consistently significant with
p-values 1.693×10−2 < p < 36.056. Surprise, novelty and
typicality exhibit higher values with better learners. Visi-

ble trend in evolution of surprise and typicality is not obvi-
ous, but it is more clearly present when measuring novelty.
Namely, with better performing learners it starts at a lower
value and stabilizes around 0.45, a trend not present with
evaluation of the bottom 10 % of the learners.

The lack of perceived trend might on one hand come
from large diversity of surprise, novelty and typicality across
training runs, also visible in relatively large variability of
these metrics across algorithms in Figure 4. On the other
hand, the metrics in general seem to stabilize at some value,
which could also provide an explanation for the lack of
trends on the graphs.

Interestingness is an exception in regards to patterns de-
scribed in the above paragraphs. As was already seen in Fig-
ure 4, the metric shows low variability between curriculum
generation algorithms, and is also not consistently signifi-
cantly different in Figure 5. At the beginning of training, the
interestingness stays similar across the two groups, but later
settles at lower values for both groups. The values of bet-
ter performing learners turn out to stabilize lower and have
smaller standard deviation compared to the worse perform-
ing ones.

Since interestingness measures agent’s progress during
training, larger values correspond to faster learning of the



Figure 5: Mean metric values and standard deviations during agent’s training for best and worst 10 % performing learners.
Stars at the bottom of plots denote statistically significant changes.

tasks given in a particular time-period. This shows that
fast improvements on specific subtasks during training don’t
translate into better performing agents on the target task dis-
tribution used during evaluation — our findings show that
the opposite is true. This would imply that the tasks, even
though they are labeled as more interesting by our metric,
are perhaps less relevant for agent’s progress on the target
task.

Conclusion
This paper formulates metrics inspired by notions from the
field of computational creativity and uses them for eval-
uation of curriculum learning algorithms. Results show
that our metrics exhibit informative characteristics from two
points of view: (i) as the means to differentiate and char-
acterize curricula generated by different algorithms and (ii)
distinguish more successful training runs from the less suc-
cessful ones.

The differences between best and worst performing learn-
ers highlight that higher values of surprise, novelty and typi-
cality, and lower values of interestingness, are generally ben-
eficial for learning and its overall performance. Higher sur-
prise signifies that more sudden changes in task distributions

are beneficial, which also holds for coverage of the target
task distribution implied by results for novelty and typical-
ity. Interestingness results are less interpretative in our case,
but suggest that proposing tasks resulting in larger values of
this metric doesn’t translate into better overall performance.

The property of interestingness to unsuccessfully capture
what it was intended for is one of the shortcomings of our
work. Furthermore, more tests should be conducted to deter-
mine how the proposed metrics correlate with actual under-
lying tasks that we are trying to model; notice how our ap-
proach is not concerned with mechanisms behind curriculum
generation, subtask order or learner choice. Some of these
issues could be remedied by conducting more detailed anal-
ysis using all results provided by the TeachMyAgent bench-
mark, and also obtaining some of our own.

Shortcomings aside, we want to stress that the results still
provide a good starting point for design of future curriculum
learning algorithm; for example, the selection of subtasks
could be guided by balancing the values of the proposed
metrics. This way, the utilization of our metrics could serve
as a guiding criteria for determination of suitable subtasks
that the agent should train on and contribute to the future of
algorithmic curriculum generation.
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