
Training GPT-2 to represent two Romantic-era authors: challenges, evaluations
and pitfalls

Piotr Sawicki1, Marek Grześ1, Anna Jordanous1, Dan Brown2, Max Peeperkorn1
1 School of Computing, University of Kent, Canterbury, UK

2 Cheriton School of Computer Science, University of Waterloo, Canada
P.Sawicki@kent.ac.uk, M.Grzes@kent.ac.uk, A.K.Jordanous@kent.ac.uk, Dan.Brown@uwaterloo.ca, mp770@kent.ac.uk

Abstract

Poetry generation within style constraints has many cre-
ative challenges, despite the recent advances in Trans-
former models for text generation. We study 1) how
overfitting of various versions of GPT-2 models affects
the quality of the generated text, and 2) which model
is better at generating text in a specific style. For that
purpose, we propose a novel setup for text evaluation
with neural networks. Our GPT-2 models are trained on
datasets of collected works of the two Romantic-era po-
ets: Byron and Shelley. With some models, overfitting
manifests by producing malformed samples, with oth-
ers, the samples are always well-formed, but contain
increasingly higher levels of n-grams duplicated from
the original corpus. This behaviour can lead to incor-
rect evaluations of generated text because the plagia-
rised output can deceive neural network classifiers and
even human judges. To determine which model is better
at preserving style before it becomes overfitted, we con-
duct two series of experiments with BERT-based classi-
fiers. Overall, our results provide a novel way of select-
ing the right models for fine-tuning on a specific dataset,
while highlighting the pitfalls that come with overfit-
ting, like reordering and replicating text, towards more
credible creative text generation.

Introduction
Contemporary text-generation systems can create output
whose surface features strongly resemble the source mate-
rials upon which they are trained. Such generative systems
can have credibility in computational creativity research as
they can be demonstrated to possess knowledge and pro-
duce novel and valuable results in a directed fashion (Ven-
tura 2016). As described below, there is a growing body of
work that has recently been emerging in this direction in
Natural Language Processing (NLP) research, via the grow-
ing popularity of OpenAI’s GPT (Radford et al. 2018; 2019;
Brown et al. 2020). While GPT-based systems for stylis-
tic reproduction have attracted some criticism (Falk 2021;
Floridi and Chiriatti 2020), in general, their results have
been impressive and deserve further attention in computa-
tional creativity research (Dale 2021; Köbis and Mossink
2021).

Soon, these systems could generate new works in the style
of authors from previous eras, perhaps even inspired by cur-

rent events or social movements. However, before this can
become reliably possible without relying on human supervi-
sion to cherry-pick the results, we need to learn how well
these new transformer-based systems can be trained, and
what pitfalls exist with them. In particular, we need to know
what are the differences in performance between various
versions of the models, to allow for optimal selection. Here,
we describe some steps toward these aims.

Ideally, we would like to conduct a large scale human
evaluation of GPT-2 produced text, but such evaluations are
prohibitively costly and difficult to organize for most re-
searchers, therefore in this study we are focused almost en-
tirely on automated evaluations. For the first objective of
this study—detection of over-training of GPT-2 models—
we perform a visual evaluation of the samples to watch for
malformed text, and then we perform the BLEU (Papineni et
al. 2002; Yu et al. 2017) evaluation of the samples to watch
for excessively high levels of similarity (on the n-gram level)
of the samples to the original dataset. For the second objec-
tive, which is to investigate which GPT-2 model performs
best at the task of generating text in specific authors’ style,
we use BERT (Devlin et al. 2018), which is currently state-
of-the-art in text classification, to identify texts that appear
closer to the source material than to the output of GPT-2
models.

Poetry generation has long been an area of interest
in computational creativity research (Lamb, Brown, and
Clarke 2017; Oliveira 2009; 2017). Previous work includes
the use of machine learning (Das and Gambäck 2014;
Loller-Andersen and Gambäck 2018; Rahman and Manu-
rung 2011), mining of corpora or other source material as
inspiring examples for stylistic reproduction (Gervás 2011;
Lamb and Brown 2019; Rahman and Manurung 2011;
Toivanen et al. 2014) as well as approaches such as expert-
based distributed systems (Corneli et al. 2015; Misztal
and Indurkhya 2014), the use of constraints (Rashel and
Manurung 2014; Toivanen et al. 2013), evolutionary ap-
proaches (Manurung 2004) and knowledge-based/linguistic
models (Hämäläinen 2018; Oliveira and Cardoso 2015;
Veale 2013). Style imitation systems have also attracted at-
tention in text generation (Alvarez Cos, Perez y Perez, and
Aliseda 2007) and other domains (Ens and Pasquier 2018;
Pachet and Roy 2014), though we note that attention has
also been paid to the creativity required to deviate from a



given style (Elgammal et al. 2017).
The growing attention being paid to GPT-based ap-

proaches in NLP research is beginning to get replicated in
computational creativity. Here, we could mention a few no-
table examples where GPT-2 or BERT were applied to po-
etry generation: (Liao et al. 2019) have fine-tuned GPT-2
to generate Chinese classical poetry, (Köbis and Mossink
2021) have conducted an extensive human evaluation of
GPT-2 generated English poetry, (Li et al. 2020) have exper-
imented with applying rigid constraints in generation of both
Chinese and English poetry, (Wöckener et al. 2021) have
analysed the problems with maintaining rigid stylistic con-
straints in poetry generation while using RNN and GPT-2,
and (Nikolov et al. 2020) and (Oliveira 2021) have explored
a transformative, BERT-based approach to lyrics generation.
Lyrics were also generated from GPT-2 and evaluated using
BERT in (Wesek 2019).

The scope of this study is focused on poetry generation
in a general language style of a specific author, learning
from a corpus of poetry by two highly-regarded English po-
ets: Lord Byron (1788-1824) and his contemporary Percy
Bysshe Shelley (1792-1822). Here, we tackle poetry gener-
ation by fine-tuning GPT-2 models on the collected works of
both authors.

GPT-2 and BERT models
The GPT and BERT models are derived from the Trans-
former architecture (Radford et al. 2018; Devlin et al. 2018),
which is a form of an Encoder-Decoder model, where RNN
or LSTM networks have been replaced by multiple layers of
attention mechanisms (Bahdanau, Cho, and Bengio 2014;
Vaswani et al. 2017), thus allowing all input to be pro-
cessed simultaneously by dispensing with sequentiality. The
original Transformer model followed the Encoder-Decoder
architecture because it was intended for machine transla-
tion, where we first have to encode the source language
sequence, and then decode it into the target language se-
quence (Sutskever, Vinyals, and Le 2014). Most other NLP
tasks, however, do not require this kind of setup, and subse-
quently, the Encoder and Decoder blocks started to be used
separately. The Decoder block was first developed by Ope-
nAI into the Generative Pre-trained Transformer (GPT), and
soon later the Encoder block was developed by Google into
the Bidirectional Encoder Representations from Transform-
ers (BERT). The first editions of GPT were released in two
versions: small and medium, and have managed to advance
the benchmarks on many NLP tasks (Radford et al. 2018).
BERT was also released in two versions, which roughly
matched the size of the small and medium GPT models to fa-
cilitate comparison. BERT has proven superior to the match-
ing GPT models in Natural Language Understanding, while
GPT excelled in Natural Language Generation (Devlin et al.
2018). This was expected because of the specific differences
between the architectures of the Encoder and Decoder trans-
former blocks.

While the original Transformer (i.e. the translation ma-
chine) required separate training for each language pair, both
GPT and BERT follow the transfer learning paradigm (Rad-
ford et al. 2018; Devlin et al. 2018). Both of them are first

pre-trained on the large corpora of text (ranging from 5GB
to 800GB, depending on the version). This initial training
is very demanding in terms of time and the required hard-
ware. The model can then be used “out of the box”, or can
be fine-tuned for a specific task and that is where transfer
learning actually comes to play. The fine-tuning process is
much faster and requires much less powerful hardware. Af-
ter fine-tuning, the model can be used for a destined down-
stream task, using additional layers, which are referred to as
“heads”, that accomplish those tasks (Radford et al. 2018;
Devlin et al. 2018).

The consecutive GPT versions use the same general archi-
tecture, but with much larger numbers of layers and “atten-
tion heads” (attention mechanism working in parallel). They
are also trained on increasingly large datasets. Currently, the
latest version of OpenAI’s GPT is GPT-3; however, it can
only be used through OpenAI’s API. While the use of the
base GPT-3 models through an API is free, fine-tuning of the
model (at the time of writing this paper) has to be paid for.
There exist other large language models, already exceeding
the size of GPT-3, for example: Gopher (Rae et al. 2021),
Megatron-Turing NLG (Smith et al. 2022), and Jurrasic-
1 (Lieber et al. 2021), which, if available to the public at
all, can only be used via their APIs. The hardware require-
ments of these models are way above of what researchers
at most universities can access. Here, we should also men-
tion the models released by EleutherAI: GPT-J-6B (Wang
and Komatsuzaki 2021) and GPT-NeoX-20B (Black et al.
2022). However, their hardware requirements, while smaller
than those of the models mentioned above, still exceed the
hardware we can access.

This study was therefore carried out using GPT-2, which
we could fine tune on our hardware. Applying GPT-3 and
other large-scale models to poetry generation is left for fu-
ture work. It is not unreasonable to expect that the results
we obtained using GPT-2 will translate to larger language
models when they become more accessible.

At present, there are two different applications of GPT-2
available. The original edition of GPT-2 is by OpenAI (Rad-
ford et al. 2019; OpenAI 2021). The source code of the
interface for this version was later propagated with some
changes by (Shepperd 2021), and as such it was used in
research, for example (Lee 2019; Lee and Hsiang 2020b;
2020a). The second application is in the Transformers li-
brary (Transformers Documentation 2019; Wolf et al. 2019).
This edition introduced significant changes to the code of the
interface, making the process of fine-tuning and generation
easier. We are using both applications in our experiments.

The GPT-2 models from the Transformers library that are
used for text generation are referred to in their library as
“Language Modelling Head” models (Transformers Docu-
mentation 2019), therefore in order to distinguish them from
OpenAI models, in this paper, we refer to them as “LMH”
models, while the OpenAI versions are referred to as “Reg-
ular”. These two implementations differ significantly. The
LMH models have a standard learning structure of training
epochs, where each epoch has a specific number of steps
depending on the size of the dataset. The Regular models
do not use epochs in training. Additionally, training of the



Figure 1: Training and evaluation loss for the LMH Small model
(Top) and the Regular Small model (Bottom) fine-tuned for 250K
steps on the dataset of Collected Works of Lord Byron.

LMH models is much faster per training step as compared
to the Regular models. The Regular models are released in
four versions: Small (124M parameters), Medium (345M
parameters), Large (774M parameters) and XLarge (1558M
parameters). The LMH models, at the time of writing this
paper, were released only with Small, Medium and Large
versions, with the same number of parameters as the re-
spective Regular models. Due to hardware limitations, we
only fine-tune the Small and Medium models, and as a re-
sult, we use four models in total for each task: LMH Small,
LMH Medium, Regular Small and Regular Medium. Exper-
iments with the Large and XLarge models are left for future
research. It has to be noted that, at this point, we are not ex-
perimenting with adjusting hyperparameters, neither during
fine-tuning nor during sample generation. The default top k
for both models is 50, default temperature is 1, default top p
is 1 for Regular models, and 0.9 for LMH models. For con-
sistency, we have set top p value for LMH models to 1. The
train/test split of the datasets is 70/30.

Figure 1 shows the training loss and evaluation loss for the
Regular Small and LMH Small models fine-tuned on the By-
ron dataset for 250K steps (results for medium models and
for models fine-tuned on the Shelley dataset are very sim-
ilar, and therefore are not presented here). We can see that
the lowest evaluation loss is achieved very early in the fine-
tuning process: for LMH models, this occurs around 5000
fine-tuning steps, and for the Regular models even sooner,
around 1700 steps. We believe this is because the datasets

Author Org size Length Final size Length
Byron 7.2 MB 183643 2.4 MB 62947
Shelley 2.3 MB 59207 0.98 MB 29151

Table 1: Details of the datasets including original size, original
length (lines), pre-processed size, pre-processed length (lines).

used for fine-tuning are relatively small, and the models
become overfitted fairly early. In this study, we investigate
whether the point of the lowest evaluation loss is optimal for
early stopping of the fine-tuning process, and to get deeper
insights into the behaviour of the GPT-2 models, we evalu-
ate the actual quality of the generated samples. To that end,
we conduct a number of evaluations of samples generated
at specific checkpoints. This will be further described in the
later sections.

Data preparation
Original datasets
Our main interest is generation and evaluation of poetry
in the style of a specific author. For that purpose we have
chosen two Romantic-era poets: Lord Byron and Percy
Bysshe Shelley. The datasets for both of them were cre-
ated from their collected works, downloaded from Guten-
berg.org (Project Gutenberg 2020), by removing all intro-
ductions, forewords, footnotes, generic Gutenberg text at the
end of the file, replacing all extended Latin characters with
a closest matching ASCII character (for example“ Ã” is re-
placed with “A”, “á” with “a”, etc.). Sequences of multiple
blank lines in the original text were replaced by a single
blank line. We have removed all metadata, i.e., page num-
bers and the end of line verse numbers. We have left the
poems’ titles and chapter numbers, since they contribute to
author’s ”style”, but also to preserve the separation of in-
dividual poems. Being aware of the destructive impact that
artefacts of poor pre-processing of data can have on the out-
put of GPT-2, we have paid particular attention to the task
of data preparation. Both the original and the pre-processed
datasets can be found on our online repository1.

Additionally, we have removed all plays, thus leaving
only poetic works. The purpose of this pre-processing was to
leave only the poetic text written by the authors themselves.

Setup 1 for visual and BLEU evaluations
We fine-tune all four GPT-2 models used in this study (Reg-
ular Small, LMH Small, Regular Medium, LMH Medium)
on both datasets (Byron and Shelley). For the visual and
BLEU evaluation in Experiments 1 and 2, we fine-tune the
GPT-2 models for 250K steps, generating 100 samples at
each 10K steps interval. The samples are generated with a
length of 1000 tokens (the maximum sample length for these
models is 1024 tokens). We generate only 100 samples at

1Our datasets and example outputs generated by GPT-2 are
available at:
https://github.com/PeterS111/
GPT-2-for-Byron-and-Shelley



each checkpoint because of the time it takes to generate full-
length samples (for example the LMH Medium model run-
ning on Nvidia P100 GPU takes around 2 minutes per sam-
ple). Thus we obtain 8 sets of 2500 samples, four for each
author.

Setup 2 for BERT evaluations
Datasets for the visual and BLEU evaluations created in
Setup 1 have an insufficient number of samples per check-
point (only 100) to be used for training the BERT-based clas-
sifiers. For this reason, we create a separate set of 8 datasets
by fine-tuning all of our GPT-2 models on both datasets
for 10K steps and generate 1K samples at each 1K steps
checkpoint. We have chosen this span of checkpoints be-
cause it covers the sweet spot where the evaluation error is
at the lowest, and we can observe the quality of the samples
immediately before and after that point. Thus we obtain 8
datasets of 10K samples. The samples are limited to 600 to-
kens, since as we explain later, we use only the first 20 lines
of each sample in Experiments 3 and 4.

Part 1—Evaluation of the overfitted models
In this section, we analyse the impact of overfitting on the
quality of the produced samples. This is to emphasize the
importance of early stopping of the fine-tuning process and
to explore how the existing quantitative metrics (such as
BLEU) correlate with the overfitting of GPT-2.

Experiment 1—Visual evaluation of text quality
During this research, we have observed that while generat-
ing text with the full length possible, many samples come
with significant errors. We have decided to establish whether
there is any regularity in the production of the malformed
samples. For this purpose, we analyse the datasets from
Setup 1. From every 100 samples generated at a specific
checkpoint, 10 samples are selected at random and evalu-
ated manually by the authors using the following procedure:
when looking at the sample, we check at which point within
the sample the text becomes unintelligible or contains obvi-
ous errors. We take note of the line number where this hap-
pens, and we take note of the total number of lines in the
sample (including the blank lines at the end). Then we cal-
culate the percentage of the correctly produced lines. After
that, we calculate the average value for those 10 samples.
We repeat this for all 25 checkpoints. The results for both
datasets are shown in Figure 2. Examples of correct and mal-
formed samples generated in our experiments are available
on our repository.

We can see that the Regular models score almost 100%
across the whole range of fine-tuning checkpoints. For the
LMH models, the percentage of correctly generated text
within a sample is at its best at 10K and 20K checkpoints,
and after that, it rapidly decreases to around 35% for the re-
maining checkpoints.

We have observed that once the errors start appearing in
the samples generated by the LMH models, the remainder
of the sample is almost always malformed. In contrast, the
Regular models occasionally produce a few malformed lines

Figure 2: Results of the visual evaluation of text quality for sam-
ples generated from the Byron (top) and Shelley (bottom) datasets.

in the middle of the sample, but the subsequent text is con-
sistent again. The LMH models’ output does not have this
“self-repairing” property. We are aware that these results
could be different if much larger or much smaller datasets
were used for fine-tuning. The reason we chose datasets of
this size is because of our objective of style preservation of
an individual poet.

A well-formed sample with a Byron-style text of 1000 to-
kens usually spans around 45 to 80 lines in a text file. How-
ever, the malformed samples from the LMH models could
sometimes exceed 180 lines, of which often only around 30
lines at the top of the sample are of good quality. With the
Shelley-style samples, the malformed samples can exceed
250 lines, with more or less the same proportion of correctly
produced text. This is because the number of tokens per line
plummets, and many blank lines are inserted into the sam-
ple. This “stretching” phenomenon was not observed in the
samples produced by the Regular models. One could raise
a question whether these results were caused by poor data
pre-processing. This, however, is unlikely since our data pre-
processing was rigorous and comprehensive, as described in
the section on Data Preparation. Given the quality and fine-
ness of data used for fine tuning, it is clear that the errors in
the samples must be caused by the properties of the models
themselves.

Because of the malformed text in long samples, in the
subsequent experiments with the BERT-based classifiers, we
will limit the sample length to the first 20 lines of text from
each sample. This is because our goal in the second part of
this study is to evaluate only well-formed outputs, instead of



learning to spot obvious errors, like repeated lines, garbled
and unintelligible text, etc.

The results of the visual evaluation in Figure 2 show a de-
ficiency of the LMH models after 10K-20K training steps
with these specific datasets. When these results are con-
trasted with Figure 1, one can notice a clear correlation be-
tween overfitting—quantified by a high evaluation loss in
Figure 1–and the ratio of malformed lines in Figure 2. Such
a correlation in not present in the results of the Regular mod-
els, however, and their results in Figure 2 do not detect any
malformed text according to the visual evaluation. For this
reason, we perform a BLEU evaluation in the next experi-
ment to see if the effect of overfitting can be uncovered in
the samples from the Regular models.

Experiment 2—What does the BLEU evaluation
tell us?
The visual evaluation has informed us that samples from the
Regular models appear to be correctly produced across all
the checkpoints from 10K to 250K fine-tuning steps, regard-
less of the increasing evaluation loss between those check-
points. But, are there any noticeable and measurable changes
in text quality between those checkpoints? In order to estab-
lish that, we perform a BLEU evaluation of those samples
against the original dataset.

Bilingual Evaluation Understudy (BLEU) was originally
designed to evaluate machine translation (Papineni et al.
2002), where we have the master translation of the sentence
in the source language, and a candidate translation produced
by the system. BLEU compares and counts the matching n-
grams between the master and the candidate, resulting in a
score between 0 and 1. The closer the score is to 1, the better
for the translation task because this indicates that the can-
didate translation is more similar to the master translation.
While not designed for that, BLEU is sometimes used to
evaluate text quality (Yu et al. 2017), but when used for this
purpose, it suffers from several deficiencies. Our objective,
however, is to measure only the n-gram based similarity be-
tween the samples and the original text. We therefore expect
that BLEU is an appropriate algorithm for our application
because we have two types of text to compare, albeit we in-
terpret the scores differently. Unlike in the translation tasks,
in our research, we are aiming at a lower score, which indi-
cates that fewer n-grams in the sample were copied from the
original dataset, thus demonstrating a higher level of origi-
nality. In other words, we treat the BLEU score as a plagia-
rism detector on the n-gram level, which would be quantified
by a high score. We use it to explore if there are any trends
in the averaged BLEU scores between consecutive check-
points. In our application of BLEU, we score each sample
against the original dataset, and then average the results,
similarly to what was proposed by (Yu et al. 2017) and im-
plemented by (Wesek 2019). The implementation of BLEU
used in our code was from the NLTK library2.

Like in Experiment 1, we follow Setup 1, and we use 100
samples for each checkpoint from 10K to 250K. Samples

2Natural Language Toolkit Documentation:
https://www.nltk.org/

Figure 3: BLEU scores for Byron (top) and Shelley (bottom) cal-
culated for samples with 1000 tokens length.

have the length of 1000 tokens. We compute BLEU for all
the 100 samples at each specific checkpoint, and we take the
mean of those values to obtain a single value per checkpoint.
Figure 3 shows that the BLEU score consistently increases
with the model fine-tuning steps for both Regular models.
This indicates an increasing similarity of the samples com-
pared to the original dataset, when the models are fine-tuned
for longer. This increasing BLEU score basically means that
GPT-2 plagiarizes n-grams from the original dataset. On the
other hand, the BLEU scores for samples from the LMH
models do not increase in the same way. This is because of
the increasingly high amount of the malformed text, which
prevents the BLEU score from rising. When we evaluated
the samples truncated to 200 tokens (which discarded all the
malformed text in the samples from the LMH models), the
increase of the BLEU scores for both types of models was
very similar. In other words, they consistently rose with the
number of fine-tuning steps.

Altogether, we have observed that overfitting in the LMH
models is easy to spot because the samples are malformed
in an obvious way, but we must remain cautious about over-
fitting the Regular models, where the results of overfitting
are not noticeable by our visual evaluation (Figure 2). Fur-
thermore, the samples from the Regular models appear to
be well-formed across all the checkpoints, while contain-
ing increasingly higher levels of plagiarized text or n-grams.
This means that both automated and human evaluators could
be misled by such outputs, since we cannot expect them to
have memorized the original text. As a result, it is advisable
to stop the fine-tuning process when the evaluation loss is



minimised or soon after when the samples start to be well
produced after the initial learning of the model. Excessive
training can lead to plagiarised n-grams, with even entire
blocks of text repeated in GPT-2’s output for the numbers of
fine-tuning steps above 100K on our datasets.

A base requirement for GPT-2 to be creative is that it cre-
ates semantically and syntactically correct output. However,
one way for it to do so is to just copy the source material,
so high BLEU scores (or another measure for plagiarism de-
tection) can indicate that the system is moving away from
the novelty, which is also fundamentally necessary for cre-
ativity. As such, using a system like BLEU can be helpful in
experiments with GPT-2-based poetry.

Part 2—BERT evaluation of correctly
produced samples

In this section, we perform two experiments with a BERT-
based binary classifier to establish which of the four GPT-2
models used is best at replicating the authors’ style.

Experiment 3—Can fine-tuned GPT-2 outwit
BERT?
In this experiment, we aim to verify if GPT-2’s outputs can
be of a sufficiently high quality to confuse a BERT-based
classifier trained to distinguish the generated text from the
original work of a poet. The experiments in the previous sec-
tion have warned us about the plagiarized text (n-grams) in
the samples from the Regular models. This behaviour, how-
ever, starts to become prominent late into the fine-tuning
process, which, in our case, is well after 10K fine-tuning
steps. For this reason, the samples we evaluate in this ex-
periment are produced from checkpoints at 1K to 10K fine-
tuning steps, which is before the plagiarism starts having sig-
nificant impact.

Our previous experiments with the visual and BLEU eval-
uation have informed us that in the samples from the LMH
models, for most checkpoints, only the first part is of high
quality, and therefore, in this experiment, we use only the
first 20 lines of each sample. This is because our intention is
to apply BERT to the text that is correctly produced, and not
learn to spot obvious mistakes, like in the malformed sam-
ples. The original text of the author is also split into 20-line
fragments before it is fed into BERT, both for learning the
classifier and for prediction. For each BERT-classifier, we
prepared a dataset of 1K samples for each label, giving 2K
samples in total, where label 0 is for samples from the origi-
nal dataset, and label 1 for the samples generated by GPT-2.
The train/test/validation split is 70/25/5. We use “bert-base-
uncased” from the Transformers library, which is trained for
20 epochs, with the Adam optimizer, and a learning rate
of 2e-5. The average classification accuracy on test data is
taken as a final result of classification. Since our classifica-
tion problem is balanced, i.e. the input contains the same
amount of samples for both labels, we do not need to calcu-
late Precision, Recall and F1 scores, and we can rely solely
on accuracy. As described in the section on data prepara-
tion, we train the GPT-2 models for 10K steps and generate

Figure 4: Results of the BERT evaluation of the Byron (left) and
Shelley (right) checkpoint samples produced by the four different
GPT-2 models. Row 1 (top): Regular Medium models, Row 2: Reg-
ular Small, Row 3: LMH Medium, Row 4 (bottom): LMH Small.

1K samples at each 1K steps interval. This scope of check-
points encompasses the best evaluation loss for both types
of models (Figure 1). This allows us to observe the changes
in classification results for 10 checkpoints, with a separate
dataset of 2×1K samples for each checkpoint. Thus we train
ten BERT-classifiers for each dataset/GPT-2 model pair.

It is important to note how we interpret the results. In most
applications, the closer the values of accuracy are to 1, the
more desirable the performance of the classifier is. In this
experiment, however, the GPT-2’s output will be deemed to
be indistinguishable from the original text, when the BERT
classifier behaves like a random classifier. We know that a
random classifier has an expected accuracy of 0.5 in a two-
class problem. On the other end, an accuracy of 0 would
mean the model still distinguishes between classes. For these
reasons, the accuracy of 0.5 is our desirable target that can
be seen as the evidence of GPT-2’s high performance in gen-
erating high quality text. We can think of this as a sort of a
“Turing test”, which is successful when the BERT classi-
fier behaves like a random classifier. This adversarial eval-
uation approach has been used before in NLP with both
human (Köbis and Mossink 2021) and automated evalua-



tions (Bowman et al. 2015).
Figure 4 shows the classification results for Byron and

Shelley’s datasets generated from all four GPT-2 models
used in this study. The results show that the Regular mod-
els perform well on all checkpoints on both datasets, but in-
terestingly the Regular Small model required 6K steps to
reach its optimal performance, while its lowest evaluation
loss is at 1700 steps (Figure 1). This indicates that we cannot
rely on the evaluation loss alone, but instead, we may want
to analyse the models’ output to establish the optimal early
stopping time. The LMH Medium model performs well on
Byron, but very poorly on Shelley. The LMH Small models
have the lowest scores on both datasets. Thus, the Regular
models appear to be a more reliable choice.

All models appear to have similar, stable performance
across all 10 checkpoints (Figure 4), and thus these results
do not correlate with the evaluation loss. This is because they
are for the numbers of fine-tuning steps when no strong over-
fitting is observed (Figure 1) and the BLEU scores did not
increase significantly yet (Figure 3).

In the next experiment, we use BERT and Setup 2 again
to compare the GPT-2 implementations, but using a different
experimental design.

Experiment 4—Which GPT-2 is better at
replicating the author?
In the previous experiment, we were classifying samples
from the original dataset (label 0) against samples from a
specific GPT-2 model (label 1). This gave us some indica-
tion as to which model is better at replicating the authors’
style.

Here, we propose a novel setup for text evaluation with the
BERT-based classifier. This time we take samples from two
different GPT-2 models, which we assign labels 0 and 1, and
we classify against them only the samples from the original
author’s writing. The accuracy is averaged, and it indicates
to which models’ output the samples from the original are
closer.

To train the classifier, we use the dataset of 1K samples
generated from two different GPT-2 models in a given pair
after 10K steps of training. We selected this number of fine-
tuning step because (according to our previous experiments)
both the evaluation loss (Figure 1) and the BLEU scores
(Figure 3) show that we are not comparing overfitted models
that plagiarize the original works. As explained before, only
the first 20 lines of each sample are used in this experiment
(see Setup 2). Just like in the previous experiment, we use
“bert-base-uncased” from the Transformers library, which is
trained for 20 epochs, with the Adam optimizer, and a learn-
ing rate of 2e-5. Every classifier is tested on an additional
test dataset of 1K samples randomly selected from the orig-
inal authors’ corpus, each sample 20 lines in length. The re-
sults are averaged, giving a single value of accuracy. This
value indicates which label the original dataset is closer to,
i.e., which GPT-2 generates text more similar to the original
work. Since we have four different models, we can create six
possible pairs (Table 2 and Table 3) for each dataset.

Since the class labels are 0 and 1, Tables 2 and 3 can
be interpreted in the following manner: when the score is

smaller than 0.5, then the model listed in the left column
wins, and conversely, when the score is greater than 0.5, then
the model in the right column is the winner.

Tables 2 and 3 show that the Regular Medium model wins
on both datasets. On the Byron dataset, the Regular Medium
model is clearly the best, Regular Small and LMH Medium
are both second best and appear to have very similar perfor-
mance, while LMH Small scores the lowest. This is consis-
tent with the findings from the previous experiment in which
the Regular models led to better results. Regarding the Shel-
ley dataset, the Regular Medium model again performs the
best, but the other three models have similar performance.
This could indicate that the LMH Small model performs bet-
ter on the Shelley dataset because it is much smaller than the
Byron dataset.

Label 0 Label 1 Score
Regular Medium LMH Medium 0.32

Regular Small LMH Small 0.08
Regular Medium Regular Small 0.32
LMH Medium LMH Small 0.09
Regular Small LMH Medium 0.51

Regular Medium LMH Small 0.08

Table 2: Results of Experiment 4. Byron’s work is classified using
BERT models trained on two types of GPT-2 generated data.

Label 0 Label 1 Score
Regular Medium LMH Medium 0.31

Regular Small LMH Small 0.49
Regular Medium Regular Small 0.28
LMH Medium LMH Small 0.54
Regular Small LMH Medium 0.49

Regular Medium LMH Small 0.31

Table 3: Results of Experiment 4. Shelley’s work is classified using
BERT models trained on two types of GPT-2 generated data.

To conclude this section, both evaluations with the BERT
classifier—the first being a sort of a “Turing test”, and
the second being our novel setup—show that the Regular
(OpenAI original release) models perform better in general.
While we have to watch out for Regular models’ tendency to
plagiarize text, they could be a preferred choice, especially
if we want to generate text with the full sample length of
1024 tokens.

Discussion
This pilot study represents initial explorations into investi-
gating GPT-2 from a computational creativity perspective.
The question of whether GPT-2 can generate high-quality
poetry (Lamb, Brown, and Clarke 2016), or creative poetry
(not necessarily the same goal, as reflected in (Jordanous
2018)), is much larger than the scope of this pilot study;
here we focus on the initial steps of model selection for
this domain and avoiding problems caused by and analysing
consequences of overfitting. One critique of a system based



on generating the style of a known poet (Gervás 2011) is
how a poet’s style can diverge during their career. This crit-
icism deserves focused attention in our future work; it is
not a straightforward question to address and will benefit
much from collaboration with experts in English literature.
A quick attempt to solve this problem might involve train-
ing the model by tagging the dataset with indicators of which
period of the author’s writing the specific parts come from,
and then applying those tags during generation of poems.

A key question here is: is GPT-2 creative? Our work above
does not answer that question but gives us some material
to consider, which we structure according to the ‘Four Ps’
of creativity: Producer, Product, Process, Press (Jordanous
2016). GPT-2 can produce Products that might be deemed
creative, and it learns from a controlled Press (environment)
in the form of the input corpus (though it is not able to in-
teract more widely with its Press). The Process is (very) ar-
guably creative as an example of Boden’s exploratory cre-
ativity (Boden 2004). Does GPT-2 possess attributes of a
creative Person though? This is hard to claim; GPT was de-
veloped as a language model, not an AI system, and behaves
as a tool to assist a user. That being said: we see such poten-
tial to enhance future GPT-x systems through computational
creativity research, to make GPT more creative in its own
right.

A related question is: is the core task of generating new
poems in an existing author’s style a valid computational
creativity task. Brown and Jordanous consider exactly this
question in a new paper (Brown and Jordanous 2022), and
give an overall fairly positive answer; in particular, the ques-
tions we are addressing in this paper (in particular around
avoiding plagiarism and around ensuring high-quality out-
puts) provide some evidence that the task we are addressing
is non-trivial in important ways, and hence more likely to
require proper computational creativity effort.

Conclusion
In this study, we analysed the GPT-2 models’ outputs with a
twofold objective: 1) to observe how overfitting affects the
output of GPT-2, and 2) to compare the quality of the output
from various versions of GPT-2.

While working with deep neural networks, we are nor-
mally looking for the point of the lowest evaluation loss
because this is known to lead to the best generalisation
(Shalev-Shwartz and Ben-David 2014), though we also
know (Domingos 1998) that a bit of overtraining or more
complexity can lead to better results on a specific test
dataset. The lowest evaluation loss in our results happens
very early in the fine-tuning process, that is, before 10K
steps in each case. We have trained our models for much
longer (up to 250K steps) in order to observe how over-
fitting affects the quality of the generated samples. In the
case of the LMH models, overfitting manifests by produc-
tion of malformed samples. In the case of the Regular mod-
els, the samples are almost always well formed, even for
250K training steps. However, using the BLEU evaluation,
we have discovered that, with overfitting, the BLEU score of
the samples evaluated against the original dataset is contin-
uously rising, which means that samples contain higher and

higher levels of n-grams plagiarized from the original cor-
pus. Effectively, the samples are becoming a kind of collage
or pastiche of the original, instead of being fluently created.
Such samples could easily mislead both human and auto-
mated judges and make them believe that the samples are
“good”, while they simply contain text plagiarized from the
original sources. We should add that with extreme overfit-
ting observed after around 100K training steps, our GPT-2
models plagiarize even long blocks of text (e.g. 50 lines of
the original poem can be reproduced by a GPT-2 in many
runs; see our supplementary repository for specific exam-
ples). Overall, given that we know that machine learning
researchers recommend more complex models (Domingos
1998), we advice to stop the fine-tuning process as soon as
the samples start looking “good” after the initial learning of
the model, and to always check for plagiarism, which can
mislead metrics and evaluation that cannot flag plagiarism.

With regards to the second objective of automated evalu-
ation of samples to determine which GPT-2 model would be
preferred for poetry generation, we have used two different
setups of the BERT-based binary classifier. The first exper-
iment with BERT showed that Regular models are a more
reliable choice.

The second BERT experiment, which is our novel ap-
proach, in which we classify the samples from the original
dataset by the classifier trained on samples from two differ-
ent GPT-2 models, shows a clear advantage of the Regular
Medium model on both datasets. These results are consistent
with those of the first setup, and confirm the above findings
that the Regular models appear to perform better than LMH
models on style preservation tasks.

This study stresses the importance of applying various
methods of text evaluation. As of yet, we do not have a sin-
gle method that would tell us which text is “better”. Quan-
titative methods, like BLEU, can tell us about the repeated
n-grams, but they do not inform us about the creative qual-
ity of the text. Deep neural network classifiers offer a viable
solution, but they can be misled by plagiarised outputs that
would be indistinguishable from the original data. Based on
our findings, we advice to always use multiple methods of
evaluation.

The evaluation setups that we investigated require further
research. Will they still provide valid insights when applied
to Large and XLarge GPT-2 models, or even the larger mod-
els like GPT-3 or EleutherAI’s GPT models? Will they be
different when applied to much larger or much smaller fine-
tuning datasets? If different versions of BERT were used,
would they produce different evaluations? This is ongoing
research and we hope this study has offered useful insights
into the practicalities of evaluating GPT-2-produced text.

The overall contribution of this paper could be seen as
both to the AI tools for computational creativity and to the
methodologies, which seem to be quite intricate given that
the machine learning models lose their generalization capa-
bility when overfitted, and can, therefore, plagiarise easily.

Author Contributions
Experimental design: PS with MG, AJ, DB, MP; experimen-
tal implementation: PS; writing: PS with MG, AJ, DB, MP,



editing: MG, AJ, DB, MP.

Acknowledgements
We thank the anonymous reviewers for their feedback and
suggested references. The work of DB is supported by a
Discovery Grant from the Natural Sciences and Engineer-
ing Council of Canada. MP is supported by the University
of Kent GTA Studentship Award, Prins Bernhard Cultuur-
fonds, Hendrik Mullerfonds, and Vreedefonds.

References
Alvarez Cos, M.; Perez y Perez, R.; and Aliseda, A. 2007. A
generative grammar for pre-hispanic production: The case of
El Tajin style. In Proceedings of the 4th International Joint
Workshop on Computational Creativity, 39–46.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Black, S.; Biderman, S.; Hallahan, E.; Anthony, Q.; Gao, L.;
Golding, L.; He, H.; Leahy, C.; McDonell, K.; Phang, J.;
et al. 2022. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745.
Boden, M. A. 2004. The creative mind: Myths and mecha-
nisms. Routledge.
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A. M.; Jozefow-
icz, R.; and Bengio, S. 2015. Generating sentences from a
continuous space. arXiv preprint arXiv:1511.06349.
Brown, D., and Jordanous, A. 2022. Is style reproduction
a computational creativity task? In Proceedings of the 13th
International Conference on Computational Creativity.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165.
Corneli, J.; Jordanous, A.; Shepperd, R.; Llano, M. T.; Mis-
ztal, J.; Colton, S.; and Guckelsberger, C. 2015. Computa-
tional poetry workshop: Making sense of work in progress.
Dale, R. 2021. GPT-3: What’s it good for? Natural Lan-
guage Engineering 27(1):113–118.
Das, A., and Gambäck, B. 2014. Poetic machine: Computa-
tional creativity for automatic poetry generation in Bengali.
In ICCC, 230–238.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Domingos, P. 1998. Occam’s two razors: the sharp and the
blunt. In KDD, 37–43.
Elgammal, A.; Liu, B.; Elhoseiny, M.; and Mazzone, M.
2017. CAN: Creative adversarial networks, generating “Art”
by learning about styles and deviating from style norms.
arXiv preprint arXiv:1706.07068.
Ens, J., and Pasquier, P. 2018. Caemsi: A cross-domain an-
alytic evaluation methodology for style imitation. In ICCC,
64–71.

Falk, M. 2021. Artificial stupidity. Interdisciplinary Science
Reviews 46(1-2):36–52.
Floridi, L., and Chiriatti, M. 2020. GPT-3: Its nature, scope,
limits, and consequences. Minds and Machines 30(4):681–
694.
Gervás, P. 2011. Dynamic inspiring sets for sustained nov-
elty in poetry generation. In ICCC, 111–116.
Hämäläinen, M. 2018. Harnessing NLG to create Finnish
poetry automatically. In Proceedings of the ninth interna-
tional conference on computational creativity. Association
for Computational Creativity (ACC).
Jordanous, A. 2016. Four pppperspectives on computa-
tional creativity in theory and in practice. Connection Sci-
ence 28(2):194–216.
Jordanous, A. 2018. Creativity vs quality: why the distinc-
tion matters when evaluating computational creativity sys-
tems. AISB.
Köbis, N., and Mossink, L. D. 2021. Artificial intelligence
versus Maya Angelou: Experimental evidence that people
cannot differentiate AI-generated from human-written po-
etry. Computers in human behavior 114:106553.
Lamb, C., and Brown, D. G. 2019. Twitsong 3.0: Towards
semantic revisions in computational poetry. In ICCC, 212–
219.
Lamb, C.; Brown, D. G.; and Clarke, C. 2016. Evaluating
digital poetry: Insights from the CAT. In Proceedings of the
seventh international conference on computational creativ-
ity.
Lamb, C.; Brown, D. G.; and Clarke, C. L. 2017. A taxon-
omy of generative poetry techniques. Journal of Mathemat-
ics and the Arts 11(3):159–179.
Lee, J.-S., and Hsiang, J. 2020a. Patent claim generation
by fine-tuning openai GPT-2. World Patent Information
62:101983.
Lee, J.-S., and Hsiang, J. 2020b. PatentTransformer-2: Con-
trolling patent text generation by structural metadata. arXiv
preprint arXiv:2001.03708.
Lee, J.-S. 2019. Personalized patent claim generation and
measurement. arXiv preprint arXiv:1912.03502.
Li, P.; Zhang, H.; Liu, X.; and Shi, S. 2020. Songnet:
Rigid formats controlled text generation. arXiv preprint
arXiv:2004.08022.
Liao, Y.; Wang, Y.; Liu, Q.; and Jiang, X. 2019. GPT-
based generation for classical chinese poetry. arXiv preprint
arXiv:1907.00151.
Lieber, O.; Sharir, O.; Lenz, B.; and Shoham, Y. 2021.
Jurassic-1: Technical details and evaluation. White Paper.
AI21 Labs.
Loller-Andersen, M., and Gambäck, B. 2018. Deep
learning-based poetry generation given visual input. In
ICCC, 240–247.
Manurung, H. 2004. An evolutionary algorithm approach to
poetry generation.
Misztal, J., and Indurkhya, B. 2014. Poetry generation sys-
tem with an emotional personality. In ICCC, 72–81.



Nikolov, N. I.; Malmi, E.; Northcutt, C. G.; and Parisi, L.
2020. Rapformer: Conditional rap lyrics generation with de-
noising autoencoders. arXiv preprint arXiv:2004.03965.
Oliveira, H. G., and Cardoso, A. 2015. Poetry generation
with PoeTryMe. In Computational Creativity Research: To-
wards Creative Machines. Springer. 243–266.
Oliveira, H. 2009. Automatic generation of poetry: an
overview. Universidade de Coimbra.
Oliveira, H. G. 2017. A survey on intelligent poetry genera-
tion: Languages, features, techniques, reutilisation and eval-
uation. In Proceedings of the 10th international conference
on natural language generation, 11–20.
Oliveira, H. G. 2021. Exploring a masked language model
for creative text transformation. 62–71.
OpenAI. 2021. openai/gpt-2: Code for the paper ”language
models are unsupervised multitask learners”.
Pachet, F., and Roy, P. 2014. Non-conformant harmoniza-
tion: the real book in the style of take 6. In ICCC, 100–107.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
BLEU: a method for automatic evaluation of machine trans-
lation. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, 311–318.
Project Gutenberg. 2020. http://gutenberg.org/.
Radford, A.; Narasimhan, K.; Salimans, T.; and Sutskever,
I. 2018. Improving language understanding by generative
pre-training.
Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsuper-
vised multitask learners. OpenAI blog 1(8):9.
Rae, J. W.; Borgeaud, S.; Cai, T.; Millican, K.; Hoffmann,
J.; Song, F.; Aslanides, J.; Henderson, S.; Ring, R.; Young,
S.; et al. 2021. Scaling language models: Methods,
analysis & insights from training gopher. arXiv preprint
arXiv:2112.11446.
Rahman, F., and Manurung, R. 2011. Multiobjective opti-
mization for meaningful metrical poetry. In ICCC, 4–9.
Rashel, F., and Manurung, R. 2014. Pemuisi: a constraint
satisfaction-based generator of topical Indonesian poetry. In
ICCC, 82–90.
Shalev-Shwartz, S., and Ben-David, S. 2014. Understanding
machine learning: From theory to algorithms. Cambridge
University Press.
Shepperd, N. 2021. nshepperd/gpt-2: Code for the paper
“Language Models are Unsupervised Multitask Learners”.
Smith, S.; Patwary, M.; Norick, B.; LeGresley, P.; Rajbhan-
dari, S.; Casper, J.; Liu, Z.; Prabhumoye, S.; Zerveas, G.;
Korthikanti, V.; et al. 2022. Using deepspeed and megatron
to train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Toivanen, J.; Järvisalo, M.; Toivonen, H.; et al. 2013.
Harnessing constraint programming for poetry composition.

In The Fourth International Conference on Computational
Creativity. The University of Sydney.
Toivanen, J.; Gross, O.; Toivonen, H.; et al. 2014. “The Of-
ficer Is Taller Than You, Who Race Yourself!”: Using Doc-
ument Specific Word Associations in Poetry Generation. In
Proceedings of the Fifth International Conference on Com-
putational Creativity. Jožef Stefan Institute.
Transformers Documentation. 2019. OpenAI GPT2 —
transformers 4.5.0.dev0 documentation.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Veale, T. 2013. Less rhyme, more reason: Knowledge-based
poetry generation with feeling, insight and wit. In ICCC,
152–159.
Ventura, D. 2016. Mere generation: Essential barometer or
dated concept. In Proceedings of the Seventh International
Conference on Computational Creativity, 17–24. Sony CSL,
Paris.
Wang, B., and Komatsuzaki, A. 2021. GPT-J-6B:
A 6 Billion Parameter Autoregressive Language
Model. https://github.com/kingoflolz/
mesh-transformer-jax.
Wesek, A. 2019. A comprehensive study of state-of-the-art
word embedding algorithms for natural language gener-
ation. https://www.cs.kent.ac.uk/people/
staff/mg483/documents/wesek19lyrics.pdf.
University of Kent, Unpublished MSc Thesis.
Wöckener, J.; Haider, T.; Miller, T.; Nguyen, T. T. L.; Pham,
M. V.; Belouadi, J.; Eger, S.; et al. 2021. End-to-end
style-conditioned poetry generation: What does it take to
learn from examples alone? In Proceedings of the 5th Joint
SIGHUM Workshop on Computational Linguistics for Cul-
tural Heritage, Social Sciences, Humanities and Literature,
57–66.
Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.;
Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.
Yu, L.; Zhang, W.; Wang, J.; and Yu, Y. 2017. SeqGAN:
Sequence generative adversarial nets with policy gradient.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 31.


