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Abstract

In this pilot study, we explore the Variational
Autoencoder as a computational model for
conceptual spaces in a social interaction con-
text. Conceptually, the Variational Autoen-
coder is a natural fit for this purpose. We
apply this idea in an agent-based social cre-
ativity simulation to explore and understand
the effects of social interactions on adapting
conceptual spaces. We demonstrate a simple
simulation setup and run experiments with a
focus on establishing a baseline. While on-
going work needs to identify if adaption was
appropriate, the results so far suggest that the
Variational Autoencoder appears to adapt to
new artefacts and has potential for modelling
conceptual spaces.

Introduction
In society, humans share their ideas and exchange
artefacts. We draw inspiration from these interac-
tions, and this sparks our imagination to produce
new ones (Vygotsky 2004). Every individual has
a unique perspective, a style of thought, embedded
in a conceptual space (Boden 2004). While ideas
and artefacts can be attributed to individuals, they
are shaped by others, leading to a distributed emer-
gence of creativity.

In this paper, we explore the use of the Varia-
tional Autoencoder (VAE) (Kingma and Welling
2014) as a computational model for the concep-
tual space in an artificial social context. This is an
initial study investigating how to embed and main-
tain VAEs in an agent-based Computational Social
Creativity (Saunders and Bown 2015) simulation.

Background
Conceptual Spaces... There are two views on
conceptual spaces: a creativity view (Boden 2004)
and a general cognitive view (Gärdenfors 2004).
Gärdenfors proposed conceptual spaces as a geo-
metric mental structure to organise thought, with
the aim to bridge the symbolic and the sub-
symbolic. It allows finding similarities between
symbols that cannot be derived from the symbolic
level alone. According to this theory, concepts
are convex regions in the conceptual space, and
the axes represent properties. Boden’s view of the
conceptual space is well-known and a central part
of her creativity framework concerning the three
modes of creativity. This definition is abstract and
less defined, simply the set of artefacts that follow
the rules of a given domain. While useful to rea-
son about creativity, Boden’s abstract definition is
unsuited for computational purposes. However, in
this paper, we are less concerned with the formal
definition and use both views to inform our choices
in the simulation. We use Boden’s view to examine
the creative act and use Gärdenfors’ view to inform
traversing the conceptual space.

...and Variational Autoencoders Due to its
probabilistic nature, and compression and gener-
ative capabilities, we explore the idea that VAE is
conceptually a natural fit for approximating con-
ceptual spaces. The VAE is a deep generative
model that learns fuzzy relations in the data and
maps this onto smooth latent spaces—which is
reminiscent of Gärdenfors’ geometric conceptual
space. The latent space can be queried to find simi-
lar artefacts and sampled to generate new artefacts.
This makes it particularly interesting to use as a
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way for agents to perceive, interpret, and produce
artefacts. Based on its characteristics, we assume
that the VAE is a reasonable abstraction for the for-
mation of concepts and properties.

Simulation
Like other simulations of social creativity (Saun-
ders 2012), the DIFI model (Feldman, Csikszent-
mihalyi, and Gardner 1994) provides the concep-
tual model for the simulation presented here. To
explore how to embed and maintain the VAEs in a
simulation, we use them in two ways: as the con-
ceptual space for each agent and as a recommender
system for the whole domain. Next, we discuss the
data representation, VAE architecture, each com-
ponent of the DIFI model, and further discuss the
details of the utility of VAE in the simulation.

Data Representation
For use in the simulation, the VAEs require pre-
training that can be likened to providing basic ed-
ucation for each agent. Initially, we used a gener-
ated dataset in a simplified musical domain of short
melodies of 16 timesteps of 12 pitches (chromatic
scale) (Peeperkorn, Bown, and Saunders 2020).
Further work proved this dataset to be problem-
atic and led to heavy overfitting when pre-training
the VAEs. To mitigate this, we generated a dataset
using Hidden Markov Models fitted to real mu-
sic data.1 Subsequently, we generated a combined
dataset of 400k samples of 16 timesteps and 88
pitches. We considered other datasets, such as im-
ages of typefaces, but the benefit of using categor-
ical data is that it allows for exact reconstructions.

Recurrent VAE architecture
We used a simple recurrent VAE (Fabius and
Van Amersfoort 2014) using Long Short-Term
Memory (LSTM) layers. A big issue with re-
current VAEs is posterior collapse which occurs
when the network learns to ignore the latent space.
The Kullback-Leibler (KL) term is annealed in the
early stages of the training (Bowman et al. 2015) to
mitigate this issue allowing the VAE to extract in-
formative features before the full penalty smooths
the latent encodings. The final VAE network has a

1The data is gathered from the Humdrum database
(https://kern.humdrum.org), selecting the 8 genres with
the most samples.

32-dimensional latent space. The encoder and de-
coder consist of two hidden LSTM layers with 128
nodes. For initial training, we used a batch size of
512 and KL-annealing over the first 200 epochs.

DIFI model Setup
Domain The domain is explained as a cultural
repository of knowledge (Csikszentmihalyi 2014).
In this work, there is no single repository for
agents to access. Instead, the domain is distributed
amongst the agents’ conceptual spaces, each with
a personal subset of embedded knowledge. This
does not allow artefact comparison on the indi-
vidual level, and therefore, we introduce a static
and pre-trained Domain VAE. It operates as an
archimedean point that enables the analysis of
the distributed domain. Additionally, the Domain
VAE is used to split the dataset into different slices
for each agent using a 2D PCA projection of the
latent encodings.

Individual Each agent in the simulation has a
personal VAE, each trained on a different slice. In
contrast to the Domain VAE, the individual agent
uses the VAE to learn from and generate new arte-
facts. Generating is done by randomly sampling
from a gaussian distribution, and decoding the la-
tent vector to produce the artefact. We assume
that the standard deviation can be used as a proxy
for novelty preference. A narrow distribution pro-
duces less varied artefacts, and conversely, a wide
distribution produces high variation.

Field The field acts as a gatekeeper for what art-
works are selected for circulation, according to the
ideology of society (Csikszentmihalyi 2014). Dif-
ferent ideologies use different selection criteria,
and subsequently, influence the social interactions
taking place in the domain. The field acts accord-
ing to an ideology, a social policy, for selecting
artefacts for the next round in the simulation. In
the current setup, we use a neutral policy, i.e. that
every artefact has an equal chance of being “put on
display” in the field. The Recommender System
(Domain VAE) informs the field of its choices. As
such, the field fulfils two roles in the model: the
matchmaker and the gatekeeper. The matchmaker
takes the newly produced artefacts and determines
the agent’s position to find neighbours who share
their artefacts. Subsequently, each agent has a dif-
ferent pool from which the gatekeeper will select
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Figure 1: Sampling from Agent VAEs before and after the simulation and compared in the Domain VAE
projected using T-SNE.

for the next round.

Interaction After initialising the VAEs, the sim-
ulation iterates through three stages. The first stage
is associated with the individual, where the newly
observed artefacts are used to fine-tune the agents’
latent space for a given learning budget to extract
new features and then produce several new arte-
facts sampled according to the novelty preference.
The second stage is where the field receives the
position of each agent, queried from the Recom-
mender System using the mean of the newly pro-
duced artefacts. In the third stage, the positions are
used to determine the agents’ nearest neighbours.
The neighbour shares their artefacts, which form
a pool of artefacts. Subsequently, the field selects
artefacts from this pool for the next round accord-
ing to its ideology.

Results
The simulation experiments use the following set-
tings: 250 epochs with 8 agents, the neutral ide-
ology, and novelty preference set to 0.25. Each
round, the field selects 128 artefacts, individuals
produce 4 new artefacts, and 1 neighbour shares
their artefacts. Each agent has a 5-epoch budget
for fine-tuning using a learning rate of 10−4.

The VAEs are trained on the respective datasets
using a 70/30 train/validation split. Table 1 shows
that Domain VAE performs very well. The agents
show clear clusters after the initialisation (Fig. 1).

However, the agent VAE pre-training show very
mixed results and some perform well (>80% ac-
curacy), while others do not (<30% accuracy).

Post-simulation sampling of the agent VAEs
suggests that they mingled as expected (Fig. 1).
However, there are a few very dense clusters,
which could signify that the latent space is collaps-
ing.

Table 1: Pre-training results show loss and accu-
racy after 2000 epochs. The Agents VAE shows
the mean results for 8 agents.

Loss Accuracy
Train Val Train Val

Domain VAE 2.028 2.034 .937 .934
Agents VAEs 2.593 2.894 .559 .497

The results in Fig. 2 on the other hand, ap-
pear to indicate that agents adapt well, within a
25-epoch sliding window, to the artefacts selected
each round as accuracy goes up and reconstruction
loss goes down. It is somewhat surprising given
the agent initialisation results (Table 1). While this
is desirable, it might also indicate overfitting. The
KL loss is level, suggesting latent space stability,
but an issue is that, for some agents, it is already
very low after pre-training.



Figure 2: Agent VAE performances evaluating
artefacts over a sliding window of 25 epochs.

Discussion
The results suggest the conceptual spaces drift sta-
bly, which, in turn, suggests that the VAEs adapt.
However, it does not inform to what extent they
adapted and if it is appropriate according to the so-
cial dynamics and interactions. With the current
setup, it is very difficult to observe exact agent
behaviours. Crucial for future work is to further
investigate VAE performance during the simula-
tion and rule out the previously mentioned issues,
such as overfitting or posterior collapse. Even
though the VAEs appear operable, the performance
still causes some concern. It could be due to the

datasets, but it might also be that the domain re-
quires a more sophisticated VAE architecture, such
as the Hierarchical decoder (Roberts et al. 2018).

This paper focuses on getting the VAE to work
and less on the social dynamics. It does pro-
vide opportunities for examining different novelty
preferences or ideologies, for example, progressive
(seeking novelty) and conservative (seeking famil-
iarity). These research directions are interesting to
explore, but they depend on the ability to look in-
side the simulation and inspect the VAE behaviour.
The main challenge remains: to develop the tools
leveraging latent traversals to increase understand-
ing of how the VAE behaves throughout the simu-
lation. This is necessary to see if social dynamics
and interactions explain agent VAE divergences.
But this work establishes an initial baseline for fu-
ture work.

Conclusion
The work presented here is an initial study into
mechanising conceptual spaces using VAEs. The
results suggest the potential for the VAE as a com-
putational model for conceptual spaces. We stress
that additional sophisticated analysis is necessary
to further examine the VAE behaviours. How-
ever, it shows the potential of VAEs for modelling
ill-defined domains without predetermined rules,
which is so often the case with creative domains.
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