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Abstract

This paper presents the first stages of development of an
improvising musical agent capable of interacting with
a human musician in a free improvised music context.
This research aims to explore the creative potential of
a co-creative system that draws upon two approaches
of music and sound generation: the well-established
practice of modelling musical styles with Markov-based
models and recent developments in neural-network-
based audio synthesis. At this preliminary stage, the fo-
cus is on the definition of style in a sound-based music
context, and the outline of a formal evaluation frame-
work for style imitation systems.

Introduction

The field of sound-based music has been one of the most
hindered in Computational Creativity. The reason why lies
in the wide range of unusual sounds employed, and the chal-
lenges in classifying them and modeling musical structures
based on them. In particular, the missing link is in the devel-
opment of a formal evaluation framework for sound-based
music style modelling. In fact, even though some sound-
based music style modelling systems have been developed
(Tatar and Pasquier 2017; Bernardes, Guedes, and Penny-
cook 2013), it is unlikely to find a study that objectively
evaluates their capabilities to do so.

Sound-based music style modelling can draw on the re-
cent developments in the field of neural-based sound syn-
thesis. In fact, neural-based sound synthesis would allow the
expansion of the sound palette available. This will save time
in building a big audio database to retrieve the sound sam-
ples from, as well as space to store it. In addition, I claim,
it will facilitate the emergence of novel pieces through the
exploration of a given style.

At this stage, I have implemented and tested already exis-
tent approaches to automatic sound-based composition. The
aim was to gain experience for developing a musical agent
that will be able to compose in real-time — improvising —
along with a human musician.

Background

In the following subsections I will outline the context for this
research. It embraces the fields of sound-based music, con-

catenative sound synthesis, statistical style modelling, and
evaluation.

Sound-based music

Landy (2007) defines sound-based music as “the art form
in which the sound, that is, not the musical note, is its basic
unit”. In sound-based music, the individual entities that con-
stitute a piece of music are commonly referred to as sound
objects. Ricard and Herrera (2004) define a sound object as
“any [sonic] entity perceived as having its own internal prop-
erties and rules”. Roads (2002) defines a sound object as ’a
basic unit of musical structure, generalizing the traditional
concept of note”.

Concatenative Sound Synthesis

Concatenative sound synthesis draws on two other synthesis
techniques: granular sound synthesis, where sound synthe-
sis is performed through the generation of very short syn-
thetic sonic grains (Roads 1988); and granulation, where an
audio corpus is segmented in tiny grains that are reassem-
bled through time-domain-based operations (Roads 2002).
In concatenative sound synthesis the audio corpus is seg-
mented into units (Schwarz 2006). Each unit is a short
sound segment of variable length. Sonic features - such as
pitch, duration, or audio descriptors - are extracted from the
units. The resynthesis is performed through an algorithm
that looks into the audio corpus for the closest units, most
of the time in terms of Euclidean distance, in relation to a
feature target.

Thanks to its potential, this synthesis technique has been
applied in various forms and to various systems. CataRT
(Schwarz et al. 2006) allows the exploration of a sound cor-
pus through a user interface where the segmented corpus is
shown in a 2D space. MATConcat (Sturm 2006) offers an
implementation of adaptative concatenative sound synthesis
where the feature target is controlled by the audio descrip-
tors extracted from an audio file. Similarly, AudioGuide
(Hackbarth et al. 2013) aims to extract morphologies from
an audio file to generate new sonic material through concate-
native sound synthesis. A different approach is offered in
earGram (Bernardes, Guedes, and Pennycook 2013), where
temporal modelling is used to generate new sonic outcomes
with a similar style to the audio corpus, for example in rela-
tion to the harmonic or timbral content.



More recently, thanks to neural network based generative
techniques, a different approach has been proposed. Train-
ing a variational autoencoder, it is possible to learn a prob-
abilistic distribution of the units, called a latent space. This
is a continuous invertible space. Therefore, it is possible
to synthesise units that match the feature target even if they
were not in the audio corpus (Bitton, Esling, and Harada
2020).

Statistical Style Modelling

Music can be seen as “organised sound” (Varése and Wen-
chung 1966). Therefore, in principle, a music corpus treated
as a sequence of organised events can be represented through
a model. There are two main approaches to define such
models: explicitly code the stylistic rules or infer the rules
through statistical analyses (Conklin and Witten 1995). Be-
longing to the latter approach, Markov-based models are
widespread in music style modelling for their ability to
model music patterns (Pachet 2003).

If we look at the two main shortcomings of Markov Mod-
els, we will see that: 1) if the order is low they can model
patterns, but they can’t properly model the structure of a
piece (Pachet 2003); 2) if the order is high they generally
overfit the piece (Papadopoulos, Roy, and Pachet 2014). In-
deed, Pachet (2003) states that an interactive system could
benefit from the ability of Markov models to learn patterns,
while the definition of the structure can be left to the human
musician interacting with the system. In this way, there are
no drawbacks from their inability to learn long-term struc-
tures. Another way to compensate the lack of ability to
model long-term structures is proposed in Improtek (Nika
and Chemillier 2012), a developed version of Omax (As-
sayag, Bloch, and Chemillier 2006). Here, the interaction
between the human musician and the system is based on a
predefined dynamic score.

Evaluation

In the context of Musical Computational Creativity, evalu-
ation is at the same time one of the most important aspects
and one of the most overlooked. Evaluation is necessary to
show the progress and contributions to the field (Jordanous
2012), but only a small number of the systems presented in
conferences offer a formal evaluation. Tatar and Pasquier
(2019) provide a clear example in their typology and expo-
sition of the state of the art of musical agents. Here, they
show that, out of 78 presented systems, only 17 had under-
gone an evaluation process. An approach to evaluating free
improvisation in proposed by Linson et al. (2015).

This lack of evaluation could be due to a highly frag-
mented field, where many systems have been developed for
specific creativity needs of their developers. Hence, the dif-
ficulty of objectively evaluate them (Gifford et al. 2018).
Nevertheless, trying to reduce this fragmentation might not
be a solution: even though it might give more opportunities
to develop more solid evaluation frameworks, the specificity
of the tasks carried out by the systems can increase their
success (Truax (1980) cited in Pasquier et al. (2016)). As a
consequence of this fragmentation, the tasks that the systems
are asked to carry out have not a “yes or no answer”; and,

the evaluation of their outcomes very often depends on the
subjective preferences of the users or the audience (Pasquier
et al. 2016).

Looking at the bigger picture, the lack of consensus on
what creativity is - human and artificial - makes the eval-
uation of artificial agents’ creativity a non-trivial task (Jor-
danous 2012). Although a number of evaluation frameworks
have been proposed in the last few years, the differences
among systems might result in the necessity of tailoring
evaluation strategies “to specific research goals in ways that
are relevant and have integrity” (Pasquier et al. 2016).

Research perspectives

In Computational Creativity, statistical modelling has been
widely implemented to model and generate note-based mu-
sic (Assayag, Bloch, and Chemillier 2006; Conklin 2003;
Pachet 2003). Sound-based music has been studied to some
extent, primarily employing concatenative sound synthe-
sis along with Markov-based style modelling (Tatar and
Pasquier 2017; Bernardes, Guedes, and Pennycook 2013).

Even though note-based musical agents can only generate
notes, those notes can be played and interpreted in a variety
of ways through synthesised sounds or human musicians.
Sound-based musical agents rely on an audio corpus. There-
fore, their output is limited to the sonic material present in
the audio corpus. This material can be expanded through
sound processing techniques, but the audio quality could,
nevertheless, easily degrade (Schwarz 2006).

The development of neural-based synthesis techniques in
the last few years opened new possibilities for sound-based
musical agents. These techniques can model an audio cor-
pus as an invertible space. Therefore, they give the opportu-
nity to synthesise sounds that were not present in the audio
corpus (Bitton, Esling, and Harada 2020).

We will provide a system that will draw on mature work
from the field of statistical modelling merged with the ex-
pressivity of neural-based sound synthesis. The aim is to
contribute to the study of musical computational creativity
through a system capable of provoking novel interactions in
a free improvised context.

Discussion
Style imitation is defined by Pasquier et al. (2016) as:
“Given a corpus C = CI, ... Cn representative of style

S”, style imitation is the generation of “new instances that
would be classified as belonging to S by an unbiased ob-
server (typically a set of human subjects)”. As a general
definition, style means “a particular manner or technique by
which something is done, created, or performed”!. Among
the meanings of music style offered by Dannenberg (2010),
we find that use of musical texture could be an aspect of
a given style. Nevertheless, musical texture is a difficult
component to define. From a sound-based musical point of
view, it can certainly be related to the spectromorphological
approach proposed by Smalley (1997). From a computa-
tional perspective, the spectromorphological approach has

"https://www.merriam-webster.com/dictionary/style, accessed
on 7 April 2022.



been implemented to model an audio corpus - and its style
(Tatar and Pasquier 2017; Bernardes, Guedes, and Penny-
cook 2013). But, from an evaluation perspective it is still
an open question how to define style in sound-based music -
and, therefore, how to define the parameters to be evaluated.

In note-based style modelling the use of MIDI notes let
us use a symbolic representation of music that can be resyn-
thetised for the purpose of evaluation. As an example,
Collins et al. (2016) use a synthesised piano to reproduce
MIDI files in order to evaluate the stylistic success of com-
putationally generated mazurkas. The basic component used
to model the style - the note - is detached from the sonic ren-
dering of the music.

In sound-based music, to some extent the sounds used
in the audio corpus define themselves the style. And, as
exposed in the Background section, sound-based musical
agents usually generate their outputs retrieving sounds from
the same audio corpus they modelled. Therefore, another
open question is to what extent the stylistic success of the
music generated by such models is based on the modelling
technique implemented, or on the sounds that constitute the
audio corpus.
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