
Creating new Program Proofs by Combining

Abductive and Deductive Reasoning

Kuruvilla George Aiyankovil, Diarmuid P. O’Donoghue, Rosemary Monahan
Department of Computer Science

Maynooth University
Maynooth, Co. Kildare, Ireland

{diarmuid.odonoghue; rosemary.monahan}@mu.ie

Abstract
We describe recent work on the Aris system that creates and
verifies new formal specifications for pre-existing source
code. We describe Aris in terms of the abductive reasoning
system that suggest possible specifications and then uses an
existing deductive verifier to evaluate these creations. This
paper focuses on the abduction system that creates new for-
mal specifications by leveraging a small set of inspiring arte-
facts to augment a subset of candidate problems. This em-
ploys knowledge graphs to represent the raw data (i.e., source
code), discovering latent similarities between graphs using a
graph-matching process. Results are presented for the C# pro-
gramming language with novel creations and its sister lan-
guage called Code Contracts. We outline ampliative creativ-
ity, whereby newly created artefacts drive subsequent crea-
tive episodes beyond the initially perceived limitations. We
also outline some recent work towards transferring specifica-
tions between the C# and Java programming languages.

 Introduction

Formal specifications are central to adhering to safety stand-
ards and proving the correctness of mission-critical soft-
ware, such as controlling nuclear reactors, vehicle and air-
craft control, telecommunications infrastructure etc. Com-
mercial sensitivity means that open-source specifications
are not openly available, so specifications are typically cre-
ated afresh. This paper addresses the challenge of creating
formal specifications for existing source code, based on the
likely intended functionality of that code.

The problem we address is to create formal specifications
and proof requirements for given source code, akin to chal-
lenges in the VerifyThis (Dross, Furia, Huisman, Monahan,
& Müller, 2021) series of program verification competi-
tions. In these challenges, participants must create formal
specifications, implement a solution, and formally prove
that the implementation adheres to the specification. The
formal specifications are written as a contract specifying the
preconditions (requires clauses) that must hold, in order
for the implementation to establish the postconditions (en-
sures clauses). The proof that the implementation adheres
to the created specification is typically handled by an

automated theorem prover which requires the users to pro-
vide axioms to assist the proof. These are written as asser-
tions, invariants, variants alongside the source code.
These specifications and axioms are often difficult for the
user to create but writing them becomes easier with experi-
ence of the software domain. We are particularly interested
in the creativity required in the use of both specifications
and proof supports, ensuring the approaches adopted are
transferable from one challenge to another (e.g., different
sorting algorithms all require proof that the data is sorted
and that the result is a permutation of the input data) and
from one software verification tool to another (e.g., verifi-
cation in Code Contracts for C# source code and Open JML
for Java source code). A second challenge that software ver-
ification meets is poor uptake by industry (Huisman, Gurov,
& Malkis, 2020). These challenges motivate us to investi-
gate computational creativity to promote formal methods in
the software-development process, automating some of the
tasks involved in specifying existing source code. Our ARIS
(Pitu, et al., 2013), (O’Donoghue, et al., 2014) system aims
for professional (pro-c) creativity (Kaufman & Beghetto,
2009), comparable to professional formal-software develop-
ers.

We point out that formal specifications describe what an
implementation achieves, while the implementation details
how it is achieved. Specifications are often concise, describ-
ing the expected results of an operation. Formal theorem
provers then verify the “what” against the “how”. The novel
outputs of Aris are the problem implementation code and
new formal specifications. Implicit in any new and useful
artefact will be the newly verified theorem, uniting infor-
mation derived from the implementation and specification.

We describe previously specified code as our inspiring set
because our objective is that Aris can use all available proof
strategies to specify a given implementation. Similar imple-
mentations can require different proof strategies, depending
upon the specification language and the verification tool
used. Aris aspired to support the full range of available proof
strategies, tailoring the chosen strategy to the source code,
specification and verification tool being used.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

395

The remainder of this paper outlines of related work be-
fore describing the structure of the Aris system, describing
how its abductive and deductive reasoning systems combine
to create newly verified software. We describe the very
small number of inspiring artifacts and a large collection of
potentially solvable problems. We then describe our results,
before showing how created artefacts can serve to drive sub-
sequent creative episodes beyond the limits of the initial cre-
ative episode. Finally, we outline possible future work.

Background

Machine learning approaches to this problem are severely
impaired by the chronic lack of specifications. We analysed
several thousand projects from open-source repositories
(SourceForge, GitHub etc.) containing over 2,000,000
methods and did not find any Code Contracts.

Recent work on systems such as GPT-3 and Text2App
have shown some ability in creating executable code from a
textual description. However, our problem does not have
any such textual description leading us to rely solely on
source code. A major problem with previous models of ab-
duction (O'Donoghue & Keane, 2012) concerned the unre-
liable nature of their inferences.

 There have been several recent advances related to
code completion assistants. GitHub’s Copilot gives sugges-
tions for lines of code or entire functions, taking as context
any available docstrings, comments, function names, and
the code itself. It’s recommended that Copilot's outputs
should be tested, reviewed, and vetted while in contrast, the
output of Aris is evaluated by an automated theorem prover
- as shall be discussed later in this paper. Interestingly, Co-
pilot can also suggest test cases for a given implementation,
however its ability to create formal specifications has not
been reported. Copilot is based on Codex which is from the
GPT family of language models, which is fine-tuned for
code (Chen, et al., 2021). If sufficient specification were
available train such a model (such as Aris can produce),
these language models may become capable of producing
specifications for given implementations. Despite these re-
cent advances in code writing assistants, we are not aware
of any system that can automatically add formal specifica-
tions to an existing C# implementation.

We argue that our challenge is more similar to the HR2
systems (Colton, 2012) that creates new mathematical theo-
rems and is potentially capable of generating Prolog code.
We think of problem code as containing facts and axioms
that are known, with the objective of creating a new theorem
(specification) likely to be useful in ensuring the correctness
of that implementation. Source code and code contracts are
translated into a form of first order logic and the Z3 SMT
theorem prover takes the source code facts and the code

1 Code Contracts were chosen for this project as it supports
all .Net languages (C++, Python, Java etc.), it estimates the
completeness of a partial proofs and works in an ecosystem

contract “theorems” and attempts to verify one against the
other. So, we can consider the code contracts created by our
system as being akin to the theorems discovered by HR2.
Aris also embodies significant differences to HR2 that cre-
ated truly novel theorems, whereas Aris aims to create spec-
ification and proof supports that would be written by a com-
petent professional formal software developer. Thus, histor-
ical H-creativity (Boden, 1992) is not required.

Figure 1 depicts the source code of a C# method for which
we want to create a formal specification, highlighting a for-
mal specification written as a precondition (i.e., requires)
Code Contract1. The challenge for Aris is to create compa-
rable formal specifications for similar implementations. The
next section outlines the similarities that Aris can detect, as
well as the mechanisms used to detect this similarity.

public char[] ReadNext(int count){
 Contract.Requires(0 <= count);
 char[] array = new char[count];
 for (int i = 0; i < count; i++) {
 array[i] =
 this.charBuffer[this.position++]; }
 return array; }
Figure 1: Problem code along and a Code Contract (highlighted)

that we wish to create.

The ARIS System

Abductive reasoning excels at proposing hypotheses based
on perceived similarity to some past scenario and has be-
come associated with creative thinking. The downside of ab-
duction lies in the reliability of its inferences and is some-
times accused of being grossly profligate in generating in-
ferences even where no real similarity exists. In contrast, de-
ductive reasoning excels at deriving definite conclusions
from definite premises but is sometimes associated with nar-
row and constrained thinking. This section outlines how
Aris creates new specifications using a combination of ab-
ductive and deductive reasoning to produce novel artefacts
whose truth is mathematically assured.
 We create specifications for source code written in C#
with corresponding specifications in its sister language
called Code Contracts (CodeCon). These act as a testbed for
evaluating our bipartite creativity system. The core of this
project is built on a general-purpose abduction system for
discovering and extending similarities between general pur-
pose knowledge graphs, being easily adapted for natural lan-
guage and other data.
Extracting Code Graphs. The first process generates code
graphs from the source code (Pitu, et al., 2013)2, using 18
categories of nodes (Variable, If, Block, Assign etc.) con-
nected by 6 types of relations (Contains, Parameter, Returns

that may additionally support co-creativity for related soft-
ware artefacts including test cases.
2 https://www.kaggle.com/diarmuidodonoghue/graphs-of-
code

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

396

etc.) between nodes. Each method is described by its own
code graph, whose nodes are extracted from the source code.
Edges represent relationships between nodes, depicting

static relationships extracted from the abstract syntax tree
generated by the compiler.

Figure 2: Code Graph for the code in Figure 1 is best read from the top-level node “0: Block: Root”

Finding Homomorphic Graphs. Abduction from a solu-
tion to problem code requires perceiving some reasonable
level of similarity between code graphs. We identify func-
tionally similar methods by a process of homomorphic
matching (Carletti, 2020) between code graphs, using the
NetworkX library and initial experiments using its ISMAGS
algorithms. Later experiments use a combination of topolog-
ical similarity while also exploiting the identical labels be-
tween paired nodes (so a Block node should match a
Block node in the other graph). Subsequent phases of Aris
exploit mappings containing paired Variable nodes in
the two graphs, as these represent potential destinations for
adding new specifications.
Infer and Adapt. The next phases translates CodeCon from
the source into the problem graph, after first checking the
compatibility of the proposed inference. This requires iden-
tifying the relevant C# source code to find the corresponding
variable type as this isn’t contained in the code graph. For
example, if the CodeCon specifies variable>=0, this

may be applied to both integer and real data types. This
phase also uses the mapping to ensure the created specifica-
tion interlocks with its new problem context. This phase also
locates the correct point within the code to insert the Co-
deCon as this is essential for successful verification. This
process uses the mapping and the source code of both meth-
ods to find the closest possible match to the original inspir-
ing artefact.
Verify. Finally, the newly created code containing C# and
CodeCon is added to its project for compilation, which au-
tomatically includes verification of any embedded Co-
deCon. Finally, all outputs are assessed to identify methods
that were accepted by the deductive verifier.

Results and Discussion

We generated resulting using an inspiring set containing just
5 formally verified methods retrieved from the educational
Rise4Fun website. Aris generated the code graphs and

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

397

iteratively attempted to abduce these specifications to a
problem set containing around 1 million methods. While the
ultimate objective is to create verified CodeCon, it is inter-
esting to see how far along the Aris workflow each of the
problems progressed as this gives us an indication of how
like our process is to successfully extend to other source.
Tables 1 and 2 quantify the number of candidate solutions
as they progressed along the Aris workflow. “Potential tar-
gets” indicates the subset of methods selected for graph
matching with that source. “Quality mapping” indicates the
number of graph-matches above a hand-coded similarity
threshold. The final two columns show the number of
matches involving paired variable – a requirement for creat-
ing new specifications.

 Poten-
tial Tar-
gets

Quality
map-
ping

1
mapped
Varia-
ble

>1
Mapped
variable

MaxDemo 145,824 98,323 62,189 12,468
ResizeDemo 11,142 9,845 5258 4,485
ResizeDemo
Add

228,942 153,566 76,362 17,941

Table 1: Early Workflow Results

“Variable Type Match” in Table 2 indicates mapped varia-
ble have the same data type indicating a potential target for
that specification. “Adapted” indicates that a new specifica-
tion was created after adapting the inferred specification to
better fit its new problem context.

 Successful
Verification

Variable
Type
Match

Adapted Poten-
tially
Verifiable

Code
Con

Code
Contr
Density

489 2,111 489 5 52%
to

55%
786 6987 786 3

2154 72,688 2,154 3
 3,429 11
Table 2: Late Workflow Results

 “Potentially Verifiable” indicates specifications that we
expect could successfully verify if we were able to recon-
struct the entire project. Unfortunately, we were unable to
verify many specifications because of incomplete reposito-
ries, code being incompatibility with the compiler version
required by CodeCon and unavailable libraries.
 The final two columns indicate successfully verified Co-
deCon. Aris used three specifications to create over 3,400
potentially verifiable new specifications, 11 of which were
successfully verified. “Contract Density” is the deductive
verifiers assessment of the completeness of that verification
being slightly above 50%, indicating additional CodeCon
are required for complete (100%) verification and an assur-
ance that this source code can never yield an unexpected re-
sult.

Figure 2 depicts the typical distribution in similarity be-
tween a chosen graph and candidate graphs from the corpus.
The vertical axis indicates the percentage of edges from the
specified code graph that have been matched with a poten-
tial problem graph. The horizontal axis lists the similarity
scores for a selection of similarly sized graphs, which here
have been sorted according to that similarity score. The min-
imum level of similarity required to support creative abduc-
tion is an open question.

Figure 2: Exponential distribution of graph-based similar-
ity estimates for one source

Static graphs. Our results are even more surprising as the
static code graphs do not contain information on the relative
ordering of statements within each Block – that is, there is
no information indicating which statements occur first, sec-
ond etc.

Self-Driving Creativity
Next, we see how a newly created artefact listed in Table 2
served to increase the creative ability of Aris. Because ab-
ductive creators can pinpoint the source of their creative
leaps, we now show how a created artefact was used to drive
subsequent creative inference. A graph was generated for
the newly verified code and compared to the corpus. Figure
3 shows a problem method and highlighted (in yellow and
boldface) is a newly created specification. Again, this
method was successfully verified against the specification.

public static IEngineConfiguration-
TypeBuilder<TPoco> Value<TPoco, TMem-
ber>(this IEngineConfigurationTypeMember-
Builder<TPoco, TMember> memberConfig,
TMember value) {
 Contract.Requires(0 <= value);
 return memberConfig.Use<Val-
ueSource<TMember>> (new object[]
 { Value });
 } }
Figure 3: The CodeCon in this code was created by Aris,

using one of its own created artefacts.

 Due to Aris’ use of a graph matching process, the created
artefact may match artefacts that did not match the initial
artefact. Thus, a created artefact may increase the creative
abilities of this abduction-based model. In (O'Donoghue, et

0%

20%

40%

60%

80%

1

2
6
9

5
3
7

8
0
5

1
0
7
3

1
3
4
1

1
6
0
9

1
8
7
7

2
1
4
5

2
4
1
3

2
6
8
1

2
9
4
9

3
2
1
7

3
4
8
5

3
7
5
3

4
0
2
1

4
2
8
9

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

398

al., 2014) this is referred to as self-sustaining creativity
where a created artefact serves to extend the creative poten-
tial of the system beyond the originally perceived limits.
Figure 3 shows a “generic method” that was matched with a
previously created specification.
 The extreme lack of available specifications negatively
impacts the diversity of the validated CodeCon. This lack of
specifications can be addressed by a) manually creating
more specification or, b) by looking to other languages as a
possible source of specifications.

Between C# and Java

To find more formal specifications we next look to programs
written in Java where the corresponding specifications are
in its OpenJML sister-language. A corpus of around 10,000
code graphs was generated from open-source Java reposito-
ries. Figure 4 shows a Java method identified as similar to
that of Figure 3 above, with this Java code clearly having
much additional information. It is hoped we can explore bi-
directional comparisons between languages, allowing trans-
fer of specifications between them. We expect this approach
to offer some additional CodeCon, however differences in
coding language, specification language and underlying the-
orem provers may impinge upon the verification of some
specifications.

Figure 4: A matching code graph from Java

Future Work
We expect that our current results may be improved by im-
proving graph mapping process and placing a greater focus
on mappings between variables, as this may lead to generat-
ing more usable specifications. The Aris project may also
allow us explore interactions between newly created arti-
facts and the verifier system (the Z3 SMT solver), because
it can sometimes discover additional CodeCon that may help
a human (or artificial) user to increase the CodeCon density
of the solution. CodeCon can also generate a suite of test
cases(data) using the PEX tool, further extending the range
of items created from Aris specifications. However, there is
currently no transferable learning between its creative epi-
sodes.

Conclusion

We describe a combination of abductive and deductive rea-
soning that suggests and then formally verifies new formal
specifications for some given problem implementations.
Aris detects similarity between static knowledge graphs de-
rived from source code and creates formal specifications
that were successfully verified. Furthermore, specifications
created by Aris served to drive subsequent computationally
creative episodes. The fundamental limits to self-sustaining
creativity in this context remain to be explored.

References

Boden, M. (1992). The Creative Mind. Abacus.
Carletti, V. P. (2020). Comparing performance of graph
matching algorithms on huge graphs. Pattern Recognition
Letters, 134, 58-67.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Ponde, H., Kaplan,
J., and Ray, A. (2021). Evaluating Large Language
Models Trained on Code. arXiv preprint arXiv:2107.03374.

Colton, S. (2012). Automated theory formation in pure
mathematics. . In Springer Science & Business Media.

Dross, Furia, Huisman, Monahan, & Müller. (2021).
VerifyThis 2019: a program verification competition.
International Journal on Software Tools for Technology
Transfer, 1-11.

Huisman, M., Gurov, D., & Malkis, A. (2020). Formal
Methods: From Academia to Industrial Practice. A Travel
Guide. arXiv preprint arXiv:2002.07279.

Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and
little: The four c model of creativity. Review of general
psychology, 13(1), 1-12.

O’Donoghue, D., Monahan, R., Grijincu, D., Pitu, M.,
Halim, F., Rahman, F., . . . Hurley, D. (2014). Creating
Formal Specifications with Analogical Reasoning. In PICS
- Publications of the Institute of Cognitive Science.

O’Donoghue, D., Saggion, H., Dong, F., Hurley, D., Abgaz,
Y., Zheng, X., . . . Zhao, X. (2014). Towards Dr Inventor: A
Tool for Promoting Scientific Creativity. International
Conference on Computational Creativity (ICCC). Slovenia.

O'Donoghue, D., & Keane, M. (2012). A Creative Analogy
Machine: Results and Challenges. International Conference
on Computational Creativity (ICCC). Ireland.

O'Donoghue, D., Power, O’Briain, Dong, Mooney, Hurley,
. . . Markham. (2014). Can a Computationally Creative
System Create Itself? Creative Artefacts and Creative
Processes. International Conference on Computational
Creativity (ICCC). Slovenia.

Pitu, M., Grijincu, D., Li, P., Saleem, A., Monahan, R., &
O’Donghue, D. P. (2013). Arís: Analogical Reasoning for
reuse of Implementation & Specification. 4th Artificial
Intelligence for Formal Methods Workshop (AI4FM).
France.

Proceedings of the 12th International
Conference on Computational Creativity (ICCC ’21)
ISBN: 978-989-54160-3-5

399

