
LyricJam: A system for generating lyrics for live instrumental music

Olga Vechtomova, Gaurav Sahu, Dhruv Kumar
University of Waterloo

{ovechtom, gsahu, d35kumar}@uwaterloo.ca

Abstract

We describe a real-time system that receives a live audio
stream from a jam session and generates lyric lines that
are congruent with the live music being played. Two
novel approaches are proposed to align the learned la-
tent spaces of audio and text representations that allow
the system to generate novel lyric lines matching live
instrumental music. One approach is based on adver-
sarial alignment of latent representations of audio and
lyrics, while the other approach learns to transfer the
topology from the music latent space to the lyric latent
space. A user study with music artists using the sys-
tem showed that the system was useful not only in lyric
composition, but also encouraged the artists to impro-
vise and find new musical expressions. Another user
study demonstrated that users preferred the lines gener-
ated using the proposed methods to the lines generated
by a baseline model.

Introduction
Music artists have different approaches to writing song
lyrics. Some write lyrics first, and then compose music,
others start with the music and let the mood and the emo-
tions that emerge from the music guide their choice of lyric
themes, words and phrases. The latter type of songwriting is
often experimental in nature, and is commonly found in gen-
res such as rock, jazz and electronic music, whereby one or
more artists jam and in the process converge on the desired
musical expressions and sounds. In this work, we describe
a system we designed to support this type of song writing
process, where artists play musical instruments, while the
system listens to the audio stream and generates new lyric
lines that are congruent with the music being played in real
time. The artists see the lines as they are generated in real
time, potentially entering a feedback loop, where the lines
suggest phrases and themes that artists can use to guide their
musical expressions and instrumentation as they play their
instrument. The generated lines are not intended to be the
complete song lyrics, instead acting as snippets of ideas and
expressions inspiring the artist’s own creativity. After the
jam session is over, the lines are saved, and the artist can use
them as inspiration to write the lyrics for their song.

Our intent is to design a system capable of generat-
ing original lyric lines that match the emotions and moods

evoked by live instrumental music. Past research in mu-
sicology has found a correlation between some aspects of
music and emotions. In one large-scale study, researchers
found evidence that certain harmonies have strong associ-
ations with specific emotions, for example, the diminished
seventh is associated with the feeling of despair (Willimek
and Willimek 2014). In another study, researchers found
correlation between major chords and lyric words with pos-
itive valence (Kolchinsky et al. 2017). In addition to har-
monies, various sound textures and effects also contribute to
the emotional intent of the music. Therefore, in this work
we use raw audio input that captures all aspects of music.

The proposed model is trained in an unsupervised man-
ner, being only shown aligned data, consisting of an audio
clip and its corresponding lyric text. No labels have been as-
signed to the data. During training, the model can learn any
discernible associations between the raw audio characteris-
tics captured in the spectrograms and the texts of lyrics. At
inference time, the model receives clips sampled from the
live audio stream of the music played by the user, and gen-
erates new lines. The associations learned by the model de-
termine various characteristics of the generated lines, which
could include sentiment and stylistic markers, lexical ex-
pressions, syntactic characteristics and syllable patterns.

Our approach is based on training a variational autoen-
coder for learning the representations of Mel-spectrograms
of audio clips (spec-VAE), and a conditional variational au-
toencoder for learning the representations of lyric lines (text-
CVAE). The advantage of using variational autoencoders as
generative models is their ability to learn a continuous la-
tent space that can then be sampled to generate novel lines,
which is an important requirement for creative applications.

At inference time, the model must be able to generate new
lyric lines given an audio clip being recorded from live jam
session. In order to do that we need a way to align the latent
representations learned by the spec-VAE and the latent rep-
resentations learned by the text-VAE. We propose two novel
approaches to achieve this alignment.

The first approach (Figure 1) is based on training a
separate Generative Adversarial Network (GAN) model
that takes the spectrogram embedding from spec-VAE, and
learns to predict the lyric line embedding in the text-CVAE.
The GAN-predicted embedding is then sent to the text-
CVAE decoder to generate text.
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Figure 1: GAN-based alignment of music and lyrics representations (Approach 1).

The second approach (Figure 2) learns to transfer the la-
tent space topology of the spec-VAE to the text-CVAE latent
space. To achieve this we use the learned posteriors from the
spec-VAE as priors in text-CVAE during its training. The
text-CVAE learns to encode lyric lines corresponding to a
given audio clip in the region of the latent space correspond-
ing to that clip. Also, since similar sounding audio clips are
encoded in neighboring regions, the text-CVAE correspond-
ingly learns to encode lines for these clips in neighboring
regions. For example, ambient music clips would be en-
coded in neighboring regions of spec-VAE, and so would
be the lines corresponding to these clips. The intuition is
that lines corresponding to similar sounding audio clips (e.g.
ambient) would have similar emotional intent, as opposed
to, for example, aggressive sounding music. At inference
time, when an artist plays an ambient music piece, the sys-
tem would feed its spectrogram to the spec-VAE encoder to
get the parameters of its posterior distribution. Since the
spec-VAE posterior distributions are also prior distributions
in the text-CVAE, the system samples latent codes from the
corresponding prior of the text-CVAE, generating new lines
reflecting ambient music.

To summarize, the contributions of this paper are as fol-
lows:

1. To our knowledge this is the first real-time system that
receives a live audio stream from a jam session and gen-
erates lyric lines that are congruent with the live music

being played.
2. We propose two novel approaches to align the latent

spaces of audio and text representations that allow the sys-
tem to generate novel lyric lines matching the live music
audio clip.

3. We discuss our findings based on observations and inter-
views of musicians using the system.
In the next section, we describe the GAN-based approach

of aligning the spec-VAE and text-CVAE latent embeddings.
Next, we will present our second approach of aligning the
topologies of the two VAEs. We will then describe user stud-
ies and present our findings, which will be followed by the
discussion of related work, implementation details and con-
clusions.

Approach 1: GAN-based alignment of music
and lyrics representations

The model consists of three neural network models that are
trained consecutively in three stages (Figure 1).

Training stage 1: spec-VAE
In this stage, we train the spectrogram variational autoen-
coder (VAE) model to learn the latent representations of au-
dio clips.

First we convert the raw waveform audio files into Mel-
spectrogram images using the same method as used in Vech-
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Figure 2: Latent space topology transfer from spec-VAE to text-CVAE (Approach 2).

tomova, Sahu, and Kumar (2020). These spectrograms are
then used as input for the spec-VAE.

The variational autoencoder (Kingma and Welling 2014)
is a stochastic neural generative model that consists of an
encoder-decoder architecture. The encoder transforms the
input image x into the approximate posterior distribution
qφ(z|x) learned by optimizing parameters φ of the encoder.
The decoder reconstructs x from the latent variable z, sam-
pled from qφ(z|x). In our implementation, we use convo-
lutional layers as the encoder and a deconvolutional lay-
ers as the decoder. Standard normal distribution was used
as the prior distribution p(z). The VAE is trained on the
loss function that combines the reconstruction loss (Mean
Squared Error) and KL divergence loss that regularizes the
latent space by pulling the posterior distribution to be close
to the prior distribution.

Training stage 2: text-CVAE
Unlike the vanilla VAE used for encoding spectrograms, we
use conditional VAE (CVAE) for encoding lyrics.

The CVAE learns a posterior distribution that is condi-
tioned not only on the input data, but also on a class c:
qφ(z|x, c). Here, we define the class as the spectrogram cor-
responding to a given line. Every conditional posterior dis-
tribution is pulled towards the same prior, here the standard
normal distribution.

During training, every input data point consists of a lyric
line and its corresponding spectrogram. We first pass the
spectrogram through the spec-VAE encoder to get the pa-
rameters of the posterior distribution (a vector of means and
a vector of standard deviations). We then sample from this
posterior to get a vector z(s) that is then concatenated with

the input of the encoder and the decoder during training. The
reason why we used sampling as opposed to the mean z(s)
vector is to induce the text-VAE model to learn conditioning
on continuous data, as opposed to discrete classes. This pre-
pares it to better handle conditioning on unseen new spec-
trograms at inference.

Both the encoder and the decoder in the text-CVAE are
Long Short Memory Networks (LSTMs). The sampled z(s)
is concatenated with the word embedding input to every step
of the encoder and the decoder.

Training stage 3: GAN In this phase, we train a genera-
tive adversarial network (GAN), which learns to align audio
and text latent codes. The GAN architecture has a generator
G and a discriminator D . For training the GAN on a given
spectrogram-text pair {x(s), x(t)}1, we follow these steps:

1. First, we pass the spectrogram x(s) through spec-VAE to
obtain z(s) = µ(s) + τ(ε · σ(s)), the latent code sampled
from the posterior distribution. Here, µ(s) and σ(s) denote
the mean and standard deviation predicted by the spec-
VAE, ε ∼ N (0, 1) is a random normal noise, and τ is the
sampling temperature. Simultaneously, we obtain z(t) =
µ(t) + τ(ε · σ(t)) by passing the corresponding lyric line
x(t) through the text-VAE.

2. After obtaining z(s) and z(t), we proceed with the GAN
training. We pass z(s) through the generator network,
which outputs a predicted text latent code ẑ(t).

3. We then pass ẑ = [ẑ(t); z(s)] and z = [z(t); z(s)] through

1Superscripts (s) and (t) in our notation refer to spectrogram
and text, respectively
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the discriminator network, where ; denotes the concatena-
tion operation. We treat ẑ as the negative sample, and z as
the positive sample. The discriminator D then tries to dis-
tinguish between the two types of inputs. This adversarial
training regime, in turn, incentivizes G to match ẑ(t) as
closely as possible to z(t).

The adversarial loss is formulated as follows:

min
G

max
D

V (D,G) = Ex∼Dtrain [logD(z) + log(1−D(ẑ)]

(1)

where Dtrain is the training data, and each sample x =
{x(s), x(t)}. We also add an auxiliary MSE loss to the objec-
tive function as it is found to stabilize GAN training (Khan
et al. 2020). The overall loss for the GAN is:

JGAN = min
G

max
D

V (D,G) + λMSE ||ẑ(t) − z(t)|| (2)

At inference time, the encoder of the text-CVAE is no
longer needed. A spectrogram is input to the spec-CVAE
encoder to obtain the spectrogram latent code z(s), which is
then fed to the generator of the GAN, which generates the
lyric latent code z(t). The inference process is also stochas-
tic, as z(s) is sampled from the posterior distribution for s.
Sampling allows us to generate diverse lines for the same
spectrogram. The GAN-predicted text latent code is then
concatenated with the spectrogram latent code and input to
the text-CVAE decoder, which generates a lyric line.

Approach 2: Latent space topology transfer
from spec-VAE to text-CVAE

The intuition for this approach is to induce the text-CVAE to
learn the same latent space topology as the spec-VAE. This
would mean that data points that are close in the spec-VAE
latent space are expected to be close in the text-VAE latent
space. More concretely, if two audio clips are encoded in the
neighboring regions of the spec-VAE latent space, their cor-
responding lyric lines should also be encoded in the neigh-
boring regions in the text-CVAE latent space.

The training is a two-stage process (Figure 2), where the
first stage, spec-VAE, is the same as in the GAN-based ap-
proach. For the second stage, we train a different formula-
tion of text-CVAE. Instead of using one prior (standard nor-
mal) to regularize every posterior distribution, we use the
posterior of the spec-VAE as the prior for any given data
point. More formally, let the spectrogram be x(s) and its
corresponding lyric line be x(t). The posterior distribution
for the spectrogram in the spec-VAE is q(s)φ (z(s)|x(s)), and
the posterior distribution for the lyric line in the text-CVAE
is q(t)φ (z(t)|x(t), z(s)). The KL term of the text-CVAE loss
is computed between the posterior for the lyric line and the
prior which is set to be the posterior of its corresponding
spectrogram in spec-VAE:

KL(t) = KL(q
(t)
φ (z(t)|x(t), z(s))||q(s)φ (z(s)|x(s))) (3)

The cross-entropy reconstruction loss for text-CVAE is:

Jrec(φ, θ, z
(s), x(t)) = −

n∑

i=1

log p(x(t)|z(t),

z(s), x1
(t) · · ·xi−1(t))

(4)

The final text-CVAE loss is the combination of the recon-
struction loss and the KL term:

JCVAE(φ, θ, z
(s), x(t)) = Jrec + λKL(t) (5)

To avoid the KL term collapse problem, we used two tech-
niques first proposed by Bowman et al. (2016): KL term an-
nealing by gradually increasing λ and word dropout from
the decoder input.

Ranking of generated lines with BERT
At inference time, the model generates a batch of 100 lines
conditioned on a short audio clip sampled every 10 seconds
from the user’s audio source. Since the system shows one or
two lines to the user for each clip, and since not all gener-
ated lines are equally fluent or interesting, we need a method
to rank them so that the system shows a small number of
high-quality lines to the user. For this purpose, we used
a pre-trained BERT model (Devlin et al. 2019), which we
fine-tuned on our custom dataset. The dataset consisted of
3600 high-quality and low-quality lines that were manually
selected by one of the authors from a large number of lines
output by a VAE trained on the same dataset as used in our
experiments. The criteria used for determining quality of
lines included the following: originality, creativity, poetic
quality and language fluency. While BERT is trained as a
binary classifier, we use logits from the final layer for rank-
ing the lines.

Live lyric generation system
We developed a React/NodeJS web application2 that listens
to the user’s audio source, which can be either a microphone
or line level input from the user’s audio-to-digital converter,
receiving input from the user’s instruments, such as guitar
or keyboard. The application samples clips from the audio
stream every 10 seconds and saves them as uncompressed
PCM WAV files at 44.1kHz sampling rate. On the server,
WAV files are converted to Mel-spectrograms and sent to
the spec-VAE to obtain the latent code, which is then used
in lyric generation by the text-CVAE. The lines generated by
text-CVAE are passed through BERT classifier for ranking.
The top-ranked lines are then displayed to the user on their
screen. The lines slowly float for a few seconds, gradually
fading away as newly generated lines appear. The user can
view the history of all generated lines with time stamps dur-
ing the jam session in a collapsible side drawer (Figure 3).

2The application can be accessed at: https://lyricjam.ai
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Figure 3: LyricJam screenshot.

Evaluation
We trained the system on the aligned lyric-music dataset
(Vechtomova, Sahu, and Kumar 2020), consisting of 18,000
WAV audio clips of original songs and their corresponding
lyrics by seven music artists in the Rock genre.

The goals of our evaluation are two-fold:
1. Determine whether the two proposed methods generate

lines that match the mood created by the music more ac-
curately.

2. Understand how the application can benefit music artists
as they compose new songs by playing musical instru-
ments.
To answer these evaluation questions, we designed two

user studies, described in detail in the subsequent sections.

Study 1
For this study, we developed an interactive web application,
which plays instrumental songs and every 10 seconds shows
three lines to the users in random order, two generated by the
proposed models and one by the baseline model. The user
was asked to click on the line that best matches the mood
of the music currently being played. Participants for this
study did not have to be songwriters or music artists, but
they were required to have a general appreciation of music
of any genre.

For the baseline, we used CVAE with standard normal
prior. This is a strong baseline, which generates lines condi-
tioned on the music being played. Comparison to this base-
line specifically lets us evaluate the effect of the two pro-
posed methods: GAN-based alignment (GAN-CVAE) and
topology transfer (CVAE-spec). At inference time, the lines
generated by each system were ranked by BERT, and the
top-ranked line from each system was selected for the ex-
periment.

We selected five instrumental songs by two artists for this
study with a variety of tempos and instrumentation, and
evoking different moods. The lines for each 10-second song
clip were generated in advance, so that each user was shown
exactly the same three lines per clip. The order of line pre-
sentation was random each time. Examples of generated
lyrics and the spectrograms of corresponding audio clips can
be seen in Figure 4.

Figure 4: Examples of generated lines for different instru-
mental music clips.

In total, 15 users participated in this study. As can be
seen from Table 1, users preferred the lines from two ex-
perimental systems over the baseline regardless of the type
of song played. The differences are statistically significant
(ANOVA, p<0.01).

Study 2
For this study we asked five musicians to use the system as
they played musical instruments. The participants were free
to choose any musical instruments they liked and play any
genre of music. Below is the summary of the instruments
and genres played by the participants:
• Participant A: electric guitar / rock
• Participant B: keyboard / rock
• Participant C: guitar and electric drums / blues, rockabilly,

punk, folk, rock.
• Participant D: piano / new age, contemporary classical,

Bollywood, pop;
• Participant E: electric guitar / metal

The participants were asked to observe the generated lines
as they played music, and answer the following questions
after the completion of the study:

1. What were your thoughts after using the application?
2. What did you like about it?
3. What would you change about this system?
4. Would you consider using this system again?
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Song description CVAE CVAE-spec GAN-CVAE
Synthesizer, bass guitar, banjo, piano / forlorn, tense, slow 162 152 195
Electric guitar, synthesizer / harsh, aggressive, high-tempo 61 94 89
Modular synthesizer, keyboard / melancholy, low-tempo 64 48 76

Piano / sombre, tense, low-tempo 43 91 66
Modular synthesizer, keyboard / mellow, uplifting, ambient 53 72 53

Total 383 457 479

Table 1: Number of lines per system and instrumental song selected by the users in Study 1

5. Did the lines reflect the mood that your music conveys to
you?

Since this is an exploratory study aimed at forming a bet-
ter understanding of how artists may use such a system, we
chose open-ended questions in order not to bias the partic-
ipants and let them speak about their unique experiences
while using the system and ways in which this interaction
may have affected their creative processes.

All users found the experience enjoyable and would use
the system again. Three users mentioned that they liked its
simplicity and minimalist design. Interestingly, while our
initial goal was to design a system to assist musicians in
lyric writing, two unexpected new uses emerged from this
study: (a) the system encouraged improvisation and trying
new sounds and (b) the system was perceived as a helpful
jam partner. This suggests that the system could be useful
not only for lyric composition, but also for music playing in
general. Below, we elaborate in more detail on the themes
that emerged from the feedback.

Improvisation and experimenting with new sounds.
Users commented that the system encouraged them to try
new sounds and experiment with new musical expressions.
User A: “[The system] inspires me to try things out to see
what this sound does to the machine”. User C: “there were
a few times where the system started suggesting lyrics that
got me thinking about structuring chords a bit differently
and taking a song in different directions than originally in-
tended”.

User A also commented that the system encouraged them
to be more experimental in their music: “You become much
less critical of making unmusical sounds and you can ex-
plore the musical palette of the instrument to see what lines
it provokes.” This user also observed a game-like element
of the system: “I am trying to make it say something crazy
by playing crazy sounds” and “I am playing my guitar out
of tune and try to find music in it as the machine is trying to
find meaning in it.” The user also noted that the generated
lines sometimes encouraged them to stay in a certain music
mode, such as minor chords, when they liked the lines that
it generated. This suggests that the system could act as a
responsive listener for musicians, to help them bring their
music to the desired emotional expression. For example, if
the musician intends their music to be sombre, and the emo-
tions of the lines match the mood, they would know they are
on track, and if the emotions in the lines start shifting as they
try new expressions, it could be a signal that their music may
not have the intended emotional effect.

System as a jam partner. One user commented that the
system acts like a jamming partner as they play: “I don’t
feel like I am alone. I feel like jamming with someone.” “It’s
like having an uncritical jam partner. It always responds to
whatever you are trying.” “The machine is trying to work
with you even if you make a mistake.” This suggests that a
musician can benefit from using the system and be encour-
aged to play their instrument, even if they are not actively
trying to write lyrics.

System as a source of lyrics. Users commented that the
system would be useful as a source of new lyrical ideas.
User C: “I could see it being very useful if I’m having a
bit of writer’s block and just noodling around to get a start-
ing point.” User B: “I like to jam with my band. We jam
for 30 minutes or so. It would be nice to have it running.
It would do the work for you as you are jamming. If at the
end of it you have a pile of lyrics that would be great. That
could be the starting material we could use for a song.” The
user emphasized that for them it would be important to see
the lines after the jam session as they may miss some lines
while playing their instruments: “I look at my hands when
playing, occasionally glancing at the screen to see the lyrics.
I would like to see the lines after the jam session.”

Generated lines and music mood. Users noticed differ-
ences in lines, in particular with the changes in tempo and
instruments used. One user played on their keyboard in the
piano and Hammond B3 (organ) modes. The user played mi-
nor piano chords on the piano, noticing that the lines were
darker in theme. Switching to organ with a more upbeat
percussive sound and using major chords more often led to
more upbeat lines.

Another user noticed that the system generated interesting
lines when they played unusual musical phrases: “The sys-
tem seemed to produce more interesting lines when it was
fed slightly more novel audio, e.g. a tune that had a mode
change (switching from major to minor)”.

The genre of music did not appear to have as strong ef-
fect as tempo or the choice of instruments. One user who
played blues, rock, folk and rockabilly genres did not ob-
serve a strong effect of genre. The likely reason is that the
training dataset only contains rock music, and therefore the
model has never seen music of other genres. It would be
interesting to see how the lines are affected by genre, if the
model is trained on a larger dataset, which is more represen-
tative of different genres.
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Themes in generated lyrics Users noted presence of re-
curring themes as they played. They commented on of-
ten seeing recurring words in different lines shown to them
when they played a musical composition. This is some-
what expected, since most musical compositions have re-
peating musical phrases which prompt the system to gener-
ate lines with similar words. Also, the frequently observed
words noted by the users appeared to be different for each
user, which suggests that the system differentiated between
their musical styles, and narrowed down on specific themes.
One user commented that when they experimented by play-
ing songs with overtly obvious emotional valence (sad and
happy), the system generated lines with markedly differ-
ent words: “pain”, “falling”, “leaving” for a sad song, and
“time”, “dreams”, “believe” for a happy song.

Training the model on a larger dataset would likely lead to
more lexical diversity. Furthermore, during the experiments,
the system always showed the users top two generated lines
ranked by BERT, which was fine-tuned on a small dataset as
well. When we changed this setting to sampling lines from
the top 10 ranked lines, the diversity improved.

Related Work
For decades, music artists and poets used various techniques
to find novel forms of lyrical and poetic expressions. The
Dadaist movement of the early twentieth century gave rise
to the cut-up technique, as a way to use randomness to
free up the unconscious from the confines of logic and tra-
dition (Lewis 2007). The technique was popularized by
William Burroughs, who viewed language (“the Word”) as
a lock that restricts our creativity and confines us into pre-
dictable patterns of perception and expression. He saw cut-
up as a way for both the artist and the reader to free them-
selves from this lock. Music artists, such as David Bowie
and Kurt Cobain (Jones 2015), used cut-up technique ex-
tensively in their work to inspire creativity. In 1995, David
Bowie and Ty Roberts co-created Verbasizer, a system that
randomizes several text inputs and produces unexpected
word combinations, which David Bowie then used as inspi-
ration for his lyrics (Braga 2016). There has also been an
interest in music and research communities to design sys-
tems for live musical improvisations. Notably, Biles (1994)
designed GenJam, a system that generates jazz music impro-
visations. It was one of the pioneering works that envisioned
a system as a co-creative partner in live music performance.

Automated creative text generation has long been get-
ting attention from researchers at the intersection of com-
putational creativity and artificial intelligence. Creative text
generation includes tasks such as poetry (Manurung 2004;
Zhang and Lapata 2014; Yang et al. 2017) and story (Riedl
and Young 2010; Roemmele 2016; Brahman, Petrusca, and
Chaturvedi 2020) generation. Recently automated lyric gen-
eration has also begun receiving attention from the research
community.

Malmi et al. (2016) approached lyric suggestions from an
information retrieval perspective. They selected the suit-
able next line from a dataset containing rap lyrics to pro-
duce a meaningful and interesting storyline. Similarly, Yu
et al. (2019) developed a technique for cross-modal learning

and used it to retrieve lyrics conditioned on the given audio.
These systems, however, do not generate new lines, but in-
stead provide the user with existing lines written by other
artists.

With the recent advances in end-to-end text generation,
lyrics generation is often considered a conditional text gen-
eration task. Tikhonov and Yamshchikov (2018) generated
author-stylized poetry and lyrics using a language model
conditioned on author embeddings. A system by Vechto-
mova et al. (2018) learned artist embeddings from the au-
dio of their songs, and used them to condition the varia-
tional autoencoder in order to generate artist-stylized lyrics.
Nikolov et al. (2020) generated rap verses conditioned on
the content on any given text. Savery, Zahray, and Wein-
berg (2020) created a system for a real-time human and
robot rap battle. They generated lyrics conditioned on the
keywords present in the lyrics of the human rapper. Ack-
erman and Loker (2017) proposed a melody generation sys-
tem, which was later extended to include generation of lyrics
conditioned on the user-provided lyric lines and topic key-
words. Cheatley et al. (2020) described a therapeutic use of
this system.

While the above works generate lyrics conditionally, they
do not take into account the characteristics of the music seg-
ment for which lyrics are generated. Watanabe et al. (2018)
use a language model conditioned on the music score for
lyrics generation. In our earlier work (Vechtomova, Sahu,
and Kumar 2020) we developed a system to generate lyric
lines conditioned on music audio. We showed that the sys-
tem generated lyric lines that are consistent with the emo-
tions evoked by a given music audio clip. In this work, we
propose new approaches to align the learned latent spaces
of audio and text representations, and implement real-time
lyric generation for live music.

Implementation Details
Text-CVAE. We use the Tensorflow framework (Abadi et
al. 2016) to implement the text-CVAE. The encoder is a
single-layer bi-LSTM and a decoder is an LSTM. The hid-
den state dimensions were set to 300 and the latent space to
128. The CVAE models in our experiments were trained for
500 epochs.

Spec-VAE. PyTorch (Paszke et al. 2019) is used to im-
plement the spec-VAE. The encoder has four Conv2d layers
interleaved with ReLU activation function (Nair and Hinton
2010). The decoder is a mirror image of the encoder, with
four ConvTranspose2d layers, interleaved with three ReLU
activations and one Sigmoid activation in the end. We use
128 latent dimensions for the mean and sigma vectors. Dur-
ing training, we use a batch size of 32, learning rate of 1e-4,
and Adam optimizer (Kingma and Ba 2015). The sampling
temperature is 1.0 for both training and inference.

GAN. We use the AllenNLP library (Gardner et al. 2018)
to implement the GAN. The generator and discriminator
networks are 3-layered feed-forward neural networks, inter-
leaved with ReLU activation function. During training, we
use a batch size of 32, learning rate of 1e-3, and Adam op-
timizer for both the generator and the discriminator. We set
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λMSE = 1.0 to ensure diverse lyric lines. The sampling
temperature is 1.0 during both training and inference. The
GAN alignment network was trained for six epochs.

BERT. We use the Transformers library (Wolf et al. 2020)
to fine-tune a BERT-base model for sequence classification
on our custom dataset. The model is trained for 15 epochs
using a learning rate warmup scheduler for the first 500 steps
of training with a weight decay of 0.01. We use a batch size
of 16 for training and 64 for inference.

Conclusions
We developed a system for real-time generation of lyrics
matching the live instrumental music being played by an
artist during a jam session. Two novel approaches to align
the learned representations of music and lyrics have been
proposed: GAN-CVAE, which adversarially learns to pre-
dict the lyric representation from the music representation,
and CVAE-spec, which transfers the topology of the mu-
sic (spectrogram) latent space learned by the spectrogram
VAE to the lyric latent space learned by the text CVAE. Our
user study showed that users selected the lines generated by
the proposed two methods significantly more often than the
lines generated by a baseline for different types of instru-
mental songs. For another user study we recruited musi-
cians performing live music. Their feedback suggested that
the system could be useful not only for lyric writing, but also
(a) to encourage musicians to improvise and try new musical
expressions, and (b) act as a non-critical jam partner.

The user studies in this work as well as statistical analysis
in our prior research indicate that it is possible to learn se-
mantic and emotional associations between music audio and
lyric texts in an unsupervised manner. As the follow-up to
this work, we are conducting further analysis of what other
associations between lyric texts and music the unsupervised
neural network models are learning.
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