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Abstract

As Artificial Intelligence makes strides in emulating human
performance in analytical tasks, an important question sur-
faces: can machines induce extreme human emotions at
scale? In this work, we investigate a case study, Night-
mare Machine (nightmare.mit.edu) towards a partic-
ular emotion; fear. We use a deep-learning based approach
that induces states of anxiety and negative affect by gener-
ating de-novo eerie images. Our system attracted the atten-
tion of hundreds of thousands of participants from 147 coun-
tries who produced over 1,000,000 evaluations of the gen-
erated images. First, we perform various exploratory data
analysis tasks on the collected data in order to investigate
the potential of the generated images, such as whether there
exists a correlation between preferences of the participants
based on geographic location. Then, we perform a valida-
tion study on n = 752 subjects to verify whether the gen-
erated images psychologically move people on psychomet-
rically validated measures of effect and anxiety such as I-
PANAS-SF (Thompson 2007) and STAI-SF (Marteau and
Bekker 1992). Our experiments show that the generated im-
ages produced statistically significant increases in negative
affect and state anxiety compared to the control images. We
make our dataset publicly available at https://github.
com/catlab-team/nightmaremachine.

Introduction
Recent advances in artificial intelligence achieved signif-
icant breakthroughs that exceed human capabilities and
gained an immense amount of attention due to their success
in several areas including computer vision (Voulodimos et
al. 2018), language modeling (Jozefowicz et al. 2016),
and robotics (Pierson and Gashler 2017). Deep learning,
a sub-field of artificial intelligence, enabled researchers to
discover complex patterns in extremely large datasets and
widely deployed in academia and industry (Le et al. 2020;
Luckow et al. 2016). Deep learning based systems started to
gain popularity when a convolutional neural network outper-
formed a large-scale image classification task at ImageNet
Large-Scale Visual Recognition Challenge (Russakovsky et
al. 2015). This success, supported by the remarkable de-
velopments of powerful processors (GPUs), and explosive
growth of data, enabled the rise of deep learning. Since
then, deep learning has become state-of-the-art approach
for a large variety of problems, including image process-

ing (Hemanth and Estrela 2017), natural language process-
ing (Deng and Liu 2018), speech recognition (Deng and Yu
2014) and even defeating world’s best Go and chess players
(Silver et al. 2016; Silver et al. 2017) or beats human cham-
pions in Jeopardy such as IBM’s Watson (Watson 2014).
As Artificial Intelligence makes strides in solving challeng-
ing analytical problems like checkers (Samuel 1967), chess
(Silver et al. 2017) or video-games (Vinyals et al. 2017)
society takes solace in the implicit belief that the subset of
human tasks that rely on the understanding, managing, and
inducing human emotions are still far from the ability of ma-
chines to outperform humans. But are they? Can computers
learn to induce emotions faster and better than humans can?

Detecting emotion can be considered as a first step to-
wards inducing emotion. Machine learning is enjoying rapid
advancement on this front (Hossain and Muhammad 2019)
and initial algorithms were able to detect positive and neg-
ative emotion (Liu, Zheng, and Lu 2016). More recently,
Natural Language Processing (NLP) has been able to infer
not only the mood expressed in text but also irony and sar-
casm (Schifanella et al. 2016) and, in some cases, humor
(Chen and Soo 2018). Affective Computing, computational
tools to sense and improve human-computer communica-
tion, is also enjoying a steady revival (Picard 2000). Going
from the detection of emotion to the induction of emotion
is, however, a big leap, and one that we tackle in this work.
Can Artificial Intelligence not only detect but induce spe-
cific emotions in humans, in particular, fear? Attempts at
fear induction taking the form of stories and visual images
pervade the history of human culture. Creating a visceral
emotion such as fear remains one of the cornerstones of hu-
man creativity. In this work, we explore a way to combine
deep learning and crowd-sourcing to test whether fear can be
induced at scale. To our knowledge, we are the first to auto-
mate the production of scary images. While computers can
detect images that may be upsetting, there’s no previous lit-
erature on seeing whether computers can generate them. In
this work, we propose a deep-learning based approach to a
particular emotion; fear, and explore whether we can induce
states of anxiety and negative affect with the generated im-
ages. Our platform gained wide attention from all over the
world and collected over one million votes on the generated
images from 147 countries.
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Related Work
In this section, we first cover related work in the intersec-
tion of emotions and artificial intelligence. Then, we discuss
crowd-sourced tools that utilize artificial intelligence appli-
cations. Finally, we briefly cover related work in generative
models.

Emotions and Artificial Intelligence

Recent advances in deep-learning encouraged researchers
to investigate the usage of artificial intelligence in terms of
emotions. Most of the existing work focuses on the classifi-
cation or detection of certain emotions on facial data. (Ng
et al. 2015) used a convolutional neural network architec-
ture (CNN) combined with a transfer learning approach and
performed emotion recognition using EmotiW (Kahou et
al. 2013), a face expression dataset that includes a wide
range of emotions including happy, sad, surprised, fear, an-
gry and disgusted. (Jain et al. 2018) tackled facial expres-
sion recognition (FER) using a hybrid convolution-recurrent
neural network that extracts the relations within facial im-
ages by using the recurrent network for temporal dependen-
cies.

Another line of work focuses on emotion recognition
from speech. (Hossain and Muhammad 2019) proposed an
audio-visual emotion recognition system using CNNs on an
emotion dataset that consists of speech and video. They pro-
posed to process speech signal in the frequency domain and
used corresponding Mel-spectrograms as an image which is
fed to a CNN. The output is fused with video signals and
fed into two consecutive extreme learning machines and a
support vector machine (SVM) for the classification of the
emotions. (Satt, Rozenberg, and Hoory 2017) used an end-
to-end deep neural network on raw spectograms. They com-
bined a noise reduction solution based on harmonic filter-
ing to perform emotion recognition from speech under lim-
ited latency constraint and achieved state-of-the-art accuracy
on popular benchmarking dataset IEMOACP (Busso et al.
2008).

Several studies investigated the potential of using deep
learning for empathy-related applications. For instance,
(Barmar 2017) used a neural network based approach to
classify empathy and personal distress on facial muscle ac-
tivities. They also investigated which facial muscle move-
ments contribute the most to predict empathy. (McQuiggan
et al. 2008) proposed a data-driven inductive approach for
learning empathy models including both reactive and par-
allel empathetic expression. Their approach focuses on the
observation of empathy in action and tries to understand the
psychological aspects of empathetic assessment. (McQuig-
gan and Lester 2006) proposed a data-driven framework for
extracting models of empathy that are empirically grounded
from observations of human to human social interactions.
(Gibson et al. 2016) used a deep neural network system for
predicting empathy ratings from transcripts of counselors.
To pursue this goal, they utilized a recurrent neural network
that matches the transcript of a speaker with a task-specific
behavioral act.

Figure 1: The voting page from the platform is shown on
the left where a random image is displayed to the participant
and asked them to vote whether they find the image Scary or
Not-Scary. Sample faces from our classification dataset are
shown on the right where the top four images are voted as
Not-Scary, and the bottom four images are voted as Scary.

Crowd-sourced AI Tools and AI-based Creativity
The field of machine learning gained attention due to the re-
markable results in several important tasks in computer vi-
sion, natural language processing and robotics areas. Re-
cently, researchers focused on combining generative models
with crowd-sourcing efforts for creative applications.

Deep Dream Generator (DeepDreamGenerator ) is a com-
puter vision tool that helps users to experiment with deep
learning algorithms for creativity. Neural style transfer al-
gorithm (Lee et al. 2018) enabled users to experiment with
painting styles on any given image (DeepArt ). In addi-
tion to computer vision tools, music-based platforms such
as Magenta (Magenta ) offers a large collection of music-
based tools using a recurrent neural network based sys-
tem that generates notes based on melodies provided by the
users. Botnik (Botnik ), GPT-2 (Radford et al. 2019a) are
among the text-based platforms heavily explored for creative
writing. Botnik offers a keyboard-based interface where
users can collaboratively create AI-assisted text-based con-
tent. GPT-2 (Radford et al. 2019b) model uses large-scale
datasets which helped users to create a variety of applica-
tions ranging from novels (GPT ) to poetry (Branwen ).
Computationally creative Twitter bots are also utilized in
several studies. (Yanardag, Cebrian, and Rahwan 2021)
explores Twitter as a medium for creating horror stories in
a collaborative fashion with Twitter users. (Oliveira 2017)
proposes a bot that posts poems inspired by Twitter trends.

Generative Models
Generative Adversarial Networks (GANs) (Goodfellow et
al. 2014a) aim to model the image space so that they gen-
erate images that are indistinguishable from those in the
dataset. The adversarial part of the network detects whether
the produced images are from the training dataset (or fake),
and the generative part tries to create images that are sim-
ilar to the dataset. DC-GAN (Radford, Metz, and Chin-
tala 2015) is one of the first GAN models that directly ex-
tends the GAN architecture by using convolutional layers in
the discriminator and convolutional-transpose layers in the
generator. StyleGAN (Karras, Laine, and Aila 2018) and
StyleGAN2 (Karras et al. 2020) are among popular GAN
approaches that generates high-resolution images. They use
a mapping network with an 8-layer multilayer perceptron
(MLP) which fits input latent code onto an intermediate la-
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Figure 2: Architecture of the image generation pipeline is shown on the left where the trained DC-GAN model generates faces
that are fed into neural style transfer to produce the final image. Original faces generated by DC-GAN are shown in the middle
and the corresponding modified faces after applying neural style transfer are shown on the right.

tent space. BigGAN (Brock, Donahue, and Simonyan 2018)
is another large-scale model trained on ImageNet (Rus-
sakovsky et al. 2015) and utilizes the intermediate layers
by taking the latent vector as input as well as a class vector
that acts as a conditional information.

Methodology
In this section, we first give details of the data collection
platform and discuss the generation methodology of the im-
ages used in the experiment. Then, we discuss the details of
the collected dataset and share several insights and statistics
about the dataset.

Data Collection Platform

We launched a public platform http://nightmare.
mit.edu that invites users to participate in an online poll.
The poll is designed to be simple (see Figure 1 for the survey
page) where random GAN-generated images were shown
to participants and ask them to vote whether they find the
shown image Scary or Not Scary. A total of 100 images
were randomly shown to the participants in batches of 10
from a pool of 500 generated images. Each image is as-
sociated with a unique identifier for data analysis purposes.
After voting every 10 images, a customized page is shown to
the participants where a uniquely generated grid of images
is shown as a reward.

Over the course of 9 months, our platform is attracted
more 300K participants from 147 countries that resulted in
1,091,345 votes on 500 GAN-generated images. In addition
to collecting the voting information, we also collected the IP
addresses of the users in order to track cross-country prefer-
ences on the images. An Institutional Review Boards (IRB)
approval is obtained for collecting the votes and IP informa-
tion.

Image Generation
A two-stage architecture that combines generative adversar-
ial networks (GANs) (Goodfellow et al. 2014b) and neural
style transfer (Gatys, Ecker, and Bethge 2015) is used for
generating the images used in this study. GANs are a class of
neural networks that have gained popularity in recent years,
with the most common application area being image gener-
ation. GANs estimate generative models with an adversarial
process by simultaneously training two models: a generative
model G that represents the data distribution, and a discrim-
inative model D that estimates the probability of whether a
sample comes from the model distribution or the data dis-
tribution. GANs train the generator G and the discrimina-
tor D through playing a mini-max game: D maximizes the
expected log-likelihood of distinguishing real samples from
the fake ones, and G maximizes the probability of D mak-
ing a mistake. The equilibrium of this game is reached when
the generator is generating fakes that look like real as if they
came directly from the training set, and the discriminator
can not distinguish between the fake ones and real ones with
a 50% confidence.

We used DC-GAN (Radford, Metz, and Chintala 2015)
model that directly extends the GAN architecture by using
convolutional layers in the discriminator and convolutional-
transpose layers in the generator. The all convolutional net
(Dosovitskiy, Tobias Springenberg, and Brox 2015) is used
in its generator and discriminator which replaces the deter-
ministic spatial pooling functions with strided convolutions
and enables the network to learn its own spatial downsam-
pling, along with batch norm layers, and LeakyReLU acti-
vations. The input to the discriminator is a 3×64×64 image
and output is a probability of the input belonging to the real
data distribution. The input to the generator is a latent vector
drawn from a prior distribution and the output is a 3×64×64
image.

One approach to generating the images for our task is to
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Figure 3: Distribution of Scary and Not Scary votes where
the number of votes appears to be distributed equally with a
slight shift on the right towards Scary votes.

directly train a DC-GAN model on a collection of scary im-
ages. However, there is no such data collection suitable for
this purpose. Therefore, we employ a two-stage strategy (see
Figure 2 for an illustration of the framework). The first step
of our approach is training a DC-GAN model on a large-
scale dataset called CelebFaces Attributes Dataset (CelebA)
(Sun et al. 2014). The CelebA dataset contains 202,599
celebrity images with coarse alignment, each with 40 at-
tribute annotations. We trained DC-GAN to generate face
samples of 64× 64 pixels. Figure 2 (denoted with Original
Faces) shows a list of randomly generated faces from the
trained DC-GAN model.

The second step is turning normal faces into scary images
using neural style transfer (Gatys, Ecker, and Bethge 2015).
Neural style transfer is an optimization method that mixes
the content and style representations from two different im-
ages. The key observation the style transfer method employs
is that the representations of content and style in the CNNs
are separable and both representations can be manipulated
in order to create new images. It synthesises a new image
by simultaneously matching the content representation of an
image and the style representation of a style image. It takes
three inputs; a source image, a content image and a style im-
age and uses two distance functions for optimization. The
first distance function describes the difference between the
content of the source and the content images, and the sec-
ond distance function measures the difference between the
two images in terms of their style. The objective is then to
transform the source image to minimize the content distance
with the content image and the style distance with the style
image. We used a single style image for our expderiments
(see Figure 2). We fed randomly generated DC-GAN im-
ages to Neural Style Transfer model and generated a list of
modified images to be used in our experiments. Figure 2 (de-
noted with Modified Faces) shows a selection of transformed
images used in our experiments.

Figure 4: Distribution of the votes over countries. The ma-
jority of the votes are accumulated in United States, fol-
lowed by Japan, Great Britain, Canada and Australia.

Exploratory Data Analysis
During a period of 9 months, we collected a high-volume
dataset of emotional preferences with our crowd-sourcing
platform http://nightmare.mit.edu and use it to
study emotion, in particular, fear. Our dataset consist of 500
computer-generated images to vote as Scary or Not Scary.
Figure 3 shows the histogram of Scary and Not Scary votes
where the number of votes seems to be distributed equally
with a slight shift on the right towards Scary votes. Our
dataset consists of votes collected from 147 countries. Fig-
ure 4 illustrates the distribution of the collected votes over
the globe. We can see that the majority of the votes are fo-
cused on United States, followed by Japan, Great Britain,
Canada, and Australia.

Using this large-scale dataset, we seek to answer some of
the interesting questions that can be raised as follows:

• Can we learn which images are particularly scary and dis-
tinguish between Scary and Non-Scary images?

• Are there different sub-groups within images that are la-
beled as scary and non-scary?

• Do participants have different preferences on what is
scary and what is not?

• Is there any relationship between geographic location and
preferences on the scariness?

Can we learn which images are particularly scary and
distinguish between Scary and Non-Scary images? We
explore whether a neural network model can learn to sepa-
rate between images labeled as Scary and Not Scary. We
train a convolutional neural network classifier to recognize
fear by extending VGG-16 network architecture (Simonyan
and Zisserman 2014). VGG-16 is a large model designed for
multi-class classification, pre-trained on ImageNet dataset
(Russakovsky et al. 2015) and successfully pushed the error
rate to < 10% on ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) 2014 competition (Russakovsky et al.
2015). VGG-16 network comprises 13 convolutional layers,
divided in five groups. In addition, the network has 3 fully
connected layers, and 5 pooling layers. The convolutional
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Figure 5: Embeddings of Scary (grey clusters) and Not
Scary images (colored clusters) into d = 100 dimensional
space. Closeness in the space reflects similarity. The left-
most non-scary cluster (CLUSTERA) consist of faces that
are blurry and deformed while right-most non-scary cluster
(CLUSTERB) displays images that are dark.

layers consist of a set of kernels where each kernel is con-
volved with the input volume to compute hidden activations
during the forward pass. Related parameters are updated us-
ing a back-propagation pass. We re-purpose VGG-16 net-
work pre-trained on ImageNet by performing fine-tuning.
In particular, we replace the final fully-connected layer of
VGG-16 with two neurons corresponding to two classes,
Scary and Not Scary. We curated a balanced dataset of
200 scary images and 200 non-scary images for classifica-
tion. Our dataset is created as follows: we used 500 images
and their corresponding votes and sorted them by the num-
ber of Scary (and respectively Not Scary) votes. We then
selected the top 200 images for each category and labeled
them as Scary (and respectively, Not Scary) for classifica-
tion. For each class, we used 100 images for training, 30
images for validation, and 70 for testing, and used 10-fold
cross-validation to evaluate the results. We obtained 65%
accuracy on a balanced dataset where the baseline accuracy
is 50%. This result indicates that there is some common con-
sensus among the users about the scariness of the images,
and we can distinguish between which images are Scary or
Not Scary to a certain extend.

Are there different sub-groups within images that are
labeled as scary and non-scary? In order to under-
stand the relationship between Scary and Not Scary im-
ages, we built an image-embedding framework using word-
embedding techniques. Word embedding methods recently
gained popularity due to their success in accurately estimat-
ing the relationship between words in language models. We
used Word2Vec method (Mikolov et al. 2013) where we
treated each user profile as a sentence and each voted im-
age as a word. Similar to how word-embedding methods
capture the similarity of words by mining the co-occurrence
relationship in a sentence, our aim is to capture similar im-
ages that users find Scary (and similarly, Not Scary). We
used Word2Vec tool and embed images into d-dimensional
space where d = 100. Figure 5 shows embeddings of 500

Figure 6: Images on the left shows a set of images user found
scary, and images on the right are the recommended images
from the model.

images where closeness in the space reflects similarity. As
can be seen from the figure, scary images (grey clusters)
and non-scary images (colored clusters) are clustered consis-
tently. An interesting observation is that even though scary
clusters are relatively close to each other, non-scary clus-
ters are spread through the latent space. This indicates that
while there is a common consensus on the groups of im-
ages that are labeled as Scary, there are particular character-
istics of non-scary images that affect different users which
results in many separate clusters are formed in the latent
space. For instance, while the left-most non-scary cluster
(labeled as CLUSTERA) consists of faces that are blurry
and deformed, the right-most non-scary cluster (labeled as
CLUSTERB) displays images that are mostly dark.

Do participants have different preferences on what is
scary and what is not? We explore whether users
have common preferences over the images by using a
collaborative-filtering approach. Collaborative filtering is
a mechanism that learns user preferences towards items by
mining implicit or explicit interests a user expresses using
rating information (e.g. books, movies, or products). The
expressed ratings of users are matched against other users
and a hidden representation of user preferences is learned.
This information is then utilized to find people with the
most similar preferences and to recommend items that sim-
ilar users liked. A popular collaborative filtering method is
matrix factorization which learns a model from incomplete
rating data. We built a user-item matrix M of size m × n
where m is number of users who visited our system, and n
is number of images available for users to vote. Let i rep-
resent an arbitrary user who visited our system, j represents
an arbitrary image user i voted. Then Mij corresponds to
the rating user i expressed. In particular, we interpret Scary
votes as a rating of +1 and Not Scary votes as a rating of
−1. If user i has not been shown image j, then Mij = 0
indicating an unobserved rating. The goal is then to approx-
imate incomplete matrix M by using matrix factorization.
We used LIB-PMF (Yu et al. 2012), an efficient and paral-
lelizable method for matrix factorization in large-scale rec-
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Figure 7: Dendrogram showing the hierarchical clustering on probability distributions of top 30 countries based on the voting
information. One can observe that neighbor countries such as United States and Canada or Japan and Korea have the most
similar preferences over the images.

ommender systems. We curated a dataset for a randomly
selected 10,000 users and 500 face images. We split the
data into training and testing set with a 70% to 30% rate,
respectively. In total, the training dataset contains 199,436
ratings, and testing dataset contains 85,419 ratings. The goal
is then to learn user preferences on the training dataset, and
then to predict the unseen ratings in the testing set. We used
Root Mean Square Error (RMSE) for evaluating the results.
RMSE measures the average magnitude of the error, and it
is defined as the square root of the average of squared dif-
ferences between predictions and actual observations. On
85,419 ratings, we obtained a RMSE of 0.93 for the dis-
tribution of actual and predicted ratings. Figure 6 shows a
qualitative example of our recommender system where top
images a random user liked (i.e. rated as Scary) and top
recommended images that user might like (i.e. might find
Scary) are shown.

Is there any relationship between geographic location
and preferences on the scariness? We explore how
preferences on the votes change based on geographic loca-
tion, and investigate whether there are similar preferences
over the images based on geographic proximity. We used
the votes collected from 90,596 visitors from 147 coun-
tries. Each country is represented by a normalized vector
that represents the percentage of votes their users expressed
on Scary and Not Scary images.

We perform hierarchical clustering on the distributions of
the countries. Figure 7 illustrates the dendrogram for top
30 countries based on the number of users. The cophenetic
distance between each observation in the hierarchical clus-
tering was found as 0.73. Some interesting cross-cultural
trends can be observed from the clustering. For instance,
neighbor countries United States and Canada are the most
similar to each other in terms of preferences on the faces.
A similar trend can be observed between neighbor countries
Japan and Korea as well as Portugal and Spain. These ob-
servations indicate that the preferences over fear have a re-
lationship with geographic proximity. Moreover, we used

a heatmap-based approach to investigate the pairwise simi-
larity between different countries. We used the top 10 im-
ages voted as Scary and represented each country as a 10-
dimensional vector that includes the normalized voting in-
formation. Figure 8 shows the heatmap based on top 30
countries on top 10 Scary images. We can observe that
while most of the countries have a common consensus on
the majority of the images, some countries found specific
images highly Scary, such as Greece and Switzerland on
Face#3 and New Zealand on Face#2. A similar trend
can be observed for the opposite side where some coun-
tries found some images highly non-scary such as Chile and
China on Face#4. Another interesting observation is that
geographically close-by countries China and Taiwan both
found Face#3 and Face#4 as highly non-scary. These ob-
servations suggest that a cross-cultural trend on fear might
exist, and different countries might have different opinions
on what is Scary or Not.

Validation Study
While we received hundreds of thousands of indications that
our machine-generated images were indeed scary, having
subjects rate something as simply ‘scary’ or ‘not scary’ does
not inform us of whether or not the images themselves ac-
tually induce the psychological construct of fear. Perhaps
something that is casually rated as ‘scary’ actually alters
mood, but it is also possible that by rating something ‘scary’
subjects are simply indicating that the image corresponds
to the conception of what a frightful image typically looks
like. Do the images we generated actually – psychologi-
cally – scare people? To investigate this question, we ran
a validation experiment on Amazon’s Mechanical Turk that
employed psychometrically validated measures of affect and
anxiety.

We randomly assigned 752 subjects to three treatment
arms. The first arm consisted of the ten images that re-
ceived the most ‘scary’ votes (Scary). The second arm con-
sisted of the ten images that received the fewest ‘scary’ votes
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Figure 8: Heatmap of countries and their probability of finding top 10 images as scary. One can observe that while most of the
countries have a common consensus on the majority of the images, some countries found specific images highly Scary, such as
Greece and Switzerland on Face#3 and New Zealand on Face#2.

Figure 9: Images used in experimental validation. The
’Scary’ faces comprise the ten faces from the platform that
received the most ’scary’ votes. The ’Less Scary’ faces com-
prise the ten faces that received the fewest ’scary’ votes. The
ten ’Control’ faces were randomly drawn from the Chicago
Face Database (Ma, Correll, and Wittenbrink 2015) set of
neutral faces.

(Less Scary). For the third arm (Control), we randomly se-
lected ten neutral expression faces from the Chicago Face
Database (Ma, Correll, and Wittenbrink 2015) (see Figure
9). Because affect and anxiety vary differentially across gen-
der (Thompson 2007), we block-randomized along with the
gender of respondents for added statistical efficiency (Ger-
ber and Green 2012).

Our validation study had two outcome measures. The first
is a short form of the Positive and Negative Affect Schedule
(I-PANAS-SF). The I-PANAS-SF is derived from the origi-
nal twenty PANAS (Watson, Clark, and Tellegen 1988) item
pool and allows us to measure – and separate – dimensions
of positive and negative affect. It consists of ten items in-

cluding five positive affective states: active, determined, at-
tentive, inspired and alert and five negative affective states:
afraid, nervous, upset, hostile and ashamed. Participants are
asked to respond to the positive and negative states which
describe their feelings. The second metric is a shortened ver-
sion of the State-Trait Anxiety Inventory (STAI-SF) which
measures subjects’ state anxiety. It is a psychological in-
ventory based on a 4-point Likert scale ranging from not at
all to very much and consists of six items assessing the de-
gree that patients feel calm, tense, upset, relaxed, content
and worried. The scores of all items are summed to produce
a total score in which higher scores are positively correlated
with greater anxiety. We randomized the order that our out-
come measures were presented to the subjects. Finally, we
pre-registered our experiment and analysis plan with AsPre-
dicted.org as study #3410 and we follow that analysis plan
below.

Negative/Positive Affect and State Anxiety
The results of our experiment indicate that our machine-
generated faces produced substantial increases in negative
affect and state anxiety as well as – to a lesser degree –
worsened positive affect, as compared to our control con-
dition. Respondents in the Scary and Less Scary conditions
had markedly and significantly increased scores on the state
anxiety measure (STAI-SF) as compared to Control, as can
be seen in Figure 10 panels (a) and (b). Scary STAI-SF OLS
coefficient is measured as 8.059 with a t-statistic: 6.346 and
Cohen’s d: 0.58 while Less Scary STAI-SF OLS coefficient
is measured as 6.336 with a t-statistic: 5.249 and Cohen’s d:
0.48. The Scary and Less Scary conditions did not signifi-
cantly differ from one another.

The generated images also produced substantial and sta-
tistically significant increases in negative affect compared
to the control faces (see Figure 10 panels (c) and (d)). Scary
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Figure 10: Validation experimental results. Scary and Less Scary faces significantly increase anxiety (panels (a) and (b))
and amplify negative affect (panels (c) and (d)) compared to the Control faces. Further, Scary faces reduce positive affect as
compared to the control (panels (e) and (f)). Heterogeneous effects by gender is shown on the bottom right image. Less Scary
increase anxiety significantly more in females than in males (panels (g) and (h)).

PANAS negative affect OLS coefficient is measured as 3.513
with a t-statistic: 7.156 and Cohen’s d: 0.66 while Less
Scary PANAS negative affect OLS coefficient is measured
as 3.021 with a t-statistic: 6.412 and Cohen’s d: 0.59. The
Scary and Less Scary conditions again did not significantly
differ from one another on this measure.

Finally, the generated faces reduced positive affect as
compared to the control group, with the Less Scary faces
splitting the difference between the two other groups (see
Figure 10 panels (e) and (f)) Scary PANAS positive affect
OLS coefficient is measured as -0.898 with a t-statistic -
2.03 and Cohen’s d: -0.21. The Less Scary condition did
not significantly differ from the Scary or from the Control
conditions.

Heterogeneous Effects by Gender
In addition to our main effects, we observe that female par-
ticipants indicate significantly higher responses on the STAI
scale in response to the Least Scary condition than do male
participants. Note that our plan to investigate heterogeneous
effects by gender was pre-registered in our AsPredicted.org
plan #3410.

Male respondents in the Least Scary conditions had
markedly and significantly reduced scores on the state anx-
iety measure (STAI-SF) as compared to female respondents
in this condition, as can be seen in Figure 10 panels (g)
and (h) (STAI-SF OLS male-by-least-scary interaction coef-
ficient: -6.723, t-statistic: -2.666, Cohen’s d: -0.38). We ob-
serve no other significant heterogeneous effects by respon-
dent gender.

Ultimately, the results of our validation experiment indi-
cate that the generated faces – for both the Scary and Less
Scary images – significantly and markedly increased psy-
chometrically validated anxiety and negative affect as com-
pared to the Control condition. Further, female respondents
in our sample exhibit greater amounts of anxiety induced by
the Less Scary condition.

Conclusion
As Artificial Intelligence makes strides in solving challeng-
ing analytical problems, many people believe that an impor-
tant subset of human tasks such as inducing human emo-
tions is still far from the ability of machines to outperform
humans. In this work, we challenge this hypothesis and ex-
plored the potential of deep learning and crowd-sourcing
to induce extreme emotions, in particular fear on a case
study at nightmare.mit.edu. We create a high-volume
dataset of emotional preferences using crowd-sourcing and
use it to study fear in a variety of applications: we showed
that we can build a model that learns which images are par-
ticularly Scary and distinguish between Scary and Not Scary
images. We showed that while there seems to be a common
consensus on the groups of Scary images, there exist sev-
eral sub-groups among Non-Scary images. Moreover, we
showed that latent preferences of the users towards Scary
and Non-Scary images can be discovered using collabora-
tive filtering approaches, which shows the potential to tai-
lor personalized images that target specific users. We also
explored cross-cultural preferences for fear to observe how
preferences change based on geographical location. We ob-
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served that some countries that are close to each other on
a geographical level, such as America United States, and
Canada, or Japan and Korea have the most similar prefer-
ences over the images. This observation suggests that there
might be a cross-cultural competence over the images. In ad-
dition, while there is a global consensus on the majority of
images, we observed that some countries found specific im-
ages highly Scary or highly Non-Scary which suggests that
there might exist images that particularly affect certain cul-
tures. Finally, we run a validation study where we performed
a controlled experiment on n = 752 subjects on Amazon’s
Mechanical Turk where we verify whether the generated im-
ages psychologically move people on psychometrically val-
idated measures of effect and anxiety such as I-PANAS-SF
and STAI-SF. Our exploratory results and validation experi-
ment suggests that deep learning and generative algorithms
have a significant potential for inducing emotions.

As future work, our approach can be extended to other
types of emotions such as empathy. It can further be ex-
tended to improve the performance of the image generation
system by tailoring the preferences towards particular users
or can be explored to understand what particular features of
the generated images induce certain emotions.
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