
An HBPL-based Approach to the Creation of Six-word Stories

Brad Spendlove, Nathan Zabriskie, and Dan Ventura
Computer Science Department

Brigham Young University
Provo, UT 84602 USA

brad.spendlove@byu.edu, nathanzabriskie@byu.edu, ventura@cs.byu.edu

Abstract

Six-word stories are a subgenre of microfiction that
presents significant challenges to authors. It is diffi-
cult to express a story with so few words, let alone an
impactful or elegant one, but the best examples in the
genre transcend mere storytelling to elicit an emotional
response from readers. Six-word stories are an interest-
ing and as-yet-unexplored space in the field of compu-
tational creativity. We present a system description of
MICROS, a computationally creative system that gen-
erates six-word stories by making use of a hierarchical
Bayesian approach. We detail how MICROS generates,
evaluates, and refines stories; present stories generated
by MICROS; and report a preliminary evaluation of its
results.

Introduction
Six-word stories are a subgenre of microfiction (short sto-
ries composed of 1000 words or less). This restrictive word
count might fool the casual observer into thinking six-word
stories are simple to write, but this is not the case. With
so few words to work with, the author does not have time
to build up complicated worlds and characters and must in-
stead seek to create the maximum possible impact upon the
reader with every word.

“For sale: baby shoes, never worn.”, a famous six-word
story often attributed to Hemmingway, aptly demonstrates
the potential impact of this genre of microfiction. In just a
few words, the reader is given a glimpse into a larger story
world before being left to themselves to imagine what else
might be happening “around” the text.

Authors must display a great deal of creativity to paint
these mental pictures within such a small frame. They use
uncommon or unconventional grammatical structures both
to fit their story into the six-word limit and to further am-
plify the effects of their words. As a result, the forms their
stories take are often unique, both grammatically and in the
semantic relationships between words.

The marriage of rigid length requirements and fluid gram-
matical structures makes proceduralizing the writing of six-
word stories particularly difficult. Previous research has fo-
cused on computational generation of short stories and po-
etry but not specifically on six-word stories.

Narrative systems such as MEXICA (Pérez y Pérez and
Sharples 2001), STellA (León and Gervás 2014), and Fabu-
list (Riedl and Young 2006) create stories by tracking char-
acters’ motivations, states of being, and locations as they
perform actions to progress the plot. The story artifacts these
systems output take the form of sequences of simple action
phrases built from a fixed set of rules.

These systems do succeed in creating interesting stories,
but the methods they use to achieve that success are often not
applicable to six-word stories. For example, MEXICA will
identify moments of low-interest and add new actions, such
as a murder, to add tension to the narrative. Conversely, six-
word stories are improved by fitting more story into the same
number of words; they do not have the luxury of adding
length to improve a story.

One approach to writing six-word stories would be to take
a longer story, such as the output of an existing story gener-
ation system, and reduce it to six words. Such a reductive
approach, however, seems unlikely to result in an interest-
ing six-word story. Although a sequence of actions may
make for an interesting story, taking a single action out of its
context to fit within six words would likely result in an un-
interesting or nonsensical story. This precludes a six-word
story generator from working with existing story generators,
such as serving as a module in a collaborative system like
Slant (Montfort et al. 2013).

In fact, six-word stories rarely communicate a full narra-
tive. Instead, they spend their limited lexical resources invit-
ing the reader’s imagination to fill in the story sketched out
by the text. The best stories harness that imaginative leap to
elicit emotions in the reader as well. In this way, six-word
stories are more similar to poetry than narrative prose. Many
previously developed poetry generators operate with a sim-
ilar goal: to create poems that instill a certain feeling in the
reader or deal with a specific topic.

The system described in (Colton, Goodwin, and Veale
2012) evokes a specific mood by modifying similes taken
from an existing corpus to shift them towards the desired
emotion. The modified phrases are then placed into user-
defined templates to create a full poem. Other systems such
as (Toivanen et al. 2012) swap out words in existing poems
to change the topic of a poem. These systems capture the
relationships between words and choose words with specific
relationships to create a poem. This focus on semantics in-

stead of grammar is a common thread between generating
poetry and generating six-word stories.

Computationally creative systems that deal with humor
and wit face similar challenges of brevity and semantic pre-
cision (Binsted and Ritchie 1994; Oliviero and Carlo 2003).

We propose approaching the creation of a story by sam-
pling from a distribution over the space of all possible sto-
ries. Thought of this way, story creation can be under-
stood using the framework of Hierarchical Bayesian Pro-
gram Learning (HBPL) (Lake, Salakhutdinov, and Tenen-
baum 2015). This has previously been demonstrated as a vi-
able approach to computational creativity (Bodily, Bay, and
Ventura 2017), and while one may be tempted to argue that
it is not suitable for producing large, complex stories, it is a
very general, useful framework in which to consider many
possible operationalizations for different CC tasks. In partic-
ular, here we adopt this framework to describe an approach
to creating six-word stories, and present an implementation
of the framework that we call MICROS.

An HBPL View of Story Writing
Consider the set W of all possible words, and let a story
S = w1, w2, . . . , wn be a sequence of n words wi with
wi ∈ W . Then a probabilistic approach to the problem
of story creation imposes a distribution p(S) over the set
S of all possible stories S. That is, the joint distribution
p(S) = p(w1, w2, . . . , wk) must be computed. If this is pos-
sible, creating a story means simply sampling from p(S). Of
course, for stories of any length, this distribution is likely to
be intractable to compute, and thus typically some simpli-
fying assumptions are made that allow the joint distribution
to be factored in some way. HBPL suggests that there are
domain-specific factorizations that both simplify the com-
putational demands of such an approach and that exhibit ex-
planatory power as well. For example, in the case of story
writing, one might consider a factorization such as

p(S) = p(κ)

κ∏
i=1

p(mi|κ)p(Ci|i,mi)p(Ri|C1, ..., Ci−1)

where p(κ) models the number of chapters in S; p(mi|κ)
models the number of paragraphs for the ith chapter for a
story with κ chapters; p(Ci|i,mi) models the ith chapter
with mi paragraphs; and p(Ri|C1, ..., Ci−1) models the re-
lation of the ith chapter to the previous chapters.

There are several things to note about this formalism.
First, it is clearly hierarchical, and the subdistributions can
be further factorized until (hopefully) they become tractable
to compute. Second, the formalism says nothing about how
the individual distributions of the factorization should be
computed. Third, the form of the factorization imposes
structure on both the story generated and on the process
used for its generation; e.g., in the factorization shown here,
Chapter 1 cannot depend on anything in chapters that follow
it, and it must be written before any following chapters can
be. Factorizing the joint distribution in a different way will
admit other story and process structures. If the structure im-
posed by the factorization is “correct”, and if the individual

distributions can all be modeled tractably, the result should
be “good” stories.

For the case of microfiction stories, much of the hierar-
chy collapses, of course, and the most complete factorization
comes from an application of the chain rule1:

p(S) = p(w1, w2, . . . , wn) =

p(wi1)p(wi2 |wi1) . . . p(win |wi1 , wi2 , . . . , win−1
)

where ij ∈ [1, n] and ij 6= ik unless j = k, so that this
represents a general version of the chain rule that admits any
possible permutation of word order dependency.

Alternatively, we can consider a joint conditioned on
some input E = e1, e2, . . . , em, where ei ∈ W :

p(S|E) = p(w1, w2, . . . , wn|e1, e2, . . . , em)

In what follows, we refer to a particular factorization of
the joint as a story format and to the individual distributions
(factors) as story primitives. For now, we have restricted the
MICROS system to implementing a single format with six
primitives, as follows:

p(S|E) = p(w1, w2, w3, w4, w5, w6|e1) =
p(w5|e1)p(w6|w5, e1)p(w4|w5, w6, e1)∗

p(w1|w4, w5, w6, e1)p(w2|w1, w4, w5, w6, e1)∗
p(w3|w1, w2, w4, w5, w6, e1)

which, given additional independence assumptions that
we’ve made, can be simplified to this:

p(w1, w2, w3, w4, w5, w6|e1) =
p(w5|e1)p(w6|w5)p(w4|w5)∗
p(w1|w5, w6)p(w2|w1, w5, w6)∗

p(w3|w1, w2, w5, w6)

The MICROS System
The operationalization of the format we selected for our sys-
tem’s stories consists of three background nouns (which we
call punchies) that set the stage for the story and an arti-
cle/subject/verb phrase that represents the action in the story.
That is, w1, w2, w3 are the punchies, w4 is an article, w5 is
the subject, and w6 is the verb. A simple example story in
this format is, “Gun. Mask. Note. The teller screams.”

Our system takes as input E a subject noun e1 and returns
a story S = w1, w2, w3, w4, w5, w6 in the format described
above. Rewriting that format now using the word types just
discussed gives

p(punchy1, punchy2, punchy3,

article, subject, verb|noun) =
p(subject|noun)p(verb|subject)∗

p(article|subject)p(punchy1|subject, verb)∗
p(punchy2|punchy1, subject, verb)∗
p(punchy3|punchy1, punchy2, subject, verb)

1other less complete factorizations can, of
course, also be considered, e.g., p(S) =
p(wi1 , . . . , wibn/2c)p(widn/2e , . . . , win |wi1 , . . . , wibn/2c).

Figure 1: MICROS’ six-word story generator.

These six primitive distributions are built by a generator
module that then samples them to return an initial story. That
story is scored with an evaluator module and passed to a re-
finer module that searches for higher scoring stories by re-
sampling (some of) the primitive distributions. The refiner’s
output is the final six-word story artifact.

Generator
At a high level, the generator uses the input noun as the sub-
ject and then chooses a verb using the given subject. It then
chooses three punchies using the subject and verb. Finally,
the article is chosen, the verb is conjugated to the present
tense, and the completed story is returned from the genera-
tor. Figure 1 is a diagram of this process, and the following
sections detail how each primitive is constructed.

Subject and Article Modeling The subject distribution
p(subject|noun) is trivial to construct as all of the proba-
bility mass is placed on the input noun e1. Sampling this
distribution will therefore always return e1 as the subject.

The article distribution p(article|subject) is also simple
to construct. MICROS assigns a probability of 0.5 to “the”
and 0.5 to the appropriate form of “a/an” based on the cho-
sen noun.

Verb and Punchy Modeling In order to capture the
appropriate semantic relationships, the verb distribution
p(verb|subject) and the three punchy distributions (each
conditioned on the subject, the verb, and any preceding
punchies) are computed using various resources that relate
words to one another. The method by which these primitive
distributions are computed is similar, so we will describe
them in parallel.

Both primitive generators start by collecting a set of words
related to the words on which the primitive is conditioned.

This is represented in Figure 1 with the inputs to the genera-
tors (the Noun for the verb generator, and the Noun and Verb
for the punchy generator) being first fed into different mod-
ules that find related words. Two of these modules, labeled
“DM” and “CN”, query APIs for words that are related to the
input words in different ways. The punchy generator has an
additional related-words module called “Custom” that will
be described below.

The module labeled “CN” queries ConceptNet (Speer and
Havasi 2012), which stores English terms and their relation-
ships to one another. ConceptNet defines 28 different rela-
tions that represent the ways that terms can be related. MI-
CROS’ verb generator draws on the “CapableOf”, “Used-
For”, and “Desires” relations while the punchy generator
gathers candidate words from the “HasSubevent”, “Causes”,
“HasPrerequisite”, and “UsedFor” relations.

ConceptNet is populated from a variety of sources in-
cluding semantic knowledge bases, dictionaries, and crowd-
sourced data. Probably due to these disparate sources, the
terms and relations may be populated sparsely, are not com-
prehensive, may include duplicates, and sometimes reflect
obscure senses of words. For example, although the word
“actor” has a highly populated “CapableOf” relation, the re-
lated terms include both useful phrases like “act in a play”
and “star in a movie” and oddities such as “cake on makeup”
and “milk a part”.

Our generator also draws from a knowledge base called
Datamuse 2, represented by the “DM” module in Figure 1.
Datamuse takes a word as input and returns a list of words
that match certain constraints. MICROS uses the constraint
called “triggers”, which relates a word to other words that
are statistically likely to be seen in the same literary con-
text. For example, words that are triggered by “baby” in-
clude “boomer” and “doll”.

This example also reveals a limitation with DataMuse.
“Boomer” and “doll” are both words that are statistically
likely to appear with “baby” in text, but they are semanti-
cally related to “baby” in radically different ways.

The final source of word relationships MICROS uses to
build primitive distributions is word2vec (Mikolov et al.
2013). Word2vec is a natural language processing model
that embeds words in a vector space. Using a large cor-
pus, word2vec constructs a high-dimensional space in which
each word in the corpus is represented as a vector from the
origin to an associated point.

It has been demonstrated that the geometry of this vector
space can represent semantic relationships between words.
For example, the vector “king” minus the vector “man” plus
the vector “woman” results in the vector “queen”. The abil-
ity to perform vector operations on words is powerful, and
the full potential of these types of approaches is still being
explored.

MICROS uses word2vec to create a custom relation
which we call “caused by”. This relation (represented in
Figure 1 by the “Custom” module) is formed by calculat-
ing the vector between example word pairs such as “eat,
hunger”, “drink, thirst”, and “scream, fear.” The vectors be-

2http://www.datamuse.com/api/

tween the two words in each pair are averaged together to
create a relation vector. That relation vector is added to the
vector of an input word, yielding a point in the word2vec
space. Word vectors that are close to that point are likely to
be “caused by” the input word. For example, for the input
verb “help” our “caused by” custom relation returns words
such as “humanitarian”, “concern”, and “compassion”.

The outputs of these modules (DM and CN for the verb
generator and DM, CN, and Custom for the punchy gener-
ator) are collected as a list of related words, which we will
refer to as “choices”. The choices are then filtered to include
only single words of the correct part of speech, labeled in
Figure 1 as “Verb Choices” and “Noun Choices”, respec-
tively. This is accomplished by querying WordNet, a large
lexical database (Miller 1995).

WordNet stores words in semantically related groups
called synsets that contain properties such as part of speech.
MICROS also uses WordNet to discard duplicate choices
that are not identical strings by taking advantage of a func-
tion called “morphy” that reduces words to their base forms,
e.g. singular nouns or infinitive verbs.

Once the choices are stripped down to unique, single
words of the correct part of speech, MICROS employs
word2vec to score them by their similarity to words previ-
ously sampled from any primitives further up the hierarchy.
Thus, the verb generator scores its choices compared to the
noun, and the punchy generator scores its choices compared
to the noun and the verb. Each choice word is embedded as
a word2vec vector, and the cosine similarities between that
vector and the vector representation of each of the preced-
ing primitive words are summed to give a score. The lists
of choices are sorted according to these scores, in ascending
order, and are labeled “W2V Order” in Figure 1.

Choices that are very dissimilar from the input words are
likely to be unrelated or incoherent, so the bottom fifth of
the ordered list is discarded. As an example, when punchy
choices are generated for the subject/verb pair “cowboy
rides” the most similar words include “outlaw”, “bandit”,
and “desperado”, and the least similar words include “parks”
and “symposium”.

After the most dissimilar words are discarded, the gener-
ator builds the distribution p(wi| . . .) by assigning a prob-
ability to each word in the choice list, proportional to its
word2vec similarity score. The generator then samples from
this distribution and inserts the chosen word into the story
(represented by a dice icon in Figure 1).

As seen in Figure 1, the output of the verb generator is
both used as input to the punchy generator and fed into
a conjugator module. Conjugation, article agreement, and
later pluralization are all accomplished using the pattern.en
Python library3. This library uses pattern matching rules and
exceptions to do simple grammar tasks and is much faster
than a more comprehensive dictionary-style lookup.

The punchy generator takes the verb and noun as input
and computes the three punchy primitives, which differ only
in that choice words that have been sampled from previous
draws from a punchy primitive are assigned a probability of

3https://www.clips.uantwerpen.be/pages/pattern-en

0 so that punchies cannot be repeated. The punchies sam-
pled from the three punchy primitives are slotted into the
story as the first three words, followed by the article, input
noun, and conjugated verb. This forms the six-word story
output by the generator.

Resampling After MICROS generates p(S|E) it can se-
lectively resample primitive distributions in order to create
a new story. This is done by “locking” certain words and
resampling the remaining words, which mutates the original
story. For example, to change the story “Humanity. Adven-
ture. Rider. The wizard quests.”, all of the words except
“adventure” could be locked so only the punchy primitive
p(punchy2|‘humanity’, ‘wizard’, ‘quest’) would be resam-
pled. The lockable primitives are represented in Figure 1 by
a padlock icon.

Before sampling each primitive distribution, the generator
first checks to see if that word is locked. If it is, then the
locked word remainswi rather than being (re-)sampled from
the corresponding primitive distribution.

The factorization hierarchy described above affects how
primitives are generated with locks. If a primitive higher in
the hierarchy is unlocked and resampled, all locks for prim-
itives lower than it will be ignored and the system will build
new distributions for those primitives and sample from them.
Otherwise, the system would keep punchies that are unre-
lated to the current verb, for example, violating the semantic
relationship between the primitives. The generator’s ability
to mutate stories one primitive at a time will become relevant
in the discussion of refinement below.

Caching Populating each primitive distribution with re-
lated words from ConceptNet and Datamuse requires net-
work API calls that are slow to execute. In order to min-
imize API requests, the generator caches distributions for
later reuse when the story is mutated by the refiner module.

The verb primitive distribution p(verb|subject) is built
once and cached. Because the subject never changes during
MICROS’ execution, this cached distribution can be resam-
pled for free as many times as necessary. Punchy primitive
distributions are cached on a per-verb basis and may or may
not be resampled during the execution of the refiner.

Although building each distribution takes only a few sec-
onds, this process may occur many times as verb primitives
are unlocked and new punchy primitives are built. Our test-
ing showed that MICROS’ caching scheme saves an average
of 100 seconds over the system’s 10 minute runtime.

Exploration
The preceding section described how the generator builds a
distribution p(S|E) from which to sample a story S. Once
the first story for a given input has been sampled, MICROS
evaluates it and refines it to create progressively better sto-
ries by modifying the primitive distributions. This section
details the operation of the evaluator and refiner modules
used to complete this process.

Evaluation MICROS’ evaluator is based on skip-thought
vectors (Kiros et al. 2015), which are mappings of natural
language sentences to a high-dimensional vector space, with

Figure 2: Example of skip-thought scores for progressively
more coherent six-word stories. The underline indicates
which word changed as the story mutates one word at a time
from “Seahorse candle box a leaf squats” to “Clouds color
breeze a leaf falls”.

semantically similar sentences mapping to similar vectors.
In this way, skip-thoughts can be thought of as a sentence-
level version of word2vec: while vectors in word2vec repre-
sent words, skip-thought vectors represent sentences.

Each time the evaluator receives a story, it first encodes it
as a vector using a skip-thought encoder that was pre-trained
on a large corpus of novels. It then projects this vector onto
a two-dimensional plane defined by two axis vectors.

These axis vectors are calculated by subtracting the vec-
tor representation of a “bad” six-word story from the vec-
tors of two “good” stories, all of which are hardcoded and
in the same format as the generated stories. The bad vector,
which forms the origin of the two-dimensional plane, is a
nonsensical collection of six words while the good vectors
are human-written, cohesive stories. In our system, the bad
story is “Plunger. Volcano. Paper. The mug switches.” and
the two good stories are “Bridge. Standoff. Gunshot. The
revolution begins.” and “Eternity. Loneliness. Homecom-
ing. The tail wags.”

By defining the axes in this way, a story that projects to
a positive coordinate will be more coherent than a story that
projects to a negative coordinate. Our initial experiments
showed that these axes give scores that reflect coherence rea-
sonably well. Figure 2 shows the results of an experiment
in which we took a randomly generated story and changed
one word at a time to make it increasingly coherent. As can
be seen, after each word change (increasing coherence), the
resulting story maps to a vector with increasingly positive
coordinates on the plane.

MICROS’ evaluator scores each story using Manhattan
distance from the origin point on the plane, yielding more
positive scores for more coherent stories.

Figure 3: MICROS’ refinement process.

Refinement Using the generator and evaluator described
above, our system refines stories through a branch-and-
bound style search. Figure 3 shows how this process works.

At its most basic level, the refiner takes generated stories
and places them in a priority queue according to their score.
The queue is initially populated with the first generated story
for the given input. At each iteration, the system dequeues
the story with highest priority, saves it if it has the highest
score seen so far, and mutates it several times by locking all
but one of the story’s words and resampling p(S|E).

The resampled “children” stories are then scored and
placed back into the queue to prepare for the next search
iteration. By repeating this process for many iterations, the
system searches for stories with higher scores. This cycle is
represented in Figure 3 by the loop from the queue, through
the generator and evaluator, and back into the queue.

This refinement method can unfairly favor some stories
over others. Because a format’s primitives exist in a hierar-
chy, changing the verb primitive of a story causes all of the
punchy primitives to be regenerated because they are lower
in the hierarchy. If MICROS mutates the verb of a story,
the resulting child will differ from its parent by its three
punchies and its verb. Because the child has changed so dra-
matically, it is likely to be less coherent and thus score lower
than its parent, which may have already gone through many
refinement loops with the same verb. If stories with newly-
generated verbs are forced to compete against stories with
already-refined verbs, they will likely continually be given
low priority and never reach the front of the queue.

To mitigate this unfairness, the system speciates stories
based on their verb, maintaining several species during the
refinement process. A species maintains its own priority
queue and tracks the highest scoring story it has seen so
far. At each iteration, every species dequeues the story at

the front of its queue and mutates it to create a new group of
children. MICROS then scores each child story and inserts
it into the species queue that matches its verb, creating a new
species if the verb has not yet been seen.

Because transitive verbs do not fit grammatically into our
format, if a story is generated with a transitive verb its
species is marked as “transitive” and is never dequeued or
iterated upon. To determine a verb’s transitivity, we query
the Oxford Dictionary API4. This API allows only a lim-
ited number of requests per month, but because our species
each represent a unique verb, we only need to query the API
once per species. Although they will never be iterated upon,
preserving transitive verb species allows MICROS to avoid
redundant API calls.

At the end of each iteration, if a species has not improved
its maximum score for a preset number of iterations, it is
considered stagnant and will no longer be dequeued to pro-
duce children. Once all species are stagnant, MICROS per-
forms a weighted choice of the top scoring stories of every
intransitive species and returns it as the output of the refine-
ment process.

Our system performs this final randomization rather than
automatically returning the highest scoring story overall be-
cause the skip-thought evaluator can favor some noun/verb
combinations, consistently assigning them high scores run
after run. Despite this favoritism, the stories in the top-
scoring species are often of comparable quality. By perform-
ing a weighted random choice, our system gives less-favored
combinations a chance to be chosen as output.

The selected story is prepared for final output by plural-
izing the punchies. To accomplish this, MICROS uses the
Oxford Dictionary API to check whether the punchies are
mass or proper nouns. If they are not, they are pluralized
with pattern.en. Once that is complete, the story is output as
the final artifact.

Results & Analysis
Six-word stories, like all art, can only be judged subjectively.
Each reader will come to their own conclusion about the
quality of a given story, and that estimation may change over
time. Thus, our discussion of our system’s results will natu-
rally be biased based on our own tastes. Such bias cannot be
removed, so instead we will briefly explain what we think
makes a good six-word story.

Our first criteria is coherence—does the story make logi-
cal sense? Next, we consider impact—does the story elicit
an emotional response? Finally, we consider a story’s sub-
tlety. The best six-word stories tell their stories without ex-
plicitly stating the story’s topic, mood, or even its central
action. The words in a subtle six-word story all semanti-
cally “point” to a story but either do not tell it explicitly or
tell only a portion of it. This allows the reader’s mind to fill
in the gaps, resulting in a deeper and more interesting story.

With these criteria in mind, we turn to an analysis of our
system’s results and performance. All examples given in
the following subsections were created by MICROS. See the
Appendix for more results.

4https://developer.oxforddictionaries.com/

Successes
Our system generally succeeds at coherence; the majority
of its artifacts fulfill this criteria and evoke at least a vague
narrative. The examples “Schools. Institutes. Honors. A
bachelor graduates.” and “Redemption. Crimes. Chaos. A
policeman escapes.” typify the coherence of our system’s ar-
tifacts; most of the words are at least loosely associated and
paint a hazy picture in the mind of the reader. A story’s skip-
thought score tends to increase as its coherence improves.
As a result, the evaluator favors and selects coherent stories.

Our system’s artifacts only rarely have an impact on the
reader. In the majority of cases, their coherence does not
serve to tell an interesting story. Occasionally, an artifact’s
elements will combine to portray a fairly interesting narra-
tive, but even those stories are still vague or slightly non-
sensical. “Injustice. Ambitions. Minnesota. A farmer emi-
grates.” and “Cowardice. Injustice. Motive. A hero stands.”
tell slightly interesting stories, and “Depravity. Misfortune.
Hysteria. A clown laughs.” succeeds in eliciting fear or dark
humor in the reader. MICROS’ stories are impactful when
they are highly coherent and, by chance, the generated prim-
itives are emotionally charged words.

Shortcomings
Although the majority of MICROS’ artifacts are coherent,
some are not due to the independence assumptions made by
the format (factorization). Although this can yield nouns and
verbs that don’t make sense together, it occasionally results
in comical or punny combinations such as “A wizard pot-
ters.” or “A mechanic brakes”. However, these punny sto-
ries often lack coherence because the generator can’t choose
punchies to match untraditional subject/verb pairs, such as
“Immortality. Berserkers. Adventures. A wizard potters.”

Our reliance on WordNet to identify verbs also causes
problems because it contains every conceivable sense of a
word, even archaic or obscure ones. For example, one of
its synsets for the word “harlequin” lists it as a verb (which
is defined as “[to] variegate with spots or marks”). Thus, if
“harlequin” was returned from a relation, WordNet would
identify it as a verb, even though using it as one in a story
would likely confuse the reader.

WordNet is fast but clearly not the best way to determine
the parts of speech in a phrase. However, even if a sophis-
ticated parser—such as the Stanford Parser (De Marneffe,
MacCartney, and Manning 2006)—was used to identify the
relationship’s parts of speech more accurately, the words’
meanings would still be unknown. The example “Seclusion.
Pregnancy. Love. A baby sleeps.” demonstrates this. Even
though the three punchies are all individually related to ei-
ther “baby” or “sleep”, the story makes no sense because the
system has no way of knowing how they are related or how
they should be used.

ConceptNet fails to provide such deep semantic relation-
ships because its relations for each word are not separated
by sense. A richer semantic database could represent rela-
tionships between specific word senses, instead of conflating
all those senses into single terms. This would allow deeper
understanding of the relationships between words while re-
taining ConceptNet’s easy-to-search structure of relations.

The most difficult criteria for a six-word story to fulfill is
subtlety. Even human writers struggle to write good stories
that are just subtle enough to be interesting without being
vague or illogical. Our system cannot compete at this level.
Its most impactful stories still consist of words that are all
directly related to the noun or verb.

MICROS’ method of constructing primitives precludes it
from achieving subtlety; each primitive is generated by se-
lecting words that are directly related to parent words. If in-
stead primitives were generated such that they all related to a
separate concept that was not itself a primitive, the resulting
story could perhaps approach that latent concept subtly.

Finally, MICROS makes occasional pluralization or con-
jugation mistakes such as in the story “Destructivenesses.
Aristotles. Questions. A philosopher thinks.” These mis-
takes are not unexpected and are due to the limitations of the
pattern.en Python library. Although fast, pattern.en is lim-
ited to pattern matching and does not explicitly use the rules
of English grammar. However, it is a good example of how
such rules can be simplified to work in most cases. “Good
enough” solutions like pattern.en are useful to creative com-
puter systems where generation speed is often more impor-
tant than correctness.

Community Evaluation
Evaluation by a community is the ultimate metric of arti-
facts’ value, and we are pleased to report that MICROS per-
formed better than some human writers in a real world en-
vironment. In order to test the results of our system in the
wild, we submitted one MICROS-generated story a day to
the /r/sixwordstories community on Reddit for a week. Each
submitted story was freshly generated by MICROS on the
day of submission and posted without curation.

Reddit is a social media platform that allows users to “up-
vote” content they like and “downvote” content they don’t.
The /r/sixwordstories subreddit has over 29,000 subscribers
and one-to-two dozen submissions daily. Importantly, the
stories posted on the subreddit are written by average users,
who may be amateur writers at best. The typical best post
on any given day will have 40–100 points and posts with less
than 6 points are common. (A post’s points are basically its
upvotes minus its downvotes, to a minimum of 0.)

Of the seven stories we posted, two have 0 points, three
received no votes, and two have positive scores: 5 and 7, re-
spectively. Although those numbers may seem low, they do
outscore other posts (presumably) written by humans. The
story “Companionship. Youths. Fulfillment. The teacher
cares.” scored 5 points, which was higher than 5 of the 10
other stories posted that day. “Poverty. Retribution. Heroes.
A villain acts.” scored 7 points, outscoring 5 of the 12 other
posts that day. These results are encouraging and show that
MICROS can compete in the six-word story community, at
least among amateur writers.

Conclusion & Future Work
MICROS represents an initial foray into the creation of mi-
crofiction using a novel HBPL-based approach. Although
its results are often bland and never rise to the level of truly

great writing, MICROS’ approach to creative computation
could serve as both an example and jumping off point for
future research in computational creativity.

Our HBPL-based approach to formally defining the for-
mat of a creative artifact provides a convenient way to de-
scribe stories and poetry. It is more descriptive, for ex-
ample, to define MICROS’ six-word story format as being
composed of three punchy primitives followed by an article
primitive, subject primitive, and verb primitive than to sim-
ply list the parts of speech.

This approach of intentionally choosing factorizations of
p(S) to give a desired structure to and relationship between
the different parts of a creative artifact could easily be ap-
plied in other story or poetry generation contexts to provide
the system with information about how each word or phrase
of the piece should relate to the others.

Conversely, MICROS could incorporate a module that
programatically extracts factorizations of p(S) from human-
written text. A system that can identify primitives and
learn the semantic relationships between them would allow
a creative system to generate more varied and novel arti-
facts while retaining the semantic richness of the underly-
ing structure. For example, MICROS could incorporate el-
ements of the system described by (Toivanen et al. 2012)
to operate on a corpus of existing stories, analyze the se-
mantic relationships between the words that comprise them,
and sample new stories from the learned format instead of
replacing words into stories directly. This would allow the
replacement words to not only relate to a topic but also to
the other words in the story as dictated by the format.

More sophisticated and nuanced primitives, whether de-
signed by researchers or extracted from existing text, could
allow MICROS to generate six-word stories with high emo-
tional impact. The words in the famous “baby shoes” story
all relate to one another in a deep semantic way, and encap-
sulating those semantics into a factorization of p(S) would
enable the system to generate equally compelling stories.

Although MICROS currently only operates in the domain
of writing, our approach is powerful because it is domain
agnostic. The input E in p(S|E) does not necessarily need
to match the domain of S. Similar to how a human mind can
be inspired to write a poem by a beautiful view, future work
could allow MICROS to create six-word stories by sampling
from a distribution conditioned on music or images. Design-
ing factors of p(S|E) that connect disparate domains could
be an interesting avenue for future research.

By building systems that harness the rich semantic con-
nections between inspirational and artistic domains as well
as the equally-rich connections between the individual ele-
ments that comprise a creative artifact, we can further ap-
proximate human creativity. The MICROS system we have
presented in this paper represents the first steps toward that
goal in the domain of six-word stories, and the descriptive
formalism we have adopted provides guidance for the de-
signers of future creative systems by framing computational
creativity in a standard formal structure.

Appendix
This appendix contains various six-word story artifacts cre-
ated with MICROS. These stories were generated sequen-
tially and are presented without curation.

Mirages. Injustice. Adventures. A ninja revenges.
Immortality. Berserkers. Adventures. A wizard potters.
Devotion. Honors. Alphas. An undergraduate majors.
Vocations. Thoughts. Schools. A philosopher teaches.

Vengeance. Hordes. Injustice. A soldier battles.
Necessities. Wellbeings. Achievements. A student begins.

Jealousy. Children. Immortality. A baby rattles.
Parties. Retribution. Parliaments. A manager resigns.

Injustice. Foes. Despair. A farmer rises.
Humanity. Devotion. Retribution. A hero stands.

Guardians. Followups. Indifference. A reporter replies.
Injustice. Acting. Regimes. A woman falls.

Devotion. Charlottes. Seconds. A queen plays.
Prisons. Courts. Justices. The lawyer comments.

Bloodlust. Diseases. Fulfillments. A surgeon parts.
Forgiveness. Weekends. Retaliation. A reporter replies.

Terrors. Actresses. Love. An actor shows.
Journeys. Terrors. Torment. A horse travels.

Personalities. Meltdowns. Desires. A plumber leaks.
Cavalries. Hardship. Regiments. A soldier drives.
Loneliness. Troupes. Champions. A dancer wells.

Families. Companionship. Fasts. A dog eats.
Terrors. Aces. Adventures. A monster cards.
Families. Dyings. Reigns. The king peoples.

Consciousnesses. Reigns. Sweden. A king groups.
Tournaments. Substitutes. Feuds. A wrestler matches.

Parties. Votes. Mates. A senator resigns.
Failure. Motives. Generations. A computer powers.

Talents. Partners. Concerns. A celebrity letters.
Destinies. Afterlives. Hysteria. A monster appears.

Loneliness. Affection. Misfortune. A student lunches.
Loyalty. Demoralizations. Souls. A band disbands.

Epics. Folks. Impunity. A poet rhymes.
Affection. Grandsons. Perfection. A politician plays.
Soccer. Appearances. Feuds. A wrestler competes.

Killings. Duties. Crimes. A policeman soldiers.
Elation. Wingers. Detriment. A writer rights.

Companionship. Injustice. Chases. A woman hunts.
Sights. Evil. Samurais. The ninja eyes.

Humanity. Redemption. Depredations. A hunter preys.
Rebirth. Loneliness. Adventures. A hobo bums.
Abhorrence. Wraiths. Revenge. A pirate bilges.

Academies. Graduation. Guys. A professor smarts.
Humanity. Causes. Necessities. A hero stands.

Contentment. Empresses. Sorrow. A queen consorts.
Weights. Collisions. Failure. A mechanic brakes.

Riders. Mankind. Desires. A horse races.
Hinds. Desires. Destinies. A hunter tails.

Adventures. Wells. Mafias. A detective gangs.
Humanity. Devotion. Templars. A knight duels.

Companionship. Bravery. Strikes. A coach plays.
Poverty. Everlastings. Retribution. A woman acts.
Fates. Tragedies. Adventures. A ninja revenges.

Soccers. Leagues. Childishnesses. A wrestler teams.

References
Binsted, K., and Ritchie, G. 1994. A symbolic description
of punning riddles and its computer implementation. arXiv
preprint cmp-lg/9406021.
Bodily, P.; Bay, B.; and Ventura, D. 2017. Computational
creativity via human-level concept learning. In Proceedings
of the 8th International Conference on Computational Cre-
ativity, 57–64.
Colton, S.; Goodwin, J.; and Veale, T. 2012. Full-FACE
Poetry Generation. In Proceedings of the 3rd International
Conference on Computational Creativity, 95–102.
De Marneffe, M.-C.; MacCartney, B.; and Manning, C. D.
2006. Generating typed dependency parses from phrase
structure parses. In Proceedings of the International Con-
ference on Language Resources and Evaluation, volume 6,
449–454.
Kiros, R.; Zhu, Y.; Salakhutdinov, R. R.; Zemel, R.; Urta-
sun, R.; Torralba, A.; and Fidler, S. 2015. Skip-thought
vectors. In Advances in Neural Information Processing Sys-
tems, 3294–3302.
Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B.
2015. Human-level concept learning through probabilistic
program induction. Science 350(6266):1332–1338.
León, C., and Gervás, P. 2014. Creativity in story generation
from the ground up: Non-deterministic simulation driven by
narrative. In Proceedings of the 5th International Confer-
ence on Computational Creativity, 201–210.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013.
Efficient estimation of word representations in vector space.
arXiv abs/1301.3781.
Miller, G. A. 1995. WordNet: A lexical database for En-
glish. Communications of the Association for Computing
Machinery 38(11):39–41.
Montfort, N.; Pérez y Pérez, R.; Harrell, D. F.; and Cam-
pana, A. 2013. Slant: A blackboard system to generate
plot, figuration, and narrative discourse aspects of stories.
In Proceedings of the 4th International Conference on Com-
putational Creativity, 168–175.
Oliviero, S., and Carlo, S. 2003. Hahacronym: Humorous
agents for humorous acronyms.
Pérez y Pérez, R., and Sharples, M. 2001. MEXICA:
A computer model of a cognitive account of creative writ-
ing. Journal of Experimental & Theoretical Artificial Intel-
ligence 13(2):119–139.
Riedl, M. O., and Young, R. M. 2006. Story planning as ex-
ploratory creativity: Techniques for expanding the narrative
search space. New Generation Computing 24(3):303–323.
Speer, R., and Havasi, C. 2012. Representing general re-
lational knowledge in ConceptNet 5. In Proceedings of the
International Conference on Language Resources and Eval-
uation, 3679–3686.
Toivanen, J.; Toivonen, H.; Valitutti, A.; Gross, O.; et al.
2012. Corpus-based generation of content and form in po-
etry. In Proceedings of the 3rd International Conference on
Computational Creativity, 175–179.

