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Abstract

This paper details an expert cocktail generation system.
After using expert knowledge to break down cocktails
into eight categories, the system generates cocktails
from a particular category using a context-free stochas-
tic grammar. These cocktails were then evaluated by
human participants in a research setting. Participants
evaluated the cocktails on the basis of quality, novelty
and typicality to check the creative potential of the gen-
erator’s output.

Introduction

Some domains, such as music and visual art, have been
studied in depth by the computational creativity and pro-
cedural content generation (PCG) communities. Yet other
domains, such as preparing food, have not. Part of this is
that food preparation is a complex task, not only in dealing
with which particular combinations of ingredients should be
used, but also how those ingredients should be prepared and
transformed into a finished product. Even simple domains,
such as chocolate chip cookies, can have many ingredient
and preparation step permutations (Kenji López-Alt 2013).
However, there is a strong interest in artificial chefs, servers
and bartenders, as evidenced by the steady rise of restau-
rants featuring robotic servers and bartenders (Sloan 2014;
Kross et al. 1976) as well as home meal serving and bartend-
ing robots (Glass 2014; Monsieur, LLC 2015). The next step
for this niche mechanization of the food and beverage indus-
try is to implement an AI system that can create new dishes
or drinks to prepare for patrons.

A factor analysis on the Creative Achievement Question-
naire (CAQ), a creativity assessment test, revealed three cat-
egories of creative achievement: Expressive (Visual Arts,
Writing, Humor), Performance (Dance, Drama, Music),
and Scientific (Invention, Scientific, Culinary). This result
shows that culinary creativity falls into a similar domain as
scientific and innovative creativity (Carson, Peterson, and
Higgins 2005). This implies that techniques used in creative
recipe generators have applications in problem solving and
research direction. Therefore, the development of creative
recipe generation and other culinary arts may have applica-
tions for more general-purpose problem solving AI.

We can break recipes into two parts: the static ingredi-
ent list and the dynamic preparation instructions. The in-

gredient list is composed of the ingredients that the recipe
will use; the preparation instructions are how those ingre-
dients are transformed into a final dish. However, there are
a very large number of potential ingredients that could go
into any dish, and even more ways those ingredients can be
combined to become a final product. Therefore, work with
smaller, less complex domains is needed to gain insight into
the problem of an artificial chef. One such useful domain
is mixed drinks, as the potential ingredient space for cock-
tails is smaller than that of culinary dishes and the mixing
instructions are far simpler, while still retaining a lot of the
interesting complexity. As such, we developed an expert
system for cocktail generation and evaluated the artifacts it
generated to start understanding the nature of computational
cooking.

Related Work

PIERRE (Morris et al. 2012) uses a genetic algorithm to
generate crock-pot recipes from a corpus gathered from var-
ious websites. The fitness function is based around novelty,
trying to maximize the number of rare n-grams in a recipe.
Recipes have also gotten attention from case-based AI plan-
ners, such as CHEF (Hammond 1986). Both these genera-
tors have a high chance to output a ‘bad’ recipe. PIERRE
makes no claims about the quality of its output, and CHEF
needs to learn from bad examples in order to create good
ones. A similar branch of research to this is JULIA (Hinrichs
1992), which uses case-based design techniques such as case
adaptation to determine how to best design and present a
meal. Our work does not need to learn from ‘bad’ examples
and attempts to always produce a believable drink.

Pinel and Varshney have worked on a recipe generator
(Pinel and Varshney 2014), which unlike PIERRE or CHEF
does not deal with a particular style or type of cooking. Us-
ing a cognitive model of creativity and a large knowledge
base built from scraping recipe wikis, they created a mixed
initiative generator that produces ingredient lists and rough
steps to completing a recipe. This work is part of a larger
system by Pinel, Varshney and Bhattacharjya (Pinel, Varsh-
ney, and Bhattacharjya 2015) that generates recipes by min-
ing data from the Wikia recipe repository and Wikipedia to
build an extensive knowledge base of recipes. From there,
the system uses a mixed initiative approach, in which a new
recipe is generated with user-selected categories. Varshney
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et al. (Varshney et al. 2013) discuss many of the difficulties
in working with recipe generation, emphasizing that how
something tastes is actually the result of all five classical
senses working together, plus several psychological, neuro-
logical and social phenomena.

Cocktail generation has been done, although not on any
formal level. The Mixilator (Haigh 2004) is an online cock-
tail generator based on the writing of mixologist David Em-
bury. The Mixilator picks a random ingredient from each of
the three categories defined by Embury, and makes a prede-
fined cocktail from it, with mixing instructions hardcoded.
Although it uses an impressive amount of ingredients, the
generator is highly constrained—Embury believed all drinks
should contain at least three ingredients, so the Mixilator
can never create a gin and tonic, for example. The Mixilator
also has no knowledge about how combinations of ingredi-
ents function. It assumes that, as long as it picks from each
correct category, the resultant cocktail will be good. Yet,
as the authors point out, no considerations for quality went
into its development. While investigating the Mixilator in
writing this paper, ingredient combinations like lime sher-
bet and maple syrup were suggested for cocktails. Another
drink called for “2 drops of liqueur” without ever specifying
which flavor of liqueur. This makes the Mixilator’s output
appear more whimsical than structured cocktail generation.
While related investigations like the Mixilator are hobbyist
projects, and some large scale recipe generators give a pass-
ing glance to the cocktail domain, we aim to be the first to
take a domain sensitive, computational creativity approach
to cocktail generation, and maintain a critical eye towards
drink quality and expressive potential.

Mixologists have been inventing new drinks in popular
literature. One of the first books on mixology as an art,
The Fine Art of Mixing Drinks(Embury 1953), by David
Embury, details a basic ratio to follow for cocktails, as
well as several ingredient categories to use. More re-
cently, DIY Cocktails (Simmons 2011), details several ba-
sic ratios for a wide variety of drinks. However, mixology
books commonly focus on presentation or are just a com-
piled list of cocktail recipes(such as (Regan 2003; Joseph
2012)). Sadly, mixologist blogs ((Bovis 2015; English 2015;
Jamieson 2015), for example) also tend to focus on recipe
compilation or product review rather than cocktail theory.

Computational creativity is a vibrant field, with a plethora
of definitions, theories and evaluation methods for creative-
ness in computer programs. Much modern work stems from
three techniques (Boden 1998) and their formalisms(Wig-
gins 2006) for establishing creativity in AI: by producing
novel combinations of familiar ideas, by exploring potential
conceptual spaces or by making transformations that allow
the generation of previously impossible ideas. These relate
to creativity in the process of artifact generation. The other
side of the coin refers to creativity as a quality in gener-
ated artifacts (e.g. the difference between “this painting was
made by a creative person” vs. “this painting is creative”).
In these terms, metrics for evaluating the creativity of gen-
erated artifacts have been proposed (such as (Pease, Winter-
stein, and Colton 2001)), and we evaluate our cocktails on
the categories of quality, novelty and typicality as defined in

(Ritchie 2007).

Expert System Constraints

The cocktail generation system defined here is derived from
the rules and opinions of two primary texts: The Fine Art of
Mixing Drinks (Embury 1953) and DIY Cocktails (Simmons
2011). Both texts treat cocktail creation as a process, and
outline several basic rules to follow in the terms of ratios
and ingredient categories. In addition, they provide mixing
instructions for various categories.

Multiple source texts were used to try to minimize the
amount of author bias in the system. The Fine Art of Mixing
Drinks is an older text. Several common modern cocktails
are impossible to create by following its rules alone, and to-
day there are far more popular cocktail ingredients than there
were in Embury’s time. By augmenting Embury’s rules with
a more modern text, the generator can be more expressive
and better reflect modern cocktail design aesthetics.

In addition, DIY Cocktails (Simmons 2011) gives a theo-
retical basis for which ingredients work well together. This
helps the cocktail generator avoid various pitfalls in ingre-
dient choice (such as combining a citric acid and a cream,
which will curdle the cream), and also be smarter in select-
ing which ingredients to use to create a cocktail.

Finally, there were some constraints set at the discretion
of the authors. Shooters and shots are not considered cock-
tails, and are ignored. In addition, the generator does not use
overproof spirits (those that contain more alcohol than proof
spirit), as they can be difficult to acquire.

Cocktail Properties

We divide a recipe into two parts: the mixing instruc-
tions (dynamic instruction) and the ingredient list (static ele-
ments). Cocktail mixing instructions are either derived from
the ingredients used in the cocktail or previously decided
steps in the mixing process. Lighter ingredients (juices and
spirits) only require stirring; heavier ingredients (syrups and
purees) may require shaking or rolling in a cocktail shaker.
There are a few generally uncommon preparation instruc-
tions that are more common to cocktails, such as muddling
(mashing the ingredient in the bottom of the glass). As it
makes no sense to muddle an ingredient in a shaker for mix-
ing and/or rolling (the straining head of the shaker would
keep the muddled ingredients in the shaker and not in the
glass), step order occasionally matters. However, someone
could shake various juices and pour them into an ingredient
they had muddled, so keeping track of what process is being
applied to which ingredient is important. There are several
other ways to mix a drink that deal with spectacle: floating
a high proof liquor on the top of a drink before setting the
liquor on fire, or floating several ingredients on top of each
other to provide a layering effect. These techniques do not
have a strong bearing on flavor, so they are not considered
by the cocktail generator.

The ingredient list is more complicated. Depending on
the source, the raw ingredients of a cocktail can either have
many very fine qualities (such as undertone, notes or hints)
or be very basic (sweet, sour). This makes it difficult to
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Figure 1: System Architecture. A grammar is chosen from
a list of various cocktail grammars and then expanded as a
set of symbols, from functional to terminal. For some ex-
pansions, symbols are built on the fly by requesting infor-
mation from an external data structure. Once the grammar
has expanded to terminal symbols, it is rendered as a human
readable recipe and presented to a user.

Figure 2: Three general categories of grammar expansion.

ascertain a good top-down or bottom-up model of how a
particular ingredient tastes—do notes of elderberry work
well with sour? Should undertones be sweet or smoky or
smoky-sweet, and does any of that work well with strawber-
ries? However, this also is not how common sense reason-
ing about taste functions. When someone hears the ingre-
dients in a drink (or dish), they recall what each ingredient
tasted like in the past, and make some guesses as to what
they might taste like together. The cocktail generation sys-
tem was built on this basic reasoning concept. Rather than
try to accurately model how each ingredient tastes, the gen-
erator keeps track, on an abstract level, which ingredients
work well together, and then creates drinks with combina-

tions of good ingredients. These ingredient pairings were
built based on expert knowledge, rather than a database or
chemical hypothesis, as in (Ahn et al. 2011).

In addition, the cocktail generation system breaks cock-
tails into eight categories. Each of these categories is based
around a particular set of exemplars in cocktail literature.
These exemplars either all share an ingredient category
(such as the use of cream for drinks derived from a White
Russian) or a particular ratio (2 to 1 ratios for drinks de-
rived from a Gin and Tonic). It is important to note that
all of the International Bartenders Association official cock-
tails roughly fall into these eight categories. Although this
categorical system does not perfectly cover every potential
drink, it encapsulates most of the space of potential cock-
tails.

Generator Architecture

The cocktail generation system has four main components:
a set of stochastic, context-sensitive cocktail grammars, an
engine to expand the grammars, a set of outside data struc-
tures used to build grammar symbols and a text rendering
system to present generated recipes, as seen in Figure 1. All
four of these components work in a serial fashion to generate
a new cocktail; no part of the system runs in parallel. One of
the main difficulties when designing the cocktail generation
system was the amount of symbols in the grammar. There
are at least 260 symbols, so writing rules out directly would
have taken a large amount of human authoring time.

Cocktail Grammars

Following the research on mixology, most cocktails can be
broken down into eight categories of drinks. The categories
are all based on exemplar drinks; the Old Fashioned cate-
gory uses the same ratios present in an Old Fashioned, for
example. Sometimes a drink is considered an exemplar be-
cause it has a unique and useful ratio (the margarita’s 3 parts
strong : 2 parts sweet : 1 part sour), or a particularly im-
portant ingredient (the cream in a White Russian). Usually,
a category also has a trend: Old Fashioned based drinks al-
ways have muddled ingredients or syrups, while Margarita-
like drinks always use a liqueur as one of their sweetening
agents. As such, to capture these trends, a unique grammar
needs to be built for each drink category. The categories are
Old Fashioned, Martini, White Russian, Margarita, Daiquiri,
Mai Tai, Gin and Tonic, and Mojito.

All the grammars use the same set of symbols, but each
category has its own unique production rules and con-
straints. Several rules were reusable (a single context free
replacement rule, for example), however, each grammar has
several custom, unique rules.

There are three basic ways that a grammar expands, as
seen in Figure 2. The first two examples shown here are
deterministic, although they both have stochastic variants
where a random choice is made from a list of potential sym-
bols. The last example is always stochastic. First, grammar
symbols can expand without considering what other sym-
bols are currently in the grammar, commonly referred to as
context-free expansion. This expansion is shown at the top
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Figure 3: Overview of database expansion.

of the figure, where an expansion function, f(), takes an in-
put grammar, the symbol to be expanded (‘A’) and the sym-
bol to expand to (‘B’) and returns an output grammar where
‘A’ has been replaced with ‘B’. Second, grammar symbols
sometimes do care about context, and look at the other sym-
bols in the current string before expanding. If certain sym-
bols are present, then that symbol expands differently. This
is referred to as context-sensitive expansion. This expansion
is shown in the middle of Figure 2. The expansion function,
g(), takes an input grammar, the symbol to be expanded (‘B’)
and the symbol to expand to (‘D’). g() scans the input string,
and since the grammar contains both B and C, transforms B
to D. Unlike other context sensitive grammars, the C’s lo-
cation in the string is unimportant—if the string contains a
C, B will transform to D. Finally, some rules, instead of go-
ing from one symbol to the next, instead request an external
structure to supply the next symbol. These rules can be con-
text free or context sensitive. This expansion is shown at
the bottom of Figure 2. The expansion function, h(), takes
an input grammar, the symbol to be expanded (‘E’) but does
not have a symbol to expand to. Instead, h() makes a request

of an external data store as to what ‘E’ should expand into.
The data store returns ‘F’, and the function replaces ‘E’ with
‘F’ and returns the grammar.

External data structures make no promises about being
able to fulfill a request. When a database cannot fulfill a re-
quest, grammar expansion is restarted from the axiom. Ex-
ternal database calls are outlined in Figure 3. The top graph
in Figure 3 shows expansion using the ingredient graph.
When queried, the expansion function either passes a sym-
bol that has a node in the graph (in this case, gin) or polls
the graph randomly. The node’s neighbors are returned, and
the function chooses one to use for expansion. The bot-
tom graph shows expansion using the ingredient list. When
used, the list is supplied a symbol that needs to be expressed
(in this case, mint). The list returns all the possible ex-
pressions of the symbol, and then the expansion function
chooses which one to use.

Symbols also have a flag that is set to ‘false’ for context-
free symbols and ‘true’ for context-sensitive symbols. This
flag is used to allow for context-free symbols to be expanded
before context sensitive symbols, so that symbols that need
context will have as much information as possible before
expanding.

To help keep track of how a grammar is expanding, sym-
bols are actually a (symbol, type) tuple. The symbol is what
gets replaced or used for replacement, while the type helps
various context sensitive rules determine the right time in
the expansion to execute. Types work like walls, all sym-
bols need to be of a particular type before the next set of
rules can apply. The types used are functional, ingredient,
expression, and terminal. Functional symbols are qualifiers
like “strong”, “sweet” or “sour”. They describe the func-
tion of a particular ingredient, according to a ratio. So, a
margarita can be described in rough terms as 3 parts strong
: 2 parts sweet : 1 part sour. Ingredient level symbols fill
in the functional symbols with high level ingredient quali-
fiers, so, “lemons” could fill in for “sour”. The next type
of symbols, expression symbols, tell us how each ingredient
is going to be expressed in a cocktail. So, “lemons” could
become “lemons-juice” or “lemons-muddled”. Most expres-
sion symbols are also terminal symbols, however, occasion-
ally the grammar needs to add a few more details to a symbol
before it can get rendered to text.

Symbols keep track of what they replaced, which allows
us to trace a symbol’s lineage. This commonly happens
when we divide up the ingredients into parts. If a drink
calls for 2 parts sour, and both lime and lemon juice are be-
ing used, then the cocktail generation system checks that the
juices both come from the same original sour symbol. It then
correctly divides the parts equally among the juices.

It is also possible for a rule to rewrite a symbol’s lineage,
as in Figure 4. Lineage rewrites perform abstraction and
recategorization within a set of rules. This increases the ex-
pressive potential of a particular category, so that it can still
accurately represent the drinks that fall into that category
without resorting to having a collection of starting axioms.
This also allows for axiomatic change based on how a cur-
rent grammar is expanding. If it suddenly makes more sense
for a particular expansion of symbols to have been derived
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Figure 4: Overview of a lineage rewrite rule. The rule trans-
forms a strong symbol into a sweet symbol. Normally, new
symbols are appended as children to the symbol they ex-
panded from, but for lineage rewrites, we replace the symbol
and the symbols it descended from.

from a similar axiom, the axiom can shift to reflect that.
Each grammar expands until it hits a set of terminal sym-

bols. Then, the set of symbols is passed off to the text ren-
derer to generate a human readable recipe. Axioms for a
cocktail grammar start with a set of functional symbols, and
the amount of each symbol that should be in the final drink
expressed in parts. An example grammar (the Old Fashioned
grammar) is presented in Figure 5.

Ingredient Representation

There are two data structures that the expansion engine can
query for information to build new symbols. How both of
these structures are used is outlined in Figure 3. The first
structure is used primarily for expanding ingredient sym-
bols; the second structure is used for expanding expression
symbols. The first data structure is the ingredient graph, a
bidirectional graph where each node corresponds to an in-
gredient such as chocolate or strawberries. Adjacent ingre-
dients on the graph work well together in a drink, according
to experts. So, if we already know we are going to use one
ingredient, we can get that ingredient’s neighbors in order to
see what other ingredients should be used with it. There are
some nodes that are connected to every other node, but it is,
in general, a sparse graph.

The other main data structure is a list of ingredient ex-
pressions, organized by ingredient. This lets us look up how
lemons can expand, and pick an expression that fits a rule.
The list makes no promises about having the right entry for
a rule. If a rule is looking for a puree and is trying to expand
lemons, the query on the list will return nothing (as lemon
puree was not considered a valid ingredient by experts).

Expansion Engine

The expansion engine takes a cocktail grammar axiom and
expands it in turn, from functional symbols to ingredient
symbols, then to expression symbols, then to terminal sym-
bols, as seen in Figure 1. The engine also makes requests of
the outside data structures to get information needed to cre-
ate a symbol when required. The engine has a hard rule: ex-
pand context free symbols before context sensitive symbols.
In addition, when two or more context sensitive symbols can
expand, and no context free symbols can expand, a random
one is chosen to expand first.

The best way to go over the expansion engine is to go
through a sample run. A user has asked for the system to
generate something based off of a White Russian. The gram-
mar starts with three symbols: (strong, function), (sweet,

function) and (mild, function). Now, the system looks
through the current rules it has and there are two that can
potentially apply: perform a lineage rewrite to transform the
strong symbol into a sweet symbol, or expand the strong
symbol into an ingredient level base spirit. As these are
both equally valid rules, the system picks one at random,
and decides to transform the strong symbol into a sweet
symbol. The grammar now reads like (sweet’, function),
(sweet, function), (mild, function). The grammar now has
several context-free rules it can apply, expanding sweet’ into
a ingredient level sweet symbol, expand sweet into an in-
gredient level sweet symbol and expand mild into an in-
gredient level mild symbol. The grammar randomly picks
among these three rules, as all of them are context-free.
After those rounds of expansion, the grammar now looks
like (generic-sweet, ingredient), (generic-sweet, ingredient),
(generic-mild, ingredient). Now, there is a context-free rule
for expanding the generic-mild symbol, whereas expand-
ing generic-sweet is context-sensitive. So, generic-mild gets
expanded next and the grammar now looks like (generic-
sweet, ingredient), (generic-sweet, ingredient), (cream, ex-
pression). At this point, we start to expand one of the
generic-sweet symbols and the grammar needs outside help,
as there are many symbols that it can expand into. The in-
gredient graph is queried, looking for neighbors of the cream
symbol. A list of neighbors is returned. This is stored,
in case the grammar needs to expand another ingredient
from the graph. One is picked from them: mint. The first
generic sweet symbol is expanded, and now the grammar
looks like (mint, expression), (generic-sweet, ingredient),
(cream, expression). The grammar then checks the stored
symbols from the last graph query and selects another one
to expand the last generic-sweet symbol into. The grammar
now looks like (mint, expression), (chocolate, expression),
(cream, expression). The last round of expansion has the
grammar query the ingredient list three times, once for each
of these symbols to look for valid ways to express them. The
end grammar string is (mint-creme, terminal), (chocolate-
liqueur, terminal), (heavy cream, terminal).

Text Rendering

The last part of the system is the text renderer. After expand-
ing out the grammar, we have ingredients and the amount
of each ingredient expressed in parts. This still needs to be
converted to a human readable recipe. For the most part, this
means replacing the dash in the symbol with a space. Some
symbols are important to a cocktail, but are not given a part
amount because they are used for garnishes, taste or in such
small amounts it makes no sense to display them as a part.
A prime example would be bitters, used in cocktails based
on the Old Fashioned. In this case, amounts given in dashes
are used (or other garnishing terms, like a “twist of lemon”).

The mixing instructions are appended to the ingredient
list. The mixing instructions come directly from the original
category of drink and the ingredients used, with some simple
replacement (such as ingredient names rather than functional
terms) to make the recipe easy to follow. Finally, a name
(currently an adjective, noun pair) is added to the cocktail.
An example final recipe is presented in Figure 6

Proceedings of the Sixth International Conference on Computational Creativity June 2015 216



Figure 5: Diagram of the Old Fashioned grammar

Figure 6: A cocktail generated with the Mai Tai grammar.

Expressivity

In both PCG and computational creativity, the expressive
range of a generator is a strong consideration for how well
that generator performs. Expressive range can be thought of
as the range of parameters that change the kind of content
the generator can produce(Smith and Whitehead 2010). For
a cocktail grammar, expressive range is tied with the con-
nectivity of the ingredient graph (the more connections the
graph has, the more symbols a particular grammar can ac-
cess). In addition, we can look at how ‘open’ a particular
grammar is to various ingredient expressions. If a grammar
can use a lot of ingredient expressions, then it can generate
many more combinations.

To measure this, each grammar generated 1,000 cocktails,
and the amount of times a particular terminal symbol oc-
curred was counted. As we have a list of all potential termi-
nal symbols, if a symbol was never used, it was given a use
count of zero. The result of this count is shown in Figure
7. Each cocktail grammar is not equally expressive. Some
categories are more restrictive than others, and lean more
heavily on particular ingredients. However, each grammar
seems to focus on different parts in the potential ingredi-
ent space, and when looked at all together, the entire system
does a good job of making sure that all provided ingredients
get used.

Evaluation

To see if a particular generated artifact is creative, three met-
rics were used: quality (the measure of how well an artifact

performs a particular purpose), novelty, (the measure of how
unique an artifact is to an evaluator), and typicality (the mea-
sure of how well the artifact fits in a particular class of arti-
facts). For cocktails, quality is how well the cocktail tastes
as compared to other cocktails the taster has drank. Nov-
elty is how different a cocktail tastes as compared to other
cocktails the taster has drank. Typicality is how much like
a cocktail a current cocktail tastes like. This forms an eval-
uation space, where differing rating triples have meaning.
High ratings in quality but low ratings in novelty imply that
a cocktail was good, but very similar to what the taster usu-
ally orders. High in novelty and low in quality implies an
interesting cocktail, but one that does not taste very good.
A low score in typicality implies that the cocktail does not
taste like a cocktail at all, and tastes closer to a non-alcoholic
drink or straight base spirit. In order to be considered cre-
ative, a generated artifact needs to perform highly in all three
categories, as per artifact-focused definitions of creativity.

Figure 7: Ingredient use heatmap. The x-axis graphs in-
dividual ingredients, the y-axis graphs the grammars using
them. As squares get lighter, they were used more times in
the generated run.
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Figure 8: Quality ratings for the generated and baseline
drinks. Quality in the generated drinks appears to be more
polarizing than quality in the baseline drinks.

Figure 9: Novelty ratings for the generated and baseline
drinks.

Table 1: P-Values
Category Quality P-Values Novelty P-Values
Overall 0.048 0.344

Margaritas 0.001 0.003
Martinis 0.505 0.118

Margaritas have detectable differences in both quality and
novelty, martinis have no detectable differences and there is

a detectable difference in quality but not novelty overall.

To this end, we had two of the eight grammars evalu-
ated for quality, novelty and typicality by human tasters.
Two cocktails from both the Margarita grammar and the
Martini-based grammar were generated. In addition, two es-
tablished cocktails that followed the rules for each grammar
were chosen as a baseline to compare the generated cocktails
against. Participants tasted each cocktail and then evaluated
the cocktail based on their sip. Cocktails were presented in a
random order, and participants were told that all eight cock-
tails were generated.

The use of a baseline to compare the generated drinks

against also helped reduce taste effects—if a particular par-
ticipant did not like martinis, for example, they were ex-
pected to rate both the generated martinis and the baseline
martinis low.

One third of the participants had prior experience mixing
drinks. All participants had at least two cocktails over the
past year, with 20% having had two to four cocktails, 33%
having had five to seven cocktails and the rest having had
more than seven. All participants were at least 21 years old.
60% of participants were 25-29, ⇡ 27% were 21-24, and the
rest were 30 or older. 40% of participants were female, the
rest were male. The tastings occurred in an office environ-
ment.

Participants were asked to evaluate the cocktails on qual-
ity and novelty using a five point scale, with a score of one
being low and a score of five being high. To rate the cocktails
for typicality, participants were asked if they believed what
had been served was a cocktail, and to try to classify which
exemplar the cocktail was based on. Table 1 contains the p-
values from an unpaired t-test between the baseline and the
generated cocktails. There was not a detectable difference in
the novelty metric, overall. However, the generated drinks,
overall, did perform slightly detectably worse in the quality
metric. These results are captured in Figures 8 and 9.

For typicality, the generator performed well, with very
few participants believing that they were not served a cock-
tail. However, when asked to try and identify which ex-
emplar drink the cocktail had come from, participants did
poorly. Participants only correctly identified the exemplar
cocktail 26.67% of the time. This can imply two things: 1)
that a general audience does not have enough skill in cock-
tails to taste where particular drinks came from and/or 2) the
classification scheme used by the generator is not how the
average person classifies cocktails.

Threats to Validity

With no detectable difference in novelty between the base-
line cocktails and the generated drinks, we can not conclude
anything about the generated drinks compared to the base-
line. In addition, the generator and evaluation did not take
into account the environment the cocktail should be con-
sumed in. It is possible that bar ambiance could impact the
perception of flavor. Garnish selection is not considered in
the current generator, and garnishes can strongly impact how
people perceive cocktails.

There are weaknesses in any expert system—how well
did the experts describe their process, and how well was
that process encapsulated in the system? The majority of
the cocktail generation system came from expert knowledge,
from the structure of the ingredient graph to the types and
numbers of grammars used. This still leaves out certain
cocktails. A Cement Mixer, for example, breaks one of the
cardinal rules of the system (citric acid and cream should not
be mixed) to create a novel texture.

There are several weaknesses with the open loop of gen-
erating, then evaluating with human evaluators. The gener-
ator itself cannot react to the evaluations of its own output
and make adjustments to its internal drink mixing philoso-
phy. As pointed out by Stokes(2011) as well as others, this
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implies that the current generator is not creative, regardless
of how highly its output is scored. In addition, the gener-
ator makes no attempt to account for any sort of taste. It
blindly puts ingredients together without understanding why
those ingredients might work well together. This genera-
tor will also never modify either ingredient representation to
discover new cocktails.

Discussion and Future Work

Other computational ways to evaluate the system could be
employed. Output recipes could be compared to existing
rated recipes from online websites and databases, and a qual-
ity, novelty and typicality metrics could be derived from
this comparison. However, the use of human evaluators, at
least in the current state of the field, is important, because
there are aspects of taste not captured in an ingredient bill or
preparation steps.

Data driven cocktail generators are a strong next step.
This, generally, would mean scraping various lists of cock-
tails (either from the web or from popular literature) and
attempting to derive some heuristic for cocktails from the
data. Online databases are particularly attractive, as they
may have both good and bad examples to learn from.

As alluded to earlier, typicality can be a tricky part of the
generator to evaluate. A way around this problem would
be to have evaluators rate several well-known variations, to
establish a baseline for ’cocktail recognition’ that the gener-
ator’s output can be compared to.

Finally, there is a need to evaluate cocktails on the merits
of taste. In turn, we need a computational model of taste
to see how potential drinks might taste. This lets us truly
close the loop so the generator can evaluate its own work.
This sort of model would allow for the use of modification
or repair to a poorly evaluating dish, like several case-based
reasoning techniques modify plans to best fit the current sce-
nario. In addition, such an evaluator could evaluate many
recipes, far faster than a human could.
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