Live Coding Towards Computational Creativity

Alex McLean and Geraint Wiggins

Goldsmiths, University of London, United Kingdom
ma503am@gold.ac.uk,
WWW home page: http://doc.gold.ac.uk/~ma503am/

Abstract. Live coding is a way of improvising music or video animation
through live edits of source code, using dynamic language interpreters.
It requires artists to represent their work within a formal computer lan-
guage, using a higher level of abstraction than is the norm. Although
the only creative agents in live coding performance are human, this ab-
straction makes the practice of interest to the field of computational
creativity. In this paper live coders are surveyed for their thoughts on
live coding and creativity, related to the aims of building creative agents.

1 Introduction

Live coding is the writing of rules in a Turing complete language while they are
followed, in order to improvise time based art such as music, video animation
or dance. This is a relatively new approach, receiving a surge of interest since
2004, through both practice and research [1-6].

Live coding is most visible in performance, however the ‘live’ in live coding
refers not to a live audience but to live updates of running code. Convention-
ally humans write code followed by software, although some experimental dance
improvisations have used both human rule makers and rule followers. Whether
human live coders can be replaced by software creative agents is a question for
the field of computational creativity, which we hope to have at least clarified by
the end of this paper.

In contrast to live coding, generative art is output by programs unmodified
during execution, which often have no user interface at all. The lack of control
over such programs has led to a great deal of confusion around the question of
authorship. When watching a piece of software generate art without guidance,
onlookers ask “is the software being creative?” There is no such confusion with
live coding, there is a human clearly visible, making all the creative decisions
and using source code as an artistic medium. In fact there is no difference of
authorship between live coded and generative art. A programmer making gen-
erative art goes through creative iterations to, only after each edit they have to
restart the process before reflecting on the result. This stuttering of the creative
process alone is not enough to alter authorship status.

If the computer’s role in a live coding performance is uncreative, then what
is this paper doing submitted to a computational creativity conference? Well, as
a new way of producing art using formal systems, it is hoped that live coding

175



can give a unique clarifying perspective on issues of computational creativity,
and perhaps even become a stepping stone towards a creative software agent.

2 Live coders on computational creativity

A survey was carried out with the broad aim of gathering ideas for study of
computational creativity. The members of TOPLAP [3], an active live coding
community, were asked to fill out an on-line survey, and 32 responded. To avoid
prejudice, the word ‘creativity’ was not used in the invitation or survey text, and
pertinent questions were mixed with more general questions about live coding.

2.1 Results

The subjects. Users of the six pre-eminent live coding environments were rep-
resented, between five and fourteen for each system (many had used more than
one). Background questions indicated a group with a generally rich musical back-
ground. There were a diverse range of approaches to the question of how to define
live coding in one sentence, and the reader is referred to the on-line appendix
to read the responses (http://doc.gold.ac.uk/~ma503am /writing/icccx/). While
the responses show some diversity of approach, because the subjects had all used
at least one of the main languages it seems safe to assume that they are working
to largely the same technical definition.

Creating language. Computer users often discuss and understand computer
programs as tools, helping them do what they need efficiently. For a programmer
it would instead seem that a computer language is an immersive environment
to create work in. It is interesting then to consider to what extent live coders
adapt their computer languages, personalising their environments, perhaps to aid
creativity. Over two thirds (69.0%) collected functions into a library or made an
extensive suite of libraries. This is analogous to adding words to a language,
and shows the extent of language customisation. A smaller proportion (20.7%)
had gone further to implement their own language interpreter and fewer still
(17.2%) had designed their own language. That these artists are so engaged
with making fundamental changes to the language in which they express their
work is impressive.

Code and style. From the perspective of computational creativity, it is inter-
esting to focus on the code that live coders produce. Their code is not their work,
but a high level description of how to make their work. A creative computational
agent would certainly be concerned with this level of abstraction. An attempt
at quantifying how live coders feel about their code was made by asking “When
you have finished live coding something you particularly like, how do you feel
towards the code you have made (as opposed to the end result)?” Over half
(56.7%) indicated that the code resulting from a successful live coding session

176



was a description of some aspect of their style. This suggests that many feel they
are not encoding a particular piece, but how to make pieces in their own partic-
ular manner. Around the same number (50.0%) agreed that the code describes
something they would probably do again, which is perhaps a rephrasing of the
same question. A large number, (83%) answered yes to either or both questions.
There are many ways in which these questions can be interpreted, but the sug-
gestion remains that many subjects feel they have a stylistic approach to live
coding that persists across live coding sessions, and that this style is somehow
represented in the code they make.

Live coding as a novel approach. The subjects were asked the open question
“What is the difference between live coding a piece of music and composing it in
the sequencer (live coding an animation and drawing one)? In other words, how
does live coding affect the way you produce your work, and how does it affect
the end result?” Some interesting points relevant to computational creativity are
selectively quoted for comment here, the reader is again directed to the on-line
appendix to read the full responses.

“I have all but [abandoned] live coding as a regular performance practice,
but I use the skills and confidence acquired to modify my software live
if I get a new idea while on stage.”

The admission that getting new ideas on stage is infrequent, makes an im-
portant and humble point. In terms of the Creative Systems Framework (CSF)
[8,7] we can say that live coding is useful in performance if you need to trans-
form your conceptual space (the kind of work you want to find or make), or
your traversal strategy (the way you try to search for or make it). However, as
with this subject, transformational creativity is not always desirable in front of
a paying risk-averse audience.

“When I work on writing a piece ... I can perfect each sound to be
precisely as I intend it to be, whereas [when] live coding I have to be
more generalised as to my intentions.”

Making the point that live coders work at least one level of abstraction away
from enacting individual sounds.

“Perhaps most importantly the higher pace of livecoding leads to more
impulsive choices which keeps things more interesting to create. Not
sure how often that also creates a more interesting end result but at
least sometimes it does.”

Live coding allows a change in code to be heard or seen immediately in the
output, with no forced break between action and reception. This would be a
surprise to those whose experience of software development is slow and arduous.

“Live coding has far less perfection and the product is more immediate. It
allows for improvisation and spontaneity and discourages over-thinking.”

177



This may also come as a surprise; live coding has a reputation for being cere-
bral and over technical, but in reality, at least when compared to other software
based approaches, the immediacy of results fosters spontaneous thought.

“Live Coding is riskier, and one has to live with [unfit decisions]. You
can’t just go one step back unless you do it with a nice pirouette. There-
fore the end result is not as clean as an ”offline-composition”, but it can
lead you to places you [usually] never would have ended.”

This comment is particularly incisive; the peculiar relationship that live
coders have with time does indeed give a certain element of risk. Thinking again
within the CSF [7], such riskier ways of making music are more likely to pro-
duce aberrant output, providing the opportunity to adjust your style through
transformational creativity.

“

.. while Live Coding is a performance practice, it also offers the tan-
talising prospect of manipulating musical structure at a similar abstract
level as 'deferred time’ composition. To do this effectively in performance
is I think an entirely different skill to the standard ’one-acoustic-event-
per-action’ physical instrumental performance, but also quite different
to compositional methods which typically allow for rework.”

This really gets to the nub of what live coding brings to the improvising
artist — an altered perspective of time, where a single edit can affect all the
events which follow it.

Live coding towards computational creativity. The subjects were given a
series of statements and asked to guess when each would become true. Regret-
tably there was a configuration error early on in the surveyed period, requiring
that the answers of two subjects were discarded.

Optimism for the statement “Live coding environments will include features
designed to give artistic inspiration to live coders” was very high, with just over
half (51.9%) claiming that was already true, and two fifths (40.7%) agreeing it
would become true within five years. This indicates strong support for a weak
form of computational creativity as a creative aide for live coders. Somewhat
surprisingly, optimism for the stronger form of creativity in “Live code will be
able to modify itself in an artistically valued manner” was also high, with two
fifths (40.7%) claiming that was already possible. If that is the case, it would
be appreciated if the live code in question could make itself known, although it
seems more likely that ambiguity in the question is at fault. A little more pes-
simism is seen in response to “A computer agent will be developed that produces
a live coding performance indistinguishable from that of a human live coder”,
with a third (34.6%) agreeing this will never happen. This question is posed in
reference to the imitation game detailed by Alan Turing [9]. However as one
subject commented, “the test indistinguishable from a human is very loose and
there can be some very bad human live coding music.” That would perhaps ex-
plain why half (50.0%) thought the statement was either already true or would
become so within five years.

178



3 Conclusion

What if a musicology of live coding were to develop, where researchers decon-
struct the code behind live coding improvisations as part of their work? Cor-
relations between expressions in formal languages and musical form in sound
could be identified, and the development of new ways of expressing new musical
forms could be tracked. If successful, the result need not be a new kind of music,
but could be a music understood in a novel way. It is this new computational
approach to understanding music that could prove invaluable in the search for
a musically creative software agent.

In looking at creativity through the eyes of live coders, we can see some
promise for computational creativity even at this early stage of development
of both fields. Live coders feel their musical style is encoded in the code they
write, and that their language interfaces provide them with inspiration. They
are actively developing computer languages to better express the music they
want to make, creating computer language environments that foster creativity.
From here it is easy to imagine that live coding environments could become
more involved in the creation of higher order conceptual representations of time-
based art. Perhaps this will provide the language, environment and application
in which a computational creative agent will thrive.

References

1. Blackwell, A., Collins, N.: The programming language as a musical instrument. In:
Proceedings of PPIG05. University of Sussex (2005)

2. Wang, G., Cook, P.R.: On-the-fly programming: using code as an expressive musical
instrument. In: NIME ’04: Proceedings of the 2004 conference on New interfaces for
musical expression, Singapore, Singapore, National University of Singapore (2004)
138-143

3. Ward, A., Rohrhuber, J., Olofsson, F., McLean, A., Griffiths, D., Collins, N., Alexan-
der, A.: Live algorithm programming and a temporary organisation for its promo-
tion. In Goriunova, O., Shulgin, A., eds.: read_me — Software Art and Cultures.
(2004)

4. Collins, N.: Live coding practice. In: NIME. (2007)

5. Collins, N., McLean, A., Rohrhuber, J., Ward, A.: Live coding in laptop perfor-
mance. Organised Sound 8(03) (2003) 321-330

6. Sorensen, A., Brown, A.R.: aa-cell in practice: An approach to musical live coding.
In: Proceedings of the International Computer Music Conference. (2007)

7. Wiggins, G.A.: A preliminary framework for description, analysis and comparison
of creative systems. Journal of Knowledge Based Systems (2006)

8. Boden, M.: The Creative Mind. Abacus (1990)

9. Turing, A.M.: Computing machinery and intelligence. Mind LIX (1950) 433-460

179



	Cover
	Proceedings.pdf
	FrontMatter
	title
	preface
	people
	table_of_contents

	Papers
	iccc10_submission_4
	iccc10_submission_29
	iccc10_submission_9
	iccc10_submission_22
	Establishing Appreciation in a Creative System
	David Norton, Derral Heath, Dan Ventura

	iccc10_submission_48
	iccc10_submission_45
	iccc10_submission_39
	iccc10_submission_49
	iccc10_submission_13
	iccc10_submission_21
	iccc10_submission_20
	iccc10_submission_37
	iccc10_submission_50
	iccc10_submission_24
	iccc10_submission_31
	iccc10_submission_30
	iccc10_submission_42
	iccc10_submission_35
	iccc10_submission_44
	iccc10_submission_2
	iccc10_submission_15
	iccc10_submission_11
	iccc10_submission_8
	iccc10_submission_7
	iccc10_submission_10
	iccc10_submission_27
	iccc10_submission_38
	iccc10_submission_17
	iccc10_submission_47
	iccc10_submission_41
	iccc10_submission_28
	iccc10_submission_3
	iccc10_submission_25

	Show&Tell
	s&t55
	s&t56
	s&t57
	s&t58
	s&t59
	s&t60
	s&t61
	s&t62
	s&t63
	s&t64
	s&t65

	author.index

	Back cover

