
Vignette-Based Story Planning: Creativity Through

Exploration and Retrieval

Mark O. Riedl

School of Interactive Computing

Georgia Institute of Techology

85 Fifth Street NW, Atlanta, Georgia 30308, USA

riedl@cc.gatech.edu

Abstract. Storytelling is a pervasive part of our daily lives and culture that is

being applied to computational systems for entertainment, education, and

training. Because of the prevalence of story in non-interactive media such as

books and movies, as well as interactive media such as computer games,

automated generation of narrative content is an essential component of making

computers creative. We describe artificial intelligence planning as a model of

narrative creation and then detail how the retrieval and reuse of vignettes can

facilitate the creation of narratives within the planning framework. Vignettes

are fragments of story that exemplify certain familiar narrative situations. We

show how this new approach to story generation is capable of exploring a larger

space of creative solutions and can create more valuable stories.

Keywords. Story generation; exploratory creativity; planning; case-based

reasoning

1 Introduction

Storytelling is a pervasive part of our daily lives and culture. Storytelling is

particularly prominent in entertainment, where stories can be viewed as artifacts to be

consumed by an audience. Story also plays a role in education and training, where

stories and scenarios can be used to illustrate and guide. The production of these

artifacts – stories and scenarios – is a primary activity in the entertainment industry

and also a significant bottleneck in the educational and training industries. In an “on-

demand” society, waiting for periodic updates to serial narratives – weekly television

series, movie series, and novels – is not considered ideal. Likewise, players of

computer games that rely on stories and quests can complete quests faster than design

teams can create new quests. How do we handle the situation in which content

consumption is scaled up to the point where content consumption outpaces content

production? One way to overcome the bottleneck of content production is to instill in

a computer system the creative ability to generate new content.

Because of the prevalence of story in non-interactive media such as books and

movies, as well as interactive media such as computer games, we concern ourselves

with the automated generation of narrative content. The issue is whether an

automated story generation system can be considered creative enough or skilled

41

enough to be trusted to produce content – stories – that will be experienced by users.

More generally, the output of a creative system, such as an automated story

generation system, must be novel, surprising, and valuable [1]. Whether an artifact is

valuable is subjective. For the purposes of this paper, we will consider the minimal

requirements for a story artifact to be considered valuable if it (a) meets the intended

purpose of its creation and (b) is sufficiently mimetic – appearing to resemble reality,

but in a way that it is more aesthetically pleasing than reality. In brief, stories should

be novel, but not so novel that they are unrecognizable [2].

Two well-recognized approaches to story generation are planning and “knowledge-

intensive” [3] techniques such as case retrieval. In this paper we present a step

towards automated story generation that combines planning and the retrieval of

narrative fragment – which we call vignettes – that are known to be “good” examples

of mimetic situations.

2 Related Work

Boden [1] distinguishes between creativity as exploration and creativity as

transformation. Likewise, narrative generation systems can be categorized roughly

with regard to whether they treat the problem of creating narrative content as a

problem of search or the problem of adapting existing knowledge and cases to new

contexts.

Search based narrative generation approaches include Tale-Spin [4], which uses a

simulation-like approach, modeling the goals of story world characters and applying

inference to determine what characters should do. Dehn [5] argues that a story

generation system should satisfy the goals of the human user. That is, what outcome

does the user want to see? The Universe system [6] uses means-ends planning to

generate an episode of a story that achieves a user’s desired outcome for the episode.

More recent work on narrative generation attempts to balance between character goals

and human user goals [7; 8]. Further work on story planning addresses expanding the

space of stories that could be searched [9].

Treating the problem of narrative generation as adapting existing knowledge has

lead to variety of approaches that use case-based reasoning and/or analogy. Minstrel

[10] implements a model of cognitive creativity based on routines for transforming

old stories into new stories in new domains. ProtoPropp [3] uses case-based

reasoning to generate novel folk tales from an ontological case base of existing

Proppian stories. Mexica [11] uses elements of both previous story retrieval and

means-ends planning.

Case-based reasoning (c.f. [12]) has been found to be related to creativity [1; 13].

The story planning algorithm that we describe in Section 3 is reminiscent of a certain

class of case-base reasoners called transformational multi-reuse planners.

Transformational multi-reuse planners are planners that attempt to achieve given

goals by identifying and retrieving solutions to similar, previously solved problems.

A multi-reuse planner may attempt to combine several cases in order to solve the

given problem. Our story planning algorithm is similar in many ways to [14] and

[15]. We compare and contrast our algorithm to these at the end of Section 3.2.

42

3 A Computational Approach to Generating Stories

We view story generation as a problem-solving activity where the problem is to create

an artifact – a narrative – that achieves particular desired effects on an audience. We

favor a general approach where we model the story generation process as planning

(c.f. [6], [7], [8], [9]). Conceptually a planner can be thought as an approach to

problem solving in which critics [16] are applied to incomplete solutions until a

complete solution is found. Each critic inspects a plan for a different type of flaw.

We conceive of a critic as containing two parts: a flaw recognizer and a flaw repairer.

The flaw recognizer component of each critic is invoked after any new potential

solution plan is generated. If a critic recognizes a flaw in the plan, it annotates the

plan to indicate that the plan cannot be considered a valid solution because of a flaw.

The planner chooses an incomplete plan to work on and chooses a flaw to work on.

The appropriate critic’s flaw repairer routine is invoked, which proposes zero or more

new plans in which the flaw is repaired (and often introducing new flaws). For

example, one type of critic recognizes and repairs open condition flaws. An open

condition flaw exists when an action (or the goal state) in a plan has a precondition

that is not established by a preceding action (or the initial state). The critic can repair

this flaw by applying one of the following repair strategies:

(i) Selecting an existing action in the plan that has an effect that unifies with the

precondition in question.

(ii) Selecting and instantiating an operator from the domain operator library that

has an effect that unifies with the precondition in question.

The planner uses special annotations called causal links to indicate when open

conditions are satisfied. A causal link establishes the causal relationship between two

actions in the case that the effects of the former action establish a condition in the

world necessary for the latter action to execute successfully. The set of critics used in

conventional planners such as [17] assure plan that plans are sound, meaning that they

are guaranteed to execute successfully in the absence of unanticipated changes in the

world. However, stories are much more than just ways of achieving an intended

outcome in the most efficient manner. Stories should meet the expectations of the

audience. This may mean putting in details that are aesthetically pleasing even if they

are not strictly necessary.

When humans write stories, they call on their lifetime of experiences as a member

of culture and society. A computer system that generates stories does not have access

to this wealth of information. As a way of mitigating this handicap, a computer

system can be provided with a wealth of knowledge in the form of traces of previous

problem-solving activities or libraries of previous solutions (e.g. stories). One

“knowledge intensive” approach [3] is to use a form of case-based reasoning. Our

story planning algorithm achieves longer and more mimetic narrative sequences by

accessing a library of vignettes – fragments of stories that capture some particular

context. We do not presume to know how these vignettes were created, only that we

have the solutions and that they have favorable mimetic qualities.

43

3.1 Vignettes

We use the term vignette to refer to a fragment of a story that represents a “good”

example of a situation and/or context that commonly occurs in stories [18]. For

example, a library of vignettes would contain one or more specific instances of bank

robberies, betrayals, cons, combat situations, etc. It is important to note that the

library contains specific examples of these situations instead of general templates.

The implication of the existence of this library is that a story generator does not need

to “reinvent the wheel” and thus does not need the specialized knowledge required to

be able to create specialized narrative situations. Vignettes are fragments of story

structure. Unlike a script, a vignette can be thought of as a fragment of a narrative – a

partially ordered set of events that are perceived to be essential in presenting a

narrative situation. How does one know what actions should be included in the

vignette and which can be left out? We use the minimal vignette rubric: a minimal

vignette is one in which removing any one action from the vignette causes it to no

longer be considered a good example of the situation and/or context it was meant to

represent.

Computationally, vignettes are stored as plan fragments. As a plan fragment, it is

possible that some actions do not have to have all of its preconditions satisfied. This

is a way of saying that it is not important how the situation is established or even

why, but once the conditions are established certain things should happen. Vignette

plan fragments do not reference specific characters, objects, or entities so that a

planner can fit the vignette into new story contexts by making appropriate

assignments. To ensure illegal or non-sense assignments are not made, co-

designation and non-co-designation variable constraints are maintained. Fig. 1 shows

an example vignette capturing a very simple combat between two characters where

Vignette:

Steps: 1: Start-Battle (?c1 ?c2 ?place)

 2: Wound (?c1 ?c2)

 3: Wound (?c1 ?c2)

 4: Mortally-Wound (?c2 ?c1)

 5: Die (?c1)

 6: End-Battle (?c1, ?c2)

Constraints: (character ?c1)

 (character ?c2)

 (stronger ?c2 ?c1)

Ordering: 1→2, 2→3, 3→4, 4→5, 4→6

Causation: 1→(battling ?c1 ?c2)→2

 1→(battling ?c1 ?c2)→3

 1→(battling ?c1 ?c2)→4

 1→(battling ?c1 ?c2)→6

 4→(mortally-wounded ?c1)→5

Variable-constraints: ?c1 ≠ ?c2
Effects: (battling ?c1 ?c2)

 (not (battling ?c1 ?c2))

 (wounded ?c2)

 (mortally-wounded ?c1)

 (not (alive ?c1))

Fig. 1. An example vignette data structure describing a battle in which a weaker character

(?c1) takes on a stronger character (?c2) and dies.

44

one character (represented by the variable ?c2) is stronger than the other (represented

by the variable ?c1). The weaker character wounds the stronger character twice

before the stronger character delivers a mortally wounding blow. Finally, the

mortally wounded character dies of its wounds. This vignette could be used in any

plan in which a character must become wounded, mortally wounded, or dead.

3.2 Planning with Vignettes

The Vignette-Based Partial Order Causal Link (VB-POCL) planner is a modification

of standard partial order planners to take advantage of the existence of a knowledge

base of vignettes. The VB-POCL planning algorithm is similar to other multi-reuse

case-based planners such as [14] and [15] in that it modifies the open condition critic

by adding a third strategy for repairing open condition flaws:

(iii) Retrieve and reuse a case that has an action with an effect that unifies with the

precondition in question.

Given an action in the plan that has an unsatisfied precondition VB-POCL non-

deterministically chooses one of the three above strategies. Strategies (i) and (ii) are

performed in the standard way (c.f., [17]). If strategy (iii) is selected, VB-POCL’s

open condition critic retrieves a vignette that has an action with an effect that will

satisfy the unsatisfied precondition. The retrieval process is one of identifying a

vignette in the knowledge base that has an action that has an effect that unifies with

the open precondition that the open precondition critic is trying to satisfy. But the

critic does not splice the vignette into the flawed plan. Instead, another critic

recognizes that the plan if flawed because the vignette has not been fitted into the plan

and annotates the plan with a new type of flaw called a fit flaw. A fit flaw is repaired

only when all the actions in the retrieved vignette have been instantiated in the plan.

Repairing a fit flaw is a process of selecting an action from the retrieved vignette and

adding it to the new plan (or selecting an existing action in the plan that is identical to

the selected action to avoid unnecessary action repetition) with all relevant causal

links, temporal links, and variable bindings.

It may take several invocations of the fitting critic to completely repair a fit flaw.

This may seem more inefficient than just adding all vignette actions to the plan at

once. There are three advantages to iterative fitting. First, it is easier to recognize and

avoid action repetition. Second, it allows other critics to observe the plan at

intermediate stages of fitting in case there are interesting synergies between critics.

For example, fitting may lead to the creation of new open condition flaws that in turn

are repaired through conventional planning (strategies i and ii) or by retrieving new

vignettes (strategy iii). Third, problems in the fitting process can be identified sooner

in case the strategy must be abandoned. One of the interesting properties of VB-

POCL – shared with other case-based planning algorithms – is that it can operate

when there are no applicable vignettes available; the algorithm can fall back on

conventional planning. If applicable vignettes are available, plan-space search control

heuristics are required to prevent a potential explosion of open conditions.

VB-POCL is a variation on one type of case-based reasoning called

transformational multi-reuse planning (c.f. [14], [15]). Transformational multi-reuse

planners attempt to reuse components of solutions to similar problems to solve new

45

problems. VB-POCL is a variation on transformational multi-reuse planning;

vignettes are not solutions to previous problems and VB-POCL does not attempt to

learn to solve problems from past examples. That is, VB-POCL does not retain its

solutions because they are neither vetted nor minimal, as vignettes are required to be.

VB-POCL relies on certain assumptions that make it different from other case-based

reasoning techniques. First VB-POCL assumes that vignettes are minimal. Because

of this, VB-POCL doesn’t stop fitting a vignette until all actions in the vignette are

present in the new plan, even if some actions do not serve a causal purpose. This is in

contrast to other case-based reasoning techniques that discard actions that are strictly

unnecessary from the perspective of achieving a goal state. Second, VB-POCL

assumes that vignettes in the library are in the domain of the story being generated.

The implication of this assumption is that the planner does not need to deliberate

about the cost tradeoff between using standard planning versus retrieval and reuse

(which is otherwise very high). VB-POCL non-deterministically chooses between

flaw repair strategies (i and ii) and (iii), meaning that it applies all strategies to each

and every flaw by branching the search space and exploring each branch in turn. This

is not practical if vignettes require extensive modifications for reuse. To support this

property of VB-POCL, we use an offline algorithm based on analogical reasoning to

pre-process the vignette knowledge base and transform vignettes from their native

story world domains to the domain of the new story to be generated [18]. The vignette

transformation process is overviewed in Section 3.4.

3.3 Example

To illustrate the VB-POCL planning algorithm, we provide an example of how the

planner could use the vignette shown in Fig. 1. Suppose we wanted a story set in

J.R.R. Tolkein’s Middle Earth. The story world is in the state in which one character,

called Enemy, has in his possession a Silmiril – a precious magical stone. The

outcome, provided by the human user, is that another character, called Hero, gains

possession of the Silmiril. The planner starts by non-deterministically choosing to

satisfy the goal by having Hero take the Silmiril from Enemy. This requires that the

Enemy not be alive. The planner could use the vignette from Fig. 1 here by retrieving

it and binding Enemy to ?c1. Note that this strategy will eventually fail because it

would require a character stronger than Enemy. Instead the planner solves the

problem chooses to instantiate an action, Die-of-Infection, that causes Enemy to not

be alive. This requires that Enemy be superficially wounded. Here VB-POCL

retrieves the vignette from Fig. 1 because it has an action that can have the effect

(once variables are bound) of causing Enemy to become wounded.

Each vignette action is spliced into the new story plan one at a time. The temporal

and causal relationships between vignette actions are maintained in the new plan.

However, any time a new action is added to the plan, causal threats may arise in

which the new action potentially undoes an existing causal relationship. These causal

threats are handled by imposing additional temporal constraints on actions in the plan

(or if the threat cannot be resolved, the planner backtracks) [17]. For example, when

Die(Hero) is spliced into the story plan, it must be temporally ordered after Take to

46

avoid inconsistencies; a dead characters cannot perform actions. The order that

actions are chosen from the vignette and spliced into the plan does not matter.

When a vignette is retrieved, one action is chosen non-deterministically to be the

satisfier action. This is the action that will be used to satisfy the original open

condition flaw that triggered the case retrieval in the first place. In the example, the

satisfier action is one of the Wound actions because it has the effect of causing the

Enemy to become wounded. When the satisfier action is spliced into the plan, the

planner takes the extra step of causally linking the satisfier to the action with the

original unsatisfied precondition – in this case, Enemy needing to be superficially

wounded in order to die of an infection – that triggered the vignette’s retrieval in the

first place. Thus the open condition flaw is finally repaired.

The vignette is fairly self-contained, but the vignette action, Start-Battle does

require that the planner establish that both Hero and Enemy are at the same place,

which in this case the North. This precondition is satisfied in the normal way, by

instantiating an action in which Hero travels to the North (Enemy is already there).

The final story plan is shown in Fig. 2. Boxes are actions and arrows represent causal

links. A causal link indicates how an effect of one step establishes a world state

condition necessary for a precondition of latter steps to be met. For clarity, only some

preconditions and causal links on each action are shown.

3.4 Vignette Transformation

VB-POCL assumes a library of vignettes that are already in the domain of the story to

be generated. A domain is a set of propositions that describe the world, including

Fig. 2. An example story plan generated by VB-POCL. Boxes represent actions or events and

arrows represent causal relationships between those actions.

47

characters, and a set of operator templates that described what characters can do and

ways in which the world can be changed. In the example, the domain describes

characters such as Hero and Enemy and operators such as Travel and Wound.

However, we may want the story planner to have access to vignettes from other

domains, especially if our new story is set in an unique and specialized story world

domain. To transfer vignettes between domains, one must first find analogies

between domains. This differs from the problem of finding analogies between stories

because there is not a second instance of a story to compare. Instead, we search for

analogies between domains and use that information to translate a known vignette

from one domain to another. The transfer process is summarized as follows. A

source vignette is a vignette in an arbitrary domain, called the source domain. The

target domain is the domain of the story to be generated. For each action in the

source vignette, the far transfer algorithm searches for an action in the target domain

that is most analogical. The search involves a single-elimination tournament where

target domain actions compete to be the most analogical according to the

Connectionist Analogy Builder (CAB) [19]. The winner of the tournament is the

target domain action most analogical to the source domain action. The result is a

mapping of source domain actions to target domain actions that can be used to

translate a source vignette into a target domain through substitution. Translated

vignettes may have gaps where translation is not perfect. This is not a problem

because the VB-POCL will recognize this and fill in the gaps via planning. Applying

this process to all vignettes in a library results in a new library in which all vignettes

are in the proper domain. See [18] for a more detailed description of the algorithm.

4 Discussion

One of the interesting properties of VB-POCL is that vignette retrieval can result in

story plans in which there are actions that are not causally relevant to the outcome.

Trabasso [20] refers to actions that are causally irrelevant to the outcome as dead-

ends. In the example above, the causal chain involving Enemy mortally wounding

Hero and then Hero dying appears to be a dead-end because those actions do not

contribute to Hero acquiring the Silmiril. Psychological studies indicate that dead-

ends are not remembered as well as actions that are causally relevant to the outcome

[20], suggesting that dead-ends should be avoided. For example, a battle in which a

single wound was inflicted on Enemy would have sufficed, and this is what planners

such as [7; 8] and [17] would have settled on. However, human authors regularly

include dead-end events in stories suggesting some importance to dead-ends. We

hypothesize that there are certain mimetic requirements to be met in any story and

that dead-ends can serve this purpose. For example, we assume that a combat

scenario in which many blows of varying strengths are exchanged is more interesting

than a combat in which a single blow is dealt. Interestingly, what may be a dead-end

causal chain to the story planner may not be considered a dead-end by a human

reader, and vice versa. That is, the reader may interpret the example story as a

tragedy and consider the death of Hero as one of two primary causal chains, whereas

the planner’s representation contains only one causal chain that leads to the human

48

user’s imposed outcome (Hero has the Silmiril). More research needs to be done to

create intelligent heuristics to recognize when dead-ends (from the planner’s

perspective) are favorable, tolerable, or damaging.

Does VB-POCL improve the computational creativity of planning-based story

generation approaches? Planning-based story generators treat creativity as

exploratory search [9], which is one of two perspectives on creativity offered by

Boden [1]. VB-POCL brings exploratory and transformational creativity closer

together. Incorporating case-based retrieval into a planning framework suggests that

transformation is a special instance of exploration. Conceptually, we can consider plot

generation as a search through the space of all possible narratives, where a narrative is

a set of temporally arranged events that change the story world (for the purposes of

completeness we also consider the empty story). In the space of all possible

narratives, narratives that are adjacent differ in just one detail – an extra event or a

different temporal ordering of events. One can walk the space of all possible

narratives, beginning with the empty narrative by applying the operator, add-event(e,

c). This operator moves one from a narrative to an adjacent narrative that differs in

that it contains one additional event, e. The parameter c is a set of constraints that

unambiguously positions e temporally relative to other events in the narrative. The

operator add-event is an abstraction of the iterative process used by planners in the

search for the first visited structure to which critics do not attribute flaws.

Because of the iterative nature of vignette fitting in VB-POCL, a vignette can be

viewed as a strategy for guiding the walking of the space towards a sub-space of

stories that are more valuable. Because vignettes are made retrievable by

transforming them via analogical reasoning, we hypothesize that transformational

creativity may be a special case of exploratory creativity. That is, transformation

processes short-circuit exploration by using knowledge from seemingly unrelated

domains to specify a target or direction for search. In the case of VB-POCL,

however, one could claim that some or all of the creativity occurs prior to exploration

in the offline process that transformed vignettes into the correct – applicable – domain

via analogical reasoning.

These vignette-guided walks also extend beyond the boundaries of the space that

can be walked by conventional planning techniques – specifically visiting stories in

which there are actions that are not causally necessary. As noted in [9], expanding

the space that can be explored provides an opportunity to find more solutions that are

valuable. We believe that VB-POCL searches a space of stories that has more

valuable and mimetic solutions. This is partially achieved by attempting to retrieve

vignettes whenever possible. Future work involves identifying heuristics that can

determine when retrieving a particular vignette is more likely to lead to a valuable

solution. Future work also involves incorporating additional properties of character

and story into the algorithm such as character intentionality [7; 8], character

personality [9], and emotion [11].

We find planning to be a valuable model for story generation, in general. One

reason for this is that plans are reasonable models of narrative [21]. But also planners

walk the space of possible narratives in search of a solution that meets certain

qualities. VB-POCL extends the general planning algorithm by retrieving and

reusing vignettes. This is a strategy for tapping into the experiences of other

presumably expert story authors. Interestingly, VB-POCL can explore a greater space

49

of stories because it can consider story plans that have action that are not causally

necessary to reach some given outcome. We believe that some of these stories will be

more valuable because of the mimetic qualities of the vignettes and the potential for

these stories to possess both global novelty and localized familiarity.

References

1. Boden, M.: The Creative Mind: Myths and Mechanisms, 2nd Edition. Routledge, New York

(2004).

2. Giora, R.: On Our Mind: Salience, Context, and Figurative Language. Oxford University

Press (2003).

3. Gervás, P., Díaz-Agudo, B., Peinado, F., Hervás, R. Story Plot Generation Based on CBR.

Journal of Knowledge-Based Systems, 18(4-5), 235-242 (2006).

4. Meehan, J.: The Metanovel: Writing Stories by Computer. Ph.D. Dissertation, Yale

University (1976).

5. Dehn, N.: Story Generation after Tale-Spin. In: 7th International Joint Conference on

Artificial Intelligence (1981).

6. Lebowitz, M.: Story-Telling as Planning and Learning. Poetics, 14, 483—502 (1985).

7. Riedl, M.O. Story Generation: Balancing Plot and Character. Ph.D. Dissertation, North

Carolina State University (2004).

8. Riedl, M.O., Young, R.M.: An Intent-Driven Planner for Multi-Agent Story Generation. In:

3rd International Joint Conference on Autonomous Agents and Multi Agent Systems (2004).

9. Riedl, M.O., Young, R.M.: Story Planning as Exploratory Creativity: Techniques for

Expanding the Narrative Search Space. New Generation Computing, 24(3), 303—323

(2006).

10. Turner, S.: MINSTREL: A Computer Model of Creativity and Storytelling. Ph.D.

dissertation, University of California , Los Angeles (1992).

11. Pérez y Pérez, R. and Sharples, M.: Mexica: A Computer Model of a Cognitive Account of

Creative Writing. Journal of Experimental and Theoretical Artificial Intelligence, 13(2),

119—139 (2001).

12. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers (1993).

13. Kolodner, J.: Understanding Creativity: A Case-Based Approach. In: 1st European

Workshop on Case-Based Reasoning (1993).

14. Francis, A.G., Ram, A.: A Domain-Independent Algorithm for Multi-Plan Adaptation and

Merging in Least-Commitment Planners. In: AAAI Fall Symposium on Adaptation of

Knowledge for Reuse (1995).

15. Britanik, J., Marefat, M.: CBPOP: A Domain-Independent Multi-Case Reuse Planner.

Computational Intelligence, 20, (2004).

16. Sacerdoti, E.D.: A Structure for Plans and Behavior. Elsevier, New York (1977).

17. Weld, D.: An Introduction to Least Commitment Planning. AI Magazine, 15(4), 27-61

(1994).

18. Riedl, M.O., León, C.: Toward Vignette-Based Story Generation for Drama Management

Systems. In: 2nd International Conference on Intelligent Technologies for Interactive

Entertainment, Workshop on Integrating Technologies for Interactive Story (2008).

19. Larkey, L.B. and Love, B.C.: CAB: Connectionist Analogy Builder. Cognitive Science, 27,

781—794 (2003).

20. Trabasso, T., van den Broek, P.: Causal Thinking and the Representation of Narrative

Events. Journal of Memory and Language, 24, 612-630 (1985).

21. Young, R.M.: Notes on the Use of Plan Structures in the Creation of Interactive Plot. In:

AAAI Fall Symposium on Narrative Intelligence (1999).

50

