
A Framework for Building Creative Objects
From Heterogeneous Generation Systems ?

Carlos León1, Jorge Carrillo de Albornoz2, and Pablo Gervás3

Departamento de Ingenieŕıa del Software e Inteligencia Artificial
Universidad Complutense de Madrid

1
cleon@fdi.ucm.es, 2

jcalbornoz@fdi.ucm.es, 3
pgervas@sip.ucm.es

Abstract. There exist several types of generative systems which pro-
duce some artistic output not necessarily considered to be creative. How-
ever, the processes they follow can, in principle, be combined between
them, possibly obtaining a creative product. Although nowadays giving
a general description of how such systems must be implemented is far
from being possible, this paper presents a framework for putting together
generative systems in such a way that the output can be creative. The pa-
per shows preliminar ideas and discusses the main conclussions obtained
from them.

Keywords: Computational Creativity, Cinematographic Direction, Sto-
rytelling, Framework, Artificial Intelligence.

1 Introduction

Building generative systems which are not creative for artistic production is not
di�cult. For instance, rule based systems controlling a story generation program
can be easy implemented, but, probably, the output will not be as creative as
needed for that program to be considered really useful in general. The same ideas
apply for any other generative system (like automatic camera direction).

However, complex creative objects, like movies, are composed of many het-
erogeneous systems, and for these systems to be considered creative, it is not
necessary that every part of the creation follows a creative process.

Given these characteristics, to study how di↵erent processes are connected in
a full complex system becomes interesting and useful in the field of the Compu-
tational Creativity, where computers have to follow models of creativity in order
to obtain new objects that would be deemed as creative if found in humans [1].
This knowledge would allow us to put several heterogeneous systems together,
bringing new possibilities in the productions of such systems.
? This research is funded by the Ministerio de Educación y Ciencia (TIN2006-14433-

C02-01), Universidad Complutense de Madrid, Dirección General de Universidades
e Investigación de la Comunidad de Madrid (CCG07-UCM/TIC 2803) and a grant
from Caja de Burgos, Jóvenes Excelentes 2008 contest.

71

However, obviously it is extremely di�cult to give a general description of
how to put generative systems together. In fact, the authors are not sure if such
description exist: probably it is not possible to define a general way of combining
them. Basically, what we can do by now is to look for ad-hoc solutions, trying to
figure out what functions are to be solved, and trying to give a valid solution to
them. Or, at least, a valid solution for the domain or the particular application
that is being developed.

In this paper a case-study of a framework for one of these systems is pre-
sented, showing how an application that creates 3D short stories, using four
di↵erent systems could be created: an automatic story teller, and module that
adapts stories to given cinematographic schemas, an automatic camera position-
ing system, and a camera motion director, as depicted in Figure 1. The focus
of this particular research has not been put on the systems separately, but on
the nexus between the four, to study how to put several heterogeneous systems
together in order to obtain a creative scene from these not necessarily creative
systems.

This study is oriented to the definition of a system for creating 3D movies
called Spiel, which will try to implement all these ideas in order to get a working
creative system.

Story Generator

Script writing

Camera location

Camera motion

Spiel

Module

Framework

Fig. 1. Spiel’s modules.

2 Previous Work

Computational Creativity tries to study processes related to human creative
production, and is heavily influenced by Boden’s work [2, 3]. The main issue
about how to build creative systems is that creativity is not precisely defined [4].
However, building systems that could be considered creative is still possible and
interesting.

72

There are several approaches to heterogeneous systems for cinematographic
creation, but most of them are not focused on Computational Creativity. We can
cite, however, some creative automatic systems from which several ideas have
been taken to carry out the development of Spiel.

Christianson et al. [5] use film idioms to adapt cinematographic techniques
for portraying 3D animations. They formalise film idioms with their Declarative
Camera Control Language (DCCL). As input the camera system use an anima-
tion trace representing the action that has already occurred and a number of
sequences indicating which actor to film over each time. The system presented
in [6], The Virtual Cinematographer, is a camera control system for a real-time
virtual party that also use the concept of film idioms. The input is obtained
directly from the state of the environment to choose the best idiom according to
the actions. Each idiom is implemented as a finite state machine that describe
the cinematographic techniques, which cover the current situation.

In the same line, the work presented in [7] shows a real-time system for
interactive narration in virtual worlds. In [8] a similar approach is explained in a
real-time computer game system. All this research is not focused on the creative
processes involving the creation and visualization of a story, or in how the nexus
between these components can enrich the interaction with humans.

Charles et al. [9] propose a system that combines an interactive storytelling
system with an automatic camera system based on cinematographic techniques,
which decides the correct idiom covering the actions of the characters, giving
di↵erent weights according to the relevance in the situation.

Storytelling follows, however, a di↵erent research tradition. Creativity has
been studied in several storytelling systems (MEXICA [10] or Minstrel [11]).
Results from those programs have been very influential on the development of
Computational Creativity. They try, in general, to follow psychological models
of human creativity, trying to apply a computational model of them to the
generation of stories. But there also are other systems, (like TaleSpin [12],
Fabulist [13] or Universe [14]), which, even creating good stories, are not
focused on creative processes.

Next sections explain how this can be done: even without using creative sys-
tems, it is possible to build a creative object, by the interaction of the generative
programs.

3 A Framework for Building Artistic Objects from
Heterogeneous Modules

With all these ideas, a framework which tries to study how to automatically
create a complex artistic object, like a 3D movie, from not necessarily creative
systems could be possible, and an instantiation of this framework (Spiel), are
presented. This section explains in detail how the global system carries out the
task of making several di↵erent heterogeneous systems work together. First an
overview of the system, explaining the algorithm, is given, then some important
details of the modules which instatiate the framework are explained.

73

3.1 How the Framework Works

The framework for creating artistic objects (mainly focused on movies) from
heterogeneous modules is not a story generator, nor a camera direction system:
it is a software whose application is focused on using several systems together,
to create new information which the modules themselves could not create.

It is really di�cult to design a system capable of carrying out this task
for every possible set of systems. It would be necessary to define a language
which every module should speak in order to intercommunicate those modules
between them and with the main system. Also, functions for deciding operations
like “when to apply each module” or “which operation must be done” should be
defined in such a way that they would cover all possible types of modules, by
giving a general description of those functions, or by covering all cases.

Although this is, in principle, possible, we are far from being capable of
creating such a system. Instead, the logical approaches should follow a kind of
ad-hoc solutions, trying to gather all possible information in order to gaining
knowledge and experience for, some day, being able to develop a general system.

Spiel, the framework’s instantiation, is one of such ad-hoc systems. However,
it is not only intended to cover a specific case, but it is fully focused on creating
a “growing” nucleus, able to use, in the near future, di↵erent types of modules
(stories, voice, 3D environments, plain text...). Basically, the framework’s algo-
rithm follows the schema shown in Algorithm 1. It is a very simplistic approach
to an opportunist architecture. Several modules are present in the system, and
the object which is going to be generated (a movie in the Spiel instantiation),
is being created step by step, by the sequential operation of the modules.

For directing what must be generated, modules are initialized with data guid-
ing the generation. For instance, a story generation module should be initialized
with constraints about what is to be created (a love story, perhaps).

What this algorithm is doing is explained in the list below. The algoritm
is executed with a list of modules which implement the functions validity,
appropriate, new-solution and apply-solution (what these functions are is
explained), and it is assumed that the system’s status is the partially built movie:

– Lines 1-4. The object which is going to be generated is initialized (s0),
and, running the validity function, each module yields a pair of values: the
value for moduleEvaluationi is a real number in the interval [0..1], which is
a measure of what the module thinks of the partial creation of the system
(the partially generated movie). 0 means the module “thinks” the partial
object is completely wrong, and 1 means that the partial object is valid
enough to be the solution. This value is computed by each module in a
di↵erent way, and considering di↵erent aspects of the generated object. The
moduleProblem value is a description of what the module considers to be
wrong. This description is dependent on the particular instantiation of the
system. The di↵erent incomplete parts of the partial object are defined in
these steps.

– Line 5. After the system has computed every hmoduleEvaluation,moduleProblemi
pair of each module by calling its validity function, the framework applies

74

Algorithm 1 Using several modules in the framework for creating a single object
1: s0 initial object

2: for all modulei in modulelist do

3: hmoduleEvaluationi, moduleProblemii modulei.validity(s0)
4: end for

5: hevaluation, problemi select the most important pair from the set of pairs
hmoduleEvaluationn, moduleProblemni

6: while evaluation 6= valid do

7: for all modulei in modulelist do

8: moduleAppropriaten modulei.appropriate(problem)
9: end for

10: chosen module with max(moduleAppropriaten), or none if no module is
appropriate

11: if it has been possible to find a chosen module then

12: apply chosen.newsolution() to sj

13: if sj has new information then

14: for all othermodule in modulelist do

15: othermodulei.applysolution(sj)
16: end for

17: for all modulei in modulelist do

18: hmoduleEvaluationi, moduleProblemii modulei.validity(sj+1)
19: end for

20: hevaluation, problemi select the most important pair from the set of
pairs hmoduleEvaluationn, moduleProblemni

21: else

22: discard the currently chosen module, and choose a di↵erent one in the next
iteration

23: end if

24: else

25: exit program
26: end if

27: end while

75

a function, which can be defined in many ways, which returns the global
system hevaluation, problemi pair. This function could return the problem
from the module with the lowest moduleEvaluation value (which would be
the pair with the “hardest” problem). Or it could return the mean value
from the moduleEvaluation values of each module, and then a problem
randomly chosen from the di↵erent modules. A discussion about some pos-
sible approaches is presented in Section 4. After this step, the problem (the
incomplete part) which has to be solved is defined.

– Line 6. The system then checks whether the evaluation value is good enough
to be considered valid. There are several possible ways of computing this
boolean expression. Possibly, the most straightforward one is to check that
the real value of evaluation is over a given threshold. This line guides a loop
which will end once the object is created, or when it is considered impossible
to create an object with the requisite from the user.

– Lines 7-10. Once we have the problem which has to be solved, each mod-
ule runs its appropriate function. This function returns a real number in
the interval [0..1], 0 meaning that it will not be able to solve a particular
problem object, and 1 meaning it can perfectly solve the problem. Obviously,
it is di�cult to know whether a module can solve a problem before trying
to solve it. What the appropriate function returns is a “possibility” value
(moduleAppropriaten). For instance, if the problem object returned by the
computation of the validity function stores information about missing in-
formation of a story, a story generation module will return a higher value for
the appropriate function than a module managing camera motion. How-
ever, even selecting a particular module, nothing ensures that it will be able
of really solving the issues present in the problem object.
After gathering all possible values for appropriate from each module, it
is necessary to decide which module will be chosen. Initially it could be a
good option to choose the module with higher appropriate value, but this
value is only an approximation, and it can lead to local-minimum. That is
why the framework adds random noise, and chooses, in some iterations (the
frecuency of this noise can be parametrized), a module which is not the
one with highest appropriate value. Section 4 discusses the benefits of this
approach from the creativity point of view.
If no module can be chosen (for instance, every module returns 0 as the value
of the appropriate function), the system exits with a failure vaule: It has
not been possible to create an object with the initial constraints.

– Lines 11-12. If it has been possible to find an appropriate (chosen), mod-
ule, this chosen module applies its internal processes (what the module is
really created for: a story, a new camera layout...), and generates a new
object sj applying its new-solution function (which returns partial infor-
mation which completes the story: in Spiel, a new set of facts for the story,
for instance). If the new-solution function is not able to return a value,
the algorithm will try to choose a di↵erent module. If no other module is
appropriate (as explained in the previous list item), the generation fails.

76

– Lines 13-16. If the partial object (sj) has been updated, The apply-solution
function is called in each module. This function receives the description of
the solution object just created by the choosen module, and updates the
description of the partial whole object. For instance, if the chosen module
was the story generator module, and it created three new facts for the story
(which is only a part of the movie), the camera direction module would
receive those three facts, and would update its information about the story.
Obviously, this function assumes that every module knows how to apply
information from other modules. So, although they can be heterogeneous,
they can not be totally independent of each other.

– Lines 17-20. Finally the system checks again for the validity of the new
partial object sj+1.

The overall benefits of the approach followed in this algorithm are discussed in
Section 4. Section 3.2 explains in detail how the previously commented functions
are really instantiation.

3.2 Spiel: An Instantiation for Creating Movies

As it has been said before, four independent modules have been designed to
instantiate this framework. They have been designed for interoperability. The
next list details information about them, focusing on the instantiation of previ-
ously defined four functions for interacting with Spiel, and, therefore, between
them. These modules are not creative by any means, however, we want to discuss
whether the output from these not necessarily creative modules can be creative
or not.

– The story generation module outputs a list of first order logic-like predi-
cates in this form1: character(aragorn), go(aragorn, forest). For in-
stantiating the validity function, it accepts a story as valid if it is coher-
ent with the user input (using hand-made logic rules). For example, if the
user input is kill(aragorn, sauron), and the resulting story-state is just
character(aragorn), go(sauron, mordor), the story will be considered to
be non-valid.
The new-solution function returns, taking into account the current state
of generation (the partial story, and the partial camera layout), a new story
with logic facts.
The appropriate function returns a valid value if the module can find,
in its facts database, the set of facts necessary for completing the story,
given the current problem. Finally, apply-solution updates module’s state
if the solution is a new story, and if the solution is a new camera location, it
performs a mapping between the camera state and a set of “emotional facts”
(emotion(love, intense)) in the story to create a new “emotional” state.

1 We are working in The Lord Of The Rings domain.

77

– The script writing module adapts stories to typical story scripts. If, for ex-
ample, a romantic scene is lacking the final kiss, this module adds that
information to the set of facts (which has the same format as the previous
module’s output). The instantiation for the four functions follows approx-
imately the same behaviour that for the story creating system (the rules
vary, but the semantic is the same), but for the appropriate function: it
computes this value by computing the distance between the script schema
and the generated story. The less the distance (without being equal), the
more appropriate the application of this module. That is, if there is only one
di↵erent fact between the story and the schema, this module can solve the
problem.

– The camera positioning module abstracts the cinematographic knowledge in
order to determine which position and orientation, for a specific action or
event in a story, are the most suitable, and it generates a new camera layout,
creating a structure according to the story compose of scenes and sequences
and the appropriate camera configuration for each sequence. It calculates
the validity function output by computing a specificity value: whether the
story shows a clear emotion within a predefined set, or match with one of
the sequence predefined in the module, or the sequence of the scene don’t lie
in a cycle of camera configuration. It considers itself to be appropriate or not
depending on how specific (as defined before) the partial story is: The higher
the specificity, the higher the appropriate value. Finally, apply-solution
updates module’s state to generate a new structure with their appropriate
camera configuration, if one solution is proposed by other modules. As a
new-solution this module propuse new information like a movement for
some character, or an emotional intensity for a sequence, or to introduce a
new kind of predefined sequence in the story. With this information the new
state of the modules will be update and checked again for correctness.

– The camera motion module works in the same way that the camera posi-
tioning module does. However, the output is composed of camera movements
(track, pan, tilt) instead of positions.

4 Discussion

The framework and Spiel are not creative systems (the main algorithm is quite
simple): the processes they run are rule based, without any creative idea. What
the framework does is to handle, in a kind of opportunist and distributed way,
di↵erent heterogeneous processes. What we want to discuss, basing on the main
conclusions we have obtained during the development of the framework and its
instantiation, is whether a creative object can be obtained by applying this kind
of processes (trying to combine several generative systems), how can creativity
emerge.

Although there are di↵erent computational systems focused on generating
creative objects (like stories), and whole systems for creating 3D movies (or
parts of them), there is not much focus on whole systems trying to generate

78

creative 3D movies. Of course, Spiel is far from being able of such a creation,
and this paper just shows the first steps towards this ambitious objective. The
main point of this text is to discuss whether this is possible, and what processes
could lead to creativity.

The main point we can argue is that this kind of frameworks can lead to
results which would not be the output of a sequential system (that is, creating a
story, and, after that, creating a camera layout). Modules provide feedback for
other modules, which should, in principle, lead to more “enriched” results.

For this to be possible, it is important to create a good definition for choosing
which module to apply and a the evaluation functions for the system. If these
functions are just focused on choosing which module returns the highest values,
probably the output of the system will not be much better. However, the study
of how collaborative decission for this functions can lead to emergent creativiy
is interesting.

For instance, if the result of the global evaluation value (as defined in Section
3.1) is computed taking into account every module’s result (perhaps computing
the mean value), the heterogeneous systems collaborate, and the global system
gets enriched by this process, in the sense that a new evaluation function emerges,
and this function is di↵erent, and not previously designed by the module creator
(although obviously it is previously conceived by the framework’s operation).

5 Conclusions and Future Work

A framework for creating compound creative systems, has been presented, and
an instantiation for it, Spiel. It is fully focused on how independent systems
can work together to build a complex creative object. The main conclusion is
whether, even having obtained new data from the use of this system, these
new data can be considered creative, or just a product of feeding modules with
additional data.

Next versions of the framework and Spiel will focus on creating more mod-
ules, trying to build a real 3D creation system. It is planned to create modules
not dependent on the framework (and adding a wrapper for it). Letting the
system follow a state-space search, like a backtracking (trying many di↵erent
possible options in each iteration), would improve the system output.

Also, the greedy approach is only intended to show the preliminary possibili-
ties of such a system, but a blackboard architecture, or a backtracking state space
search could be interesting for this purpose, letting the modules communicate
in a more powerful way.

References

1. Wiggins, G.: Searching for Computational Creativity. New Generation Computing,
Computational Paradigms and Computational Intelligence. Special Issue: Compu-
tational Creativity 24(3) (2006) 209–222

79

2. Boden, M.: Computational models of creativity. Handbook of Creativity (1999)
351–373

3. Boden, M.: Creative Mind: Myths and Mechanisms. Routledge, New York, NY,
10001 (2003)

4. Ritchie, G.: The Transformational Creativity Hypothesis. New Generation Com-
puting, Computational Paradigms and Computational Intelligence. Special Issue:
Computational Creativity 24(3) (2006) 241–266

5. Christianson, D.B., Anderson, S.E., wei He, L., Salesin, D., Weld, D.S., Cohen,
M.F.: Declarative camera control for automatic cinematography. (1996) 148–155

6. wei He, L., Cohen, M.F., Salesin, D.H.: The virtual cinematographer: a paradigm
for automatic real-time camera control and directing. In: SIGGRAPH ’96: Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive tech-
niques, New York, NY, USA, ACM (1996) 217–224

7. Amerson, D., Kime, S.: Real-time Cinematic Camera Control for Interactive Narra-
tives. In: Working Notes of the AAAI Spring Symposium on Artificial Intelligence
and Interactive Entertainment, Stanford, CA, USA, AAAI Press (March 26-28
2001) 1–4

8. Lin, T.C., Shih, Z.C., Tsai, Y.T.: Cinematic Camera Control in 3D Computer
Games. In: Proceedings of 12th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision (WSCG 2004), University
of West Bohemia, Campus Bory, Plzen-Bory, Czech Republic (February 2-6 2004)
289–296

9. Charles, F., Lugrin, J.L., Cavazza, M., Mead, S.J.: Real-time camera control for
interactive storytelling. In Mehdi, Q.H., Gough, N.E., eds.: GAME-ON. (2002)

10. Pérez y Pérez, R.: MEXICA: A Computer Model of Creativity in Writing. PhD
thesis, The University of Sussex (1999)

11. Turner, S.R.: Minstrel: A computer model of creativity and storytelling. Technical
Report UCLA-AI-92-04, Computer Science Department, University of California
(1992)

12. Meehan, J.: The Metanovel: Writing Stories by Computer. PhD thesis (1976)
13. Riedl, M.: Narrative Planning: Balancing Plot and Character. PhD thesis, De-

partment of Computer Science, North Carolina State University (2004)
14. Lebowitz, M.: Creating characters in a story-telling universe. Poetics 13 (1984)

171–194

80

