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Abstract. Creativity is often described as the intelligent misuse or re-
arrangement of existing knowledge, and is meaningless without the con-
text and associated expectations provided by that knowledge. We out-
line a model of problem-solving creativity based on the generalisation
of cases and discuss how sub-symbolic computational intelligence tech-
niques might be used to implement it. We propose a novel measurement
for creativity based on the idea of creative potential or the ‘degree of
misuse’ of existing concepts contained in a case base.
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1 Introduction

It can be argued that design is essentially problem solving [1], [2], and that
creativity is essentially remarkable problem solving. Doing this in an intelligent
manner means using and adapting knowledge, and so it seems clear that an arti-
ficial problem solving system should be knowledge-driven. Knowledge is clearly
an important aspect of creativity: without it people (or other agents or systems)
cannot intelligently come up with new solutions or concepts, and there is no
context to give creativity meaning and allow surprise.

For frequently encountered, routine design problems there is no need to be
creative – the relevant knowledge is obvious and previous solutions can simply be
reused, perhaps with some modification if necessary. If existing solutions do not
apply directly then more creativity is needed, but a solution must still ultimately
be based on the knowledge available. This hints at a possible definition for cre-
ativity based on how much manipulation of knowledge is needed to produce a
solution.

While creative things are surprising they are not totally independent of more
familiar things – indeed they must be related if they are to have any meaning
or element of surprise. Many researchers have suggested that a creative solution
is essentially a new use or combination of knowledge we already have, and that
creativity di↵ers from more routine problem-solving in degree rather than kind.
Henri Poincaré argued that creative ideas “reveal unsuspected kinships between
other facts well known but wrongly believed to be strangers to one another”
[3] and variations on this theme of rearranging existing knowledge have been
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repeated by others, including Schank with his “intelligent misuse of knowledge”
[4] and Koestler with his bisociation theory [5].

In other words, existing knowledge may contain concepts or solutions that
might be applicable to the current problem but are obscured by context- or
domain-specific details. Creativity involves the ability to recognize this useful
knowledge and reuse it in di↵erent situations or contexts. The more di↵erent the
contexts concerned the more creative the result may be considered to be.

This ability to recognise relevant concepts reminds us of activation functions
or associative hierarchies [6], which attempt to capture how we are reminded of
particular things given a problem cue. A flat activation function produces more
(and more unusual) responses than a spiking one, with creative people said to
have flatter activation functions, reinforcing the idea that making non-obvious
associations is key in creativity.

In the next sections we will outline a high-level model of case-based cre-
ativity and discuss how computational intelligence techniques might be used to
implement it.

2 Case-based Creativity

Both creative and routine problem solving are based on the application of exist-
ing knowledge to new problems. This has obvious similarities with Case-based
Reasoning (CBR), a well known knowledge reuse methodology. In CBR cases can
be thought of as “contextualised pieces of knowledge” [7], or concepts wrapped
in context-specific details. Cases typically consist of a problem and a solution,
although they can include extra information such as results and lessons learned.
Solutions can be artefacts or instantiations or, more commonly, methods or pro-
cesses. If they are artefacts they are usually general rather than concrete. In
addition to cases CBR systems may contain other information such as more
general knowledge or adaptation rules.

CBR essentially consists of the“4 rs”[8] :

– Retrieve
– Revise
– Reuse
– Retain

Most CBR research focuses on the first 2 steps, which involve problems collec-
tively known as the indexing problem [9]: how to select the cases that will produce
the best solutions to the input problem – in other words, if useful knowledge is
contained in a case how to make sure it is retrieved. The relationship between
retrieving and adapting cases depends on the particular implementation but can
be very close – for example, cases may be selected on the basis of adaptability
rather than similarity to the input problem.

CBR is based on the assumption that similar problems have similar solutions,
which corresponds loosely to routine design or problem solving. However, retriev-
ing a solution from the closest matching case has limitations from a creativity
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point of view: Too close and the adapted solution will merely be a non-creative
variation on an existing one, too far and it may be too di�cult to adapt. We
need to consider other ways of retrieving a solution, as case solutions contain-
ing concepts that can form the basis of a creative solution have corresponding
problems that may be (or appear to be) dissimilar to the input problem.

2.1 Misusing knowledge

We want to identify knowledge that is not obviously relevant to the input prob-
lem and misuse it in an intelligent or sensible way. It has already been suggested
that a straightforward similarity measure is not necessarily the best way to
choose which cases to use. Work has been done on retrieving cases on the basis
of their adaptability, for example Smyth and Keane’s Adaptability Guided Re-
trieval (AGR) [10]. However this requires some assessment of adaptability, in this
case “specially-formulated adaptation knowledge” that can be quickly applied
to each case. This knowledge appears to be hand-written for specific domains.

However we have an apparent contradiction: we are suggesting that concepts
contained in dissimilar cases may lead to creative solutions, and that similarity
measurements will not lead us to them. But this implies that the cases are in
fact similar or analogous in some way – if they were not the retrieved concept
could not lead to a useful solution. We need to uncover the hidden or potential
similarities.

There are several reasons why cases may not initially appear to be similar to
the input problem, even when described in compatible formats. They may be:

– similar but described di↵erently (e.g. with domain- or context-specific vo-
cabularies);

– described at di↵erent levels of abstraction;
– describable in many equivalent (or at least non-contradictory) ways, for ex-

ample by function (teleology), behaviour or structure.

2.2 Identifying useful concepts

Rather than using cases directly in the retrieval stage, we suggest generating
di↵erent ‘views’ of cases and the input problem and assessing these for similarity
(Figure 1(a)). By using di↵erent views of the problem we can make connections
that may not be apparent in the original views, and retrieve concepts that can
be incorporated into new solutions. We suggest that the results will be more
creative than if we had retrieved a solution through a more obvious similarity
(Figure 1(b)). To support this claim we would have the transfer of a concept
between two di↵erent (or not obviously similar) cases and contexts, and the fact
that the solution is not arrived at through simply taking an existing solution
and modifying it. The less obviously similar the input problem and ‘donor’ case
problem the more creative the result, and the more work or processing needed to
find the common problem. We suggest that some measure of this work represents
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(a) Identifying commonalities through similarity of dif-
ferent views

(b) Identifying commonalities through case similarity

Fig. 1. Retrieving useful cases through similarity
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creative potential and could provide a means of evaluating for creativity. This
fits well with accepted views of creativity as the misuse of knowledge.

There are two broad approaches to identifying commonalities:

– look for connections in case problems only, on the assumption that corre-
sponding solutions will be useful;

– look for connections in both case problems and case solutions.

In the first case we would be looking for a problem common to both the input
problem and a case problem but not necessarily explicitly described in either. The
corresponding case solution should therefore contain some concept or knowledge
useful for the input problem. Rather than having a relatively concrete solution
to adapt as in CBR we may have a more abstract solution we need to concretise
or specify.

In the second case we may be able to bypass using the case problem as an
index and look for connections with solutions directly. For instance, one aspect
of the input problem may include the concept of rotation, and we may be able
to identify some case solutions that incorporate rotation.

2.3 Case and problem views

Problems and solutions may be viewed in several di↵erent ways. We may use
di↵erent levels of abstraction, di↵erent vocabularies, or describe di↵erent per-
spectives such as function, behaviour or structure as in Gero’s FBS model [11].
For example, our problem might involve designing a bridge to carry cars across
a gorge. By mentioning bridges we have provided a context or bias focused on a
span across a gap and are already describing the problem in terms of a known
structure. Our case base might contain some cases involving bridges or spans,
allowing us to retrieve an existing solution concept and perhaps modify it for
our particular application. This is not likely to lead to a particularly creative
solution as what we have is still a bridge, and a modified version of an existing
bridge at that. However, looking at the desired function of the bridge gives a
di↵erent view: enabling cars to move from one side of an obstacle to another. A
behavioural or structural view of a solution such as, say, a record player might
enable a connection between movement and a rotating turntable, which may
lead to a more creative way of crossing a gorge.

One approach to producing di↵erent views of cases and problems is through
context-driven or “lazy” generalisation. This may lead to more abstract views
with less context- or domain-specific details to obscure potential similarities.

3 Computational Intelligence and Case-based Creativity

To recap, our thesis is that creativity in intelligent design/problem-solving relies
on retrieving concepts from cases that might not be identified by straightforward
similarity measures, and the less obvious the similarity the more creative the
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solution will be. We are primarily interested in producing new concepts (the
‘creative leap’) rather than detailed instantiations.

Given a set of cases and an input problem our goal is to retrieve a concept
contained in some exisiting case solution and use it to develop a new one. We are
particularly interested in cases where the case problem is apparently dissimilar
to the input problem. Our suggestion is that similarities may become apparent
at higher levels of abstraction than is given in the original case and problem de-
scriptions. Computational Intelligence (CI) techniques could be used to produce
generalised concepts (that is, more abstract concepts that are incorporated in
one or more less abstract cases). This process of generalisation could be repeated
until a match is found and would apply to both case problems and solutions.
The corresponding abstract solution concept would then form the basis of a
new solution, which when instantiated would not be merely an adaptation of an
existing solution at the same level of detail (Figure 2).

Fig. 2. Case-based creativity through generalisation

We suggest that CI techniques may support the operations and flexible gen-
eralisation needed to implement a Case-based Creativity (CBC) system as out-
lined above. CI techniques are essentially non-symbolic and include evolutionary
computation and connectionist and fuzzy systems. These techniques have some
useful properties and abilities such as tolerance to noise, clustering, generali-
sation, pattern matching, and (unsupervised) learning, and do not necessarily
depend on their states mapping to valid examples in the input space, or the
construction of a model of the space. The advantage of this approach is that
we may be able to perform semantically meaningful generalisation without the
overheads associated with reasoning over structured, symbolic data.
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3.1 Graph representation

The model outlined above is very much symbolic in nature. This is unavoidable
for working with problems which are in rich enough domains for creativity to
have meaning.

Graphs provide a convenient way to represent structured, symbolic knowl-
edge. Usually knowledge graphs are directed acyclic graphs such as semantic
networks or concept nets. They are closely related to ontologies, which can be
represented as graphs and provide both a vocabulary and a means of specifying
relationships between entities (nodes in the graph). Graphs can also support in-
duction and the definition of new relationships and concepts, useful for a system
such as the one discussed. However doing this is computationally very expensive
and we are not necessarily interested in the ‘correct’ formation of new concepts
through induction; rather, we are looking for a mechanism to provide pointers
to existing solutions whose relevance would not otherwise have been apparent.
For this we need only know that two generalised concepts (i.e. higher level con-
cepts produced through the abstraction of lower level ones) would be similar –
whether these generalisations can be mapped to valid graphs with respect to
some ontology is secondary.

In a case-based system individual cases might consist of a pair of graphs
representing a solution and a problem.

3.2 Symbolic data and Computational Intelligence

An obvious issue is that CI techniques are sub-symbolic – that is, they work
with real-valued vectors representing things in number space rather than sym-
bol space. As mentioned above we need to use symbolic representations to work
with meaningful design problems and creativity, and there is a ‘semantic gap‘
between sub-symbolic and symbolic representations. However, some work has
been done on using symbolic knowledge with CI [12] [13], typically involving
recurrent neural networks or the recursive application of graphs to SOMs. Other
approaches include some kind of preprocessing to reduce dimensionality, e.g.
principal component analysis (PCA) or spectral analysis to identify the eigen-
values of a graph which can then be applied to a connectionist system.

If using CI techniques to generalise graphs corresponds to generalising the
concepts that they represent, then the results will be semantically meaningful.
Both Sparse Distributed Memory models (SDMs) [14] and Self-organising Maps
(SOMs) [15] can generalise and retrieve items matching an input. In addition
SOMs impose a topology on an input space, which may or may not be useful
as we are primarily interested in which cases are similar to a given problem,
not with each other. However, a SOM generalises over the input space on which
it is trained. This means that weight vectors come to represent examples from
that space that it has not necessarily seen but are representative of the topology
of the input space. With reference to our high level model we might call this
‘horizontal generalisation’. What we are interested in is ‘vertical generalisation’
to higher levels of abstraction, and how this might be achieved with approaches
such as SOMs appears to be an open research question.
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3.3 Concretising solutions

Rather than adapting an existing solution we will likely need to concretise an
abstract solution. There is an argument to be made that identifying this solution
constitutes the ‘creative leap’ and that the job of producing a more detailed
solution or design is secondary and likely to be routine. Again, we only have our
existing knowledge with which to work in order to turn an abstract concept into a
more detailed solution. We may have the generalised concept we have chosen, the
context-specific details from the input problem, specific cases incorporating the
generalised solution, the generalised input problem, generalised case problems
incorporating the concept, and maybe other cases selected ‘non-creatively’ (e.g.
with a similarity measurement) if available.

4 Other implementation issues

4.1 Building a case base

The aim is to use a publicly available dataset with which to build a case base.
This means developing a graph for a problem and another representation for
a solution. There are several ontologies available in RDF format that provide
the vocabulary and relationships necessary to describe concepts in the relevant
domain, and these can easily be used to generate graphs.

There is likely to be a conflict between a rich enough, cross-domain dataset to
allow for creativity and practical considerations (e.g. vocabulary size). A domain-
specific dataset has the advantage of consistency and a relatively tightly con-
trolled vocabulary, but everything is already in the same context so there is
perhaps less scope for creativity.

However there still remains the issue of describing a problem. If possible we
want to avoid doing this ourselves to keep the introduction of our own bias to a
minimum, but even so it is likely that any publicly available dataset will need a
significant amount of preprocessing.

One possibility is to use patent data. Patents are attractive because they
cover all domains and are often described in terms of problems and solutions
using very specific language. Another advantage is the possibility of comparing
the output of the system with actual solutions.

Whichever domain/dataset is chosen it will ideally be human-meaningful; i.e.
the outputs are such that humans can assess their creativity.

4.2 Scope

The scope of a system will depend on its intended role in the design process. We
have argued that the essence of the creative leap is in the association rather than
in the concretisation of the resulting concept. If we envisage the system serving
to prompt human designers then highlighting the relevant solutions might be
su�cient. However if we wish to automate the evaluation of the results we will
need to construct a new case that can be compared to existing ones which,
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depending on the generality of the retrieved solution, might involve some further
generalisation and concretisation.

4.3 Evaluation

We will need to evaluate how well the mapping between concepts and their sub-
symbolic representations is preserved during processing in order to evaluate any
results for creativity. If we are confident that semantic generalisation is occurring
then we may explore the concept of creative potential to evaluate the creativity
of results.

5 Summary

We are suggesting that creative potential increases with abstraction, and that
creativity is in fact meaningless at the lowest, sub-symbolic or instance level.
This suggests that there may be a novel and interesting assessment of creativity
based on the amount of processing done on the case base to produce a solution,
or at which level of abstraction an isomorphism was found between the new
problem and the abstracted case problem. This might be used in combination
with graph distance metrics. However we will be interested in the combination
of both the problem (context) and solution aspects of a case, which may involve
more than one graph.

It is also important that any solutions do actually solve the problem at hand.
The need to evaluate performance may limit the choice of domain, and implies
that we may need to generate solutions at the sub-symbolic level in order to be
able to model or simulate them for evaluation.
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