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Abstract

We adopt a process-centric approach to computational

creativity, based on a model of people’s innate ability to
process analogical comparisons. A three-phase model of

analogical reasoning is adapted to function as an anal-

ogy generating machine. It is supplied with two distinct
knowledge-bases containing many domain descriptions,

with the aim of generating novel analogies – potentially

even creative ones. However, because our approach to
computational creativity does not have the usual ”inspir-

ing set”, evaluating its output can not be performed by

comparison to this inspiring set. Our generic approach to
evaluating process-centric computational creativity uses

a number of nonparametric statistical techniques. After

the creative artefacts are generated, human raters assess
these artefacts for the qualities of creativity (quality, nov-

elty etc). We describe the results of two experiments that

were conducted on these two collections of domains. The
analogies generated on the two collections are analysed

and difference in the two result sets are assessed. We ar-
gue that true creativity can only be assessed after the cre-

ative artefacts are generated. Evaluating creativity only by

reference to the inspiring set runs the risk of overlooking
creative artefacts that differ from the inspiring set - and

may under-estimate a model’s creativity.

Keywords: Analogical Creativity, Analogy Generation,
Evaluation, Nonparametric Statistics

1 Introduction

Computational creativity frequently uses an ”inspiring
set” of creative artefacts (music, images, poems etc) both

to drive the model and to act as a basis for its evalua-
tion. This artefact-centric approach to computational cre-

ativity contrasts with the process-centric approach in this

paper and elsewhere (O’Donoghue, 1997; Gomes et al.,
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2003; Veale, 2004; O’Donoghue et al., 2006). This paper

describes an approach to computational creativity that is

based on people’s innate ability to understand analogical
comparisons. This paper builds upon computational mod-

els of the analogical reasoning process.

Analogical comparisons are often cited as a driving
force behind creativity, providing new perspectives on

some previously known concepts (Boden, 1992). Creativ-

ity using analogies is strongly associated with science and
scientific advancement. Pierre Curie and colleagues de-

liberately used analogies as a technique for generating hy-

potheses which they later tested (Curie, 1923). Hoffman
(1995) and Brown (2003) detail the role that analogies

played in many recorded scientific breakthroughs. Dun-
bar (2001) and Dunbar and Blanchette (2001) note that

experts display a great ability to generate and use novel

analogies when dealing with situations that arise in their
normal work environment (this contrasts with the rare use

of analogies by non-experts when presented with tester-

determined analogy problems). Koestler (1964) was also
among those who account for creativity as the juxtaposi-

tion of two very different sets of ideas.

In essence, an analogy is a comparison between two
concepts (source and target) (Gentner, 1983), such that

the source highlights particular aspects of the target and

suggests new inferences about that target. Every ana-
logical comparison has two effects. Firstly, it highlights

an existing non-obvious similarity between two concepts.

Secondly, it then extends this similarity by transferring
information from one concept to the other, adding new

information to the target. In creative analogies (Boden,
1992; Eysenck and Keane, 1995) a strange source domain

conjures up a revolutionary new conceptualisation of the

target, suggesting inferences that explain some previously
unexplained or unnoticed phenomena.

Computational modelling of the analogy process has

focused primarily on the central mapping phase (Keane
et al., 1994) ; see (French, 2002) for a review). Sur-

prisingly, only a few models have been developed of

the previous retrieval phase (Thagard et al., 1990; For-
bus et al., 1995; Plate, 1998; O’Donoghue and Crean,

2002; Gomes et al., 2003) or of the subsequent validation

phase (Falkenhainer et al., 1989). However, no combined
retrieval–mapping–validation model has been described

and evaluated. In this paper we investigate a three-phase
model and evaluate its potential for finding and assess-
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ing novel analogies - potentially even identifying creative

ones.

We should not be overly proscriptive in how we assess
computational creativity, unpredictability being a quality

that is often associated with creativity. Any creativity

model that is assessed solely by comparison to an inspir-
ing set may inadvertently overlook outputs that are con-

sidered creative when assessed independently of that in-

spiring set. True creativity can only be assessed post hoc.
The remainder of this paper is structured as follows.

First we review computational creativity, distinguishing

between the traditional ”inspiring set” approach and our
”process-centric” approach. We then describe our com-

putational model for generating and evaluating analogi-
cal comparisons. We describe the problem of assessing

our model in the absence of an inspiring set. We de-

scribe a number of statistical techniques that serve to eval-
uate process-centric creativity models. We then present

and analyse the analogies generated by our model before

drawing some final conclusions.

2 Computational Creativity

Ritchie (2001) describes and formalises the typical pro-
cess by which most computational creativity programs are

constructed. The process starts with basic items which are

items of the type to be produced by the program (poems,
music, images etc). A subset of these items is selected,

taking into account the ratings and values associate with
the basic items - creating the inspiring set. Following this,

the program is constructed and executed for a range of pa-

rameters. We characterise this approach to computational
creativity as artefact-centric creativity.

2.1 Process-Centric Creativity: Beyond the

Inspiring Set

Our approach differs from standard computational creativ-

ity in a number of ways. First, we start with a compu-
tational model of people’s ability to reason analogically.

Our model is based on many years of focused work on the

analogy process by many cognitive scientists. Our aim
is not only to generate creative artefacts (analogies), but

to do so in a cognitively plausible manner. We charac-

terise this approach to computational creativity as process-
centric creativity.

We reject any suggestion that producing creative

analogies is somehow driven by an ”inspiring set” of pre-
vious creative analogies. We do not wish to produce

analogies that are similar to existing analogies. What we

are searching for is analogies that produce the same effect,
of explaining or highlight some facts. As noted Aristotle’s

Poetics1 (Chapter 22) analogy is ”one thing that cannot be
learnt from others”.

A second difference with standard computational cre-

ativity is that we wish to produce an unconstrained model
of creativity. We may expect our model to (re)generate

a few well-known creative analogies (like Rutherford’s

1Aristotle made this statement about metaphor which is very
similar to analogy, both being centred on a core mapping phase.

solar-system:atom analogy), but we do not consider iden-

tifying these as true examples of creativity. That is be-

cause these are well studied analogies and they have been
described in the literature in such a way as to maximise the

similarity between the two domains. This has two impli-

cations. Firstly the expert’s intricate knowledge is trans-
lated into a greatly simplified format, where the same re-

lations are used to describe the source and target domains.

Retrieving the simplified source can use identical token
matching (used by MAC/FAC (Forbus et al., 1995)), but

this would prove far less effective on the original prob-

lem as it was then understood. Even the semantic similar-
ity metric used by ARCS (Thagard et al., 1990) may not

provide a cue to retrieval. Secondly, the topology of the
simplified domains are (generally) also identical, allowing

the graph structure of the domains to play a significant role

in retrieval (Plate, 1998; O’Donoghue and Crean, 2002;
Gomes et al., 2003). Thus, identifying these analogies in-

directly makes use of their original discovery - and does

not require the same creative insight that is associated with
Rutherford and others.

For example, O’Donoghue (1997) describes three

successive problems that Kekule must have overcome in
re-structuring the carbon-chain analogy into the famous

carbon-ring analogy. Attempts were made to describe

the domains in a manner more like the common under-
standing before Rutherford’s famous insight - using the

then dominant ”plum-pudding” interpretation of the atom.

However, the success of these attempts varied widely de-
pending upon two factors. Firstly, the topological simi-

larity of the resulting domain descriptions as the CWSG
inference algorithm (Holyoak et al., 1994) generates in-

ferences as a form of graph-completion process. Sec-

ondly, identicality or semantic similarity between the re-
lations used to describe the source and target domains

greatly influenced the likelihood of the correct analogy

being drawn.
A creativity model should identify any additional cre-

ative analogies that might arise - ones that were not ex-

pected to be found. Thus, if one source domain offered
some novel and useful inferences about some target do-

main, this p-creative (Boden, 1992) comparison should

also be identified as creative.
A third difference with standard computational cre-

ativity arises from the fact that we do not begin with an
inspiring set, as generated artefacts (the analogies) can not

be evaluated by comparison with that inspiring set. Any

process-centric model of creativity must be capable of dif-
ferentiating between creative and non-creative artefacts,

testing artefacts for the qualities associated with creativ-

ity; novelty, quality etc (Ritchie, 2001). However, this
still leaves us with the task of assessing the goodness of

the generated artefacts. Were any of the generated arte-

facts considered creative by humans?
Much of the remainder of this paper concerns this third

point, evaluating the output of process-centric models of

creativity. In the next section we examine our creative
analogy model before turning our attention to analysing

the analogies that were created.
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3 A Creative Analogy Machine

Wallas (1926) proposed a five-phase model of the cre-

ative process, composed of the phases: preparation, in-
cubation, intimation, illumination and verification. This

phase-model of creativity bears a striking similarity to

many phase-models of the analogy process. Keane et al.
(1994) identify a five-phase model of analogy composed

of representation, retrieval, mapping, validation and in-
duction. We note a particular similarity between the last

three phases of Wallas’ model and the central three phases

of Keane’s model. That is, these phases involve finding
inspiration, examining the implications of that inspiration

and assessing its outcome. This paper concerns the use of

a computational model of analogy, consisting of the three
phases of retrieval, mapping and validation2.

As we shall see, our three-phase model is capable

of finding novel analogies and of generating novel infer-
ences. In this paper our focus is on assessing the creative

potential of this multi-phase model and to do this we pro-

vide it with a knowledge-base containing a variety of do-
main descriptions and examine the analogies that are gen-

erated.
To test the model’s creative potential we decided to

generate the maximum number of analogies that can be

derived from a given set of domain descriptions. Of course
in a more realistic scenario, one specific domain would

probably be selected as a target problem, but there were

two reasons for not doing so. First there was no reason
to select one domain over all others as the target problem,

particularly in the absence of other facets of intelligence

or domain-specific expertise. Secondly, we are attempting
to explore the creative potential of a three-phase model

of analogy, we are not attempting to mimic the way one

specific creative analogy was discovered.
The results described in Sections 5 and 6 of this pa-

per were generated under the following scenario. The re-
trieval phase selects each domain from memory in turn,

treating it as a target problem. Then for each of these tar-

gets, the model retrieves every other domain in turn and
treats each as a candidate source. For each resulting anal-

ogy, the inter-domainmapping is generated and the result-

ing inferences were generated, evaluated and recorded. So
for a memory containing n domains, the number of analo-

gies generated is proportional to n2.

3.1 The Three-Phase Analogy Model

While the focus in this paper is on assessing computer
generated analogies, we now provide some details on the

computational model itself. In principle however, any

mapping and inference models could be used. First, re-
trieval was a simple exhaustive process that selected each

domain and passed it as a candidate source to the (current)

target.
The mapping model took each source and target in

turn, identifying the inter-domain mapping for that ana-

logical comparison. Like many mapping models (Keane
and Brayshaw, 1988; Keane et al., 1994; Forbus et al.,

2Validation differs from verification in that it is a more
broadly applicable, but less intricate means of assessing the qual-
ity of analogies and their inferences.

1994; O’Donoghue et al., 2006), our mapping model fol-

lowed the incremental mapping approach. Before being

processed, the model identified the ”level” of each rela-
tion. Relations taking objects as arguments were defined

as level 1, a relation taking two level n relations as argu-

ments was defined as level n+1.
The model then identified the ”root” predicates in both

the source and target domains (predicates forming the root

of tree structures). A ”root mapping” was identified be-
tween a root in the target and a predicate at the same level

in the source - with a preference that this be a root pred-

icate. These root mappings were then elaborated to in-
clude all compatible inter-domain mappings. Our map-

ping model employed Gentner (1983)’s predicate identi-
cality constraint as a preference rather than a hard restric-

tion.

Generating inferences followed the CWSG (Holyoak
et al., 1994) pattern completion algorithm. These infer-

ences were then validated using ”functionally relevant at-

tributes” (Keane, 1985; Eskridge, 1994) that were asso-
ciated with each first-order relational predicate. A sim-

ple taxonomy supported this synta-semantic process. This

validation process contrasts with the more detailed but
domain-specific ”verification” process used by Falken-

hainer (1987).

Much of this paper is devoted to analyzing the com-
puter generated analogies that were produced by our

model. Our analyses focus on the issue as to whether our

model does actually generate inferences, which display
the hallmarks of creativity, such as novelty and quality

(Colton and Steel, 1999; Ritchie, 2001). Rather than rely-
ing on intuition, we wish to statistically assess our model

by examining the artefacts it produces.

3.2 Two Collections of Test Data

In order to test our model, we need domains that the
model may process. Two distinct collections of do-

mains were used to conduct two separate computa-

tional experiments. The first collection was developed
by Veale (1995) and held 14 domains, each contain-

ing from 10 to over 100 predicates. The Professions
domains contained descriptions of various professions

(butcher, general, politician etc) and though it was de-

signed to compare models of metaphoric mapping, this
use has been extended in this paper. Each domain used

between 6 and 15 distinct relational predicates (ignor-

ing duplicates). So this collection consisted of large
domains described using very general relational predi-

cates - (depend person personal-health) and
(depend 18-th-century-general army).

The second collection was developed specifically for

this project and contains 81 smaller domains, rang-

ing in size from 1 to 15 predicates. These ”Sundry
domains” were described by much more specific rela-

tions - (capture army fortress) and (bounce
golf-ball golf-green). This collection also con-
tained many domains found in the analogy literature,

including Rutherford’s solar-system:atom analogy and
(Duncker, 1945) tumour:fortress analogy. These smaller

domains used an average of M=3.48 distinct relational
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predicates per domain.

3.3 Initial Testing

Initial testing of our model on a few domain descriptions
revealed a number of findings. First, many analogical

comparisons yielded no inferences. This occurred when
no appropriate inter-domain mapping could be identified

and when the source domain contained no additional ma-

terial to be transferred to the target.
A second finding from our initial tests revealed that

almost every inference generated was a novel inference.

That is, almost none of the generated inferences were
identical to a predicate already contained in the knowl-

edge base. The majority of inferences (over 99%) were

formed from a novel combination of a relational predicate
plus its two arguments. While we have no measure of

the degree of novelty of these predicates, such a low ra-

tio of duplicates strongly indicates that the generated arte-
facts should be considered novel. To remove any nonsense

inferences that might be generated eg (sleep idea
furiously), the validation model classified each in-
ference as either valid or invalid. However, we must now

focus on the task of assessing the goodness of our model.
Was it successful in generating creative artefacts? Did

the validation model successfully remove nonsense infer-

ences? Was validation even necessary?

4 Assessing Novel Artefacts

Computational modelling must specify the processes and
representations that underlie creativity, it must also gener-

ate creative artefacts. These artefacts must thus display

the qualities associated with creativity: quality, novelty
(Ritchie, 2001), plausibility, surprisingness, applicability,

utility etc. (Colton and Steel, 1999). The main complica-
tion in assessing these qualities arises from the fact that

these artefacts are also novel and this novelty has some

surprising implications for how the other qualities may be
assessed.

Firstly, we cannot use a direct comparison between

the novel artefacts and some known set of artefacts (eg
the inspiring set). Thus, assessment must be conducted

in other terms. Gomes et al. (2003) assess the quality

of novel artefacts in terms of the quantity of identified
errors in the generated artefact. Veale (2004) compares

the quality of generated artefacts to an independent re-

sources (from WordNet). Falkenhainer (1987) ”verifies”
analogy-based physical models in terms of how well the

new model matches (or can be adapted to) other known
facts and rules. In this paper we present a more general

approach to the analysis of creative artefacts. Like much

of cognitive science we use human evaluators to assess the
goodness of the artefacts produced.

4.1 Statistical Analysis

A common methodology in cognitive science is to exam-
ine people’s performance at some task. Using this evi-

dence and other information, an hypothesis (often instan-
tiated as a computational model) is created of their perfor-

mance at that task. The goodness of the hypothesis and the

model is then assessed, often using parametric statistical

techniques. Among the parametric statistics used are the

Pearson product-moment correlation and ANOVA (analy-
sis of variance) tests.

However, a number of differences mean that these sta-

tistical techniques can not be used to assess computational
creativity. Firstly, we are not trying to compare the perfor-

mance of a set of people to the model’s performance at the

same task. So, assumptions about the frequency distribu-
tions that underlie many of these statistical techniques do

not hold. Secondly, cognitive science assesses how well

a model accounts for observed phenomena. It does not
normally attempt to identify specific qualities in computer

generated items.

4.1.1 Non-Parametric Statistics

To assess our model we use non-parametric statistics.

Non-parametric (or distribution free) statistics make no

assumptions about the frequency distribution of the vari-
ables being assessed. Thus the model’s structure is not

specified beforehand but is derived from the data itself.
While non-parametric tests have less power than paramet-

ric tests, they are generally more robust.

While it was intended to use (human) raters to asses
the goodness of the generated artefacts post hoc, some ad-

ditional constraints were also imposed by what can be ex-

pected of raters. Newly generated items were to be eval-
uated independently of the domain descriptions, because

presenting raters with collection of up to 100 predicates

was not thought likely to be successful. Our raters did not
evaluate the analogical comparisons themselves, again as

rating large pairings of predicates was considered too dif-

ficult. We evaluated the analogies indirectly, based on the
inferences they mandated. Again inferences were evalu-

ated in isolation and not as collections of predicates, partly
because most inferences occurred as isolated predicates.

Furthermore, assessing collections of predicates would re-

quire knowing the prior context – again involving reading
larg(er) collections of predicates.

In this paper we make use of two different non-

parametric tests; McNemar’s test and the Mann-Whitney
test. Within the context of this paper, the central differ-

ence between them is that the first test compares two bi-

nary classifications, while the second test compares a bi-
nary and an ordinal classification.

4.2 McNemar’s Test

In this instance we use a McNemar’s test to test for the

presence of an hypotheses, that our model generated arte-

facts displaying some of the attributes of creativity (see
Hinkle et al. (1994) for details on the McNemar’s test). As

stated earlier, virtually all inferences were already known

to be novel. So, McNemar’s test was used to assess the
quality (Ritchie, 2001) of inferences. More specifically,

we assess the validity of the analogically generated infer-

ences. (In this paper evaluation is independent of the driv-
ing analogical comparison).

More specifically, this test will allow us to test the null
hypothesis, that there will be an equal number valid infer-

ences rated-bad and invalid inferences rated-good.
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We start by recording the classifications assigned to

each inference by our computational model. These infer-

ences were then given to human raters for separate assess-
ment, so the raters were unaware of the computers clas-

sification of these items. The assigned classes are then

compared to the human ratings of these materials (see Ta-
ble 1). What we would like is total agreement between the

assigned classifications and the human ratings.

Table 1: Confusion Matrix of Results

Assigned Human Human Total

Class Rating Rating

+ -

Valid + a b a + b

Invalid - c d c + d

In assessing these data, McNemar’s test focuses on the

disagreement between the categorisation and the human
rating (Hinkle et al., 1994).

χ2 =
(b − c)2

(b + c)
(1)

McNemar’s test will help us decide if our model pro-
duces valid artefacts that people think of as valid. That

is, people agree that what the model categorises as a valid

inference is indeed a valid inference. People also agree
that the invalid inferences are invalid. Thus, the quality

of generated artefacts is assessed in terms of their validity
(novelty being assessed independently).

4.3 Mann-Whitney-Wilcoxon Test

To further analyse our results, a Mann-

Whitney(Wilcoxon) test was also performed on the
data. The Mann-Whitney-Wilcoxon test improves upon

the McNemar’s test by taking into account the ordinal

scale used by the human raters to rate the novel artefacts.
(Thus, the McNeemar’s test is included in this paper for

illustrative purposes). The Mann-Whitney Test is one of

the most powerful of the nonparametric tests.
Mann-Whitney tests assesses if two samples come

from the same distribution. The null hypothesis is that the

two samples are from the same population and that their
probability distributions are the same.

The two categories (valid and invalid) are combined
and sorted by their rating score. The combined data are

ranked and rank-sum for each category is computed (R 1

and R2). Tied results are given the average value for that
ranking group. Equation 2 details how U1 value is calcu-

lated (an equivalent equation exists forU2 andR2) with U

being chosen as the smaller of U1 and U2.

U1 = mn +
m(m + 1)

2
− R1 (2)

where m and n are the numbers of items in the two cat-

egories. For large sample sizes (n>20) an approximation
can be used. Additionally, because of the presence of a

large number of tied rankings among our results, we made
use of a further modification to the basic formula that in-

cludes a correction factor to account for the presence of

these tied rankings. Further details on the Mann-Whitney

test can be found in (Siegel and Castellan, 1988).

z = Wx + .5 − n(N + 1)/2
[mn/N(N − 1)][(N3 − N)/12 − Σg

j=1(t3j − tj)/12]
(3)

where N=m+n, tj is the number of tied ranks in the jth

grouping,Wx is the sum of the ranks for the first category

and g is the number of groupings of different tied ranks.

5 Analysis of Results

In this section we describe the results of a number of tests

that were conducted on our model. A large number of
analogies were generated and then assessed by examining

their inferences. The quality of the resulting inferences is

examined using the tests mentioned above. Additionally,
some factors relating to the representation of information

arise from these results, so some facets of the domain de-

scriptions are also examined.

5.1 Experimental Set-Up

A memory was created containing all domains from two
knowledge bases (described below). Each of these do-

mains were taken in turn to serve as the target problem.

Every domain was taken in turn to act as a candidate
source for that target and the inter-domain mapping and

inferences were generated (Holyoak et al., 1994). These
inferences were then passed to a validation process, which

categorised all inferences as either valid or invalid.

5.1.1 Participants and Design

Two raters were used and both raters were familiar with

predicate calculus representation. All data were presented

in a random order.

5.1.2 Procedure

Unrated inferences were given to human subjects who
were asked to give each predicate a rating between 1 and

7. A rating of 1 represented a predicate that could not

be considered credible under any circumstance, while a
rating of 7 represented a predicate that could certainly be

considered credible in some circumstance. A rating of 4
represented a predicate that was not obviously either cred-

ible or not credible in any circumstance.

The materials used for Experiment 1 was the infer-
ences generated on the Professions domains. The materi-

als used for Experiment 2 were the inferences generated

on the Sundry domains. The same experimental set-up
was used to produce all results.

5.2 McNeemar’s Analysis

In this section we present the results of a McNeemar’s

analysis of the experimental data. We first present the re-

sults for the Professions domains. Next we present the
results from the Sundry domains and then we compare the

two results. The 7 point rating was then mapped onto a
binary scale of Rated-valid or Rated-invalid, for use in the

McNemar’s test.
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5.2.1 Experiment 1

The 14 domains from the first collection generated 196

analogies, representing each domain mapped with all
other domains - including itself. The model generated a

total of 175 inferences and classified 151 (86.2%) as valid,

and 24 (13.7%) as invalid. Of the 175 generated infer-
ences, 40 (approximately 1/4) were randomly selected for

rating.

The average rating awarded to predicates that the
model categorised as valid was M=2.77 (SD=1.98), while

the average rating awarded to the invalid predicates was
M=1.58 (SD=1.06). So as expected, the valid predicates

were generally rated better than the invalid predicates.

Of the 20 valid predicates, 6 (30%) were rated as valid
or potentially valid (rated>=4) by the raters, so 14 (70%)
of the valid category were actually deemed invalid by the

human raters. Of the 20 invalid predicates 19 (95%) were
rated as invalid and 1 (5%) was rated as valid. Thus, the

model appears to be better at identifying invalid predicates

than it is at recognising valid predicates. This may be ex-
plained by the fact that predicates are only categorised as

invalid when some specific violation of the functionally

relevant attributes is identified. Otherwise, predicates are
assumed to be valid.

Table 2: Assessing Generated Analogies - Collection 1

Assigned Rated Rated Total

Class Valid Invalid

Valid 3(20%) 12(80%) 15(100%)

Invalid 1(4.2%) 18(94.7%) 19(100%)

The first assessment of our computer generated items

is summarised by a McNemar’s test. The McNemar’s
test compared the classifications of the computer gener-

ated items to categorisations awarded by human raters to

the same items. In this case the null hypotheses states
there will be an equal number of inferences in the Invalid-

RatedGood and the Valid-RatedBad conditions. The re-

sults were: #Invalid-RatedGood = 1, #Valid-RatedBad =
14,K2=11.26 and taking α = 0.05 the null hypothesis can
be rejected. p <= 0.001 showing strong agreement be-

tween the two ratings, indicating that the model correctly
interpreted its own output. Thus, the model was success-

ful in generating quality artefacts that were judged to be
valid by human raters.

5.2.2 Experiment 2

The second collection of 81 domains generated a total

of 6561 analogies, yielding 3793 inferred predicates. Of
these predicates, 2158 (56.9%) were classified as valid

and 1635 (43.1%) inferences were categorised as invalid

predicates.
216 valid predicates and 50 invalid predicates were

randomly selected for human rating (these quantities be-

ing related to the techniquewhich ensured a random selec-
tion was made). Of the 216 valid predicates, 103 (47.5%)

were rated as valid or potentially valid by the raters, so
94 (43.5%) of the valid category were actually deemed

invalid by the human raters. Of the 50 invalid predicates

45 (90%) were rated as invalid and 5 (10%) were rated as

valid.

The average rating awarded to the valid predicates was
M=3.47 (SD=2.35), for the invalid predicates wasM=1.59

(SD=1.42). Thus as expected, the invalid predicates re-

ceived significantly lower ratings than the valid predicates.
As with Experiment 1, the invalid category is recognised

with greater accuracy than the valid category.

Table 3: Assessing Generated Analogies - Collection 2

Assigned Rated Rated Total

Class Valid Invalid

Valid 94(43.5%) 122(56.5%) 216(100%)

Invalid 5(14%) 45(86%) 50(100%)

A McNemar’s test was also performed to compare the

model’s classifications to the categorisations awarded by
the raters. The results were: #Invalid-RatedGood = 5,

#Valid-RatedBad = 122, K 2= 107.78, α = 0.05 so again
the null hypothesis can be rejected. p <= 0.0001 show-

ing a very strong agreement between the ratings and the

assigned category.

5.2.3 Discussion on Experiments 1 and 2

McNemar’s test allows us to reliably reject the null hy-

pothesis. However, a comparison between the two exper-
iments provides greater insight.

The validation model is being very cautious about cat-
egorising relations as invalid, only doing so when there is

reasonable evidence. If there is doubt about a relation’s

validity, it is passed as potentially valid. Thus, inferences
assigned to the valid class consist of true valid inferences

as well as invalid inferences on which there was insuffi-

cient information.
The average rating for the valid inferences in the first

collection (M=2.77, SD=1.98) was significantly lower

than the second (M=3.47, SD=2.35). Thus, inferences
were validated less successfully on the first collection

than on the second collection. However, the proportion

of Valid-RatedGood = 20% in the first collection was
significantly lower than on the second collection Valid-

RatedGood = 43%. This can be attributed to the fact that
the first collection used more general relational predicates,

which are more difficult to falsify. Secondly, the second

collection made greater use of relational predicates de-
fined by functionally relevant attributes that supported the

classification process.

In conclusion, it appears that the validation process is
primarily responsible for the quality of inferences in the

valid and invalid categories. Domains that are described

using more specific relations (from lower-down a taxon-
omy) allow the validation process to operate more accu-

rately.

5.3 Mann-Whitney(Wilcoxon) Analysis

AMann-Whitney analysis waas conducted on our results.
As stated earlier, the main results below counter for the

presence of large number of tied results. The presence of
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tied rankings was a greater factor in the analogies gener-

ated from the second collection than on the first collection

of domains.
We first present the results for the Professions domains

and then results from the Sundry domains before compar-

ing the two results.
The materials and method used in this experiment

were the same as in the previous analysis.

The null hypothesis tested in this section is that the
two samples are from the same population and that their

probability distributions are the same.

5.3.1 Experiment 3

With the formula given above, the results for our Mann-

Whitney test are : R1 323.5, R2 498, U = 112, z=2.3
(p1 <0.0107, p2 <0.0214).

However, when we use the Mann-Whitney test that is

adjusted for the presence of many tied results. z=2.49,
(p1 <0.0064, p2 <0.02).

This result allow us reject the null hypothesis, that the

valid and invalid categories are drawn from the same pop-
ulation. We can thus adopt the alternate hypothesis that

the mean of the valid category is greater than the invalid

category. Thus our analogy model is indeed generating
quality analogical inferences.

5.3.2 Experiment 4

With the formula given above, the results for our Mann-

Whitney test are : R1 30057.5, R2 5414, U = 4147.5,

z=2.55 (p1 <0.005, p2 <0.0108).
However, if we include the correction factor to ac-

count for the presence of tide results in our ranking, then

z = 5.92 (p1 <0.0001, p2 <0.0001).
Thus we reject the null hypothesis in favour of the al-

ternate hypothesis, which is that the median of the valid
inferences is greater than the median of if invalid infer-

ences. Alternatively we may state that the valid inferences

have stochastically greater ratings than the invalid infer-
ences.

Again this was the hoped for result and shows that our

analogy model does generate quality inferences.

5.3.3 Discussion on Experiments 3 and 4

As expected, these results indicate that the null hypothesis
can be rejected. Again, the results from the Assorted col-

lection given graeter confidence for this conclusion than

do the Professions results.

5.4 Known Creative Analogies

For clarity, we shall report separately on the accuracy of
our model to re-generate known creative analogies. As

discussed in Section 2.1 we do not consider the following

results to be examples of true creativity - because the do-
main descriptions do not accurately reflect the problems

that were creatively solved in each instance. However,

they do provide some positive evidence for the creative
potential of the analogy model.

Because the creative analogies were known a priori,
we do not need to use McNemar’s test. The model gener-

ated and validated the correct inferences for 7 of 10 (70%)

(known) creative analogies and thus was quite successful

in (re)generating these analogies.

While no new creative analogies were discovered on
these knowledge-bases, we believe that creative analogies

could be discovered by our model. These results show us

that creative analogies occur exceptionally rarely. A chal-
lenge for the future is to acquire more domain descriptions

to see if any creative analogies are generated. A related

challenge is to improve the evaluation process in order to
focus on the more promising and creative analogical com-

parisons.

6 Conclusion

The traditional approach to computational creativity at-

tempts to generate new items belonging to an ”inspiring

set”. But this inspiring set also plays a role in evaluating
the creativity model.

We describe an alternative process-centric approach to

computational creativity that does not utilise an inspring
set. Thus, evaluating these models must rely on alternative

methods. This paper describes two nonparametric statis-

tics techniques, namely McNeemar’s test and the Mann-
Whitney test. These tests evaluate artefacts that have been

rated on binary and ordinal scales respectively.

These statistical techniques were used to evaluate a
model of analogical reasoning that has been adapted to op-

erate as an analogy generating machine. This model en-
compassed the three core phases in the analogy process,

namely: retrieval, mapping and validation. The model

was used on a knowledge base containing two distinct col-
lections of domains, to assess its performance and see if

any novel or creative analogies might be generated. Ev-

ery domain was used as a target in conjunction with each
other candidate source domain. This generated the maxi-

mum number of analogical inferences allowing us to test

the creative potential of our model.
The resulting inferences were evaluated by the model

itself, selecting inferences of greater quality. These infer-

ences were recorded and given to human raters who as-
sessed the accuracy of the analogy production system. A

McNemar’s test was used to compare and assess the au-
tomatically assigned classification against human ratings

of the same artefacts. This illustrated that the model was

successful in generating quality inferences.
Known examples of creative analogies were identified

as expected (such as Rutherford’s solar-system:atom anal-

ogy). However, such examples are not considered as truly
creative as they have been described in such a way as to

maximise the similarity between the two domains mak-

ing their re-discovery almost inevitable. No truly creative
analogies were identified among the subset of inferences

rated by the raters.

Interesting differences between the two collections
produced differences in the generated results. The collec-

tion using more general (or abstract) relational-predicates

made generating the mapping easier, but made valida-
tion less accurate. In contrast, the collection using more

specific relational-predicates made identifying the inter-
domain mapping more difficult, but allowed more accu-

rate validation of inferences.
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As far as we know, this is the first work towards au-

tomatically generating analogies. While the analogies re-

ported in this paper were not found to be creative, we be-
lieve a larger knowledege-base will provide more fruitful

results. More accurate and complete models of each phase

of analogy may help improve the quality of results pro-
duced by the model. Modifying the model’s parameters

may even produce a model with a greater creative capac-

ity than human analogisers.
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