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Abstract
This paper discusses some of the possible contributions of
algorithmic information theory, and in particular the cen-
tral notion of data compression, to a theoretical exposition
of computational creativity and novelty generation. I note
that the formalised concepts of pattern and randomness
due to algorithmic information theory are relevant to com-
puter creativity, briefly discuss the role of compression
in machine learning theory and present a general model
for generative algorithms which turns out to be instanti-
ated by decompression in a lossy compression scheme. I
also investigate the concept of novelty using information-
theoretic tools and show that a purely “impersonal” formal
notion of novelty is inadequate; novelty must be defined
by reference to an observer with particular perceptual abil-
ities.

1 Compression, Randomness and Pattern
The intuitive concepts of pattern and its converse, ran-
domness, are of interest to those in the field of computer
creativity. These concepts have been extensively explored
in statistical inference theory: clearly, anything which has
no pattern cannot be predicted; on the other hand, identi-
fying a nonrandom pattern in data should allow us to pre-
dict it better than chance in future. Perhaps surprisingly,
it turns out that the field of computer science known as
algorithmic information theory has direct application to
formalising the idea of randomness in observed data.

The concept of algorithmic entropy or Kolmogorov or
Kolmogorov-Chaitin complexity is central to algorithmic
information theory. The Kolmogorov complexity of a bi-
nary string is defined simply as the length of the shortest
computer program which produces that string as an out-
put. Some strings are compressible, i.e. there exists some
computer program shorter than the string itself which pro-
duces that string as an output. For instance, the first
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100,000 digits in the binary expansion of π can be gener-
ated by a program far shorter than 100,000 bits. A string
consisting of the binary digit 1 repeated 1,000 times can be
generated by a program shorter than 1,000 bits. However,
it can be shown (Li and Vitanyi, 1997) that most strings
are incompressible, i.e. they cannot be generated by a pro-
gram shorter than themselves. Consequently, if you flip
a perfectly random coin 100,000 times, the likelihood is
that the sequence of heads and tails you obtain cannot be
described by a program shorter than 100,000 bits. In algo-
rithmic information theory a string is described as random
if and only if it is incompressible.

Note that randomness in algorithmic information the-
ory applies to strings, and not to the physical processes
which generate those strings. A biased probabilistic ran-
dom process such as radioactive decay could produce a se-
quence of 1s and 0s in which 1s were extremely common
and 0s extremely rare; that sequence would be algorith-
mically nonrandom (because favouring 1s is a pattern) de-
spite the fact that it was the product of a random process.
Algorithmic randomness refers simply to the absence of
pattern in a string.

Despite the best attempts of mathematicians to date,
there are still some formal issues which restrict the use-
fulness of algorithmic entropy as an “objective” measure
of randomness. Firstly, algorithmic entropy is provably
uncomputable, so it cannot be used in practice. Secondly,
in principle its exact value is dependent on the arbitrary
reference machine on which programs are run, so that it
is “non-arbitrarily” well-defined only in the asymptotic
limit.

2 Lossy Compression
As mentioned above, most binary strings are incompress-
ible. This means that theoretically, a compression pro-
gram which allows objects to be reconstructed from their
compressed representations cannot on average turn its in-
puts into shorter strings! Compression algorithms such
as LZW1 take advantage of the fact that some inputs
(e.g. those containing many repeated substrings) are more
likely in practice than others; for the majority of possible
inputs (those not encountered in practice), the compressed
representation will be longer than the original.

1Or the other algorithms used by compression utilities such
as WinZip.
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To make a compression program useful, one needs a
decompressor (in practice, these two programs are usu-
ally bundled together). The decompressor takes the com-
pressed representation of a string as its input and outputs
the original string.

A lossy compressor is a program which destroys some
information about its input in order to be able to produce
(typically) shorter representations. For instance, the im-
age compression standard JPEG is a lossy compression
scheme. That is to say, when the output of a JPEG com-
pression program is run through a JPEG decompressor,
the result is typically not identical to the original input.

3 Generativity and Compression

Imagine a terminating computer program which is sup-
posed to produce objects in our generative domain of in-
terest (e.g. English poems, pictures of animals or rocka-
billy music). Due to the nature of digital computer pro-
grams, the objects generated must be encoded as binary
strings (e.g. some ASCII text, or a PNG image, or an MP3
music file). Now, if the same program produces one object
whenever it is run, and is capable of producing different
objects, in formal terms the program can be considered
as taking an input which determines its output. This con-
ceptualisation is general enough to cover programs which
operate in some random fashion (the random numbers can
be provided as input). It is also general enough to en-
compass a non-terminating program which generates an
infinite sequence of objects by changing its state: we can
always write a terminating program which takes a number
n as input and outputs the non-terminating program’s nth
generated object.

This leads to a view in which a generative computer
model for a generative domain is seen as a program P
which takes an arbitrary binary string as input and outputs
a binary string encoding an object. Each bit of the input
can be interpreted as a choice point in the process which
generates the output. We’ll presume that P is written in
such a way that it cannot produce an “illegal” output no
matter what the input is.

Let’s additionally assume that it is possible to write an
inverse program P ′, such that P ′(P (X)) = X always.
The new program takes the encoding of an object Y and
outputs a binary stringX which can be fed into P (if there
is such a string) to generate Y . If there is no input X
which generates Y under P , P ′ finds the closest object Y ∗

to Y which can be produced by P , and outputs a binary
string X∗ which generates Y ∗ under P .

If its inputs are typically shorter than its outputs, the
program P ′ as just defined is a standard lossy compres-
sor program, and our generative model P is just the cor-
responding decompressor. In other words, a successful
compression scheme which is computably decompress-
able yields a generative algorithm. Since optimal com-
pression effectively abstracts away any pattern in data, this
should not be surprising. The relation between lossy com-
pression and generativity was noted as early as 1994 in the
jokey paper Witten et al. (1994).

4 Learning and Compression
It is a well-known result in machine learning (Li and Vi-
tanyi, 1997) that the shortest program which can produce
observed data tends to generalise well to unseen data2.
This is the centuries-old principle of Occam’s razor - the
simplest explanation is usually the best one. Any machine
learning algorithm which is meant to generalise to unseen
data from observed data must effectively perform some
sort of compression.

Hence, a generative algorithm which is required to
learn from its successes and failures can also be under-
stood in terms of compression and algorithmic informa-
tion theory. The most effective generalisation from past
experience will in general be the one which compresses
most, i.e. captures the pattern to the greatest possible ex-
tent.

5 Aesthetics and Compression
Unlike previous research, (e.g. Svangard and Nordin
(2004); Schmidhuber (1997)) this paper does not consider
the relation between compression and aesthetics. It fo-
cuses on learning, novelty and generativity, which are rel-
evant both in artistic and non-artistic (for instance, engi-
neering or mathematical) creative domains.

6 Novelty and Compression
6.1 The Problem of Novelty

Most theoretical accounts of creativity agree that creative
products must be novel. Put simply, a product is novel if
it is different from some set of already-observed things.
Depending on the purpose, this reference set may be de-
fined by what the originator has observed (what Boden
(2003) calls personal- or p- creativity), or by what the en-
tire historical community has observed (what Boden calls
historical- or h- creativity). But we need to be careful
here. “Different” does not merely mean non-identical. If I
change one word of A. S. Byatt’s “Possession”, the result-
ing product is not novel3 even though it is not identical to
any pre-existing object. It is not “different enough” from
prior works to qualify as “genuinely” novel.

That “different enough” is revealing: difference lies on
a continuum, with identical objects being zero-different
and other pairs of objects varying from hardly different
to extremely different. Consequently, new products ex-
hibit degrees of novelty, rather than falling into a binary
novel / non-novel categorisation. The degree of novelty of
a product depends on a (usually implicit) measure of simi-
larity to a (usually implicit) reference class of pre-existing
objects. For instance, in Saunders (2001), novelty is ap-
praised using an implicit measure of similarity based on
learning in unsupervised neural networks. In other words,
novelty is relative not only to what has been seen before
but also relative to how things are conceptually grouped
together. For any formal version of novelty which relies

2Provided that the unobserved data comes from the same dis-
tribution as the observed data and that the distribution is com-
putable.

3It is of course still a novel.
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on similarity, it is necessary to specify what measure of
similarity is being used.

6.2 Compression

There is a natural, impersonal formal sense in which two
binary stringsX and Y can be considered similar. The in-
formation distance (Bennett et al., 1998) tells us how close
the algorithmic information in the two strings is. This dis-
tance, which is a metric up to an additive constant term, is
defined as the length of the shortest program which pro-
duces Y givenX as input and vice versa. In Bennett et al.
(1998), it is described as a universal cognitive similarity
metric. Formally,

E1(X,Y ) = max{K(X|Y ),K(Y |X)}

where K(X|Y ) is the conditional Kolmogorov complex-
ity ofX given Y (the length of the shortest progam which
produces X given Y as input).

Although Kolmogorov complexity per se is uncom-
putable, an approximation to information distance has
been successfully used in Cilibrasi and Vitanyi (2005) to
identify similarity between sections of English text, simi-
larity between DNA strings and similarity between musi-
cal melodies.

We could extend this formalism to give us measures of
how “objectively” novel a binary string Xn+1 is in com-
parison to previously known strings X1 · · ·Xn. For in-
stance,

Nov1(Xn+1) = min{E1(Xn+1, X1), · · · , E1(Xn+1, Xn)}

is the information distance from the new string to the most
similar previously known string.

As we will see in the next section, however, the use
of this “objective” similarity measure would be at funda-
mental odds with the goals and methods of computational
creativity.

7 Tensions in “Objective” Novelty
Generation

By definition, if novelty were held to be algorithmic ran-
domness with respect to known previous examples, then
there could not be a compact algorithm which generates
maximum novelty. The reason for this is straightforward:
when a compact algorithm generates strings, those strings
are of a pattern with the other strings it generates.

Furthermore, if an algorithm learned from previous
examples what is good and what is bad, and used this in-
formation to generate better objects, that would also defeat
the end of producing “truly” novel objects. The very sim-
ilarity which exists between known good objects and dif-
ferentiates them from bad objects is a pattern which when
identified can only be used to produce new good objects
which are similar - in a precisely quantifiable sense - to
the known ones. Maximally novel objects can in principle
only be discovered using random search4 or by already

4Using a physical random number generator. The pseudoran-
dom number generators used in typical “stochastic” computer
programs do not have algorithmically random output.

having a database of highly different objects and simply
retrieving them from that database one by one.

7.1 Perceptual Novelty

The impersonal “objective” version of novelty described
in the previous section does not correspond to how novel
an object will seem to an intelligent observer. Two dif-
ferent clips of random audio white noise sound the same
to the human ear, even though in information theoretic
terms they are likely to be maximally different from one
another (there will be no common pattern to them). As a
consequence, a successful theory of creativity will proba-
bly need to be a theory of creativity relative to some ob-
server whose perceptual and conceptual capacities deter-
mine the effective novelty of creative products. We will
see shortly that a formal impersonal version of novelty
leads to direct contradictions which may be resolved by
a perceptually-based theory. For instance, it has been pro-
posed by Schmidhuber (2006) that perceptual novelty is
related to the degree to which a new stimulus is expected
to improve the observer’s predictive model (as his paper
observes, a successful predictive model must compress
historical data).

Does this mean that human creativity must rely on
non-algorithmic processes? Certainly not. What really
matters is the perception of novelty by an observer, rather
than the “objective” novelty of information theory. A
short program can in principle produce a sequence of ob-
jects which appear highly dissimilar to a human perceiver,
and a series of mutually random objects can appear highly
similar. In other words, endless apparent novelty could
be generated by a compact program by exploiting the lim-
itations of the perceiver’s ability to detect patterns. For
instance, a human being zooming into the Mandelbrot set
sees novelty for quite a while, because our visual appara-
tus is unable to pick up the simple algorithm which gener-
ates it.

8 Conclusion

The theoretical tools of algorithmic information theory are
valuable to researchers in the field of computer creativity,
not only because of their potential relevance to formalis-
ing aesthetics, but because they formalise the crucial con-
cepts of pattern and randomness. These concepts are cen-
tral to learning and computer generativity, and relevant to
evaluating the novelty of new generative products. Com-
pression deserves more prominence as an organising idea.
For instance, this paper has argued that all generative al-
gorithms can be seen as decompressors for a lossy com-
pression scheme. However, under the most general in-
formation theoretic measure of novelty, concise computer
programs (and presumably human beings) must always be
understood as generating patterns which appear novel to
a perceptually limited observer, rather than being objec-
tively novel in some observer-independent sense.
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