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Abstract
This paper addresses problems in computational creative
discovery, either autonomous or in synergetic tandem with
humans. A computer program generates output as a com-
bination of base primitives whose interpretation must lie
outside the program itself. Concepts of combinatoric and
creative emergence are analysed in relation to creative out-
puts being novel and appropriate combinations of base
primitives, with the conclusion that the choice of the gen-
erative process that builds and combines the primitives is
of high importance. The generalised concept of an artifi-
cial ecosystem, which adapts concepts and processes from
a biological ecosystem at a metaphoric level, is an appro-
priate generative system for creative discovery. The fun-
damental properties of artificial ecosystems are discussed
and examples given in two different creative problem do-
mains. Systems are implemented as pure simulation, and
where the ecosystem concept is expanded to include real
environments and people as ecosystem components, offer
an alternative to the ‘software tool’ approach of conven-
tional creative software.

Keywords: Artificial ecosystems, Combinationalism,
Emergence.

“Theories are important and indispensable be-
cause without them we could not orientate our-
selves in the world — we could not live. Even
our observations are interpreted with their help.”
— Karl Popper, The Myth of the Framework

1 Introduction
We are interested in problems of computational creative
discovery where computer processes assist in enhancing
human creativity or may autonomously exhibit creative
behaviour independently. The intention is to develop ways
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of working with technology that achieve creative possi-
bilities unattainable from any existing software tools or
methods. These goals will be addressed here in the con-
text of artistic creation, however the results may be appli-
cable to many forms of creative discovery.

Darwinian evolution has been described as the only
theory with the “explanatory power for the design and
function of living systems. . . accounting for the amaz-
ing diversity and astonishing complexity of life” (Nowak,
2006). Evolutionary synthesis is a process capable of
generating unprecedented novelty, i.e. it is creative. It
has been able to create things like prokaryotes, eukary-
otes, higher multicellularity and language through a non-
teleological process of replication and selection. We
would like to adapt, on a metaphoric level, the mech-
anisms of biological evolution in order to develop new
approaches to computational creativity. In Biology, the
physical processes of replication and selection take place
in an environment, populated by species that interact with
and modify this environment, i.e. an ecosystem. Pro-
cesses from biological ecosystems serve as inspiration for
computational artificial ecosystems. The aim is to struc-
ture these artificial ecosystems in such a way that they ex-
hibit novel discovery in a creative context rather than a
biological one.

We consider creativity in terms that it involves the gen-
eration of something novel and appropriate (i.e. unex-
pected, valuable) to the particular aesthetic domain. Van
Langen et. al. conclude the necessary conditions for any
artificial creative system must be the ability to interact
with its environment, learn, and self-organise (van Lan-
gen et al., 2004). In this paper, the aim is for creative
discovery by machines, or humans and machines working
synergistically, rather than a computational model of hu-
man creativity or knowledge-based models for a particular
domain.

Before looking at how artificial ecosystem concepts
can be used as processes for creative discovery, the next
section examines how such processes fit into computa-
tional creative discovery in general.

2 Combinationalism
A major controversy regarding computational creativity
relates to the concept of ‘combinationalism’: the under-
standing that “creativity is the creative combination or re-
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combination of previously existing elements” (Dartnall,
2002). This understanding is based on the intuition that
one cannot create something new from nothing, hence we
require a “combination or recombination of what we al-
ready had” — the opposing view being that creativity be-
gins with knowledge, skill and abilities, and emerges from
these faculties through interaction with the environment.
The challenge is to account for how these cognitive prop-
erties give rise to creative output (McCormack, 2005b).

Clearly, many creative outputs are indeed a combi-
nation of basic primitives organised in a new way. Let
us consider an arbitrary system that generates some cre-
a t i v e o u t p u t f r o m a fi x e d s e t o f i n d i v i s i b l e , d i s t i n c t p r i m -
itives (basic building blocks, fundamental units). We
will call this set of distinct primitives , i.e.:

. A generative process, selects ele-
ments from to make , an output composed by
some permutation of primitives from . We will assume
that:

the ordering of primitives in is important;
repetitions of primitives are permitted;
The size of i s fi x e d1 and , where .

The process of generating from by is denoted:

D e n o t e e a c h s p e c i fi c p o s s i b i l i t y ,,
(since there are possibilities for ) and

the set of all possible outputs. Further,
l e t u s d e fi n ethe set of all outputs generated by .
The conceptual space, , i s d e fi n e d a s t h e b a s e p r i m i t i v e s ,
and the rules for combining them, i.e.: .
As a simple example, let us suppose is a set of mu-

sical notes, i.e. and ,
so each is a 12 note melody composed from the notes
in . In this case . Clearly, for
non-trivial problems the number of possibilities for is
very large, in many cases beyond astronomical propor-
tions such as the estimated number of particles in the uni-
verse.

This vast space of potential combinatorial possibili-
ties for illustrates why such systems are said to display
combinatoric emergence, t h a t i s , c o n fi g u r a t i o n s g e n e r a t e d
by appear to express new properties or structures not
found in the individual primitive components . Note that
such new properties or structures are generally observed,
n o t d e fi n e d q u a n t i t a t i v e l y ( B a a s , 1 9 9 4 ; D o r i n a n d Mc C o r -
mack, 2002).

While the potential output generated by may be
vast, any individual output can only be composed of
elements from . In the case of our musical example, we
could generate a large number of melodies from but
none of those melodies could contain the note C , for ex-
ample, because it is not a member of .

2.1 Creative Emergence

In the case of what is termed creative emergence, it is pro-
posed that fundamentally new primitives enter the system,

1Arbitrary size outputs are possible by incorporating an
empty primitive into , i.e. .

opening up a new set of possibilities that were not pre-
v i o u s l y p o s s i b l e ( C a r i a n i , 1 9 9 1 , 1 9 9 7 ) . I n m o r e f o r m a l
t e r m s , t h i s p r o c e s s m o d i fi e s t h e c o n c e p t u a l s p a c e :

Where i s t h e n e w c o n c e p t u a l s p a c e . A c c o r d i n g t o B i r d
( 2 0 0 4 ) , i n a n a n a l o g y w i t h l e t t e r s g e n e r a t i n g w o r d s , c r e -
ative emergence “involves expanding the alphabet of let-
ters by transforming the underlying generative system as
well as combining the letters into new words” (Fig. 1).
In the terminology used in this paper, creative emergence
can introduce new members into , i.e.: . The
introduction of new primitives in would by necessity
involve some transformation of , s i n c e b y d e fi n i t i o n
only knows how to generate things from the original .
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Figure 1: Combinatoric and creative emergence (redrawn
f r o m ( B i r d , 2 0 0 4 ) )

A computational system that combines primitives
must provide a semantic interpretation for the members
of . For example, the symbol ‘A’ must be interpreted as
a musical note before it can represent music. It is easy to
generate additional primitive symbols that can be added to
, but seemingly impossible to computationally discover

new interpretations for those symbols, because the inter-
pretation of those symbols is done outside of the software
itself (by a listener in the case of a musical example).

There are two conclusions to be drawn from this dis-
c u s s i o n . T h e fi r s t , r a t h e r o b v i o u s l y , i s t h a t i n a n y c o m -
binatorial system, you will only get combinations of the
base primitives for which you provide an a priori inter-
pretation. The knowledge of how to interpret symbols is
provided by the programmer, not the program (the com-
puter can only differentiate one symbol from another).

The second point is that a combinatorial approach is
still a useful one if we get our base primitives right. As
we have seen, the scope of possibilities is very large in
any practicable system. Composers, for example, seem in
t h e m a i n c o n t e n t w i t h c o m p o s i n g f r o m a fi x e d s e t o f b a s e
primitives. Architects can design great architecture from
a fi x e d s e t o f b u i l d i n g m a t e r i a l s . A n y d i g i t a l i m a g e c a n b e
made by combining pixels in the right order.
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3 Generative processes for Creative
Discovery

At this point, we have said nothing about the quality or
utility of G and the output it generates. Having a vast
range of possibilities in a combinatorial system represents
only a potential for actually finding good combinations.
It is trivial to construct a generative process, G that can
generate all the possible members of Q (i.e. Q

G

= Q).
Each combination S

i

generated byG will be new, so find-
ing novelty is not the problem, it is finding appropriate
novelty. The exponential expansion of possibilities, de-
pendent on n and r, means that for any non-trivial system,
brute-force methods such as an iterative or random search
will not be practical.

Ideally, we would like a generative process that finds
the creatively interesting combinations and avoids the un-
interesting ones. For many domains the proportion of
what we might be inclined to call “interesting” is likely to
be extreemly small. Randomly sampling individual mem-
bers fromQ is not, in general, a useful strategy for finding
the appropriate members of that set.

If our approach is to relegate creative discovery to
being a search or optimisation problem, then a num-
ber of general algorithms already exist for this task, e.g.
(Michalewicz and Fogel, 1999). One popular choice has
been the use of Evolutionary Computing (EC) methods,
such as genetic algorithms, evolution strategies or genetic
programming.

Standard EC methods require an explicit evaluation of
fitness, that is a comparative ranking between possible so-
lutions in order to determine the composition of the popu-
lation for the next generation. For creative discovery, this
is a difficult problem for two reasons:

• evaluation of the quality of creative output is highly
subjective and context dependent, relying on much
domain specific knowledge that is difficult to quan-
tify;

• the type of knowledge and evaluation necessary de-
pends specifically on the creative task or activity be-
gin simulated, i.e. it is difficult to generalise or ab-
stract.

It is for these reasons (and many others) that machine rep-
resentable fitness functions for “creativity”, or “aesthet-
ics” have largely unsuccessful (though not for want of try-
ing, e.g. (Birkhoff, 1933)).

Evaluation of subjective criteria is relatively easy for
humans, so a natural approach incorporate human evalu-
ation of fitness into the algorithm. Interactive Evolution
(also know as aesthetic selection or aesthetic evolution)
have found wide application and popularity for a variety
of problems in creative discovery (Takagi, 2001). In this
approach, the problem of finding machine-representable
fitness functions for aesthetic or subjective properties is
circumvented in favour of human fitness evaluation and
ranking. While this is a popular method, it is not without
significant problems (Dorin, 2001; McCormack, 2005b).
These problems include: difficulty in fine-grained eval-
uation; limited population sizes; slow evaluation times;
poor balancing between exploration and exploitation (one

of the GA’s main benefits as a search method (Eiben and
Smith, 2003, p. 29)).

The central question addressed by this paper, then, is
this: in a combinatorial system, how can we search and
optimise using EC techniques without an explicit fitness
evaluation, either by human or machine? That is, what
kinds of processes, G are best suited to creative discov-
ery from a combinatorial system? The answer proposed
here is through the use of an artificial ecosystem approach.
This approach is detailed in the following sections.

4 Artificial Ecosystems
The design of environments from which creative be-
haviour is expected to emerge is at least as important as the
design of the individuals who are expected to evolve this
behaviour. The Artificial Ecosystem as a generalised evo-
lutionary approach for creative discovery. Natural ecosys-
tems exhibit a vast array of complex phenomena, includ-
ing homeostasis, food-webs, wide causal dependencies
and feedback loops, even (controversially) evolution at the
ecosystem level (Swenson et al., 2000). Species within the
ecosystem compete for resources in order to survive and
reproduce. Typical co-operative and competitive evolu-
tionary strategies are observed, such as mutualism, sym-
biosis, predation and parasitism. To be glib, it could be
said that the ecosystem has a lot of interesting features go-
ing for it. We would like to harness some of these features
for the purposes of creative discovery— the discovery of
novelty in a system without explicit teleology.

The concept of an artificial ecosystem used here is for-
mative and based on abstractions of selected processes
found in biology. We are interested in developing gen-
eral algorithms for creative discovery. These algorithms
are based on dynamic evolutionary processes observed in
biological ecosystems. Just as genetic algorithms are not
a simulation of natural selection, the artificial ecosystem
algorithms presented here are not intended to simulate real
biological ecosystems. The ecosystem is viewed as a dy-
namic, complex system, essential for selection and a driv-
ing force behind biological novelty when established with
the appropriate conditions. We would like to harness the
novel potential of ecosystem processes at a metaphoric
level and apply them to creative processes of interest to
humans.

4.1 Simulated Ecosystem Studies

Simulated artificial ecosystems have been well studied in
the sciences. A number of artificial life models employ the
concept of an abstract or simplified ecosystem. This con-
cept of the artificial ecosystem was introduced in (Con-
rad and Pattee, 1970). A population of independent soft-
ware agents interact within a programmer-specified artifi-
cial physics and chemistry. Agent interaction is simplis-
tically analogous to that which occurs in a real ecosys-
tem. Agents must gain sufficient resources from their en-
vironment in order to survive and reproduce. Typically,
a number of successful survival strategies will emerge
(niches) often with inter-dependencies between individual
species (e.g. symbiosis and parasitism). Similar artificial
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ecosystem methods have been useful in modelling prob-
lems in economics (Arthur et al., 1997), ecology (Mitchell
and Taylor, 1999) and social science (Epstein and Axtell,
1996).

The majority of such systems focus on single-niche,
homogeneous environments, and operate at evolutionary
time-scales, simulating the evolution a single species over
time. This focus, and the use of minimal, broad assump-
tions is primarily for the purposes of verification and val-
idation (Adami, 2002). Artificial life agents adapt their
behaviour through an evolutionary process to best fit their
(typically homogeneous) environment.

Ecological models, on the other hand, tend to oper-
ate on far smaller time scales, simulating periods typi-
cally ranging from hours to several decades, with a focus
on fitness seeking through organisational changes or be-
havioural adaptation of an individual species. This level of
simulation reflects the practical questions asked by ecolo-
gists in relation to real ecosystems, whereas artificial life
research tends to focus on abstract evolutionary dynam-
ics. Important to both styles of investigation is the emer-
gence of macro phenomena or properties from micro in-
teractions. The micro interactions (typically interacting
agents) being formally specified in the model; the macro
properties an emergent outcome of the simulation.

4.2 Processes for Artificial Ecosystems

In many artificial ecosystem models, the designers of the
model are driven by specific applications or outcomes, so
the mechanisms, abstractions and terminology differ be-
tween systems. This section attempts to define both prop-
erties and concepts for general artificial ecosystems. They
are positioned at a “middle level” of abstraction: for ex-
ample an individual is an indivisible unit, it is not repre-
sented as a combination of self-organising sub-units, even
though this might be possible. In any agent or individual-
based model there is always a conflicting tension between
model complexity, model validation and simulation out-
comes. In contrast to ecological models, the focus of cre-
ative discovery is on the suitability and sophistication of
creative outcomes, not the verification of models with em-
pirical data or their validation in terms of answering ques-
tions not explicit in the original model (Grimm and Rails-
back, 2005). This allows us some creative licence in our
interpretation, but we would still hope for some (at least)
semi-formal validation of any general ecosystem models
for creative discovery.

While not an essential characteristic of ecosystem
models, the use of evolution and the operation on evo-
lutionary time scales is an assumption of the ecosystem
models proposed here. This does not preclude the possi-
bility of the model operating at other time scales.

The basic concepts and processes for artificial ecosys-
tems are:

• the concepts of genotype and phenotype as used in
standard EC algorithms. A genotype undergoes a
process of translation to the phenotype. The geno-
type and phenotype form the basis of an individual
in the model;

• a collection of individuals represent a species and the

systemmay potentially accommodate multiple, inter-
acting species;

• spatial distribution and (optionally) movement of in-
dividuals;

• the ability of individuals to modify and change their
environment (either directly or indirectly as a result
of their development within, and interaction with, the
environment);

• the concept of individual health as an abstract scalar
measure of an individual’s success in surviving
within its environment over its lifetime;

• the concept of an individual life-cycle, in that an in-
dividual undergoes stages of development that may
affect its properties, physical interaction and be-
haviour;

• the concept of an environment as a physical model
with consistent physical rules on interaction and
causality between the elements of the environment;

• an energy-metabolism resource model, which de-
scribes the process for converting energy into re-
sources that may be utilised by species in the envi-
ronment to perform actions (including the production
of resources).

For populations to evolve, there must be some kind of
selection pressure that implicitly gives some species a
higher reproduction rate than others, creating an implicit
measure of fitness (Nowak, 2006, Chapter 2). Let us as-
sume any given environment has finite resources and a to-
tal population carrying capacity, . Species compete for
finite resources. These resources are used by individuals
to better their reproductive success, until the total popu-
lation reaches . Hence, those able to discover success-
ful strategies for efficiently exploiting those resources are
able to reproduce at a higher rate, dominating the popula-
tion. In contrast to EAs with explicit fitness functions,
selection is implicit: successful strategies (individuals)
emerge in response to the challenges set by the environ-
ment. Moreover, in locating and processing resources,
species may alter the environment itself. In this case,
adaptation is a dynamic process involving feedback loops
and possibly delicate balances.

Individuals maintain a scalar measure of “health”
which indicates the success of the individual during its
lifetime. This is roughly akin to a fitness measure in tra-
ditional EC algorithms. If the health level of an individ-
ual falls to zero, the individual dies and is removed from
the population (normally returning its resources to the en-
vironment). Health is normally affected by the individ-
ual’s ability to acquire resources from the environment
(which may include other individuals). Other internal fac-
tors, such as age, may also change an individual’s health
measure.

In the context of problem solving, individual species
may represent competing or co-operating parts of a global
solution. This is highly suitable when many different
combinations of components may form equally good so-
lutions (e.g. notes or phrases forming a musical composi-
tion). When using standard EC methods for search or op-
timisation, the challenge faced is in choosing appropriate
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Figure 2: Schematic overview of Colourfield

g e n o t y p e r e p r e s e n t a t i o n s , s e l e c t i o n m e t h o d s , a n d fi t n e s s
f u n c t i o n s . T h e c h a l l e n g e f o r a r t i fi c i a l e c o s y s t e m s i s i n
the design of environments and the interaction of species
within them.

A n e x a m p l e o f a s i m p l e a r t i fi c i a l e c o s y s t e m m o d e l f o l -
lows.

4 . 3 C o l o u r fi e l d

Colourfield is a simple one-species ecosystem of colour
patterns. It consists of a one-dimensional discrete world
o f fi x e d w i d t h , p o p u l a t e d b y i n d i v i d u a l s ( F i g . 2 ) . E a c h
space in the world is called a cell and may be occupied by
at most one individual. Individuals occupy one or more
cells and are represented visually as lines of colour. A
p o p u l a t i o n o f i n d i v i d u a l s p r o d u c e s a fi e l d o f o n e o r m o r e
colours.

A n i n d i v i d u a l ’ s g e n o m e i s a fi x e d - l e n g t h a r r a y o f r e a l
numbers representing: the natural colour (hue, satura-
tion, lightness: HSL); propensity to change to the natural
colour, and to the colour of the individual to the left and
right of this individual (a normalised weight); propensity
t o g r o w i n t o e m p t y n e i g h b o u r i n g c e l l s . E a c h i n d i v i d u a l i n
the population maintains a separate state, which consists
of: the age of the agent, health, current resources held,
number of cells currently occupied, and current colour.

All individuals begin with no colour (black) and at-
tempt to acquire resources to reach their target colour (a
weighted sum, as determined by the genome, of the nat-
ural colour and the current colours of neighbours). Re-
sources are required to change and maintain a particular
colour, proportionate to the rate of change. If a neigh-
bouring cell is empty, the individual may “grow” into that
cell, the propensity to grow determined by the genome.
The more cells occupied, the more resources are required
to change colour, but the greater the contribution to the
overall colour histogram of the world (detailed shortly).

Let the current colour of individual i n R G B c o l o u r
space be the vector and the width .
The resources required by the individual are:

where , and are constants.
Individuals receive resources from the environment

via a feedback process based on the composition of the
world. At each timestep, a histogram of chroma and in-
tensity values for the world is built. This histogram,
is used as a basis for delivering resources to the world.
A total resource for the timestep , is calculated via a
function :

and then distributed equally to all the cells in the world,
e.g.:

where is the size of the world. Individuals that occupy
more cells therefore receive a greater amount of resources,
as they make a greater contribution to the histogram.

A number of different versions of the function have
been tested. These include: favouring chroma values with
peaks at equal division, maximising chroma or intensity
variation; matching a normal distribution; matching his-
tograms based on paintings recognised for their skilful use
of colour.

G i v e n s u f fi c i e n t r e s o u r c e s , a n d f o l l o w i n g a p e r i o d o f
“growth” an individual may reach its desired colour and
width (which may be dependent on the individual’s neigh-
bour states). At this time, it may choose to reproduce,
either by crossover with an immediate neighbour, or — if
there are no neighbours — by mutation. In the case of two
immediate neighbours, the mating partner is selected with
p r o b a b i l i t y w e i g h t e d t o t h e n o r m a l i s e d E u c l i d e a n d i s t a n c e
between the colour of the individual and its neighbours, so
individuals are more likely to mate with others who pro-
duce colours similar to themselves. Offspring are placed
in the nearest empty cell, or if none exists, they replace
p a r e n t c e l l s . I f t h e r e a r e i n s u f fi c i e n t r e s o u r c e s , t h e a g e n t
is unable to maintain its target colour, causing it to fade
and eventually die.

Over time, the system evolves to maximise the pro-
duction of resources according to the composition of the
histogram, which is determined by the size and colour
of all the individuals in the world. The system exhibits
novel colour patterns with patterns of stasis followed by
l a r g e - s c a l e c h a n g e a s n e w o p t i m a l c o n fi g u r a t i o n s a r e d i s -
c o v e r e d . D u e t o t h e c o n fi g u r a t i o n o f c o - d e p e n d e n c i e s ,
Colourfield exhibits classic ecosystem phenomena such
as parasitism (a rogue colour contributing little to re-
source production but “feeding off” other resource pro-
ducing colours) and mutualism (co-operative combina-
tions of colours mutually contributing to high resource
production).

Colourfield is a simple experiment in adapting ecosys-
tem concepts to a simple creative system. It demonstrates
creative discovery in a limited domain (creative relation-
s h i p s b e t w e e n fi e l d s o f c o l o u r ) .
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4 . 4 T o o l s a n d E c o s y s t e m s

The concept of an ecosystem as a mechanism for cre-
ative discovery is not limited to the simulation of ecosys-
tems within the computer. In a creative context it is use-
ful to consider human-machine interaction as forming an
ecosystem, replacing the concept of machine as creative
tool. This discussion is similar to that used by Di Scipio
(2003) and the approach used in the design of the Eden
s y s t e m , d i s c u s s e d i n S e c t i o n 4 . 5 .

Humans have always worked with tools. Physical
tools are useful because: (i) they enable a manipulation
of the environment (a chisel sculpts wood); (ii) their con-
straints focus the user to their proper function (a pencil is
used for drawing on surfaces); and (iii) their organisation
encompasses knowledge (we cannot imagine in our mind
the correct positioning of a slide rule to evaluate the mul-
tiplication of two numbers, yet by physically using a real
slide rule it is easy).

Today, computer use is widespread in many areas of
creative production, but this use is almost exclusively in
the role of “computer as a tool”. Moreover, many of
the metaphors used by software tools borrow from phys-
ical counterparts or historical lineage (e.g. Adobe Photo-
shop is a “digital darkroom”, Paint programs use a “vir-
tual paint brush”, etc.). Often these metaphors are poorly
translated or simply lack the physicality of their real coun-
terparts (playing a “virtual piano” is just not as good as the
real thing).

COMPUTER

analysis composition

interpretation

OUTPUT
sound or image 

response

USER
gesture or 

intent

computer  as  tool

COMPUTER

evolution

control
signals

processing

self-
observation

noise

user
output

medium

environment

sensors

ecosystem: system + environment

Figure 3: Computer use as a tool (top) and as part of an
ecosystem (bottom)

The ecosystem approach does not conceptualise the
machine as an object. Rather, the processes, both internal
and external, are conceived as interdependent, connected
components, which self-organise into a system. Compo-
nents innately seek to replicate themselves within a noisy
environment. With a limited carrying capacity, those com-

p o n e n t s b e s t a b l e t o fi t t h e e n v i r o n m e n t d o m i n a t e t h e p o p -
ulation.

When the system interacts with the environment, it
forms an ecosystem. The environment is the medium
in which the system develops, and in a creative context
may be the creative medium itself (e.g. sound, light, 3D
form, and so on). In this mode of working, interdependent
processes form an evolutionary, dynamical system, with
adaptive behaviour to environmental conditions including
the ability to interfere with, and modify, the environment.
The machine becomes a synergistic partner in a collabo-
rative creative process, as opposed to a passive tool ma-
nipulated by a user. As shown in Fig. 3, the computer,
the physical environment and the user all form part of a
coupled feedback system.

The powerful properties of tools outlined above are
still preserved in the ecosystems scenario, along with ad-
ditional features not normally associated with the human
creative use of tools:

1. Manipulation of the environment: components are
able to manipulate their environment, moreover due
t o t h e r e c u r s i v e c o u p l i n g ( A s h b y , 1 9 5 2 ) b e t w e e n s y s -
tem and environment we gain additional properties
such as homeostasis (the ability for self-maintenance
o f p a r t i c u l a r d y n a m i c c o n fi g u r a t i o n s i n c h a n g i n g e x -
ternal conditions) and system ‘memory’ through en-
v i r o n m e n t a l m o d i fi c a t i o n .

2. Constraints are created by the environment: evo-
l u t i o n a r y a d a p t a t i o n s a r e fi t n e s s s e e k i n g , l e a d i n g t o
novel solutions imposed by the constraints, not de-
t e r m i n e d b y e x p l i c i t fi t n e s s f u n c t i o n s a s i s t h e c a s e
with conventional E Cmethods.

3. Organisation encompasses knowledge: the dynamic
c o n fi g u r a t i o n o f s y s t e m c o m p o n e n t s r e p r e s e n t s t h e
k n o w l e d g e o f t h e s y s t e m . A s t h i s c o n fi g u r a t i o n i s
dynamic and adaptive, the system is able to ‘learn’.

We are interested in new properties and interactions
being indirectly implemented: arising as emergent by-
products of carefully designed interdependencies between
system components.

There are three important considerations in this inter-
active ecosystem approach to creativity: (i) the design of
the individual system components and their interdepen-
dencies; (ii) the metaphors used in interpreting the func-
tion of components and their dependencies; and (iii) the
composition of the environment in which the system in-
teracts. A careful analysis of these considerations remains
on-going research.

4 . 5 E d e n : a n e v o l u t i o n a r y s o n i c e c o s y s t e m

Eden is a artwork installation that makes extensive use of
the concepts discussed in this paper. The details presented
here focus on the ecosystem aspects of the work. For
detailed technical descriptions, see (McCormack, 2001,
2005a).

T h e w o r k c o n s i s t s o f a c o m p l e x a r t i fi c i a l e c o s y s t e m
running in real-time on a two-dimensional lattice of cells.
This world is projected into a three-dimensional environ-
m e n t , a p p r o x i m a t e l y 6 m x 6 m ( s e e F i g . 4 ) . T h e e c o s y s t e m
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Figure 4: Installation view of Eden

consists of three basic types of matter: rocks, biomass,
and evolving agents. If a rock occupies a cell, agents or
biomass may not. Agents attempting to move into a cell
occupied by a rock will “feel” pain and suffer energy loss.

Biomass provides a food source for the agents.
Biomass is modelled on an extended Daisworld model
(Lenton and Lovelock, 2001), with growth rate, �

i

for in-
dividual biomass element i, a Gaussian function of local
temperature at the location (x, y) of the element, T

x

, y:

�
i

= e�0.01(22.5�T

x

,y)2 .

The Eden world exists on an imaginary, Earth-like planet,
orbiting a sun with a period of 600 days. The orbit ec-
centricity and polar orientation result in seasonal varia-
tions of temperature, thus affecting biomass growth. As
with Lenton and Lovelock’s model, the system exhibits
self-regulation and stability under a range of conditions.
However, overpopulation by agents may reduce biomass
to negligible levels, resulting in a temperature increase.
The increased temperature lowers the growth rate of the
biomass, leading to agent extinction and a dead planet.
The system detects such conditions, at which time the
planet is “rebooted” to initial conditions and a fresh batch
of agents and biomass seeded into the world.

Agents are oriented, omnivorous, autonomous, mobile
entities with a collection of sensors and actuators con-
trolled by a learning system, based on classifier systems
(a version of Wilson’s XCS (Wilson, 1999)). Agents are
able to metabolise biomass into energy, which is required
to perform actions via the agent’s actuators. Possible ac-
tions include: eating, resting, moving, turning left or right,
singing, attacking whatever occupies the cell in front of
the agent, mating. The energy cost of these actions varies
according to the action (attacking costs more energy than
resting, for example), and to physical factors, such as the
mass of the agent (mass also increases the power of at-
tacking — a big, heavy agent is more likely to injure or
kill a smaller agent). If an agent’s energy (health) level
falls to 0, the agent dies. Dead agents may be eaten by
other agents for a certain time period following death.

Agent sensors are both internal (enabling introspec-
tion) and external (enabling sensation of the environ-
ment). They include: sensation of cell contents within
the Moore neighbourhood of the agent; sound intensity

and frequency arriving at the agent’s location according
to a simple physical model; introspection of pain; intro-
spection of low energy (health). The LCS evolves sets of
rules based on past experience and performance of suc-
cessful rules. At regular periods the agent’s health and re-
source acquisition differentials are examined and a credit
or penalty is provided to those rules used since the pre-
vious evaluation. A positive differential pays credit pro-
portional to its magnitude, likewise a negative differential
penalises. Successful rules gain credit and so are more
likely to be selected in the future. Rules that consistently
receive penalty are eventually removed.

Rules evolve during an agent’s lifetime, with a penalty
imposed on energy for large rule sets to encourage effi-
ciency. Two agents may mate — the resultant offspring
inherit the most successful rules of their parents, hence
the system uses Lamarkian evolution.

The Eden environment is visualised and sonified in
the installation space. The two-dimensional world is pro-
jected onto two translucent screens, configured in an ‘X’
shape. This enables people experiencing the work to move
freely around the screens at close range, examining details
of the world as it updates in realtime. The sounds made
by the agents are spatially mapped to four speakers located
at the two corners of each screen. This rough spatialisa-
tion permits the listener to approximately locate the sound
source within the Eden world. The bandwidth devoted to
sound is much higher than any other sensory information
used by the agent. Agents are able to differentiate and
make sound over a range of frequency bands, giving rich
opportunities for the use of sound in an ecosystem context.

In addition to the internal ecosystem model, the Eden
world is also connected to the physical world of the instal-
lation space via an infrared video camera which tracks the
presence and motion of people looking and listening to the
artwork2. The presence of people in the installation space
influences the growth of biomass in the virtual space. The
longer people spend with the work, the more food is likely
to grow in the virtual environment. The rationale for this is
driven by the idea that the more interesting people find the
work, the longer they will stay. If they find the work un-
interesting, they will not spend much time with it. A good
way to maintain people’s interest is to produce sounds,
moreover, interesting, changing sounds.

Over time, the agents evolve to make complex sounds
in order to maintain their food supply. The agents have
no specific knowledge of people in the environment, how-
ever, by making interesting combinations of sounds they
attract and maintain the interest of the human audience in
the environment3. This interest translates to a more stable
supply of food, hence improving chances of survival in
the environment. Therefore, Eden is a symbiotic ecosys-
tem, which includes the human audience experiencing the
work.

2The original version of the work used infrared distance sen-
sors.

3When shown in a gallery environment, it is important to re-
member to compensate for opening hours, otherwise the popula-
tion dies out each night when the gallery is closed!
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5 Conclusions
In contrast with previous attempts to model creativ-
ity, which have applied psychological, cognitive, or
knowledge-based models of human creativity, the ecosys-
tem approach sees creativity as an emergent phenomenon
of dynamic interaction between interconnected, self-
organising components and their environment. These
components and their environment may be internal to
computer simulation (as in the Colourfield system) or part
of a system that incorporates humans and the physical en-
vironment (as with the Eden system).

Combinatorial systems do not practically impose the
limitations that might be suggested by the opposing con-
cepts of combinatoric and creative emergence. Necessar-
ily, all base primitives must contain an interpretation that
lies outside the software itself. What is important is the
process used to derive a creative result from a set of base
primitives. The goal is to enable the synergistic explo-
ration of new conceptual spaces in creative partnership
with the machine. In the artificial ecosystem approach,
this can be achieved by developing a formal understand-
ing of the appropriate design of components, their inter-
connections, and the environment in which they operate.
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