
A Hybrid System for Automatic Generation of Style-Specific Accompaniment

Ching-Hua Chuan∗ and Elaine Chew†

University of Southern California Viterbi School of Engineering
∗Department of Computer Science and

†Epstein Department of Industrial and Systems Engineering
Integrated Media Systems Center, Los Angeles, CA

{chinghuc,echew}@usc.edu

Abstract
Creating distinctive harmonizations in an identifiable style
may be one of the most difficult tasks for amateur song
writers, a novel and acceptable melody being relatively
easier to produce; and this difficulty may result in the
abandonment of otherwise worthwhile projects. To model
and assist in this creative process, we propose a hy-
brid system for generating style-specific accompaniment,
which is capable of creating new harmonizations for
melodies, with proper harmonic resolutions, in a style that
is learned from only a few examples. In the proposed
system, a chord tone determination module first learns,
then determines, which notes in a given melody are likely
chord tones. According to these chord tones, triads are
assigned first to the bars with unambiguous solutions, and
these triads serve as checkpoints. The system then con-
structs possible chord progressions using neo-Riemannian
transforms between checkpoints, and represents the al-
ternate paths in a tree structure. A Markov chain with
learned probabilities for these neo-Riemanian transforms
then generates the final chord progression. We select four
songs by the British rock band, Radiohead, to evaluate the
system. Three songs are used for training, and an accom-
paniment is generated for the held out melody. We present
the results of two case studies. We find that the system
generates chords closely related to the original, and the
resulting chord transitions reinforce the phrase structure
of the melody.

Keywords: Automatic Style-Specific Accompaniment,
Chord Tone Determination, Neo-Riemannian Transforms,
Markov Chains.

1 Motivation
In this paper, we describe an automatic style-specific ac-
companiment system that makes song writing accessible

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c⃝2007 Goldsmiths, University of London

to both experts and novices. This work is inspired by
the fact that many people without formal musical train-
ing can sing karaoke, some even quite well, but have diffi-
culty crafting sophisticated chord arrangements in specific
styles for the melodies which they sing with such ease.
Without proper accompaniment, those creative melodies
would have only a limited existence, and would probably
soon be discarded. Thus, our solution to this problem is
to create a system that would automatically generate ac-
companiment to a melodic composition in a specific style,
given exemplar pieces.

Such a system must satisfy the following require-
ments. First, the system should be able to identify the
features important to the style specified by the user, based
on only a few examples. For music novices, it may be
difficult for them to use musical terms to describe a style,
but it is intuitive for them to ask for harmonization simi-
lar to some particular songs. Second, the system must be
capable of creating new chords not present in the example
pieces, but these chords should still be consistent with the
specified style. Third, chord transitions and harmonic res-
olutions must follow the style of the examples. Last but
not least, the accompaniment needs to support the phrase
structure of the melody, for example, through the insertion
of proper cadences at phrase endings.

In this paper, we propose a hybrid system for generat-
ing style-specific accompaniment. The system combines
music theoretic knowledge and statistical learning, which
has the advantage of being able to simultaneously main-
tain stylistic elements, such as chord tones and chord tran-
sitions, learned from the examples, and create new chords
with the theoretically and structurally correct harmonic
resolutions. Statistical learning allows the system to con-
struct style-related rules for automatic accompaniment,
however, the approach becomes problematic when there
are only limited numbers of training examples. The speci-
fication of style is often best done with no more than a few
examples, as large numbers can dilute the defining fea-
tures. However, rules learned from only a few examples
cannot be widely generalized. In particular, the generat-
ing of new chords sequences with appropriate transitions
are especially difficult for a purely statistical learning sys-
tem. Furthermore, without music knowledge, such as the
use of cadences at phrase endings and of neo-Riemannian
transforms that ensure parsimonious voice leading, a se-
quential and statistical approach has difficulty generating

Computational Creativity 2007

57

appropriate chord progressions with proper structural em-
phases.

The system comprises of several modules employ-
ing different computational approaches. The system first
determines the chord tones in the melody. The chord
tone determinationmodule applies machine learning tech-
niques to choose the chord tones from the input melody
based on the example pieces. The system uses seventeen
attributes to represent the melody, including phrase struc-
ture information. Then, chords are prescribed at check-
points in the melody where it has been determined that the
harmony in that bar is unambiguous. Using these check-
points as anchors, we use neo-Riemannian transforma-
tions to build chord progressions between between con-
secutive checkpoints, according to the chord transitions
learned, and making sure to provide correct and smooth
harmonic resolutions. Finally, we use Markov chains to
generate the final chord progression. Section 2 presents
the details of each of these system modules.

To demonstrate and evaluate the system, we train
the system on three songs of the British rock band, Ra-
diohead, and generate chord progressions for the fourth.
The original accompaniment of the fourth piece serves as
ground truth. Section 3 presents the results of the experi-
ment and system evaluation.

1.1 Related Work

Automatic accompaniment as a harmonization problem
has been studied for more than a decade. Natural Lan-
guage Processing techniques, such as n-gram statistical
learning, have been applied to the learning of musical
grammars for harmonizingmusic in the style of the seven-
teenth century (Ponsford et al., 1998). Evolutionary tech-
niques, such as Genetic Algorithms, have been proposed
and implemented in the generating of four-part chorales
(Phon-Amnuaisuk et al., 1999). Phon-Amnuaisuk and
Wiggins (1999) compared the results between genetic al-
gorithms and a rule-based system for solving a four-part
harmonization problem, and found that the rule-based
system performed better than the one employing genetic
algorithms. Other techniques, such as Hidden Markov
Models, have also been utilized in the harmonization of
chorales (Allan and Williams, 2005).

Chord progressions, transitions, and resolutions in the
harmonization of pop-rock music have also been studied
by musicologists and music theorists. Instead of using
traditional roman numerals, Kochavi (2002) and Capuzzo
(2004) used the neo-Riemannian framework for analyzing
the chord transitions in pop-rockmusic as transformations
on the tonnetz, thus demonstrating a viable representation
and robust grammar tool that accounts for tonal ambigui-
ties caused by modal mixture in pop-rock music.

Most music computational methods adopt sequential
processing in time, i.e., processing the note/bar that occurs
earlier before processing the next note/bar. When sequen-
tial processing is not required, we have the advantage of
selecting the process order in a way that best benefits the
task at hand. In the proposed system, instead of comput-
ing sequentially, we assign chords first at the checkpoints,
then determine the chord progressions in the bars between.

Similar computational ideas can be found in Chew and
Wu (2005), where the separating of pitches into different
voices is done through the connecting of maximal voice
contigs, where the solution is certain.

2 System Description
This section provides the details of the proposed hybrid
system for automatic accompaniment. The system and
data flow diagram is shown in Figure 1. The system con-
sists of three major parts performing the following tasks:
chord tone determination, triad construction and check-
points setup, and chord progression generation. Chord
tone determination, described in Section 2.1, chooses the
chord tones from the melody. Based on the chord tones
reported by the previous module, triads are first used to
harmonizing the parts of the melody that contain notes
identified strongly as triadic chord tones. The details for
triad assignment are shown in Section 2.2.

The third part of the system, described in Section 2.3,
is responsible for generating the chord progression for
the entire melody. Based on the triads assigned in the
previous module. All possible progressions between any
two of these triadic checkpoints are generated by apply-
ing neo-Riemannian transforms. We use a tree structure
to represent the possible paths, and a pruning algorithm
to remove paths containing disallowed transitions. The
final chord progression is created by considering the con-
ditional probabilities of all possible paths as represented
in a Markov chain.

melody

chord tones

Chord Tone Determination

Triad Construction/Checkpoints Setup
checkpoints
(triads) IV IV IV

Chord Progression Generation
IV IV IV IV IVI

iv
I
iv

IVsus2

IV IV I I IV IVsus2chord prog.

Figure 1: The data flow and systemmodules for automatic
accompaniment

2.1 Chord Tone Determination

The chord tone determination module classifies notes in
each bar into chord tones and non-chord tones. We sepa-
rate this module from the next one, chord determination,
for a few reasons: chord tone classification becomes sim-
pler when one does not consider the relations between ad-
jacent chords; this module also learns the melodic harmo-
nization style of each bar; and, new chords (chords not in

Computational Creativity 2007

58

the training examples) can still be constructed in a consis-
tent style. For example, a sus4 chord can still be produced
by adding the 4th note to the basic triad if the 4th note is
reported as a chord tone, even if the sus4 chord does not
appear in the training data.

We apply machine learning techniques to determine
the chord tones. This module consists of a Support Vector
Machine (SVM), which is responsible for selecting chord
tones from the melody in each bar in order to learn the
types of melodic harmonization decisions made typically
by the particular band based on the examples provided. In
the learning stage, each note in a bar is represented by the
seventeen attributes described in Section 2.1.1; the ground
truth is provided by the rhythm guitar chords in the origi-
nal lead sheet. In the testing stage, the module classifies a
note as a chord tone or non-chord tone based on the sev-
enteen attributes of the melodic representation.

The output of the chord tone determinationmodule is a
list of notes that should be considered chord tones in each
bar of the test piece. Given the output list, a few possible
chords can be chosen as harmonization candidates.

2.1.1 Melody Representation

We use seventeen attributes to describe each melody note
in a bar. The meanings of these attributes are shown in
Table 1. We represent each pitch as a numeric pitch class,
numbered from zero to eleven, and normalized so that the
tonic is zero. The duration represents the length of the
pitch class in beats. The next four attributes describe the
scale relationships among the pitch classes in the bar, and
include the presence of the upper and lower neighbors,
the third, and the fifth. We only consider the intervals of
thirds and fifths because neo-Reimannian operations are
based on triads, even though they have been extended to
include seventh and ninth chords transitions (see Kochavi
(2002), Capuzzo (2004).)

Table 1: Attributes for melodic representation
Attribute Meaning
Pitch class (pc) numeric pc, tonic normalized to zero
Duration note duration (in beats)
Upper neighbor pc one scale step above present?
Lower neighbor pc one scale step below present?
Third pc three scale steps above present?
Fifth pc perfect fifth above present?
Metric strength 1 note on metric strength level 1?
Metric strength 2 note on metric strength level 2?
Metric strength 3 note on metric strength level 3?
Metric strength 4 note on metric strength level 4?
Metric beat 1 note on beat 1?
Metric beat 2 note on beat 2?
Metric beat 3 note on beat 3?
Metric beat 4 note on beat 4?
Phrase Position start, middle, end or bridge
Number of pc’s total number of pc’s in bar
Odd/Even bar note in odd or even bar in phrase?

The next eight attributes relate to metric information.
The metric strength attribute shows the metric strength

(frequency of onsets on that position in the bar, remi-
niscent of the inner metric calculations described in Volk
(2002) and Chew et al. (2005)) of the pulse on which the
note resides. The metric beat attribute records the metric
position in the bar according to the time signature. The
phrase position in the training data is manually annotated
as: start, middle, end, or bridge (an interlude segment be-
tween two phrases.) The last two attributes provide infor-
mation on the number of pitch classes in the bar, and the
whether the bar count is odd or even within the phrase.

2.2 Triad construction and checkpoints setup

With the list of chord tones in each bar, we assign tri-
ads to harmonize each bar. Triads are the basic building
blocks for more elaborate chords. In triad assignment, we
appoint chord tones with attributes that strongly support
their being members of a triad, such as chord tones having
their Third present in the same bar, or chord tones having
their Third and Fifth in the same bar. If a chord tone can
be harmonized by a major as well as a minor triad, chord
selection is determined based on the conditional probabil-
ities calculated during the learning stage.

By using the selected chord tone checkpoints, we first
determine the chords for the bars with strong evidences
for harmony choice independently of the bars with less
evidence for harmonicity. A cadence is a typical example
of such a checkpoint. These checkpoints act as the stable
points for starting the harmonization process. A wrong
chord at a checkpoint dramatically reduces the quality of
the song’s accompaniment. For instance, incorrect har-
monies at a cadential checkpoint can easily result in audi-
tory discomfort.

The setting up of checkpoints divides the harmoniza-
tion task into smaller sections of chord series generation.
Instead of finding a chord progression path for the en-
tire melody, we generate a suitable path of chord progres-
sion between each pair of the adjacent checkpoints. This
setup not only makes the computation efficient, but also
enables us to break the sequential order for processing
music. For example, cadential checkpoints help to ensure
proper chord resolutions at phrase endings.

2.3 Chord progression generation

This section describes the assignment of chords at the
chord tone checkpoints, and between checkpoints.

2.3.1 Chord candidate selection

When the choice for triad assignment is clear, we set the
accompaniment chord for that bar to this triad. If the chord
tones cannot be harmonized by any one triad, an extended
seventh chord will be considered. If the chord tones can-
not be fully covered by any triads nor seventh chords, then
a compound chord, consisting of pitches from a cluster of
chords, will be constructed in order to cover as many of
the chord tones in the bar as possible.

A compound chord is constructed based on distance
(number of neo-Riemannian transforms) in the chord
space shown in Figure 2. For example, the chord pair
(I, vi) is a cluster of two chords with a neo-Riemannian

Computational Creativity 2007

59

distance of one. The cluster having the shortest total inter-
chord distance is chosen as the compound chord, and the
function of this chord is determined later based on the
context; the determination of context will be described in
Section 2.3.2. If there are multiple clusters with the same
shortest distance that cover all the chord tones in a bar,
then all possibilities are kept as potential candidates.

The new chord construction mentioned above extends
the system’s vocabulary of chords so that it is capable
of harmonizing the melody using new chords not in the
learning examples. The system can also generate chords
that are neither triads nor seventh chords, but are chords
that can be frequently found in popular music, if the chord
tones contain sufficient information. For instance, the
Fsus4 chord, consisting of the pitches {F, B♭, C}, can be
covered by the cluster (F, B♭), i.e., (IV, ♭VII) in the key
of C major, and is functionally regarded as a subdominant
in chord transforms. The extra note, B♭, will not sound
incongruous, as long as it is resolved correctly, according
to neo-Riemannian transformations.

2.3.2 Neo-Riemannian transforms

Neo-Riemannian transforms have been used by music the-
orists to analyze harmonic patterns and voice-leading in
pop-rock music in the recent decades (Kochavi, 2002; Ca-
puzzo, 2004). There are four fundamental operations in
neo-Riemannian transforms for describing the chord pro-
gressions: I (Identity, same chord), L (Leading-tone ex-
change), P (Parallel), and R (Relative), as shown in Fig-
ure 2. Although the biggest benefit provided by neo-
Riemannian transformations is modal music analysis, we
still represent chords in terms of roman numerals in this
paper for the following reasons: melodies sung by people
are, for the most part, still tonal music; and, the roman
numerals normalize all pieces by key, thus reducing the
number of pieces required in the learning stage.

 VII III VI II V

vii iii vi ii v

II V I IV bVII

ii v i iv bvii

IV bVII

bIII

bVI

bII

R P

L

Figure 2: Neo-Riemannian transforms in the chord space.

2.3.3 Tree construction and pruning

We use a tree structure to represent the possible chord pro-
gressions between two checkpoints. In the tree, each node

represents a chord that contains all the chord tones gen-
erated for that bar. A child node represents a chord that
results from a learned neo-Riemannian transform to the
next bar. The height of the tree equals the number of bars
between and including the two checkpoints.

To construct a valid tree for chord progressions be-
tween two checkpoints, three constraints must be satisfied.
The first two are local constraints, while the third one is a
global constraint: (1) the chord selected in each bar should
contain all the reported chord tones; (2) a mapping be-
tween two adjacent chords must be a valid (learned) neo-
Riemannian transform; and, (3) the root node chord must
be the first checkpoint, and a leaf node chord at the bottom
of the tree must be the second checkpoint.

If a branch cannot continue grow to the second check-
point, then the branch would not produce a plausible pro-
gression. We apply a pruning algorithm for removing
those stunted branches in order to make the chord pro-
gression calculations more efficient. The pruning algo-
rithm works as follows: if a node cannot establish a valid
link to any of the nodes in the next level, it is considered a
dead end, and it will report this information to its parent.
If a node, n, receives a “dead end” message from all of
its children, then n becomes a dead end too. The pruning
process continues backtrack until it reaches either a node
containing a live child or the root.

An example of a tree structure for chord progressions
is shown in Figure 2.3.3. The roman numeral at a node
shows the chord candidate for the bar at that level, based
on the reported chord tones for that bar. The circled nodes
are the checkpoints, which are harmonized by the I chord
in this example. Links between nodes (shown with ar-
rows) are created based on valid neo-Riemannian trans-
forms; the particular neo-Riemannian operations invoked
are shown in italics. The dashed arrows represent pruning
actions when a node cannot continue to grow to the next
level. In this example, a total of three valid chord progres-
sions are found: {I, I, V, V, I}, {I, I, iii, iii, I}, and {I, I,
iii, vi, I}.

I

I v

V

V ii

I VI

I LRP

I I

LR L

LR LR

LR LR R LL

iii

iii vi

I

RL

I IVvi

Figure 3: Example tree structure for chord progression.

It may be possible that no branches can be found that
connect the two checkpoints, due perhaps to errors in

Computational Creativity 2007

60

chord tone determination or to a sparse learning set. In
this situation, the generation of chord progression will be
split into two sub-problems. At each split, we allow an
arbitrary non-Reimannian transition. A possible heuristic
for selecting a split point considers the number of types
of neo-Riemannian transforms learned in bar transitions.
A bar transition having more possible chord transforms
is more likely to allow more flexible (possibly new) har-
monizations (transitions), and is thus a good candidate for
a split point. The worst case splitting occurs when the
chords selected in each bar cover the chord tones, but no
neo-Reimannian transform exist to transition between the
bars.

2.3.4 Markov Chains

After constructing the tree, we can readily extract all suc-
cessful paths between the checkpoints. Each of these
paths can be considered a Markov chain, and the likeli-
hood of that path can be calculated from the conditional
probabilities in the Markov chain.

Assume we have a path with n chords, {C1, . . . , Cn},
where each chord is indexed by its bar number. The prob-
ability that this chord progression occurs can be expressed
as:

P (C1, . . . , Cn)
= P (C1)P (C2|C1) . . . (Cn|Cn−1)
= P (C1)P (NRO1,2) . . . (NROn−1,n), (1)

where NROi−1,i is the neo-Riemannian operation be-
tween chord Ci−1 and Ci. Equation 1 accounts for the
probability of the chord progression, but it ignores the
phrase information for each bar. In order to generate a
chord progression that better reflects the phrase structure
of the melody, we modify Equation 1 to include the phrase
position information of each bar:

P (C1, . . . , Cn|B1, . . . , Bn)
= P (C1|B1)P (C2|C1, B1, B2)

. . . P (Cn|Cn−1, Bn−1, Bn)
= P (C1|B1)P (NRO1,2|B1, B2)

. . . P (NROn−1,n|Bn−1, Bn) (2)

where Bi is the phrase position for bar i, which falls into
one of four possible categories: start (S), middle (M), end
(E), and bridge (B), as described in Table 1. For example,
P (LR|S, M), the probability that neo-Riemannian oper-
ations LR occurs from a starting bar to a bar in the middle
of the phrase, can be calculated from the examples as fol-
lows:

P (LR|S, M) = P (LR, S → M)/P (S → M) (3)

The first term, P (C1|B1), in Equation 2 is redundant if
C1 is a checkpoint at the first bar. When C1 does not
occur at the first bar, we may have multiple choices for
the chord there, and the term P (C1|B1) does affect the
resulting progression. If the conditional probability of all
chord candidates are zero, due to limited learning pieces,
we substitute the term P (C1|B1) with P (C1) instead.

3 Evaluations and Results
In this paper we test our system on music by the British
rock band, Radiohead. The experiment design and results
are detailed in the following sections.

3.1 Experiment design

We consider four songs by Radiohead: Creep, High and
Dry, Fake Plastic Trees, and Airbag for our accompa-
niment generating experiment. We consider these four
songs similar, not in terms of particular musical features
such as melody, chord progressions, and rhythmic pat-
terns, but according to general properties, for example,
all four songs were published in their first three albums,
they are each relatively slower than other songs in the
respective albums, and each song shows a clear acoustic
rhythm guitar accompaniment. However, we did consider
one musical fact: all four songs are in major keys; we
considered this fact important because strategies of chord
progressions would be very different in major vs. minor
keys.

We obtained the lead sheets for the songs from the
website http://www.gprotab.net. For each score, we ex-
tracted the two main tracks, melody and rhythm guitar,
and removed all other instruments. We manually verified
the chords, selecting the main chord for each bar, and dis-
carding ornamental chords and other musical elaborations
for the purpose of training and evaluation. Phrase infor-
mation for each bar and key information are also added to
the annotation. The repeats in each song are truncated to
simplify the process.

The number of appearances of chords along with their
phrase position ∈ {S, M, E, B} of the four songs are
shown in Figure 4a through 4d, where chords are repre-
sented as roman numerals, i.e. their function within the
key. The phrase position M is furthered specified as being
an odd or even bar, {Mo, Me}. Notice that the choices of
chords and their distributions are very different from one
song to another.

To test our system, we held out one song as the test
melody, and used the remaining three training examples.
For training, the melodies (represented as described in
Section 2.1.1) as well as the chords are given to the chord
tone determination module for the learning of the harmo-
nization strategy. The conditional probabilities of chord
appearances and neo-Riemannian transform are also cal-
culated from the training examples at this stage. For test-
ing, only the melody is given to the chord tone deter-
mination module. Based on the reported chord tones, a
chord progression is generated according to the process
described in Section 2.3.

3.2 Case Study 1: Creep

First, we choose Creep as the test song, and trained the
system using the other three. Using the original accompa-
niment for Creep as ground truth, the overall correct rate
is 81.48% in this 54-note sample. The statistics on the
chord tone determination, such as true positive rate (TP),
false positive rate (FP), precision (Prec.), recall (Rec.),
and F-measure (F), are shown in Figure 5. Notice that the

Computational Creativity 2007

61

false positive rate is much lower than the true positive rate.
Thus, by generating accompaniment according to the re-
ported chord tones, the harmonization process should still
result in the original chords.

Creep

High and Dry

 Airbag

Fake Plastic Tree

Figure 4: Chord distributions in the original songs

Figure 6 shows the generated chords as well as the
original harmonizations for Creep. In the 26 bars, 9 of
the generated chords are identical to the original. Most of
these chords occur at the start of phrases beginning with a
I chord, or in the middle of a phrase with IV chord. In the
remaining bars, 5 generated chords are the parallel ma-
jor/minor of the original ones, and 3 generated chords are
related by a fifth to the original ones.

With regard to chord tone determination, there are
only two false positives, pitch A in bars 1 and 13. In
bar 1, the reported chord tones are G, A, which can be
harmonized by the cluster of chords IV and the ii of IV
in the chord space shown in Figure 2. This generated
compound chord, IV+2, still has the function of IV, and is
successfully resolved by the LR operation to the I chord
in the next bar. In bar 13, the reported chord tones are B,
A, harmonized by the iii+2 chord, which happen to be a

Figure 5: Chord tone determination statistics − true pos-
itive (TP), false positive (FP), precision (Prec.), recall
(Rec.), and F-measure (F)− for Creep and High and Dry.

seventh chord in this case.
The original harmonization contains only four chords,

repeated periodically in every phrase. The chord B (III)
and Cm (iv) are missing in the generated chords. Instead,
their parallel major/minor are chosen. We can explain the
result by examining the chord transitions in the training
songs. In Figures 4b, 4c, and 4d, no chords are related by
parallel major/minor in each song. Therefore, no parallel
(P) neo-Riemannian operations are learned at the training
stage. Although the chord iii and IV are more commonly
used than III and iv, and no non-scale pitches such as D♯
and E♭ appear in the melody, the generated chords here
may lack some of piquant harmonies of the original. For
the bars labeled as cadences (bars 8, 16, 24, and 26), the
chords (G, C, G, G) are generated instead of (Cm, Cm,
Cm, G) as in the original.

Creep

6

B/G C/C C/C Cm/G Cm/G G/G

Melody

Original/Generated chords

Cm/C G/G G/G

B/Bm B/Em

C/C
C/C Cm/G Cm/G G/D

11 G/D B/Bm+2B/D+3 C/Em C/G

16
Cm/C Cm/C G/G G/G B/Gmaj7

21

Figure 6: Original/Generated chords for Creep.

3.3 Case Study 2: High and Dry

We choose High and Dry as our second test piece. The
overall correct rate, when comparing to the original lead
sheet, is 70.49% on this 61-note sample. The statistics in

Computational Creativity 2007

62

Figure 5 show that chord tone determination fared better
in Creep than in High and Dry, especially for the false
positive rates.

Three types of false positives are found in the chord
tone determination. The first type occurs in bars 2 and 10,
where the pitch C♯ is wrongly reported as a chord tone.
This results in the choice of the chord A instead of Asus2.
The second type happens in bar 22, where the pitch G♯ is
reported falsely as a chord tone. However, the resulting
compound chord E+4 includes all the pitches in Asus2.
The third type occurs in bars 16 and 18. The wrongly
reported chord tone F♯ results in a humdrum but straight-
forward chord progression from bars 16 through 18.

High And Dry

Melody

Original/Generated chords
B7sus4/A Asus2/A E/E E/E

Asus2/Asus25 B7sus4/A E/E E/E

21

9 B7sus4/A Asus2/A

E/E E/E

13

B7sus4/A Asus2/A E/E E/E+2

B7sus4/E+217
Asus2/E+2 E/E E/E

B7sus4/E Asus2/E+4 E/E

Figure 7: Original/Generated chords for High and Dry.

Figure 7 shows the generated chords as well as the
original harmonization of the song High and Dry. In the
23 bars, 11 of the generated chords are identical to the
original. An additional other 6 of generated chords either
show the same basic function (bars 2, 10, 14, and 16) or
cover the pitches in the original chords (bars 18 and 22).
The original harmonization shows regular four-bar chord
pattern: B7sus4→ Asus2 → E → E. A similar structure
can be observed in the generated chord progressions: A
→ A → E → E. The chord E (I) is generated for all the
bars labeled as cadences (bars 3, 7, 11, 15, and 23), as in
the original song.

4 Conclusions and Discussion
In this paper, we proposed and demonstrated a hybrid ap-
proach to the building of an automatic style-specific ac-
companiment system. The system aims to make song
writing accessible to novices and experts alike. Imple-
mentation details of song writing such as chord assign-
ment and arrangement often requires years of musical
training and practice, and may prevent less experienced
song writers from focusing on the expression of their mu-
sical ideas. Our objective is to design a system that can
not only provide proper chord progressions to melodies
created by novices, but also present new harmonization

ideas to experts. To this end, we have proposed a sys-
tem that models the harmonization process in a sequence
of logical steps, and generates chords with proper reso-
lutions. The system is designed not only to allow users
to concentrate on higher level decisions and to focus on
creative ideas, it also serves as a systematic model for the
process of generating accompaniment.

In the two test examples, we demonstrated the sys-
tem’s ability to create new chords, while maintaining the
proper chord transition as in the provided examples, in
accordance to the phrase structure of the melody. We
find that the system generates chords closely related to the
original, and the resulting chord transitions meet our ex-
pectations based on the melodic phrase structure. We also
observed a few challenges in the chord generating pro-
cess. For example, the melody of Creep does not contain
strong cues for harmonization, and the system harmonized
the same melody in different bars using different chords.
Sometimes, onemay choose to include chord tones that do
not appear in the melody to improve voice-leading, or for
ease of fingering on the instrument (e.g. guitar tablature);
this are aspects which are currently not captured in the
system. Neo-Riemannian operations are based on triads,
and are not flexible for generating chords such as IVsus2
with exact pitches. Finally, symmetric phrase structures,
reflected for example by regularly repeated chord patterns,
are difficult to generate when using only local bar-by-bar
analysis. Future systems could incorporate such higher
level structures.

Acknowledgements
This research has been funded by the Integrated Media
Systems Center, a National Science Foundation (NSF)
Engineering Research Center, Cooperative Agreement
No. EEC-9529152, a University of Southern California
Women in Science and Engineering (WiSE) Digital Dis-
sertation Fellowship, and by the NSF grant No.0347988.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors,
and do not necessarily reflect the views of NSF or WiSE.

References
Allan, M. and Williams, C. K. I. (2005). Harmonising
chorales by probabilistic inference. In Saul, L. K.,
Weiss, Y., and Bottou, L., editors, Advances in Neu-
ral Information Processing Systems: Proceedings of
the Neural Information Processing Systems Conference
2004, Vancouver, B.C., volume 17, pages 25–32. MIT
Press, Cambridge, MA.

Capuzzo, G. (2004). Neo-riemannian theory and the
analysis of pop-rock music. Music Theory Spectrum,
26(2):177–199.

Chew, E., Volk, A., and Lee, C.-Y. (2005). Dance music
classification using inner metric analysis: a computa-
tional approach and case study using 101 latin american
dances and national anthems. In Golden, B., Ragha-
van, S., and Wasil, E., editors, The Next Wave in Com-
puting, Optimization and Decision Technologies: Pro-
ceedings of the 9th INFORMS Computer Society Con-

Computational Creativity 2007

63

ference, volume 29 of Operations Research/Computer
Science Interfaces, pages 355–370. Springer, Annapo-
lis, MD, US.

Chew, E. and Wu, X. (2005). Separating voices in poly-
phonic music: A contig mapping approach. In Wiil,
U. K., editor,Computer Music Modeling and Retrieval:
Second International Symposium, CMMR 2004, Esb-
jerg, Denmark, May 26-29, 2004, Revised Papers, vol-
ume 3310 of Lecture Notes in Computer Science, pages
1–20. Springer-Verlag, Berlin, Germany.

Kochavi, J. (2002). Contextually Defined Musical Trans-
formations. PhD thesis, State University of New York
at Buffalo, Buffalo, New York.

Phon-Amnuaisuk, S., Tuwson, A., and Wiggins, G.
(1999). Evolving music harmonisation. In Dobnikar,
A., Steele, N. C., Pearson, D. W., and Albrecht, R. F.,
editors, Artificial Neural Nets and Genetic Algorithms:
Proceedings of Fourth International Conference in Por-
toroz, Slovenia. Springer, Vienna, New York.

Phon-Amnuaisuk, S. and Wiggins, G. (1999). The four-
part harmonisation problem: A comparison between
genetic algorithms and a rule-based system. In Pro-
ceedings of Society for the Study of Artificial Intelli-
gence and Simulation of Behaviour Convention, Edin-
burgh, Scotland.

Ponsford, D., Wiggins, G., and Mellish, C. (1998). Statis-
tical learning of harmonic movement. Journal of New
Music Research, 28(2):150–177.

Volk, A. (2002). A model of metric coherence. In Pro-
ceedings of the 2nd Conference on Understanding and
Creating Music, Caserta, Italy.

Computational Creativity 2007

64

