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Abstract
Evaluation is considered to be an important component of
any creative process. This paper explores how evaluation
can be incorporated into our minimal model of creativ-
ity, which we have been developing using a combination
of conceptual analysis and evolutionary robotics. Specifi-
cally, we consider how to extend our approach so that the
robots themselves can evaluate mark patterns that they, or
other robots, have made on the floor of their environment.

Evaluation can, we suggest, be distinguished into a de-
scriptive and a merit assignment component. To evaluate
an object or event F is, (a) to discriminate some feature of
F and (b) to assign some merit or de-merit to that feature
of F . Component (a) is descriptive and (b) is what would
more traditionally be called ‘evaluative.’

In simulation, our robots discriminate fractal from ran-
dom patterns and demonstrate this by stopping on target
regions of the arena floor that are covered with a fractal
texture. We argue that in so doing they perform the de-
scriptive component of evaluation. However, it is debat-
able whether the robots are performing the second, merit-
assignment component of evaluation. Currently, the dis-
crimination mechanism is hard-wired and does not de-
velop during an agent’s lifetime. In future experiments
we will investigate how to artificially evolve agents that
perform what might be described as ‘minimal evaluation’
by attempting to incorporate a preference element.

Keywords: Minimal creativity, evolutionary robotics,
evaluation, fractal pattern discrimination

1 Introduction
A creative process, one might argue, involves evaluation.
Without the second, you don’t get the first. Consider
Harold Cohen’s AARON drawing system, which has now
been generating images for more than 30 years (McCor-
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duck, 1991). The computational structure of AARON has
changed over the years. These details are theoretically in-
teresting, but set them to one side for the moment. No
matter the computation involved, and no matter the status
of the artificial agency of AARON, the following is clear.
Cohen, in selecting the images to display and eventually
sell, must evaluate those images. He selects the ones that
he prefers, and these images are the ones that you and I
will see in a gallery. This is evaluation if anything is. And
without it, one might say, you don’t have a creative pro-
cess. In fact, this may be the reason that one hesitates to
call AARON creative: without Cohen, there is no evalua-
tion. Indeed, Cohen makes the same concession (Cohen,
1999). This may motivate one to take evaluation to be a
necessary condition for creative processes.

We are sympathetic to this general suggestion. And
we are willing to take it seriously enough to incorporate
it into our minimal approach to modelling creativity and
to see what new results it may engender. Our ultimate
goal is to evolve artificial agents which behave in, at least
minimally, creative ways. Our methodology is also min-
imal, both in terms of conceptual assumptions, and the
constraints we place on the robot controllers.

2 Minimal Modelling and Creativity
To this point, our conceptual assumptions about creativ-
ity have been sparse. First, we propose that creative pro-
cesses require some degree of agency. And agency in-
volves autonomy. We understand autonomy very broadly:
it includes any behaviour not strictly imposed by a pro-
grammer or designer. This ‘no strings attached’ agency
is weaker than a rich philosophical notion; it does not re-
quire deliberation or cognition. Thus a remote controlled
robot would not be an agent in our sense, while an individ-
ual agent in an artificial life simulation would be. Second,
we suggest that creative processes involve novelty. We
follow Boden (2004) in rejecting the assumption that only
historical novelty is theoretically interesting. Instead, one
can acknowledge relative novelty by specifying different
reference points. We are interested in two types of rela-
tive novelty. Some behaviour is population-relative novel
for some agent A just in case that behaviour is novel rel-
ative to all of the agents in a population of which A is
a member. And a behaviour is individual-relative novel
for some agent A just in case it is novel relative to the
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behavioural history of A. This provides a great deal of
flexibility in how we understand novelty. And of course,
as the richness of the creativity in question goes up, so
does the novelty, perhaps moving towards something like
historical novelty. We thus propose an agency and a nov-
elty condition for minimally creative processes (Bird and
Stokes, 2006a,b; Bird et al., 2007).

To meet the ‘no strings attached’ agency condition our
initial model consists of a simulated robot, situated in a
walled arena environment, whose behaviour is solely de-
termined by its sensory motor activity. The simulation is
based on a Khepera robot with 6 IR sensors, a floor sen-
sor that can detect lines directly below the robot and a
pen that can be raised and lowered. Given the difficulty
of hand designing robot-environment interactions we em-
ploy an evolutionary robotics approach to designing the
artificial neural network that controls the behaviour of the
robot. The fitness function explicitly rewards (a) corre-
lated changes in the the state of the line sensor (‘on to off’
and ‘off to on’) and the pen (‘up to down’ and ‘down to
up’), and (b) marks made over a large area of the arena
floor. It also implicitly penalises robots that crash into
walls. This methodology also enables us to minimise
any implicit or explicit biases we have about how cre-
ativity should be modelled as well as having the poten-
tial to generate models that exhibit unpredictable, and po-
tentially novel behaviour. Our initial results demonstrate
that we can evolve simulated robots that meet our minimal
agency and population-relative novelty conditions (Bird
et al., 2007).

3 Missing Evaluation
We’ve encountered many sceptics in presenting this work
over the past year or two. The sceptic will often say some-
thing like the following. “You’ve got agents that perform
reactive behaviours, some of them novel in your speci-
fied sense, but there is no space for these agents to make
choices, to judge what they are doing, to evaluate. And
this is what’s missing: no evaluation, no creative process.
So call the behaviours ‘minimally creative’ if you like, but
they are too minimal to connect with rich creativity in any
interesting way.” As we said at the outset, we are sympa-
thetic to this general line of criticism. It needs, however,
to be separated into distinct criticisms, some of which we
will address here, some of which we hope to address later
in our research.

1. Non-evaluative processing worry
This is the issue we are most concerned with at
present. For agents to act creatively, they must be
performing some kind of evaluation. The agent must
be choosing among features or stimuli in its envi-
ronment, where these choices inform (and indeed
may be derived from) their behavioural activity. The
mark-making behaviour of our agents lacks this fea-
ture. Their behaviours are mere reactions to the
arena boundaries and previous mark-making in the
arena, constrained by their own sensory motor mor-
phologies and, from an evolutionary perspective, the
performance of previous agents in that environment.
There is, it seems, no evaluation by the individual

robots of their mark-making activity.

2. Myopic worry
A related worry concerns a feature of the sensory
motor morphology of the agents we are using. As
a symptom of their physical structure, our simulated
mark-making agents can only see marks on the floor
below them in a 2mm by 2mm area. There is thus no
sense in which the agent can achieve a global per-
spective on the marks it is making. There is not,
as there is usually for a human artist, an opportu-
nity to ‘stand back’ and consider the overall pat-
tern. This underwrites the non-evaluative processing
worry, since this myopic perspective seriously limits
prospects for evaluation.

3. No-stopping worry
Our agents have no stopping mechanism. That is,
there is no point where the agent will complete the
marks, no analogue to the artist who happily steps
back and says to herself ‘It’s finished!’. Our agents
may stop, but any termination of mark-making is in-
dependent of the patterns made by the marks. This,
in the theoretical context of creativity, is a problem.

4. Aesthetic value worry
A final worry concerns the results of the agents’
behaviours rather than the behaviours themselves.
Some members of our research team would ulti-
mately like to see some robot drawings which can
be exhibited in a gallery. Controversies about aes-
thetic value and definitions of art to one side, dis-
playing works in a gallery generally requires that the
works possess some aesthetic merit by one criterion
or other. Our results may be interesting, provided an
observer has enough information about the artificial
agency that generated them. But on their own, it is
debatable whether they have any aesthetic interest.
The challenge, then, is to achieve some aesthetically
interesting results, while maintaining our theoretical
stance towards creativity. In other words, we want
our robots to create something aesthetically valuable,
while minimising our influence over how they do it.
So far, we fall short of this goal.

4 A Proposed Solution: The Fractal
Framework

We think one solution to these various worries lies in the
use of fractals. In simple terms, we intend to endow our
agents with a capacity for discriminating fractal patterns,
and a preference of sorts for completing such patterns.
This is a broad enough constraint on our agents to allow,
as it were, creative freedom. Fractal patterns – understood
broadly as patterns which display self-similarity across a
range of scales – can vary greatly in their appearance (for
example, texture), and so our agents will only have a gen-
eral pattern ‘preference’. The resulting images thus stand
to be surprising or unexpected, but the behaviours of the
agents are nonetheless constrained: some images are frac-
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tal, others are not 1.
Before discussing the details of our modelling strate-

gies to these ends, we should ask, from a purely concep-
tual point of view, how a fractal framework helps with the
four evaluation worries described in Section 3. We con-
sider each in turn.

1. R1: The non-evaluative processing worry
One simple reason our agents do not evaluate is that
they don’t have anything to look for. They are not, at
present, pattern discriminators and so a fortiori are
not pattern evaluators. Incorporating fractal pattern
discrimination and, eventually, a preference for mak-
ing fractal mark patterns dissolves this particular as-
pect of the problem. The agents are thereby endowed
with a minimal evaluation technique, preferring cer-
tain marks over others and acting in ways that display
that basic choice 2.

2. R2: The myopic worry
In order that our simulated agents can discriminate
fractal patterns, rather than just detect marks, we
are replacing the 2mm x 2mm mark detector with
a 50mm x 50mm camera that points at the floor.
However, even with the addition of this camera, the
agent’s viewpoint is still extremely limited and does
not counter the myopic worry. This therefore remains
a challenging problem and may have to be resolved
by either using a bird’s eye view camera or some type
of memory in the agent’s controller so that it can
evaluate a larger part of the arena at any one time.
This issue is independent of the fractal framework
that is the focus of this paper and we do not address
it further here.

3. R3: The no-stopping worry
Incorporating fractal patterns provides a natural stop-
ping point. An agent making a fractal pattern will
stop once it has generated a pattern that is self-similar
across that range of scales that it can discriminate.
The agent thus finishes the mark-making and in a
way that is dependent upon the patterns made.

4. R4: Aesthetic value worry
This particular worry is perhaps too far downstream
from our current state of research, so a suggestion
for now will suffice. People like fractals. This seems
true on an intuitive level and has in fact been demon-
strated in the psychological literature (Spehar et al.,
2003). What’s more, if an audience member is armed
with the knowledge that the agents she is watch-
ing are attempting to complete a fractal pattern, a
very basic identification is achieved 3. That is, the

1This, in fact, is a point of controversy in the literature on
fractals (Halley et al., 2004). Given the methods of fractal mea-
surement we employ, however, some patterns will meet the stan-
dard while others will not. Whether this satisfies parties on both
sides of the debate over what we might call ‘fractal realism’ is
an open question.

2Whether this amounts to anything we reasonably call ‘evalu-
ation’ is debatable. The non-evaluative processing worry is cen-
tral to this paper, so more on this point in sections 5, 6, and 7.

3If and when we should be in a position to exhibit in a gallery,

agents’ behaviours are no longer unintelligibly ran-
dom, since one understands an agent’s general goal
and may watch as the agent attempts to achieve that
goal. A fractal framework thus affords potentially
aesthetically valuable finished products, as well as a
sharpened insight into the behaviours – and, perhaps,
the creative processes – of the artificial agents. This,
we suspect, moves us closer to the aesthetic merit
needed for a gallery display.

5 Theoretical Analysis of Evaluation and
Pattern Discrimination

What do we mean by ‘evaluation’? Evaluation is a topic
of rich debate in the philosophical literature ranging from
aesthetics to moral theory to action theory, among oth-
ers. This diversity provides a hint: evaluation is a context-
bound enterprise and so theorizing it should be shaped by
the relevant context. We are primarily concerned with art
and art-making, so our analysis will err towards an analy-
sis of aesthetic evaluation.

Most intuitively, to aesthetically evaluate some thing
is to assign value to that thing. Less circularly, to aes-
thetically evaluate some thing is to assess the merit of that
thing. We say that this work is ‘good’, that one ‘bad’, this
one ‘beautiful’, that one ‘poor.’ We can, and often do,
offer such assessments in general and unqualified ways.
However, these assessments are typically made for partic-
ular reasons; and we provide these reasons if our assess-
ment is called into question. I assign merit to some work
because it has this or that property, and I appeal to the
latter in justifying the former. This reveals something im-
portant about aesthetic evaluation: aesthetic evaluation, at
least typically, involves a descriptive element.

There is an historical dichotomy between the evalua-
tive and the descriptive. The distinction is – as is often
the case with supposed dichotomies – a fuzzy one. The
20th century aesthetician Frank Sibley offers an insightful
analysis of this distinction, with special emphasis on its
place in philosophical aesthetics. Sibley’s emphasis is on
evaluative versus descriptive terms, but so long as we take
a use of such terms to be indicative of the corresponding
judgment, we can generalize from his analysis to evalua-
tive and descriptive acts (Sibley, 2001).

First, Sibley suggests, some terms are used to indicate
that an F has value (or does not), without indicating why
or how F has this value. One may, for example, call a
thing ‘good’, ‘bad’, ‘nice’, ‘nasty’, ‘worthless’ and so on,
without attributing any particular properties to that thing.
Sibley calls such terms solely evaluative. These terms and
their correlative use are better understood when contrasted
with a second class of terms. Some terms indicate a prop-
erty the possession of which is a merit (or de-merit) rel-
ative to some category. ‘Sharp’ is such a term relative
to the category of knives (and, oppositely, so is ‘dull’),
‘level’ for billiard tables, ‘round’ for basketballs, and so
on. Such terms, Sibley suggests, are often taken for eval-
uative ones. However, we might instead think of them as
straightforward property terms, since to use them is to as-

the display would be not merely of resulting images, but of the
embodied robots making marks on the floor of a walled arena.
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cribe a property to an object and indeed can be done with-
out an additional evaluative assessment of that object. One
can describe a knife as sharp without knowing that that
sharpness enables proper performance of a knife’s func-
tion. In Sibley’s words, “[i]n general, one does not need
to know, with such a term, ‘P’, though one often will, that
the property counts as a merit in something in order to be
able to ascertain that the thing may correctly be called ‘P”’
(Sibley, 2001, p.92). Indeed use of these terms is com-
mon in many spheres, including aesthetics and criticism.
Consider critical and appreciative practice: we do offer
descriptions of artworks (for example, of their formal, art-
historical, generative, or socio-political properties) which
may imply an assessment of merit, but which could be of-
fered without such an assessment. The important point of
contrast is that to use a term of this type, unlike solely
evaluative terms, is to identify a particular feature of that
object, and this is a descriptive rather than an evaluative
act.

As Sibley admits, use of a descriptive merit term often,
even if not by conceptual necessity, implies an assignment
of merit. To this end, we might, again following Sibley, in-
troduce a third category of terms: evaluation-added terms.
Such terms involve both a descriptive and an evaluative
element. In using a term of this type, one describes an F
by indicating that F has some property G, and then adds
to this description an assessment of merit, where this as-
sessment takes place on the basis of the description of F ’s
possession of G. Sibley offers ‘tasty’ as one example. If
I call a meal ‘tasty’, I am no doubt giving a positive eval-
uation of the meal and this evaluation implies a certain
description, namely, that the meal has a lot of flavour.

Sibley goes on to question whether aesthetic evalua-
tion carves up so neatly, and indeed questions how much
of so-called aesthetic evaluation is even evaluative rather
than descriptive. No matter. We can safely glean the
following lesson from Sibley’s analysis. Aesthetic eval-
uation generally involves both a descriptive and a merit-
assigning element; it roughly resembles the use of what
Sibley calls ‘evaluation-added terms.’ Consider a familiar
scene from a gallery or exhibit. My friend Jon says to me,
“This sculpture is lovely.” An eyebrow raised, I respond,
“Really, how so?” Jon’s response might go something as
follows. “Well, it possesses a certain balance. Notice how
the curve of her hip echoes the positioning of her oppo-
site elbow. And the face is just expressive enough: the
eyes are blank but wide open; the lips are slightly curled
at the corners, not quite smiling and not quite frowning.”
Jon may go on and on until I have had enough. “You’re
right. It’s lovely. Time for a drink”. This is a simple
example of appreciative practice. One may initially of-
fer an unqualified evaluation of a work (using what Sibley
calls a ‘solely evaluative term’). However, as is often the
case, one has reasons for making that evaluation and will
offer them when asked. These reasons, as with Jon’s rea-
sons, often, perhaps always, involve descriptions of the
thing evaluated. They involve an indication of the proper-
ties which underwrite one’s assessment of merit. This is
enough to motivate the following understanding of evalu-
ation.

Evaluating an F involves:

1. d indicating that F possesses property G; and

2. m indicating that one finds merit/de-merit in G as
possessed by F .

d is thus the descriptive element, and m the (tradition-
ally) evaluative element. One can think about d and m as
necessary and conjointly sufficient conditions for evalua-
tion if one prefers, but we see no need to make this com-
mitment. For our purposes, it suffices to say that evalu-
ation, especially in contexts of aesthetic appreciation and
criticism, typically involves both a property description
d and an assignment of merit m. Indeed, this seems to
capture a fundamental schema for evaluation, in whatever
realm it should be. The difference, for example, between
moral evaluation and aesthetic evaluation lies in the kind
of merit that is assigned and, perhaps, in which properties
are relevantly discriminated. Common to both kinds is the
presence of a descriptive and an evaluative element.

We are taking a property description to be no more
than the indication that an F has property G or, if one
prefers, the discrimination of G as possessed by F . This
kind of discrimination is clearly descriptive (as contrasted
with evaluative), but it need not be any kind of rich de-
scription. Indeed it need not be linguistic: a picture, point-
ing at something (given the right context), the firing of a
feature detecting neuron, or pushing one button rather than
another could each just as well serve this indicative role.
One may have reservations about calling these acts and
events ‘descriptions’ given the heavy philosophical bag-
gage that comes with this term. We are sensitive to these
worries, and indeed our analysis of evaluation does not re-
quire us to think of descriptions in any special way. To be
clear: the only point that need be granted is that evaluation
involves (partly) an indication that the object under eval-
uation possesses some property or properties. And this
activity, following Sibley, can be performed in purely de-
scriptive, non-evaluative ways.

This kind of evaluation is no less a feature of art-
making than it is of art appreciating. When making an
artwork, an artist constantly makes choices which are in-
formed by evaluation of the work up to its present state.
These evaluations involve an assessment of merit – where
this assessment is informed by property descriptions – of
the properties possessed by the work in progress. There
may be a difference in the degree to which or frequency
with which an artist justifies her ongoing evaluations by
appeal to the underwriting descriptions, but this is merely
a contingent social fact. If we forced artists to work un-
der the sociological microscope they would, like Jon, offer
descriptions of the work in progress which justified their
assignment of merit or de-merit and the corresponding de-
cision that came with that assignment. The fact that they
are more often pressed, post facto, to explain their eval-
uations does not imply that they made them in any other
way.

6 Fractal Pattern Discrimination
In this section we describe our approach to implement-
ing real-time fractal pattern discrimination on a simulated
robot. The key property of a fractal object is that it is

Computational Creativity 2007

124



self-similar over a range of spatial scales. Three types of
self-similarity are found in fractals. An object can be ex-
actly self-similar at different scales, for example, Cantor
dust (Figure 1), the Sierpinski carpet, Koch snowflake and
other fractals which are generated by an iterated function
system (which uses a geometric replacement rule). Ob-
jects can also display approximate or quasi-, rather than
exact, self-similarity at different scales. These fractals
contain distorted copies of the entire fractal at different
scales. For example, fractals generated using an escape-
time technique, such as the Mandelbrot and Julia sets, are
quasi-self-similar. In the weakest form of self-similarity,
statistical measures (such as ‘fractal dimension’) are pre-
served across scales. For example, fractals generated by
processes such as diffusion-limited aggregation are statis-
tically self-similar.

Only mathematical fractals display self-similarity
across an infinite number of scales. Natural fractal objects
display quasi- or statistical-self-similarity over a limited
range of scales.

In contrast to Euclidean objects, fractals usually have
non-integer dimensions. The fractal dimension measures
the extent to which an object fills the Euclidean space in
which it is embedded (Mandelbrot, 1982). A set of points
along a line will have a fractal dimension between 0 and 1;
a set of points on a plane have a fractal dimension between
1 and 2.

6.1 The Box-Counting Approach to Measuring
Fractal Dimension

Box-counting is the simplest and most widely used tech-
nique for measuring fractal dimension and involves su-
perimposing a series of regular grids over the data set. A
regular grid consists of square boxes with a side length
s. The measurement process is carried out using grids
with a range of different side lengths. The first grid is
layed over the set of data points and the number of oc-
cupied boxes, N(s), counted. A box is occupied if it
contains at least one data point. N(s) is then plotted
against 1/s for all box sizes. On a log-log graph, the
slope of the graph is an estimate of fractal dimension. A
fast O(n log n) algorithm (where n is the number of data
points) was proposed by Liebovitch and Toth (1989) and
implemented in C by Sarraille and DiFalco (Sarraille and
Myers, 1994). This FD3 code is open source and avail-
able from: ftp://www.cs.csustan.edu/pub/fd3/. We have
adapted FD3 to enable our robots to perform real time
fractal pattern discrimination.

In order to confirm that a structure is fractal, it is nec-
essary to show that it is self-similar over a reasonable
number of scales. What constitutes a ‘reasonable num-
ber’ is a matter of some controversy. The range of scales
is defined as: log10(Lmax/Lmin), where Lmax is the
largest or coarsest scale, and Lmin the smallest or finest.
In the physical sciences, the scale ranges tend to be small
(Mandelbrot, 1998) and this can lead to incorrect estima-
tions of fractal dimension or erroneously describing non-
fractal structures as fractal (‘apparent fractality’) (Ham-
burger et al., 1996). Halley et al. (2004) recommend a
scale range of greater than two orders of magnitude to

avoid these problems, but this is not always possible.
It is important to note that although the box counting

technique, described above, can employ a very large range
of box sizes, the usable range is generally a lot smaller.
For example, the largest box size used in FD3 is 2

32 larger
than the smallest box size (giving over 9 orders of mag-
nitude scale range) but estimates from the smallest and
the largest boxes have to be discarded, often resulting in
a usable scale range of less than one order of magnitude.
At very fine scales, none of the boxes contain more than
one data point (depletion); at coarser scales all of the data
points can be contained in one box (saturation). At these
limits, the box counting algorithm will incorrectly esti-
mate the fractal dimension. Consequently, fractal analy-
sis is generally limited to a range of box sizes. The two
largest box sizes are ignored. The smallest box size s
used to estimate the fractal dimension meets the condi-
tion NB(s)ø N/5, where N is the number of data points
and NB(s) the minimal number of boxes required to cover
the data set at scale s (Liebovitch and Toth, 1989). FD3,
which we use to measure fractal dimension, follows this
convention. Our robots process small pixel arrays where
the usable scale range is typically between 1.2 and 1.8.

Hamburger et al. (1996) investigated the fractal di-
mension of a number of small discs randomly scattered
on the plane and demonstrated that this intrinsically non
self-similar pattern can exhibit an almost linear relation-
ship between 1/s and N(s) over two orders of magni-
tude 4. “Whether an apparent straight line on logarithmic
axes really suggests a fractal or not is obviously a difficult
and fundamental question” (Halley et al., 2004, p.259).
Knowledge of the process that generated a pattern can
sometimes help determine whether it is legitimate to de-
scribe it as fractal or not. However, it is important to note
that using a fractal dimension measurement tool, such as
Fd3, ‘off the shelf’ and without any consideration of the
pattern that is being measured can lead to erroneously la-
belling a non-fractal object as fractal.

6.2 Lacunarity Analysis

A further issue, relevant to our project, is that two gen-
uinely fractal objects can have the same fractal dimension
and yet be very different in appearance, for example, Can-
tor dusts (Figure 1). One way that such patterns can be
discriminated is in terms of their texture. Lacunarity is
a useful measure of texture, introduced by Mandelbrot
(1982), that quantifies the heterogeneity of the gaps in a
pattern. Patterns that have gap sizes that are distributed
over a greater range have a higher lacunarity index than
patterns where the gap sizes are more similar. Objects that
have a low lacunarity index are translationally-invariant
because of their uniform gap sizes (Plotnick et al., 1993).
Intuitively, one could shift sections of a pattern without al-
tering its overall appearance. For a high lacunarity pattern,

4It is a matter of debate in the fractal literature whether pat-
terns generated by random processes, for example, Brownian
motion and self-avoiding random walks, should be considered
apparent or actual fractals. We are clear that we want our robots
to generate non-random self-similar mark patterns and we there-
fore want them to discriminate these patterns from those gener-
ated by random processes.
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Figure 1: Cantor dust - an exactly self-similar fractal.
Each of the lines has the same fractal dimension (0.6309)
but a different texture, which is dependent on how many
times the replacement rule (remove the central third of
each line segment) has been applied. For illustrative pur-
poses, the lines have been thickened.

shifting sections would become very apparent because the
pattern is not translationally-invariant. It is important to
note that lacunarity is a scale-dependent index - an object
can have a homogenous texture at one scale but a hetero-
geneous texture at another scale. Further, one can measure
the lacunarity of objects which are not self-similar.

There are a number of different algorithms for
calculating the lacunarity of a pattern and there is not
always agreement between the values that they generate
(Halley et al., 2004). The most widely used technique is
the gliding box algorithm (Allain and Cloitre, 1991). In
this method a series of square boxes with varying side
lengths s are placed over the data set and the number of
points in each box (the box mass) is counted. The first
box is placed in the top left hand corner and the box mass
measured and then the box is systematically moved over
the data set so that the position varies by one column or
row. Unlike in the box counting method for measuring
fractal dimension, in the gliding box algorithm the boxes
overlap. For a square pattern with side M , there are
(M ° s + 1)

2 positions for a box of side length s where
the box mass is measured. For each box size s, the mean
and variance of the box mass is calculated. Lacunarity
(§) is calculated as:

§ = variance(s)/mean(s)2 + 1.

When s is equal to 1, that is, a single pixel, or the grain
of the data set, § is a function of the number of points in
the data set and is independent of their spatial distribution.
In this case, § = 1/% of on pixels, where, in the case
of a black and white image, an on pixel is black. When a
box is the size of the data set, the variance is 0 and so §

is 1. In between the lower and upper bounds, lacunarity
varies according to the range of gap sizes (or alternatively,
clump sizes) at a given scale.

If an object is a homogenous fractal then the same scal-
ing law applies at all positions of the object. Further, a
log/log plot of lacunarity versus box side length generates
a straight line where the slope is equal to the fractal di-
mension (D) minus the Euclidean embedding dimension
(E); that is, D - 2 for all patterns on the plane (Allain and
Cloitre, 1991). We use this relationship between fractal
dimension and lacunarity to hard-wire a fractal discrimi-
nation mechanism in our robots.

6.3 Discriminating Random from Non-random
Spatial Patterns

Figure 2: A randomly generated pattern of line segments
which has the same % of black pixels (36%) as the two
images in Figure 3. This pattern is discriminated from a
self-similar fractal pattern, such as the left hand side im-
age in Figure 3 using the method outlined in Section 6.3.

In this section we describe how we are using a box
counting approach to get real-time estimates of fractal di-
mension and lacunarity of the spatial pattern in a sim-
ulated robot’s visual field. Given the small number of
points in the data set (limited by the small visual field of
the robot) and the generally limited scale range, the tech-
nique we are employing could erroneously estimate self-
similarity. At this preliminary stage, our goal is to develop
a real-time method that enables our agents to discriminate
random from non-random self-similar mark patterns. The
class of non-random self-similar patterns that the robot
can discriminate should have a structure such that:

1. the robot can produce members of this class with its
pen;

2. and be sufficiently ‘interesting’ such that some mem-
bers of this class are suitable for display (see ‘aes-
thetic value worry’ in Section 3).

At each sensory-motor update, the robot controller
processes its 50mm x 50mm visual array in the following
way:

1. using a box counting algorithm it estimates the frac-
tal dimension (D) of the pixels over a range of scales
where the ratio of the largest to the smallest box
length side (s) is 2

32: 1 (the data points are re-scaled
in order to achieve this range of box sizes);

2. using a box counting algorithm it estimates the lacu-
narity (§) at the same range of scales 5;

3. using regression analysis it measures the goodness
of fit (R2) of the lacunarity curve over the range of
scales which form the basis of the fractal dimension
estimate;

5By using a box counting approach we estimate § on the ba-
sis of far fewer samples than is used in a gliding box algorithm.
However, real time processing constraints forced this compro-
mise in these preliminary experiments.
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4. if R2 is greater than 0.95, it calculates the % error
between the slope of the lacunarity curve and the es-
timate (D - E) of the lacunarity curve;

5. if R2 > 0.95 AND % error < 20%, then the fractal
pre-processing of the pixel array returns 1, otherwise
0.

This processing technique successfully discriminates
a wide range of self-similar images from randomly gen-
erated images – not only images consisting of randomly
distributed points but also randomly distributed lines seg-
ments, such as Figure 2, which are more likely to be gen-
erated by our robots than points.

6.4 The Fractal Discrimination Task

Figure 3: The left image is the texture on the target floor
region in the evolutionary robotics experiment; the right
image is the random point texture on the rest of the arena
floor. Both patterns have the same percentage of black
pixels (36%). The method outlined in Section 6.3 enables
a simulated robot to discriminate between these two pat-
terns.

The experiment described in this section was per-
formed in a modified version of the Evorobot simulator
(Nolfi, 2000). This software simulates a Khepera robot
(Mondada et al., 1993) acting in user specified environ-
ments that can comprise of walls, large and small round
objects and lights. Sensor readings taken from a physical
Khepera robot are used to model the environment/sensor
interactions.

The robots are controlled with neural networks based
on Nolfi’s (1997) emergent modularity architecture which
has been successfully used to control complex robot be-
haviours, such as garbage collection. In the experiment
reported here, each controller consists of 7 sensors (6 IR
and 1 floor camera that is directly under the centre of the
robot and has a visual field of 50mm x 50mm) and two
pairs of motor units, controlling the right and left motor
respectively. Each sensor connects to each motor neuron,
giving 28 connections in the network. For details of the
neural network update algorithm see Bird et al. (2007).

We used a genetic algorithm (GA) to evolve the bi-
ases of the 4 motor units and the connection weights be-
tween the sensor and motor neurons. The population size
was 100 and the experiments were run for 600 gener-
ations. The initial population was randomly generated,
each genotype consisting of the 32 neural network pa-
rameters encoded as an 8 bit integer-valued vector (range
[0,255]). The mutation rate was 0.01 per allele and we
did not use crossover. For more details see Bird et al.

(2007) where the same GA was used to evolve robot mark-
making behaviour.

The fitness function rewards proximity to the target
area in the arena, with extra fitness if a robot is positioned
on the target area at the end of a trial. The target area is
100mm x 100m and placed in one of two positions adja-
cent to the wall of a 400mm x 400mm arena. The target
region consists of a fractal texture (Figure 3- left image);
the rest of the floor has a random point pattern with the
same overall ratio of black to white pixels as the target
texture (36%)(Figure 3 - right image). If the robot crashes
into an arena wall the trial is stopped and the fitness accu-
mulated up to that point is averaged over the total number
of time steps, thereby implicitly penalising robots that do
not avoid obstacles.

Each genotype is instantiated as a robot controller and
the robot is placed in a random position and orientation
in the central area of the arena. Each individual is tested
over 10 trials and the position of the target region is placed
in two different positions, both adjacent to the wall of the
arena. Every robot in the population was tested on the
same series of initial positions and orientations each gen-
eration, and these changed every generation.

6.5 Preliminary Results

In early generations the robots do not move very far from
their initial position or if they do they crash into walls.
However, within 100 generations the majority of the pop-
ulation avoid obstacles and perform wall following. After
500 generations, the fittest individuals move in a straight
line until they come close to a wall then follow the wall
until they are over the target area and then stop. This is
not a particularly surprising result as the patterns covering
the target region and floor were chosen so that the fractal
discrimination mechanism could clearly discriminate be-
tween them. However, it does demonstrate that this mech-
anism can be used to control the real-time behaviour of a
robot and enable it to discriminate between random and
fractal patterns on the floor. As in our previous experi-
ments (Bird and Stokes, 2006b) the robots have evolved
to use the arena walls (a constant and reliable feature of
the environment): in the current experiment they provide
a means of finding the target region which is always posi-
tioned adjacent to the edge of the arena.

7 Discussion
What does the preliminary theoretical analysis of evalu-
ation tell us about our artificial agents and their pattern
discrimination behaviour? By discriminating a fractal pat-
tern from a random pattern are our agents evaluating their
environments? Not obviously. But they are on their way.
By discriminating fractal patterns, our agents are provid-
ing property descriptions, sparse though such descriptions
may be, of their environment. When an agent stops on
a fractal pattern and not on random patterns, it indicates
the presence of a property – namely homogenous self-
similarity – in the target location. This is just to say that
this behaviour ‘reports’ that some part of the environment
is a certain way, and other parts are not. The report is no
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richer than this, but neither is my report that this object is
a square, while that one is not. Both kinds of reports are
minimally descriptive of the world.

As we outlined in Section 5, evaluation comprises a
descriptive element. Our agents are thus performing one
element of evaluation: their pattern discrimination is a
simple property description of their environment. How-
ever, what about the second, assessment of merit, compo-
nent of evaluation: do our agents do this? This is a trickier
issue. But here is a speculative suggestion. If our concep-
tion of evaluation is accurate, then it requires assigning
merit to the properties of the object that have been dis-
criminated. One assigns merit to the things that one likes
or prefers, and de-merit to the things that one does not
like or prefer. Preferences drive an agent, motivating it to
act in whatever ways it does. Assignment of merit is thus
to indicate, at base, what philosophers and psychologists
call a ‘conative attitude’ 6. This is true of human beings as
well as laboratory rats; evaluation, no matter how rich, in-
volves conation. Our agents, to evaluate in any interesting
sense, thus need a preference or some degree of conation.

It would be misleading to describe the agents in our
simulation experiments as possessing individual prefer-
ences. That is, our agents have not developed in their ‘life
spans’ a preference or conative attitude of any kind. How-
ever, in this respect, do the agents differ from a laboratory
rat, whose conative attitude of hunger motivates it to push
the lever on the right and not the one on the left? The
rat’s preference is no more individually developed than is
the fractal preference of our simulated agents. In the case
of both the rat and the artificial agent, the preference has,
in some sense, evolved in the population to which each
belongs7.

We might therefore say that fit robots, by successfully
distinguishing fractals from non-fractals (and later in our
research, by completing fractal patterns by mark-making)
are thereby performing a number of simple evaluations
which inform their respective behaviours. This is not rich
evaluative behaviour, but if the rat is evaluating, then so is
our robot. This, we suggest, is the basic route from mark-
making and detection via pattern discrimination to pattern
evaluation.
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the autonomy of the agent and consequently future fractal mark-
making behaviour cannot be described as ‘creative’ (see Section
2), even though the fractal pattern discrimination might be min-
imally evaluative.
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