
Interpretable Relational Representations
for Food Ingredient Recommendation Systems

Kana Maruyama, Michael Spranger
SonyAI

kana.maruyama@sony.com
michael.spranger@sony.com

Abstract
Supporting chefs with ingredient recommender systems
to create new recipes is challenging, as good ingredient
combinations depend on many factors like taste, smell,
cuisine style, texture, chef’s preference and many more.
Useful machine learning models do need to be accu-
rate but importantly– especially for food professionals
– interpretable and customizable for ideation. To ad-
dress these issues, we propose the Interpretable Rela-
tional Representation Model (IRRM). The main com-
ponent of the model is a key-value memory network to
represent the relationships of ingredients. The IRRM
can learn relational representations over a memory net-
work that integrates an external knowledge base- this al-
low chefs to inspect why certain ingredient pairings are
suggested. Our training procedure can integrate ideas
from chefs as scoring rules into the IRRM. We analyze
the trained model by comparing rule-base pairing algo-
rithms. The results demonstrate IRRM’s potential for
supporting creative new recipe ideation.

Introduction
Data mining and machine learning methods play an in-
creasingly prominent role in food preference modeling, food
ingredient pairing discovery, and new recipe generation.
Solving these tasks is non-trivial, since the goodness of in-
gredient combinations depends on many factors like taste,
smell, cuisine, texture, culture, and human creative pref-
erences. Although efforts have been made to detect good
ingredient combinations using Machine Learning and build
models that help in the creation of recipes or discover novel
food ingredient pairs - there is no current machine learning
method in this field that 1) allows embedding chef specific
ideas to be incorporated in the creation process and 2) offer
interpretations why a suggested ingredient pair is good.

Our work is aimed at interpretable and customizable food
ingredient recommendation systems that inspire chefs to
find new recipe ideas. In this paper, we propose the Inter-
pretable Relational Representations Model (IRRM) an in-
terpretable and customizable neural network score function
(see Fig. 1). Given a set of pre-selected ingredients (cardi-
nality 1 or more) by a user, the IRRM suggests top-N ingre-
dients from a set of candidates. For example, suppose a user
selects apple and chocolate as the pre-selected ingredients,
IRRM suggests compatible ingredients (e.g. cinnamon), and

0

0

0

0

1

0

0

:

0

0

0

0

1

0

0

:

Ingredient

Embedding

Layer

○
○
○
○
○
○

○
○
○
○
○
○

K1

K2

K3

K4

V1

V2

V3

V4

○
○
○
○
○
○

Score

Func.

s(p, q’, r)

Score

Func.

s(p, q, r)

q

r

○
○
○
○
○
○

p

ei1:M

○ ○ ○ ○ ○

TransE
pretrained

(KG)

○ ○ ○ ○ ○

○ ○ ○ ○ ○latt1:N

KG Integ.

KG Integ.

0

0

0

0

1

0

0

:

Ingredient

Set

Encoder

Add

&

Norm

eicandidate

+Sum

set set

set

○
○
○
○
○
○

q’

Negative

example

Soft

max

Loss

Residual connection

pre-selected

ingredient set

candidate

ingredient

Figure 1: IRRM architecture

also identifies reasons (e.g. cinnamon is good for apple and
chocolate in terms of their flavor affinity).

Professional chefs already have a lot of their own favorite
recipes and are inspired by everything around them to de-
velop new recipes. That is, in the process of creating new
recipes they might want to constrain or input prior knowl-
edge into the system. For example a list of existing recipes
either by the chef or a list of recipes that the chef finds in-
spiring even if not by him or herself. Therefore, we allow
recipes (i.e. ingredient lists of a particular chef) as input to
IRRM.

Our contributions are as follows:

1. We present an extensible framework for scoring
ingredient-ingredient combinations incorporating prior
ideas from chefs via recipes.

2. We introduce the Interpretable Relational Representa-
tions Model (IRRM), inspired by session-based recom-
mendation systems with implicit feedback. Leveraging a
pre-trained ingredient knowledge graph, our model can
learn pair-specific relational representations for one-to-
one (i.e. ingredient to ingredient) and many-to-one (i.e.
ingredient-set to ingredient) food ingredient pairing tasks
from recipes (i.e. a list recipes that are apriori available
constraints). The trained relational vectors are also inter-
pretable.

3. We propose a training procedure to integrate chef’s ideas
as scoring rules via positive sampling strategies.

Problem Definition
We model food ingredient pairing as a session-based rec-
ommendation scenario with implicit feedback (Huang et al.
2018; Tay, Tuan, and Hui 2018).

Let I denote a set of ingredients and Itarget =
{i1, . . . , iM} denote a pre-selected ingredient set, where
i ∈ I is the ingredient, M is the number of ingredients,
and Itarget ⊂ I. We call Itarget a pre-selected ingredient
set in this paper. Next, let Icandidate denote a set of can-
didate ingredients. Icandidate depends on each pre-selected
ingredient set, that is, Icandidate = I − {i1, . . . , iM}.

In addition, we use an ingredient knowledge base (KB).
The KB helps to estimate good ingredient pairs in terms of
contextual information on ingredients.

Based on these preliminaries, we define the food ingre-
dient recommendation task. Given a pre-selected ingredient
set Itarget and candidate ingredients Icandidate, we would
like to infer the top-N ingredients from Icandidate.

Recommendations with Key-Value Memory
Networks

Ingredients are represented as one-hot encoding vectors
(corresponding to a unique index key belonging to each in-
gredient). At the ingredient embedding layer, this one-hot
encoded vector is converted into a low-dimensional real-
valued dense vector representation which is multiplied with
the embedding matrices Q ∈ Rd×|I|. d is the dimensional-
ity of the ingredient embeddings while |I| is the total num-
ber of ingredients. icandidate ∈ Icandidate is converted to
q using this embedding layer. On the other hand, a pre-
selected ingredient set Itarget = {i1, . . . , ij , . . . , iM} is en-
coded by the Ingredient Set Encoder. At first, each ingredi-
ent ij is converted to a vector using the ingredient embed-
ding layer (same as icandidate). As a result, {ij ∈ Rd|j =
1, . . . ,M} vectors are generated. The sum of these vectors
is normalized and converted to the ingredient set vector p
using a feed-forward network with a single hidden layer,
followed by Layer Normalization. Given a pair of a pre-
selected ingredient set vector and a candidate ingredient vec-
tor, ⟨p, q⟩, the Relation Encoder first applies s = p + q
to generate the joint embedding of p and q. The gener-
ated vector s ∈ Rd is of the same dimension of p and
q. This joint embedding s is used as the input to the key-
value memory network. The attention vector a ∈ Rd is
a vector of importance weights over keys which are repre-
sented as the key matrix K = [latt1 , . . . , lattN]T ∈ RN×d,
where N is the number of key-value pairs in the memory
network and lattj ∈ Rd is a key vector. Each element
of the attention vector a can be defined as aj = sT lattj ,
where aj ∈ R. In order to normalize the attention vec-
tor a to a probability distribution, we use the Softmax
function:Softmax(aj) =

exp(aj)∑N
n=1 exp(an)

. We generate the

vector m =
∑N

n=1 Softmax(an)vattn as the summation of
weighted value vectors which are represented as the value
matrix V = [vatt1 , . . . ,vattN]T ∈ RN×d. Finally, in order
to generate the relational vector r, m is added with the joint

embedding s (residual connection) and Layer Normalization
is applied as follows r = LayerNorm(s+m).

We use pre-trained knowledge graph embeddings over
a given KB for the key matrix K and the value ma-
trix V , where N depends on the number of attribute
types which you want to integrate and K is constant
through training. Given a pair of a pre-selected ingredi-
ent set Itarget = {i1, . . . , iM} and a candidate ingredi-
ent icandidate, {i1, . . . , iM , icandidate} is converted into the
entity vectors using knowledge graph embeddings which
provide the entity vectors e ∈ RdKB

and the relationship
vectors l ∈ RdKB

. We use the TransE (Bordes et al.
2013) for the knowledge graph embeddings. The reason
for this choice is that given triplet ⟨ei, latt, eiatt⟩, TransE
can learn entity vectors and relationship vectors to follow
eiatt = ei + latt. Using it, we define a value vector as
vattj = LayerNorm(

∑
i∈{i1,...,iM ,icandidate} FF (eiatt)).

FF is a feed-forward network with a single hidden layer.
Finally, we define our score function as the relationship

between the pre-selected ingredient set vector p, the candi-
date ingredient vector q, and the relational vector r:

s(p, q, r) = CosSim(p, q) + CosSim(p+ q, r) (1)
where CosSim is the cosine similarity. This function scores
the affinity for the relationships. Note that some studies use
distance functions instead of score functions for the same
purpose. We suggest a new loss function for our problem
settings. Softmax-based triplet loss with cosine similarity
score function was introduced by Wang et al. (2018). Here,
we extend it by integrating the concept of multiple posi-
tive sampling (Hermans, Beyer, and Leibe 2017). Note that
while the hinge-based triplet loss is also possible, we found
that using softmax instead of hinge has better performance
and is more stable. Our loss function is defineded as:

L =

Batch∑
x=1

Pos∑
y=1

−log[
exp(

s(px,qy,rxy)−λ
τ)

exp(
s(px,qy,rxy)−λ

τ) +
∑Neg

z=1

∑Pos
w=1 exp(

s(px,qz,rxw)
τ)

]

(2)
where λ is the margin that separates the golden pairs and
corrupted pairs, τ is a temperature parameter, Batch is the
mini-batch size, Pos is the number of positive examples,
Neg is the number of negative examples. Note that the score
function for negative examples takes the same relational vec-
tors as the positive examples.

Training
Using pre-processed recipes, we train our models in the fol-
lowing steps (Fig. 2): At first, we randomize the order of
recipes and their ingredients (Fig. 2 (1)). We then gener-
ate sequences of ingredients from recipes (Fig. 2 (2)). After
that, we generate pairs of an ingredient set and a candidate
ingredient. Pre-selected ingredient sets are selected based on
the sequence (see Fig. 2 (3)) – unordered session data feed-
ing. We also sample candidate ingredients based on heuris-
tic rules for ingredient pairings – customizable positive sam-
pling.

A specified function – a heuristic rule – is used to weight
all possible ingredients, and the probability of each ingredi-
ent to be sampled is determined by its relative weight. In our
experiments here we use two sampling heuristics:

Recipe A
• ing_a1
• ing_a2
• ing_a3

Recipe B
• ing_b1
• ing_b2
• ing_b3
• ing_b4

Recipe C
• ing_c1
• ing_c2

randomize

ran
dom

ize

b1 b3 b4 b2 a2 a3 a1 c1 c2

iter=1

{ing_b1}

positive sampling

e.g. batch size = 3

iter=2

{ing_a2}

positive sampling

{ing_b1, ing_b3}

positive sampling

{ing_b1, ing_b3, ing_b4}

positive sampling

{ing_a2, ing_a3}

positive sampling

{ing_c1}

positive sampling

ingredient set

ingredient

ingredient set

ingredient

ingredient set

ingredient

(1)

(2)

(3)

Figure 2: How to generate mini-batches for unordered ses-
sion data feeding.

Recipe Fit Rule which uses co-occurences of ingredients
in recipes to bias sampling. This rule samples positive
examples by weighting ingredient pairs higher that fre-
quently occur together in recipes.

Flavor Fit Rule which uses shared flavor compounds be-
tween ingredients to bias sampling. This rule samples
positive examples by weighting ingredient pairs higher
that have a large overlap in flavor compounds.

Finally, we sample negative examples randomly. The neg-
ative sampling is biased by the frequency of ingredient oc-
currence on training recipes.

Results
Evaluating whether ingredient pairs are correct from the
perspective of creativity is not trivial since evaluations can
change over time with experience and with context. Classic
crowdsourcing approaches often used in evaluating recom-
mender systems do not work in the case of ingredient pairing
tasks. In prior experiments - we found that while ingredient
pairing recommendation systems do stimulate professional
chefs, amateur chefs do not find pure ingredient-ingredient
suggestions useful as they do not include cooking instruc-
tion. In this paper we therefore focus on assessing whether
the model can learn to approximate a ground truth score.
We use CulinaryDB (Bagler 2017) for this experiment. The
dataset consists of 45,772 recipes: lists of ingredients and
attributes for 658 ingredients: flavor compounds, cuisines,
and ingredient categories. Before training models, recipes
are divided into a train, a validation and a test set. Addi-
tionally, we generate 172,207 triplets from all ingredients in
order to construct a knowledge graph.

We trained two variations of IRRM to evaluate our posi-
tive sampling approach proposed to customize the IRRM in
the heuristics. The first uses the Recipe Fit Rule as a pos-
itive sampling strategy and the second uses the Flavor Fit
Rule. Table 1 shows the comparison of the top-10 ingredi-
ents with the highest score for all possible ingredients on the
CulinaryDB by changing IRRM positive sampling strategies

(a) chocolate vs egg

(b) chocolate vs miso

Cuisine

Food Category

Flavor Profile

Flavor Compound

Cuisine

Food Category

Flavor Profile

Flavor Compound

Figure 3: Visualizations of attention weights over ingredient
attributes on CulidnaryDB.

for the Itarget = {orange} as a example. And the results
of Flavor Fit Rule is shown as a reference.

The results of the IRRM with the Flavor Fit Rule are inter-
mediate between the IRRM with the Recipe Fit Rule and the
pure Flavor Fit Rule. For example, while welsh onion and
tomato come from the recipe rule, lemon comes from the
flavor rule. Moreover, the correlation coefficient between
IRRM with Flavor Fit Rule and pure Flavor Fit Rule was
0.611(p < 0.001) and between IRRM with Recipe Fit Rule
and pure Flavor Fit Rule was 0.280(p < 0.001). orange
is one of flavor effective ingredients. So, we calculated the
correlation coefficient for all one-to-one pairs, too. The re-
sult between IRRM with Flavor Fit Rule and pure Flavor Fit
Rule was 0.298(p < 0.001) and between IRRM with Recipe
Fit Rule and pure Flavor Fit Rule was 0.078(p < 0.001).
We found, even for all ingredient pairs, the specified rule bi-
ases the scores from this result. Consequently, we found
our positive sampling approach can effectively customize
the IRRM based on specified rules. Even if we use a rule,
feeding recipes also affect the results. This means that both
the chef’s recipes and the specified rules can contribute to
the score estimated by the model.

We also analyzed attention weights for confirming inter-
pretability in the trained IRRM for some specific food pairs
around chocolate (see Fig. 3). The data shows that egg is
paired with chocolate because of correlations in food cat-
egory. Whereas, miso has considerable flavor compound
related affinity to chocolate. This interpretation for eggs
is consistent with the results reported by De Clercq et
al. (2016).

Related Work
Ahn et al. (2011) firstly introduced the flavor network to
uncover fundamental principles of food pairing. Using
this idea, Garg et al. (2017) developed a rule-based food
pairing system. Recently, Park et al. (2019) introduced a
Siamese Neural Networks based model trained on a large-
scale dataset for food ingredient pairing.

Rank
IRRM
Pos. sampling: Recipe Fit Rule

IRRM
Pos. sampling: Flavor Fit Rule Flavor Fit Rule

Ingredient Score Ingredient Score Ingredient Score
1 butter 1.215 mint 1.234 tea 170
2 water 1.198 welsh onion 1.204 mandarin orange 165
3 sugar 1.198 tomato 1.188 lemon 163
4 welsh onion 1.185 sesame 1.181 apple 153
5 tomato 1.178 parsley 1.180 ginger 151
6 apple cider vinegar 1.173 lemon 1.179 guava 149
7 vinegar 1.168 canola oil 1.170 pepper 148
8 garlic 1.167 poppy seed 1.163 mango 147
9 mustard 1.163 mustard 1.162 black currant 146
10 mint 1.162 rosemary 1.160 laurel 145

Table 1: IRRM comparison based on positive sampling strategies. Top-10 ingredients with the highest score from all ingredient
candidates Icandidate on the CulinaryDB for the Itarget = {orange} are shown. Pos. sampling: Positive sampling strategy.

On the other hand, Morris et al. (2012) firstly suggested
Computational Creative System in the culinary domain.
They used a model trained by user rating scores on the recipe
websites to evaluate generated recipes. And, Pinel and
Varshney (2014; 2015) proposed creativity metrics based
on Bayesian Surprise and a human flavor perception model.
França et al. (2017) suggested the Regent-Dependent Cre-
ativity metric that combines novelty and value. They used
Bayesian surprise as a novelty metric and Synergy as a value
metric. Pini et al. (2019) presented a graph based surprise
as a creative metrics using knowledge graph. In this re-
search, we assume there are many possible different reasons
for good ingredient combinations via many potential rela-
tionships between ingredients and suggest a model to learn
creative metrics that are interpretable and customizable.

Conclusion

We have presented a framework for interpretable and cus-
tomizable food ingredient recommender systems for both
one-to-one and many-to-one settings based on recipes. The
main feature that distinguishes our work from previous is
that ingredient pairing is modeled as a session-based recom-
mendation task with implicit feedback and suggests a train-
ing procedure to integrate chef’s ideas.

We demonstrated that qualitatively our model can learn
interpretable relational representations and detect interest-
ing correlations between ingredients and factors such as fla-
vor compounds. And also, it can be customized by chef’s
recipes and heuristics. Future work will carry out user stud-
ies comparing trained score functions and also assessing the
plausibility of visualized attributes for interpretability.

Author Contributions

Author 1 was in charge of writing the manuscript and plan-
ning the study, conducted the analysis and developed the a
significant part of the tool. Author 2 contributed to the plan-
ning of the study and the writing of the manuscript.

Acknowledgments
The authors would like to thank all anonymous reviewers for
their helpful comments.

References
Ahn, Y.; Ahnert, S.; Bagrow, J.; and Barabási, A. 2011.
Flavor network and the principles of food pairing. Sci Rep
1, 196.
Bagler, G. 2017. Culinarydb.
Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; and
Yakhnenko, O. 2013. Translating embeddings for mod-
eling multi-relational data. In Burges, C. J. C.; Bottou,
L.; Welling, M.; Ghahramani, Z.; and Weinberger, K. Q.,
eds., Advances in Neural Information Processing Systems
26. Curran Associates, Inc. 2787–2795.
De Clercq, M.; Stock, M.; De Baets, B.; and Waegeman, W.
2016. Data-driven recipe completion using machine learn-
ing methods. Trends in Food Science & Technology 49:1–13.
França, C.; Góes, L.; Amorim, A.; and Silva, A. 2017. Cre-
ative flavor pairing: Using rdc metric to generate and assess
ingredients combinations. 1–8.
Garg, N.; Sethupathy, A.; Tuwani, R.; NK, R.; Dokania,
S.; Iyer, A.; Gupta, A.; Agrawal, S.; Singh, N.; Shukla, S.;
Kathuria, K.; Badhwar, R.; Kanji, R.; Jain, A.; Kaur, A.;
Nagpal, R.; and Bagler, G. 2017. FlavorDB: a database of
flavor molecules. Nucleic Acids Research 46(D1):D1210–
D1216.
Hermans, A.; Beyer, L.; and Leibe, B. 2017. In de-
fense of the triplet loss for person re-identification. ArXiv
abs/1703.07737.
Huang, J.; Zhao, W. X.; Dou, H.; Wen, J.-R.; and Chang,
E. Y. 2018. Improving sequential recommendation with
knowledge-enhanced memory networks. In: The 41st Inter-
national ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval 505–514.ACM.
Morris, R. G.; Burton, S. H.; Bodily, P.; and Ventura, D.
2012. Soup over bean of pure joy: Culinary ruminations of
an artificial chef. In ICCC.

Park, D.; Kim, K.; Park, Y.; Shin, J.; and Kang, J. 2019.
Kitchenette: Predicting and ranking food ingredient pair-
ings using siamese neural network. In Proceedings of the
Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, 5930–5936. International Joint Con-
ferences on Artificial Intelligence Organization.
Pinel, F., and Varshney, L. R. 2014. Computational creativ-
ity for culinary recipes. CHI EA ’14, 439–442. New York,
NY, USA: Association for Computing Machinery.
Pinel, F.; Varshney, L. R.; and Bhattacharjya, D. 2015. A
Culinary Computational Creativity System. Paris: Atlantis
Press. 327–346.
Pini, A.; Hayes, J.; Upton, C.; and Corcoran, M. 2019. Ai
inspired recipes: Designing computationally creative food
combos. 1–6.
Tay, Y.; Tuan, L. A.; and Hui, S. C. 2018. Latent rela-
tional metric learning via memory-based attention for col-
laborative ranking. In Proceedings of the 2018 World Wide
Web Conference (WWW ’18). International World Wide Web
Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland 729–739.
Wang, F.; Cheng, J.; Liu, W.; and Liu, H. 2018. Additive
margin softmax for face verification. IEEE Signal Process-
ing Letters 25(7):926–930.

