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Abstract
The representation of everyday concepts is important
for a number of applications, ranging from the Semantic
Web to NLP and general AI. We propose here a detailed
case study of the Leuven concept database (LCD),
which is a rich database of commonsense knowledge,
written in natural language. We aim to convert the com-
monsense knowledge contained in the LCD into a for-
mat suitable for implementation and practical applica-
tion. We then investigate a hybrid approach that com-
bines a syntactic analysis of the surface structure of
the LCD entries with a semantic and ontological analy-
sis of those entries, considering also the role of other
cognitively-grounded facets of core knowledge. The
approach therefore suggests a systematic portfolio of
disambiguation modes with the goal of improving the
match between everyday meaning of concepts and for-
mal semantics. Finally, we illustrate the practical use-
fulness of this approach in a concrete computational im-
plementation for concept combination.

Introduction
Commonsense knowledge and specifically the representa-
tion of everyday concepts is a crucial ingredient in many ap-
plications, ranging from the Semantic Web to NLP and gen-
eral AI. The word “commonsense” groups different aspects
of human knowledge, which permeate our experience of the
world and allow us to move therein. Commonsense knowl-
edge includes our ability to distinguish between single ob-
jects and classes of objects, to distinguish between animate
and inanimate things, but also more mundane knowledge:
the fact that fish live only in water (and normally do not have
a job), the fact that vehicles need fuel, or the fact that my dad
is necessarily born before me. Commonsense knowledge is
acquired by humans through experience and throughout life
in an almost completely effortless way. Despite the long
tradition of research (McCarthy, 1959; Lenat, 1995) inves-
tigating how to bring this kind of knowledge from human
to machine, it is still a wide-open research question. At the
same time, any progress in this field directly benefits a num-
ber of AI applications.

As a case in point, in the context of Computational Cre-
ativity the representation of commonsense knowledge is cru-
cial when dealing with Computational Conceptual Blend-
ing. In Cognitive Linguistics, Conceptual Blending has been

proposed as a general cognitive process underlying, among
others, the human ability to creatively integrate and com-
bine concepts (Boden, 1998; Fauconnier and Turner, 1998).
Accordingly, a blend is constructed by selectively mapping
the shared features of different (mental) input spaces into a
generic, shared, mental space. The blend develops then its
own emergent structure, which derives from the combina-
tion of the projected features. For humans, this process may
happen imperceptibly, by exploiting information they pos-
sess, specifically relying on their commonsense knowledge.
Arguably, some of the most interesting blends originate from
the resolution of clashes stemming from the commonsense
information which is coded into, and sometimes hidden in,
the input concepts.

Computational Conceptual Blending (CCB) aims at for-
mally interpreting and capturing the process of conceptual
blending and integration. Different, though related, frame-
works have been proposed in the literature, either to for-
mally model or to replicate the process of conceptual blend-
ing (Eppe et al., 2018; Neuhaus et al., 2014; Veale, 2019;
Ontanón and Plaza, 2010; Hedblom, Righetti, and Kutz,
2021; Gonçalves, Martins, and Cardoso, 2017). Rather ob-
viously, computational systems are forced to reason with the
information they are presented with, and to bootstrap the
clashes and the blending process in general, CCB systems
need commonsense knowledge to be represented in the in-
put spaces. Beyond the study of the heuristics involved in
the computational process of creatively blending concepts,
it is then also worth focusing on the formalisation of the
commonsense information which is needed as a propellant
to steer the whole process.

To this end, we focus here on a detailed case study of the
Leuven concept database (De Deyne et al., 2008; Ruts et al.,
2004), which is used as a source of commonsense knowl-
edge to be converted into a format which will be then suit-
able for practical application. The Leuven concept database
(LCD) contains information, gathered by a group of psy-
chologists at the University of Leuven, over the features ex-
hibited by 15 category labels (here often referred to simply
as concepts), and provides evidence on human conceptual-
isation. The conceptualisations that emerge from the LCD
do not necessarily reflect a good definition of the concepts
involved—at least not in a normative sense. It aims at be-
ing a good description of what people have in mind when



they think about those concepts, and of the meaning they as-
sociate with them. Therefore, the database is permeated by
“commonsense information”, and exhibits some of the ba-
sic ambiguities related to the use of natural language. These
conceptualisations, therefore, constitute an excellent point
of observation on the challenges to be faced to make this in-
formation machine interpretable. We propose here a study
which addresses exactly these difficulties. In order to make
the content of the LCD available for practical application, a
process of formalisation is needed: we exploit here the Web
Ontology Language (OWL) as a prominent starting point.
Being a computational, logic-based language, OWL obvi-
ously imposes certain limitations in terms of expressivity.
The translation from the LCD to OWL thus involves a trade-
off between the language’s expressive power and the de-
sire to preserve as much information as possible. Another
boundary in the translation is set by the presence of back-
ground foundational ontology distinctions, which are used
to inform some of the formalisation choices in the process
of translation. In particular, we argue, and present some ex-
amples, that exploiting deep ontological distinctions enables
us to impose order and coherence (when possible) to the in-
formation in the LCD, helping also to disambiguate some of
the hidden meaning within the data.

Finally, we conclude the paper illustrating the practical
usefulness of this approach in a concrete computational im-
plementation for concept combination. This will here serve
as a demonstration and a possible use of the resulting for-
malised commonsense knowledge.

Related Work
Many practical AI applications require complex inferences,
which, in turn, require large common-sense knowledge
bases. Typical example are chatbots, or domotic applica-
tions, e.g. involving ‘intelligent’ cooking or cleaning assis-
tants, which need to navigate human spaces with a suffi-
cient level of the involved common sense inferences Krieg-
Brückner et al. (2015); Bateman et al. (2018). In practice,
this need has often resulted in the use of structured lexi-
cal databases, semantic networks, or linked data, such as
WordNet (Fellbaum, 2005), ConceptNet (Speer, Chin, and
Havasi, 2017) and DBpedia (Auer et al., 2007) as a link
between natural language and higher level semantic repre-
sentations. Despite their usefulness, these repositories of-
ten show some level of ambiguity, which demonstrates the
lack of a common agreement on the meaning of the lexical
entries. In order to overcome this difficulty, a number of
works have proposed different approaches to provide these
databases deeper semantic support (Fellbaum and Hicks,
2019; Silva, Freitas, and Handschuh, 2016; Gangemi et al.,
2012; Schmidt et al., 2019; Gangemi et al., 2003). The key
ideas behind those approaches is to make these repository
“ontology-like”, as far as possible.

In order to achieve this level of formalisation, many of
the approaches mentioned above appeal to foundational on-
tology (FO — such as BFO, DOLCE, GFO, SUMO, etc.)
which provide a common vocabulary through imposing fun-
damental ontological distinctions. In (Gangemi et al., 2003),

for example, a connection is drawn between WordNet’s up-
per level synsets and the foundational ontology DOLCE,
and, more recently, (Silva, Freitas, and Handschuh, 2016)
enlarged that alignment in order to include also verbs. In
(Schmidt et al., 2019), a complete manual alignment be-
tween WordNet and a different Upper Ontology (SUMO) is
proposed. Continuing that tradition, (Gangemi et al., 2012)
propose a tool for automatically typing DBpedia entities,
which relies on the alignment to both Wordnet supersenses
and a subset of DOLCE Ultra Lite classes. Crucially, these
works often use a top-down approach which propagates cer-
tain top level distinctions of the foundational ontology onto
the more general entries in the database at hand, exploiting
its internal relation (e.g. the hyponym relation).

We follow here a related but different strategy, based
on a detailed case study of the Leuven Concept Database
De Deyne et al. (2008); Ruts et al. (2004). Instead of assum-
ing a specific FO and propagating its distinction through the
database, we exploit the inverse, bottom-up, direction. We
analyse the intended meaning of the information contained
in the LCD and individuate seven modes of disambiguations,
i.e. seven high level distinctions, ranging between ontologi-
cal and cognitively relevant ones, which implicitly underlie
the content of the LCD. Once individuated, these distinc-
tions steer the analysis of the database, and thus the render-
ing choices of our translation into OWL.

We carried out the translation into OWL manually. There
exists different tools for automatic natural language to OWL
translation (Völker, Hitzler, and Cimiano, 2007; Emani et
al., 2019; Draicchio et al., 2013; Nguyen, Razniewski, and
Weikum, 2021). In order to be effective, these tools require
very clear assertions and showing a regular structure. In
contrast, the commonsense features collected in the Leuven
concept database, in most cases, do not show this kind of
regularity and lack of ambiguity that these tools presuppose.

The Leuven Concept Database
Data gathering
The Leuven concept database1 is a large-scale data set that
associates sets of features both to concepts (or categories’
labels, e.g. Bird) and to exemplars (or lexical entries, e.g.
magpie). The data collection was carried out by the ConCat
group at the University of Leuven from 2004 to 2008 (Ruts
et al., 2004; De Deyne et al., 2008), and it consists of 15 cat-
egories and 420 associated exemplars. More precisely, the
data set covers the domain of animals (birds, fish, insects,
mammals, reptiles together with amphibians, with an av-
erage of 25 exemplars for each category label, and a total
of 131 exemplars), and it collects information on the arti-
fact domain (musical instruments, tools, vehicles, cloth-
ing, kitchen utensils, weapons, for a total of 169 exemplars
over the six categories), on fruit and vegetables (for a to-
tal of 60 exemplars) and activities (professions and sports,
again for 60 exemplars). At least a thousand students were
involved in the experiments. All the material was collected
in Dutch, but also an English translation is provided to make

1Available at https://simondedeyne.me/data

https://simondedeyne.me/data


the data available for further experimental and modelling ap-
proaches.

The studies conducted at the University of Leuven are
placed in the debate between the Prototype Theory and the
Exemplar Theory (Storms, De Boeck, and Ruts, 2000), and
therefore present a series of experiments that aim to investi-
gate aspects of one or the other theory. We are here mostly
interested in the studies pertaining to a feature-generation
task, where subjects were asked to provide lists of features
in relation to the 15 category labels presented in bold above.

Participants’ responses to the feature generation task were
manually aggregated and adjusted with minimal stemming.
Information was retained on the features’ production fre-
quency, which can be considered an indirect measure of their
importance. Further, the importance of the features was also
directly assessed by asking the participants to explicitly rate
the importance of each feature in the definition of the con-
cept for which they were previously generated (De Deyne
et al., 2008). Figure 1 shows an example of the features
generated for the category label Bird (see before the column
MEAN). The table displays the features in Dutch and their
translation to English. The numbers displayed in the table
correspond to the importance ratings assigned to each fea-
ture by the participants of the experiments. The rating scale
ranged from +3 (very important feature) to −3 (very unim-
portant feature). Globally, the feature generation task for the
category label produced 28 features for the concept Bird.

Large-scale data-sets analysing the features exhibited by
different concepts are quite rare in the literature, even
though the possibility of using Amazon Mechanical Turk
has made them more frequent (Vinson and Vigliocco, 2008;
Buchanan, Valentine, and Maxwell, 2019). The LCD, how-
ever, shows some peculiarities that make it particularly suit-
able for our analysis: not only is it organised in an easily
reusable shape, which makes it useful from a practical point
of view; it also contains information about the importance
of the features collected, which makes it interesting from a
theoretical perspective, as will be explained in what follows.

The Leuven Concept-bundle
As it can be seen in the table for the concept Bird, the fea-
tures collected relate to different aspects of birds, that range
from habits (“builds nests”, “eats worms”), to body parts or
shape (“has wings”, “has a beak”), to abilities (“can fly”,
“sings”), but that also pertain to more general cultural infor-
mation (e.g, “is sometime kept as a pet”, “is sometimes eaten
by man”). A similar situation occurs for each of the concepts
analysed, and if one takes a step back and looks at the fea-
tures contained in the Leuven concept database as a whole, a
rather fascinating picture emerges. Different features reflect
different facets of the concepts involved, that in some cases
barely stand together in the same description. For instance,
some of the features of the concept Fish (“breathes under
water”, “has gills”, “lays eggs”, “lives in the sea”) suggest a
quite general definition of Fish, which relates to a somehow
biological perspective on the concept. Other features de-
scribe instead the concept Fish in its relation with humans
beings—and maybe with some subject’s personal experi-
ence: some of them (“swims in aquarium”, “is sometimes

kept as a pet”) focus on the pet dimension of Fish, while
others (“contains omega3”, “is tasty”, “sometimes smells”)
relate to the food dimension. Also, features pertaining to dif-
ferent dimensions may be considered conflicting—at least at
some level: does the fish live in the sea or in the aquarium?
Is it a pet or is it tasty? Similar considerations apply to all
the concepts in the database: a Sport is a hobby, is relaxing
and is fun, but can also be a Profession, which in turn is de-
fined as a source of stress and frustration (but also an activ-
ity which is advantageous for the society and the economy).
Clothes protect against the cold, but can be a status sym-
bol, they protect from the rain but express your personality;
a Tool is an aid, but you can injure someone with it; Vehi-
cles are polluting, but they may be environmentally friendly.
This gives us an idea of the context sensitivity of everyday
concepts (Yeh and Barsalou, 2006), but reveals also their
polysemy—the fact that those category labels are used as
umbrella words for slightly different meanings. This also re-
calls what Hofstadter (2001) called the process of chunking:
the idea that humans build their concepts by gluing several
concepts together through their lifetime, so that at the end a
concept results in “nothing but a tightly packaged bundle of
analogies”.

Taking a step forward and looking at the features more
closely in terms of formalisation possibilities, some prob-
lems quickly emerge, e.g. regarding precision. One of the
problems may be summarised as a lack of implicit knowl-
edge. This does not only refer to the lack of fundamental
categorical distinctions (see below), but also to the omission
of some of the things that subjects may have considered ob-
vious during the experiment. Subjects tend to omit some of
the most obvious features (e.g. that a fish “has two eyes”),
trying to focus on the more distinguishing ones (De Deyne et
al., 2008). Also, they fail to specify some underlying knowl-
edge, which they may consider not necessary for general
understanding—fish are said to “swim in aquarium”, com-
pressing the more detailed information “some fishes swim
in water contained in some aquarium”. Another problem is
the presence of errors within the data, most of which corre-
spond to a naı̈ve use of the “is-a” relation: a Fish is said to
be a shark, a Tool is a hammer, etc.

From the LCD to OWL Ontologies
Interpreting the features
The problems described in the section above would not
cause any issue for human understanding, which shows great
flexibility in interpreting natural language sentences. How-
ever, when the goal is to make the features machine inter-
pretable, they require some adjustments. Let us, for in-
stance, consider to translate ‘naı̈vely’ the feature “swims in
aquarium” into an OWL axiom, and to add it to an ontology
of Fish. In the ontology there could be a definition of swims,
maybe as an action which is performed only in a particular
environment—namely in water2. In order to avoid inconsis-
tencies, such as the identification of ‘aquarium’ and ‘water’,
one may need then to fully specify the meaning and function

2Unless one wants to consider a metaphorical use of the word
swim, which would make the situation even more complicated.



Figure 1: Bird: an example of a “Feature via Category Label” table, plus annotations from our analysis. MEAN refers to the
mean of the importance associated by the subjects to the features. PF is the production frequency.

of the object ‘aquarium’, and the image-schematic relation
of containment it bears with the water.

These considerations suggest the need of a preprocess-
ing phase, which we conducted at different levels. At the
very first level, this preprocessing phase was carried out fol-
lowing the Gricean communication principle, or Coopera-
tive Principle. In the context of any language exchange, the
principle prescribes to “make your contribution such as is re-
quired (. . . ) by the accepted purpose or direction of the talk
exchange in which you are engaged” (Grice, 12 Dec 1975).
In this specific case, the purpose of the talk exchange was
the definition of the concepts proposed by the psychologists,
and the talk exchange was more precisely the experiment
completed by the participants. According to Grice, the vio-
lations of this principle, which here includes errors and im-
precisions, should be interpreted in such a way as to protect
the rationality of the speaker, according to Quine’s Princi-
ple of Charity (Quine, 1960)), which prescribes interpreting
a speaker’s statements in the most rational way possible, and
considering its best, strongest possible interpretation3.

Despite these premises, some of the features produced in
the Leuven experiments were difficult to interpret in the con-
text of the definition of the concept—sometimes because
blatantly false when stated for the whole class, sometimes
because they were related to a semantic context completely
different to the one proposed in the experiment. To give a
taste: a Fish is “a constellation” and Weapons are “used in
sport”. Some of the features, then, captured biases of our
language (and our society): a Profession “is different for

3Interestingly enough, Quine developed this principle in the
context of language translation.

men and women”, and a Kitchen Utensil “is especially used
by women”, but a Tool “is primarily used by men”. As de-
scribed in more detail above, all the features generated in
the experiments were afterwards judged in order to evaluate
their applicability to the class at hand (see again the num-
bers in Figure 1). Inspired by the prototype-theoretic notion
of salience (Rosch, 1973), and in order to exclude some of
the most controversial features, we calculated the mean of
subjects’ judgments, and excluded the entries strictly below
the threshold 0. This procedure allowed us to exclude 102
features, namely around 20% of the features.

The formalisation step
After the preprocessing step, the features are translated into
OWL axioms. The Web Ontology Language (OWL) is one
of the most widespread language for authoring ontologies.
It allows the users to write explicit and formal conceptual-
isations of a domain model. We will just sketch here the
features of the language, the interested reader may refer to
(Antoniou and van Harmelen, 2009; McGuinness and van
Harmelen, 2004) for a more in depth description.

In particular, OWL is a logic-based language: it is mapped
to Description Logics, i.e. decidable fragments of first-order
logic. This provides OWL with a clear, well defined, formal
semantics and efficient reasoning services. The reasoning
support is important not only to compute ontologies’ im-
plicit knowledge (i.e. the entailed statements), and thus to
reason over the axioms, but also to check their consistency,
the presence of unintended consequences, etc. At the same
time, efficient reasoning services require some limitations in
the expressiveness of the language. Some trade-off is then
necessary between the performance of the reasoning and the



language’s expressive power, which should allow the user to
express large volumes of knowledge.

More precisely, OWL allows to express knowledge about
classes, instances and binary relations between instances. It
provides different constructs to declare the different entities
of the language: here we mainly deal with the constructs
class, object property and individual. A class defines a
set of individuals that share some properties; object proper-
ties are used instead to assert binary relationships between
individuals; individuals are instances of the classes. For ex-
ample, we may want to declare the class of Bird as the set of
those instances that share the features described above. All
the 15 categories described in the Leuven concept database
are indeed examples of classes. If we want to populate the
class, we may declare Tweety as an individual of the class
Bird. Consider instead the feature “builds nest”: the word
‘builds’ should be interpreted as an object property, which
relates the instances of the class Bird and the instances of the
class Nest. At the same time, the set of all entities that build
nests provides another example of a class, which Bird is a
subclass of. Classes can indeed be organised in hierarchies,
according to their generality, by means of the “subClassOf”
relation, which behaves like the subsumption relation in De-
scription Logic. We may also declare that two classes are
“disjoint”, having no common instance, and that two classes
are “equivalent”, having exactly the same instances.

The semantics of the “subClassOf” relation implies that
all the elements of the sub-class are also elements of the
super-class (it is indeed the subset relation). Asserting that
Bird is a subclass of the class of entities which build Nest,
means then that all the instances in the class of Birds build
nests, without exceptions. Obviously this is a quite strong
requirement when we are dealing with natural language for-
malisation and everyday concepts. Some of the features are
described by people by means of expressions which empha-
sise their partial applicability to the class into consideration
(e.g. sometimes, can have, etc). In other cases, this is im-
plicit in the use of everyday language (e.g. people may as-
sert that birds can fly, but this does not imply that they be-
lieve that a penguin is not a bird). Also for this reason there
has been some work recently trying to allow a more cogni-
tively grounded modelling (Porello et al., 2019; Righetti et
al., 2019, 2021a), as well as defeasible subsumption (Britz
and Varzinczak, 2017; Casini and Straccia, 2010), which al-
lows to handle exceptions and counterexamples.

Following these intuitions, the features collected in the
LCD can be grouped in different meta-categories, according
to their grammar. This classification can be thought of in
terms of Aristotle’s famous square of opposition. We can
distinguish between: i) Universal affirmative statements, i.e.
the (positive) features that apply to the whole class under
consideration. As an example, we may consider the state-
ments “a Fish is an Animal”, or “a Kitchen Utensil is a
Tool”. Those statements can be treated as simple class in-
clusion, and in First Order Logic would correspond to uni-
versal quantification (“all fish are animal”, etc). ii) Existen-
tial statements, which apply only to some instances of the
class at hand: e.g. Insect “can bite”, or Tool “can be au-
tomatised”. In First Order Logic they would correspond to

existential quantification: some insect bites, some tool is au-
tomatized, etc. iii) Universal negations, which apply again
to the whole category, but which express a negated state-
ment, like Fish “does not live on land” or Insect “does not
live long”. iv) Existential negation, of the kind “some A are
not B”, and which apply only to a subclass of the concept
under consideration: e.g. a Vegetable “is not always green”.

Table summarises the distribution of the features in the
different meta-categories. As it can be seen in the table,
most of the features enter the meta-category “Universal af-
firmative”, while the negated statements (Universal negative
and Existential negative) are very few.

Type of Statement Frequency

Universal affirmative ≈ 82%
Existential affirmative ≈ 16%
Universal negative ≈ 1%
Existential negative ≈ 0, 5%

Table 1: Features classification

Looking beyond the syntactic surface, however, within
the Universal affirmative statements, only a few (less than
10%) are true, clear universal statements, which are valid
for the whole category. Many other features (see e.g. the
column ‘Syntax’ in Table 1) look like universal statements,
but presuppose the possibility of exceptions: e.g. “Birds eat
worms” is used as a default statement about birds, but it is
possible to think of counterexamples, since not all birds are
carnivores. When translating the features into axioms, it is
desirable to distinguish between the axioms which require
a classical, non-defeasible, use of the SubClassOf relation
(e.g. Bird SubClassOf Animal), and axioms which do re-
quire a defeasible semantics (e.g. Bird SubClassOf eats some
Worm). This distinction is registered at the level of annota-
tion, and can be guided in different ways. In part, it is guided
by the information in the database: we can in fact use the
features’ production frequency and their average judgments
to take some decisions. The features which are generated
often and which get a high average rating are more likely to
be valid for the whole category. However, this strategy alone
does not always guarantee satisfactory results. The feature
“has feathers”, for instance, was produced for the concept
Bird by all the subjects involved in the experiment, and got
the highest rating. However, it would be reasonable to make
it a defeasible axiom, since e.g. many pullets do not have
feathers.

A Game of Disambiguation
Foundational or upper ontologies (FO) formalise the mean-
ing of very general terms, such as object, event, property,
quality, relation, process, etc. (Borgo, Galton, and Kutz,
2022). They provide the top-level categories that are in prin-
ciple common to many domains of application, and are im-
plicitly at work in common sense. There are a number of
different such ontologies which reflect different philosophi-
cal views on reality, ranging from a realistic stance endorsed
by BFO (Arp, Smith, and Spear, 2015) to a cognitivistic per-



spective enabled by DOLCE (Masolo et al., 2002). While
we do not take a position here about which is the right FO
to analyse commonsense concepts, we stress that embracing
the perspective of a selected FO has important consequences
on the formal rendering of the commonsense expressions.
For the sake of this discussion and for highlighting the use
of FOs in general in representing commonsense concepts,
we exemplify how a number of features in the Leuven con-
cept database can be construed by means of a foundational
analysis. Despite the disambiguation choices we propose
here, some of the features in the database were still too id-
iosyncratic to fit modelling and logical rendering strategies,
and were therefore manually discarded.

We here combine a two-level approach. Firstly, we iden-
tify a candidate categorical statement elicited from the LCD
(e.g. All As are Bs). Secondly, we use FOs and their distinc-
tions to help in identifying the intended meaning of classes
A and B and in understanding the relevant representational
choices. Although this section is descriptive in nature, it
provides the basic rules of a game of disambiguation gov-
erned by foundational choices and representational modes.
We therefore organise the discussion along 7 basic modes
of disambiguation:

Mode 1: Rigidity and anti-rigidity Two important gen-
eral properties of classes are rigidity and anti-rigidity, cf.
Guarino and Welty (2004). A rigid class is such that ev-
ery instance of that class is necessarily an instance of that
class. For example, in Figure 1, the feature Animal can be
intended as a rigid class: a bird is an animal and, throughout
its life, cannot cease to be an animal. An anti-rigid class is a
class such that its instances eventually cease to be instances
of that class. For example, in Figure 1 we have the fea-
ture Migratory. This class can be interpreted as an anti-rigid
class, a phase of the life of the birds which has a beginning
and an end. So when we represent the Leuven entries by
means of axioms such as “all birds are animals” and “some
birds are migratory”, we can refine the meanings of these
two statements by categorising the features as rigid or anti-
rigid4. The rigidity and anti-rigidity distinction then plays a
role in the context of Universal vs Existential statements de-
scribed in the previous section. We may have statements of
the kind “all As are Bs”, where B is a rigid property, which
means all As are always Bs (e.g. all Bird are always Animal).
But we may also have Existentials of the kind “some As are
Bs”, where B is a rigid property, which again means that
“some As are always Bs” (e.g. “some Animals are Birds”).
On the other hand, both Existentials and Universals can in-
volve anti-rigid properties, e.g. “some Birds are Migratory”
and “all Mammal (mothers) breastfeed its babies”. These is-
sues are, of course, closely related to the semantic complex-
ities found in Aristotle’s modal Syllogistic (Malink, 2013).

Mode 2: Mereology An important ontological aspect is
mereology, the theory of part-whole relations. FOs usually
contain an axiomatisation of mereology, which makes the

4Handling the distinction between rigidity and anti-rigidity for
OWL formalisations is challenging due to the limited expressive
power of DLs.

meaning of parthood relations explicit. Although the part-
hood relation may be not overly manifested in the syntax of
the description of a feature, a number of entries in the LCD
contain statements about the parts of an entity. E.g. in Ta-
ble 1, “have wings” clearly indicates a parthood relation. So
the rendering of that statement may be an axiom that states
that the class of birds is included in the class of things that
are related, via the parthood relation, to the class of wings.5
The parthood relation is widespread in almost all the do-
mains of the LCD (with the exception of the concept “Pro-
fession”), and constitutes about 13% of the features. The
general ontological notion of parthood is quite abstract and,
in many cases, one of the specialised parthood relations has
to be considered, e.g. functional parthood, necessary part-
hood, temporary parthood, etc.

Mode 3: Spatio-temporal relations / Image Schemas
Many entries in the database (15%) specify possible places
in which an entity can dwell, e.g. “lives in the wild”, “found
in trees” (Bird), but also “sold in clothes shop” (Clothes) or
“is often found in action movies” (Weapon). For these cases,
FOs usually reify spatial and temporal locations as particu-
lars of the ontology and can express the fact that an entity is
located at a certain place or time. For instance, we can intro-
duce the class of entities “located in the wild”. These classes
can be analysed according to the rigidity vs anti-rigidity dis-
tinction that we introduced earlier to assess the strength of
the constrain: it may be necessary for fish to live in the wa-
ter, while only accidental (non-rigid) to live in a cage or in
the wild. Particularly salient spatio-temporal relations, and
also prevalent in the LCD, are image-schematic ones, such
as containment, support, or path-following. The importance
of image schemas in computational blending has been illus-
trated in detail by Hedblom, Kutz, and Neuhaus (2016).

Mode 4: Quality and quality spaces A number of en-
tries refer to qualities—i.e. colours, shapes, sizes, weights,
etc.—of the instances. Around 12% of the features could be
understood as qualities. For these cases, FOs like DOLCE
provide a quite sophisticated analysis of quality ascriptions,
relying on Conceptual Spaces (Gärdenfors, 2000). This ap-
proach renders the ascription of colors by introducing a re-
lation of location between a quality and its quale, e.g. be-
tween the colour of a fish and a particular value of it, such as
“bluish grey”, which belongs to a suitable conceptual space
of colours.

Mode 5: Constitution Other entries in the LCD contain
the expression “made of” which is usually associated to
what ontologists term constitution. For instance, DOLCE
has a well-developed theory of constitution that is capable
of approaching classical philosophical puzzles involving the
persistence conditions of a statue constituted by a lump of
clay. In this context, all the claims about the constitution
of objects pertain to the artifact domain: Vehicles are “made
of Metal”, Clothes are “made of Textile”, etc. Around 5%
of the features of the artefact domain fall in this category
(≈ 2, 5% when considering the whole set of features).

5Another technical issue is to specify that the bird has to have
exactly two wings, but that this assumption is defeasible.



Mode 6: Action and ability There are entries (mostly in
the domain of animals, which constitute around 16% of the
features) that ascribe an ability to an agentive object. Agen-
tivity is sometimes intended in a broad sense, including an-
imals. In entries such as “swim”, “flutters”, “sings”, the in-
tended meaning is that the animal can perform certain types
of actions, i.e. the proper ontological category to assign is
that of ability. Other entries include the word can which is
quite challenging due to at least two meanings of can which
have been intensively studied in knowledge representation:
ability can (e.g. “Birds can fly”) and opportunity can (e.g.
“Birds can be found in trees ”, which does not indicate an
ability of the bird).

Mode 7: Functionality and affordances Other general
concepts may be found in applications of foundational on-
tologies, in mid-level ontologies, or in more specific domain
ontologies. Deciding how general a concept is may be a
matter of discussion, however we can indicate a few quite
general concepts that have applications in representing Leu-
ven entities. Functionality is a concept usually related to
artifact ontologies. Functionalities are intended to represent
the purpose or the use of an artifact. Functionality is suitable
to represent features that are expressed by means of words
like “use”, such as in “it is used to prepare Food” (Kitchen
Utensils), or “means”, as in “is a faster means of transporta-
tion” (Vehicle). Affordances (Turvey, 1992) are related to
functionality in that they suggest a possible use of the object
involved. For instance, a “Kitchen Utensil can be used to
cut things”, i.e. affords cutting. Around 20% of the features
entered this mode of disambiguation.

In Figure 1, the column ‘Modes Of Disambiguation’ shows
an example of the application of this analysis to the concept
Bird. Overall, around 15% of the features contained in the
database escaped our classification according to these modes
of disambiguation, most of which where from the domain of
activities (Professions and Sports).

Exploiting Commonsense Knowledge: The
example of concept hybridisation

We conclude the paper discussing an application of the re-
sulting formalised commonsense knowledge in a concrete
computational implementation for concept combination.

To this end, we here briefly discuss the approach
of Righetti et al. (2021b), who recently proposed an algorith-
mic modelling of the process of concept combination, lever-
aging the refinement operators described in Confalonieri et
al. (2020) (restricted to description logic ALC), and the
techniques of axiom weakening. The paper aims to imitate
the process of making sense of ‘impossible’ hybrid combi-
nations, i.e. combinations of clashing concepts into imag-
inary objects such as “a Vehicle that is a Fish”. This is
inspired by the empirical research in cognitive psychology
identifying human heuristics for combining concepts that
lack any obvious similarities (Hampton, 2017).

In the approach of Righetti et al. (2021b), concepts are
represented as formal ontologies in Description Logic, and
the combination process is, thus, rendered as an ontology in-

tegration task. Briefly, the authors propose a turn-based al-
gorithm which is initiated with two input ontologies which
need to be blended into a final ontology describing the com-
bined concept. The authors tested the procedure on the com-
bination of the concepts Fish and Vehicle to try to replicate
one of the human combinations studied in the experiments of
Hampton (2017)—namely, the Fish-Vehicle concept. In this
case, the concepts of interest to be combined are not just dis-
similar, but, when formalised in a logical language, jointly
contain obvious and sometimes hard to resolve formal in-
consistencies. When adding an axiom to the combination
causes an inconsistency, the approach of axiom weakening
is applied until a jointly consistent compromise is found.
Intuitively, a general concept inclusion axiom of the form
C ⊑ D can be weakened by either specialising the concept
C to a smaller class, or by generalising the concept D to a
larger class, w.r.t. a given reference ontology6.

In order to replicate human concepts one needs some
repository of commonsense knowledge as a source for the
input ontologies. A straightforward, encyclopedic definition
of the concept at hand, would hardly faithfully represent
what people have in mind when blending concepts. Con-
sider, for instance, the Fish definition from Wikipedia: “Fish
are aquatic, craniate, gill-bearing animals that lack limbs
with digits. Included in this definition are the living hagfish,
lampreys, and cartilaginous and bony fish as well as various
extinct related groups.”7. This definition might quite easily
be axiomatised in a formal ontology, and there exist different
tools for automatic natural language to OWL translation (see
the related work section above) which can be employed in
the presence of such clear and precise definitions. However,
when combining the concepts Fish and Vehicle, people con-
sider much more mundane knowledge. For instance, when
combining the two concepts, humans may notice that while a
Fish eats Food (to stay alive), a Vehicle needs Fuel (to move)
(Hampton, 2017). By exploiting a heuristic similar to the
analogical mapping described by Fauconnier (1997), people
would tend to generalise this information into “both Fish
and Vehicle need some kind of Energy to move”, thus cre-
ating an interesting analogy between Food and Fuel, which
would further support the integration of the two concepts
into the combination “Fish-Vehicle”.

Fortunately, this is exactly the kind of commonsense in-
formation the Leuven concept database is permeated with,
thus suggesting the concrete usefulness of a formalisation of
the concepts contained in the database for practical AI appli-
cations. To give a further tangible example, we fed the im-
plementation proposed by Righetti et al. (2021b)8 with two
concepts contained in the Leuven Database, namely Bird
and Kitchen Utensil, previously formalised in OWL exploit-
ing the disambiguation steps described in this paper. The
concept of Kitchen Utensil-Bird was also one of the exam-

6We refer to the work of Righetti et al. (2021b) for the full de-
tails about the use of axiom weakening in this context.

7https://en.wikipedia.org/wiki/Fish.
8Available at https://bitbucket.org/troquard/

ontologyutils/src/master/.

https://en.wikipedia.org/wiki/Fish
https://bitbucket.org/troquard/ontologyutils/src/master/
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ples exploited by Hampton (2017) in his experiments on im-
possible combinations—see Figure 3.

Besides the features contained in the database, we in-
cluded in the ontologies a few additional axioms, aiming at
replicating some of the commonsense distinctions needed to
reason about the concepts at issue but not explicitly men-
tioned by the subjects during the Leuven experiments be-
cause considered obvious or out of scope (as discussed
above). We added, for example, the information that Animal
and Tool are disjoint classes, or that if something is located
in the kitchen it cannot (not normally, at least) be located on
a tree, etc. An excerpt of one of the resulting ontologies for
the concept KitchenUtensil-Bird is shown in Figure 2.

Figure 2: A Bird which is also a Kitchen Utensil: an exam-
ple of a blend exploiting the LCD information.

The procedure described by Righetti et al. (2021b) allows
for a fine-grained selection of the combination strategies, by
allowing the choice of a preference order over the axioms as-
signed to both agents/ontologies, as well as the distribution
of turns. Also, different evaluation strategies are proposed to
evaluate the outcome of the combination. Here, the example
has just an illustrative purpose, and we set a random order
over the axioms and an equal distribution of turns. How-
ever, the output of the procedure is surprisingly similar to the
combination of the two concepts as observed in the experi-
ments described by Hampton (2017), an example of which
is presented in Figure 3.

As the output of our procedure, the Whisking Woodpecker
has a beak and wings, thus showing body parts, but it also
has artefact parts (the whisk), it is used for cooking and,
being unhygienic, it also requires some washing.

Discussion and Future Perspective
The analysis of the Leuven concept database has clearly
shown the existence of a mismatch between the syntactic
surface form and the content (or the intended meaning) of
people’s statements. On the one hand, we demonstrated this
mismatch in the context of universal statements, where peo-
ple often adopt a default reasoning strategy, and where the
meaning they intend to convey is more likely close to an

Figure 3: The Whisking Woodpecker (Redrawn illustration
as given by Hampton (2017), page 113): A woodpecker used
to whisk as imagined by one of the participants of Hamp-
ton’s experiments.

existential interpretation. On the other hand, many of the
entries in the Leuven concept database lack a syntactic trig-
ger that would help to identify their intended meaning, and
ontological analysis is required to instead find a semantic
trigger. So, for instance, the recognition of mereological as-
sertions was mostly guided by our general language compre-
hension and competence for world understanding, but it was
not manifested in the syntactical description of the features.
Ontological analysis offers the means to explore systemati-
cally the possible meanings of commonsense feature ascrip-
tions and, as a result, supports a more faithful formalisation
into OWL.

We have also highlighted the fruitful connection between
commonsense knowledge extraction and computational con-
ceptual blending. Specifically, we have illustrated the prac-
ticality of this connection in a concrete computational work-
flow and use-case. Although illustrative in purpose, the ex-
ample showed the effectiveness of the proposed method-
ology in replicating human conceptual combination as ob-
served in the context of experimental psychology. In this
context, the modes of disambiguation, as well as the syntac-
tic analysis described above, could be exploited further, as a
way to steer and guide the blending process. One may, for
instance, integrate the dialogue implementation discussed
above (Righetti et al., 2021b) to take into account such in-
formation, e.g. through the application of appropriate pref-
erence orders over the axioms of the two agents. This way
one may prefer axioms involving universal, rigid statements,
thus preserving them during the combination, and instead
prefer the weakening of default statements, thus simulating
a process similar to defeasible inference. Therefore, we plan
to develop this further in future work towards more fine-
grained evaluation metrics for blends and their creativity, in
which essence fights serendipity.
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Aguilar, W.; and Pérez y Pérez, R., eds., Proceedings of
the Twelfth International Conference on Computational
Creativity, 222–225. Association for Computational Cre-
ativity (ACC).



Hofstadter, D. R. 2001. Epilogue: Analogy as the core of
cognition. Cambridge: MA: MIT Press. 499 – 538.

Krieg-Brückner, B.; Autexier, S.; Rink, M.; and
Ghomsi Nokam, S. 2015. Formal Modelling for Cook-
ing Assistance. In De Nicola, R., and Hennicker, R., eds.,
Software, Services, and Systems, volume 8950 of Lecture
Notes in Computer Science. Springer International Pub-
lishing. 355–376.

Lenat, D. B. 1995. CYC: A Large-Scale Investment in
Knowledge Infrastructure. Commun. ACM 38(11):33–38.

Malink, M. 2013. Aristotle’s Modal Syllogistic. Harvard
University Press.

Masolo, C.; Borgo, S.; Gangemi, A.; Guarino, N.; Oltra-
mari, A.; and Schneider, L. 2002. WonderWeb deliver-
able D17. The wonderWeb Library of Foundational On-
tologies and the DOLCE ontology.

McCarthy, J. 1959. Programs with Common Sense. In Pro-
ceedings of the Teddington Conference on the Mechaniza-
tion of Thought Processes, 75–91. London: Her Majesty’s
Stationary Office.

McGuinness, D. L., and van Harmelen, F. 2004. OWL Web
Ontology Language Overview. Technical report, W3C
Recommendation.

Neuhaus, F.; Kutz, O.; Codescu, M.; and Mossakowski,
T. 2014. Fabricating monsters is hard: towards the au-
tomation of conceptual blending. In Proc. of the 3rd Int.
Workshop on Computational Creativity, Concept Inven-
tion, and General Intelligence (C3GI@ECAI-14).

Nguyen, T.; Razniewski, S.; and Weikum, G. 2021. Ad-
vanced semantics for commonsense knowledge extrac-
tion. In Leskovec, J.; Grobelnik, M.; Najork, M.; Tang, J.;
and Zia, L., eds., WWW ’21: The Web Conference 2021,
Virtual Event / Ljubljana, Slovenia, April 19-23, 2021,
2636–2647. ACM / IW3C2.

Ontanón, S., and Plaza, E. 2010. Amalgams: A formal
approach for combining multiple case solutions. In Inter-
national Conference on Case-Based Reasoning, 257–271.
Springer.

Porello, D.; Kutz, O.; Righetti, G.; Troquard, N.; Galliani,
P.; and Masolo, C. 2019. A toothful of concepts: Towards
a theory of weighted concept combination. In Simkus, M.,
and Weddell, G. E., eds., Proc. of the 32nd International
Workshop on Description Logics, volume 2373 of CEUR
Workshop Proceedings. CEUR-WS.org.

Quine, W. V. O. 1960. Word & Object. MIT Press.

Righetti, G.; Porello, D.; Kutz, O.; Troquard, N.; and Ma-
solo, C. 2019. Pink panthers and toothless tigers: three
problems in classification. In Cangelosi, A., and Lieto,
A., eds., Proc. of the 7th International Workshop on Arti-
ficial Intelligence and Cognition, volume 2483 of CEUR
Workshop Proceedings, 39–53. CEUR-WS.org.

Righetti, G.; Masolo, C.; Troquard, N.; Kutz, O.; and
Porello, D. 2021a. Concept combination in weighted
logic. In Proceedings of the Joint Ontology Workshops

2021, Episode VII, volume 2969 of CEUR Workshop Pro-
ceedings. CEUR-WS.org.

Righetti, G.; Porello, D.; Troquard, N.; Kutz, O.; Hedblom,
M. M.; and Galliani, P. 2021b. Asymmetric Hybrids: Di-
alogues for Computational Concept Combination. In For-
mal Ontology in Information Systems (FOIS 2021), vol-
ume 344 of Frontiers in Artificial Intelligence and Appli-
cations, 81–96. IOS Press. FOIS Best Paper Award.

Rosch, E. H. 1973. On the internal structure of perceptual
and semantic categories. In Moore, T. E., ed., Cognitive
Development and Acquisition of Language. San Diego:
Academic Press. 111–144.

Ruts, W.; De Deyne, S.; Ameel, E.; Vanpaemel, W.; Ver-
beemen, T.; and Storms, G. 2004. Dutch norm data for
13 semantic categories and 338 exemplars. Behavior Re-
search Methods, Instruments, & Computers 36(3):506–
515.

Schmidt, D.; Pease, A.; Trojahn, C.; and Vieira, R. 2019.
Aligning conference ontologies with SUMO: A report on
manual alignment via wordnet. In Barton, A.; Seppälä, S.;
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