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Abstract

Despite clear benefits that would derive from their
development, applications of computational creativity
(CC) in math, science, and logic are heavily underrep-
resented in comparison with more artistic domains. In
this paper, we examine the application of CC in the do-
main of computational complexity theory and identify
several problems in the domain to which CC might be
applied. In particular, we propose and define the task
of creating reductions between NP-complete problems,
the (sub)task of creating gadgets for use in constructing
such reductions, and the task of gamification of reduc-
tions and argue that each of these may be addressed as
interesting, fruitful CC challenge problems.

Introduction
Arguably the greatest achievements in human creativity have
been in the fields of science, mathematics, and technology.
And yet a 2017 review of application domains considered in
computational creativity (CC) found that only 3% of 353 pa-
pers published over the preceding 12 years fell under the cat-
egory of “Math, Science, and Logic” (Loughran and O’Neill
2017). This gap has been frequently mentioned in CC litera-
ture, and efforts have repeatedly been made to highlight the
importance of applying CC in scientific and mathematical
domains (Pease et al. 2019).

Computational complexity theory (CCT) represents a
subfield of theoretical computer science that focuses on the
classification of problems based on resource usage (e.g.,
time and memory) as well as how problems within and be-
tween complexity classes relate to one another. The classi-
fication of problems according to their complexity has pro-
found real-world implications for the types of solutions that
should be pursued for a particular problem and whether such
solutions can be expected to be optimal. Besides providing
mechanisms for proving the complexity of a particular prob-
lem, CCT also provides tools that can facilitate the reuse of
existing algorithms to solve new problems.

In this paper we focus on the particular CCT subtopic of
NP-completeness. Contributions in this subdomain tend to
be impactful because such problems are ubiquitous in the
real world and lie just beyond the grasp of modern com-
puters when it comes to finding optimal solutions. NP-
complete problems tend to take the form of optimization

or decision problems with even minor improvements in
algorithmic performance leading to significant cost sav-
ings in terms of time, energy, money, accuracy, or other
value metrics. For this reason NP-complete problems have
been studied in areas as diverse as advanced manufactur-
ing (e.g., optimization of production lines, route inspec-
tion); computing/data/visualization (e.g., modularity maxi-
mization for graph visualization); homeland and cybersecu-
rity (e.g., assembling an optimal Bitcoin block, cryptogra-
phy); energy policy (e.g., the graph bandwidth problem in
electronic design automation); energy-water (e.g., optimiz-
ing power/water flow across a network); innovative energy
systems (e.g., the formulated energy and content aware ves-
sel throughput maximization problem); and nuclear energy
(e.g., the berth allocation problem as applied to reloading
nuclear core fuel assemblies). The list of NP-complete prob-
lems grows ever longer.

We consider the main goal in this paper to be the fram-
ing and formal articulation of four important open problems
in computational theory as CC problems. These problems
are defined by characteristics that are typical of CC prob-
lems: each requires generation of a creative solution in a
context with relatively well-established definitions of typ-
icality, novelty, intention, and value. Similar to creating
mathematical proofs, these problems are generally difficult
even for trained humans. However, just like mathematical
proofs, there are strategies that humans use that can aid in
articulating a structured, generative process. Prerequisite to
making substantive progress attempting solutions to these
problems, the CC field needs a precise definition of these
problems together with a clear understanding of the evalu-
ative criteria associated with each. In essence, we aim to
open a new potential subdomain of computational creativity
to the CC field—the domain of NP-completeness in CCT—
or, in other words, to bring awareness of the potential impact
that computational creativity could have in a domain that has
hitherto not been considered in the field of CC. We aim not
merely to introduce the subdomain, but to articulate prob-
lems within this domain well enough that CC researchers
will immediately be able to begin to innovate and imple-
ment CC solutions to these problems. Though the domain
deals with theory, the practical implications are immediate
and significant, and we will seek to highlight these as well.



Computational Complexity Theory
While there are many approaches to treating computation,
we will find it convenient to consider computation from the
perspective of determining set membership as, for example,
is done in (Sipser 2013). Given a set of symbols (alphabet)
Σ, we can define the set of all strings over that alphabet as
Σ∗. We can then define a language A ⊆ Σ∗ as a set of
strings. A language A is decidable if there exists a com-
putable function fA : Σ∗ → {0, 1} such that1

fA(w) =

{
0 ∀w ̸∈ A

1 ∀w ∈ A

and we say that the language of fA is A, L(fA) = A. We can
define computation as the problem of determining whether
some string w ∈ Σ∗ is a member of a particular language A.
For this reason, we use the terms language, decision problem
(or simply problem), and set interchangeably. When speak-
ing of decision problems, a string w being considered for
membership in a set A is called an instance of problem A.
As a running example, we will look at two decision prob-
lems in particular: 3SAT and CLIQUE.

3SAT In logic and computer science, a Boolean literal is
either a variable, called a positive literal, or the negation of
a variable, called a negative literal. A clause is a disjunction
of literals (or a single literal). A Boolean formula is in con-
junctive normal form (CNF) if it is a conjunction of clauses
(or a single clause). A formula ϕ is 3CNF if the formula
is in CNF and each clause in ϕ contains exactly 3 literals.
Given a 3CNF Boolean formula ϕ, the 3SAT problem is to
determine whether ϕ is satisfiable, i.e., whether or not there
exists an assignment to each variable in ϕ such that ϕ evalu-
ates to true. Using ⟨ϕ⟩ to denote the string representation of
ϕ, 3SAT is defined as the following decision problem:

3SAT = {⟨ϕ⟩ | ϕ is a satisfiable 3CNF formula} (1)

A specific example of an instance of 3SAT is shown in Fig-
ure 2a. Many real-world problems in domains such as ar-
tificial intelligence, circuit design, and automatic theorem
proving are representable as 3SAT instances.

CLIQUE In graph theory, a graph G = (V,E) consists
of a set V = {v0, . . . , vn} of nodes or vertices and a set of
edges E. For directed graphs an edge e = (vi, vj) is an
ordered pair where order indicates the direction of the edge;
for undirected graphs an edge e = {vi, vj} is an unordered
pair. A clique in an undirected graph is defined as a subset
of nodes V ′ ⊆ V for which ∀vi, vj ∈ V ′, {vi, vj} ∈ E.
Given a graph G and an integer k, the CLIQUE problem is
that of determining whether or not there exists a clique in G
of size≥ k. Using ⟨G, k⟩ to denote the string representation
of a G, k pair, CLIQUE is defined as the following decision
problem:

CLIQUE = {⟨G, k⟩ | G contains a clique of size ≥ k}
(2)

1e.g., a Turing machine that halts with 0 on its tape ∀w ̸∈ A
and halts with 1 on its tape ∀w ∈ A.

Figure 1: Does P = NP?. Two different views of some
important computational complexity classes. It is unknown
which view is correct, though most researchers believe P ̸=
NP. If this is the case, several important theoretical ques-
tions about the class NP-complete, with significant, practical
implications, provide interesting potential for CC research.

An instance of the CLIQUE problem is shown in Figure 2b.
The CLIQUE problem has been used to represent instances
of many real-world problems in domains such as social net-
works, bioinformatics, and computational chemistry.

The Theory of NP-completeness
The theory of NP-completeness offers a way to classify de-
cision problems according to their inherent complexity. A
problem is said to be in the class P if it can be decided (i.e.,
solved) by a polynomial-time algorithm.2 A problem is said
to be in the class NP if a solution to the problem (some-
times called a certificate) can be verified to be correct by
a polynomial-time algorithm. Clearly problems that can be
solved in polynomial time can also be verified in polynomial
time, and therefore P ⊆ NP. It is an open question of broad
interest whether P = NP or P ̸= NP (see Figure 1).

The fascination with these two particular complexity
classes stems from the fact that only polynomial-time al-
gorithms can be effectively computed in reasonable time
by classical computers for non-trivially-sized inputs. For
all practical purposes, most computer scientists assume
P ⊂ NP, and this belief is largely perpetuated by the exis-
tence of a third class, NPC, of problems called NP-complete
problems. This is a unique class of NP problems that are
stubbornly resistant to being solvable by polynomial-time
algorithms, and yet no one has been able to prove this bar-
rier actually exists. NP-complete problems are considered
the hardest problems in the class NP. But what makes them
most fascinating is that every NP-complete problem is a
gateway problem: the existence of a polynomial algorithm
for deciding any one of them would mean that the entire
class of languages is decidable in polynomial time. To be
more specific, every NP-complete problem A can be reduced
to every other NP-complete problem B (written A ≤P B)

2A polynomial-time algorithm is an algorithm whose run time
can be bounded with a polynomial function of the size of the input.



via some polynomial-time reduction algorithm. As a con-
sequence, if one NP-complete problem B is one day dis-
covered to have a polynomial-time solution algorithm, then
by transitivity every other NP-complete problem A can be
solved in polynomial-time by first reducing it in polynomial-
time to B and then using the polynomial-time solver of B to
find a solution to A. This is the basis for proofs of NP-
completeness—a language B is NP-complete if it can be
shown that:

1. B ∈ NP

2. ∀A ∈ NP, A ≤P B

NP-complete problems are ubiquitous in the real-world and
play prominent roles across nearly every field,3 and it is
common for those tasked with solving such problems to use
this approach to prove NP-completeness in order to justify
the use of heuristic or approximation algorithms when solv-
ing such problems. Requirement 1, membership in NP, will
not figure prominently into our arguments here. Require-
ment 2 is traditionally proven via transitivity: if there ex-
ists a polynomial time reduction to B from some language
A already known to be in NPC, then because (by defini-
tion) all problems in NP reduce in polynomial time to A, all
problems in NP reduce in polynomial time to B. In other
words, another way of proving requirement 2 is to prove
∃A ∈ NPC, A ≤P B.4 This idea of a reduction function
(or simply reduction) is formalized as

∃f : Σ∗ → Σ∗, w ∈ A ⇐⇒ f(w) ∈ B (3)

Because NPC is concerned with time-complexity, there is an
additional requirement that the function f is computable in
polynomial time. If this reduction exists, then, because NPC
is an equivalence class (with respect to reciprocal polyno-
mial reducibility), there will also exist a second (distinct)
polynomial-time reduction g:

∃g : Σ∗ → Σ∗, w ∈ B ⇐⇒ g(w) ∈ A (4)

Both reductions play important roles for different reasons.
Given a language B suspected to be NP-complete, a reduc-
tion f from a known NP-complete language A is important
in proving B is NP-complete. But it is the reduction g that
allows existing approximation and solution algorithms for
deciding A to be used to decide B.

For the purposes of illustration, let us imagine that we
have not yet determined whether or not the CLIQUE prob-
lem is NP-complete and that we want to prove that it is.
Let us assume we have shown CLIQUE∈NP (satisfying re-
quirement 1). All that remains is to show a valid reduc-
tion from an existing NP-complete problem, e.g., 3SAT. As
any computational theorist will attest, this is a scenario in

3In fact, it has been suggested that the problem of (computa-
tional) creativity itself is at least NP-hard, and may very likely be
undecidable (Ventura 2014).

4This formulation presents a chicken-and-egg conundrum—
from where do we get the first NPC problem? The conundrum
is resolved with the the Cook-Levin Theorem (Cook 1971), which
established Boolean satisfiability (SAT) as that problem by giving
an elegant proof that ∀A ∈ NP, A ≤P SAT.

which a fair amount of creativity (in the CC sense of the
word) must be employed: finding a valid reduction from one
NP-complete problem to another. Algorithm 1 from (Sipser
2013) gives pseudocode for a reduction 3SAT ≤P CLIQUE,
and Figure 2 shows the output (2b) of Algorithm 1 for the in-
put (2a). In this example, the string w = ⟨ϕ⟩ for ϕ shown in
Figure 2a, and, because there is a satisfying truth assignment
for ϕ (i.e., x = FALSE, y = TRUE), ⟨ϕ⟩ ∈ 3SAT. f(w) =
⟨G, k⟩ for (G, k) shown in Figure 2b, and because there is
a k-clique in G [i.e., (y3, x4, x7)], ⟨G, k⟩ ∈ CLIQUE, as
required.

It is worth pausing to note some details about this re-
duction. Both the 3SAT instance (2a) and the equivalent
CLIQUE instance (2b) have modular elements that are paral-
lel between them. For each clause in the 3SAT instance there
is a corresponding subgrouping of 3 nodes in the CLIQUE
instance (as reflected by the colored highlights). For each
Boolean literal in the 3SAT instance there is a correspond-
ing node in the CLIQUE instance. These modular elements
and groupings are found in every NP-complete problem and
are commonly referred to as gadgets. Identifying both the
quantity and nature of gadgets in an NP-complete problem is
an important first step towards finding a valid reduction be-
cause ultimately a reduction is simply a matter of mapping
the right gadgets (or some creative combination of gadgets)
to one another. In this sense, one can think of NP-complete
reductions as a form of analogical reasoning. Here then is a
second scenario in which creativity must be employed: cre-
ating gadgets for NP-complete problems for use in reduc-
tions.

In addition to proving CLIQUE NP-complete, a reduction
from 3SAT to CLIQUE also has a practical usage: it allows
instances of 3SAT to be solved by existing solution algo-
rithms for CLIQUE.5 This is a remarkable and useful prop-
erty of NP-complete problems that is surprisingly underap-
preciated. In short, rather than having to design, implement,
and compare new solutions every time a new NP-complete
problem B is discovered, one need simply reduce B to an
existing NP-complete problem A and then apply and com-
pare any number of existing solutions to A (or via transitiv-
ity to any other NP-complete problem for which reductions
from A are available). This application of NP-complete re-
ductions for leveraging existing solutions to NP-complete
problems is of significant interest and is a topic we return to
below.

Note finally that the reduction shown in Algorithm 1 is
only one of an infinite number of valid reduction functions
from 3SAT to CLIQUE. In addition, the reduction function
itself is incomplete without an accompanying proof that the
reduction is in fact a valid mapping reduction and that it is a
polynomial-time function.

5Technically solving an NP-complete problem implies finding
an optimal solution, but where such is impractical for NP-complete
problems, the term solve usually refers to the use of heuristic or ap-
proximation algorithms to find good, but nonetheless suboptimal,
solutions in a more tractable time frame.



Algorithm 1 Reduction from 3SAT to CLIQUE

Require: A 3CNF Boolean expression ϕ
1: procedure REDUCE(ϕ)
2: N ← {λi|λi is the ith instance of literal λ in ϕ}
3: V ← {(λi, νj)|λi, νj ∈ N

and λi, νi are not in the same clause in ϕ
and λ ̸= ν}

4: G← (N,V )
5: k ← the number of clauses in ϕ
6: return G, k

(a) 3SAT instance

(b) CLIQUE instance (k = 3)

Figure 2: 3SAT to CLIQUE reduction. (a) an instance of
the 3SAT problem and (b) equivalent CLIQUE instance to
which the 3SAT instance reduces. Matching clause gadgets
are highlighted with colors. Both the function (Algorithm 1)
that maps the 3SAT instance to the CLIQUE instance as well
as the individual gadgets in the generated CLIQUE instance
represent artifacts resulting from creative processes.

Analogical reasoning
The concept of using a reduction f to compare an instance
of problem A to an equivalent instance of problem B is, in
some sense, a formalization of analogical reasoning: a is to
A as b is to B. Finding f is essentially finding the relation-
ship that makes the analogy valid. While this form of anal-
ogy has not yet been addressed in the CC literature, there has
been work on other forms, including lexical analogy using
WordNet (Hayes, Veale, and Seco 2004); bilingual lexical
analogy using HowNet, an ontology for English and Chinese
(Veale 2006); cross-domain analogical reasoning for im-
proved text generation (Hervás et al. 2006); analogy emerg-
ing as a consequence of concept space exploration (Thorn-
ton 2008); constructing visual analogies of the kind found on

intelligence tests (McGreggor, Kunda, and Goel 2010); ana-
logical reasoning for mathematical creativity (Pease, Guhe,
and Smaill 2010); using analogy for story generation (Zhu
and Nón 2010); an autonomous system for generating ana-
logical comparisons (O’Donoghue and Keane 2012); anal-
ogy to facilitate concept-blending (Besold and Plaza 2015);
and transforming song lyrics using vector-based analogy in
word embeddings (Oliveira 2020).

Four CC Problems in NP-completeness Theory
Having outlined the basic concepts relevant to NP-
completeness, we can now identify four open ques-
tions/problems in this area that are ideally suited for being
addressed by CC systems:

1. Given NP-complete problems A and B, can we create a
valid polynomial-time reduction from A to B?

2. Given an NP-complete problem A, can we define mean-
ingful gadgets for A that would be helpful in creating a
valid polynomial-time reduction to/from A?

3. There are many examples of games/puzzles that are NP-
complete. Given an NP-complete problem A and an NP-
complete game/puzzle G, can we either create a new re-
duction or modify an existing reduction from A to G
such that the reduced game/puzzle instances of G are
fun/engaging?

4. Given an NP-complete problem A, can we create an ef-
ficient, effective polynomial-time heuristic or approxima-
tion algorithm to solve A?

Note that only the last of these proposed artifacts repre-
sents an actual (approximate) solution to an NP-complete
problem. While creating a system that produces algorith-
mic (approximate) solutions to arbitrary NP-complete prob-
lems has not yet been addressed directly in the CC litera-
ture, there has been some work on CC systems/approaches
for producing computer programs to solve arbitrary prob-
lems (Cook, Colton, and Gow 2013; Charnley et al. 2016;
Znidarsic et al. 2016; Colton, Powley, and Cook 2018;
Colton et al. 2019), and, to our knowledge, this is the only
one of the four questions that has been given previous con-
sideration in the CC literature.6 So, although we include
it as an example of a CC problem from the domain of CCT,
we recognize that CC for computer programming is of much
broader interest and in some sense its own subdomain of CC.
And as well it should be; while the first three problems are
well-defined in terms of the typicality constraints they must
satisfy, the intention that they must meet, and the value they
should provide, the creation of arbitrary computer programs
for solving arbitrary problems is much less well-defined. For
these reasons, we will focus the following discussion on the
first three problems and direct the reader to extant literature
that addresses the fourth.

Here we consider each of the first three ques-
tions/problems in more detail. We define each as a decision

6Recently, some work has also been done on the reverse
problem—applying software engineering principles to the problem
of designing CC systems (Glines, Griffith, and Bodily 2021).



problem and discuss notions of typicality, novelty, intention-
ality, and value in each of the three domains.

Artifact 1: NP-Complete Reduction Algorithms
Given NP-complete problems A and B, can we create a valid
polynomial-time reduction from A to B? This question rep-
resents an open and challenging problem in CCT that essen-
tially presents the set of all valid polynomial-time reductions
as (potentially) creative artifacts. Represented as a decision
problem, this set could be written as

REDUCTIONS ={⟨A,B, f⟩ | A,B ∈ NPC and
f is a polynomial-time
reduction from A to B}

(5)

In order to meet standards of typicality for artifacts in this
domain, a reduction f must meet at least two basic criteria:
first, f must be a valid reduction from A to B—that is, it
must be proven that w ∈ A ⇐⇒ f(w) ∈ B; second, a
reduction must operate in polynomial-time. Besides being
necessary for typicality, a well-formed proof demonstrates
intentionality in the reduction artifact.

In the authors’ personal experience, the creation of a re-
duction function is an iterative process that starts simply
with finding functions that translate a well-formed instance
of problem A into a well-formed instance of problem B fol-
lowed by experimentation and (if experimentation is suc-
cessful) a formal proof. If experimentation is unsuccessful,
the function is revamped. In light of this, even a system that
is capable of translating a well-formed instance of problem
A into a well-formed instance of problem B would possess
significant value as a co-creative agent.

Novelty in this domain is primarily a function of whether
any reduction from A to B has been previously documented.
CCT guarantees that there exists a valid polynomial-time re-
duction between every pair of NP-complete problems. How-
ever, compared to the vast number of reductions that we
know exist, relatively few reductions have been published.
Several efforts have been undertaken to catalog what reduc-
tions have been published. The Redux platform discussed
below represents an effort currently underway to make such
reductions more accessible via Web APIs and a pedagogi-
cal visualization tool. Where a reduction has been published
for a particular A,B pair, novelty can still be measured by
comparing the similarities/differences between the several
reductions that have been presented.

In assessing the value of a particular reduction, there are
a few characteristics worth considering. First, valued reduc-
tions tend to be those which reduce instances of A to simpler
(i.e., smaller) instances of B. For example, if one 3SAT-
CLIQUE reduction algorithm reduces a 3CNF Boolean for-
mula ϕ with k clauses to a graph with 3k nodes and a sec-
ond reduction reduces ϕ to a graph with 4k nodes, we would
value the simpler graph (all else held equal). Second, val-
ued reductions are explainable reductions. Explainability is
a metric that has previously been suggested for assessing
value (Bodily and Ventura 2018).

Artifact 2: NP-Complete Reduction Gadgets
Given an NP-complete problem A, can we define meaning-
ful gadgets for A that would be helpful in creating a valid
polynomial-time reduction to/from A? This question essen-
tially presents the set of all possible gadgets for a problem
as (potentially) creative artifacts. The notion of what defines
a gadget is inherently ambiguous as it varies from one prob-
lem to another and depends on whether the problem is on the
input or output end of the reduction. This is a domain that
will be easier to define as more and more examples of gad-
gets are cataloged. In general, we can think of a gadget t(w)
as a function that, given an instance w of an NP-complete
problem, returns some collection of subunits of w. Repre-
sented as a decision problem, we could write this set as

GADGETS ={⟨A, t⟩ | A ∈ NPC and ∀w ∈ A, t(w)

generates a collection of subunits of w} (6)

We have seen how gadgets are valuable for the role they
play in reductions. However, it is likely that gadgets could
have value in other contexts, as well. For example, con-
sider the goal of designing an algorithm that, given an NP-
complete problem A, generates a greedy heuristic algorithm
to solve A. Many such algorithms consist of little more
than a few nested while loops iterating over what essentially
amount to gadgets (e.g., a greedy heuristic algorithm for
3SAT would likely involve some sort of loop over clauses
with an inner loop over variables within the clause). In gen-
eral, we consider that defining the concept of a gadget for a
particular problem has the potential of being a valuable cre-
ative artifact independent from whatever context in which it
might be used.

With this in mind, intentionality in the definition of gad-
gets could be fixed on their intended use. When gadgets are
intended for use in designing reduction functions, their value
would depend on whether or not they contribute to a valid
reduction. Again, simple gadgets are (all else held equal)
valued over more complex gadgets. Whereas explainabil-
ity serves as a meaningful value metric for reductions, it is
sometimes more difficult to make an argument for this met-
ric with respect to gadget artifacts, though certainly, gadgets
that are intuitive or that do elucidate the construction or in-
terpretation of a reduction will be of high value.

The novelty of a gadget not only depends on the definition
of the gadget itself but also on the context in which it is
used. For a given problem A, different gadgets for A become
useful in reductions to/from different problems so that the
presentation of a particular gadget when constructing a new
reduction to/from a problem B could be considered a form
of novelty.

In general, a typical gadget is some atomic unit of a
problem instance and typically gadgets are exact subse-
quence/subset/subgraph units of an instance.

Artifact 3: NP-Complete Game Instances
Given an NP-complete problem A and an NP-complete
game/puzzle G, can we either create a new reduction or
modify an existing reduction from A to G such that the re-
duced game/puzzle instances of G are fun/engaging? We



could, of course, consider instead the problem of simply
trying to make game/puzzle instances of an NP-complete
problem A more creative. But again, this is not particu-
larly unique to CCT (many researchers have considered the
challenge of making games more creative). Far more inter-
esting and specific to CCT is consideration of how to am-
plify creativity in games/puzzles that are formed as reduc-
tions from other NP-complete problems. Represented as a
decision problem, we could write this set as

GAME ={⟨A,G, f⟩ | A ∈ NPC and
G ∈ NPC is a game or puzzle
and f is a polynomial-time
reduction from A to G}

(7)

This problem is what initially piqued our interest in ap-
plying CC to CCT: could we take an arbitrary NP-complete
problem from the real world and turn it into a game or puz-
zle that people would find engaging? Human intuition is
remarkably adept at finding good solutions to NP-complete
problems. Unfortunately, people do not typically enjoy solv-
ing Boolean satisfiability or graph theory problems. But
they do like games. If we can render arbitrary NP-complete
problems as fun and engaging games or puzzles then we can
leverage the power of crowd-sourcing to find solutions that
may be better than any computer could come up with (Cu-
sack et al. 2010).

As an example, consider the protein folding game FoldIt
(Cooper et al. 2010). According to its website,

Knowing the structure of a protein is key to under-
standing how it works and to targeting it with drugs.
The number of different ways even a small protein can
fold is astronomical because there are so many degrees
of freedom. Figuring out which of the many, many pos-
sible structures is the best one is NP-complete and is re-
garded as one of the hardest problems in biology today.
Current methods take a lot of money and time, even for
computers. Foldit attempts to predict the structure of a
protein by taking advantage of humans’ puzzle-solving
intuitions and having people play competitively to fold
the best proteins

See Figure 3 for an example screenshot of the game.
Our initial foray into this problem was an attempt to re-

duce the well-known NP-complete travelling salesperson
problem to a popular NP-complete flood fill game called
KAMI. We know from CCT that a reduction exists. How-
ever, despite months of trying, we have yet to devise a
valid solution (much of this time was spent creating and
combining different gadget artifacts from these two prob-
lems). We are aware of a reduction from the shortest com-
mon supersequence problem to flood fill puzzles which pro-
vided some ideas on how gadgets could be created for the
KAMI problem (see Figure 4) (Marchetti and Bodily 2022;
Clifford et al. 2012).

Many games and puzzles have been shown to be NP-
complete including well-known examples such as Battleship
(Sevenster 2004), FreeCell (Helmert 2003), Instant Insanity
(Garey and Johnson 1979), LaserTank (Alexandersson and

Figure 3: FoldIt. FoldIt is a crowd-sourced game for solving
difficult instances of the protein folding problem, an NP-
complete problem from biology, the solutions to which have
implications in understanding protein function (and thus
also for designing medical or other interventions). Screen
shot from the game taken from https://fold.it.

Restadh 2020), Pandemic (Nakai and Takenaga 2012), Ru-
bik’s Cube (Demaine, Eisenstat, and Rudoy 2018) and Su-
doku (Yato and Seta 2003). Because these games are well-
known and fun, they are excellent candidates for reduction
targets from other NP-complete problems.

As far as what defines creativity in this domain, since art
and gaming already enjoy broad treatment in the CC field,
more traditional definitions of novelty, value, typicality and
intentionality can be invoked directly to assess the quality of
this artifact type. Although the definitions of GAME and
REDUCTION are very similars, in the case of REDUC-
TION the focus is on the behavior of creating novel, valid
reductions ab initio. In the case of GAME, we take a valid
reduction for granted and focus on the creativity of the arti-
facts generated from the reduction. One possible approach to
attacking this problem may be related to procedural puzzle
generation (De Kegel and Haahr 2020).

There are two concerns that should be mentioned with
regard to reducing NP-complete problems to CC-enhanced
games. First, most NP-complete games are played with
instances of very limited input sizes. An instance of the
game Battleship, for example, is defined in terms of the size
of the board (typically 10 × 10) and the number of ships
(typically 5). One can easily imagine reductions from ar-
bitrary NP-complete problem instances that could result in
very large game instances (imagine playing Battleship on a
10, 000× 10, 000 board with 5,000 ships), much larger than
human players are used to playing and larger perhaps than
would appeal to many players. This diminishing value with
increasing input size is certainly relevant to considerations
on how CC might be used to attempt to create valuable ar-
tifacts in this space. It is worth noting that the FoldIt game
(Figure 3) is at least one example of an NP-complete game
with non-trivially-sized instances that has seen success.

Second, reduction algorithms tend to be highly prescrip-
tive which could severely limit the variability with which
game instances could be rendered. For example, KAMI has
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Figure 4: Limitations on creativity in derived KAMI puz-
zles. (a) KAMI is an NP-complete flood fill game whose
puzzles typically allow a wide range of aesthetic expression.
(b) Due to the highly prescriptive nature of reduction algo-
rithms, a KAMI puzzle that is derived via reduction from
an instance of the NP-complete shortest common superse-
quence problem will always necessarily be composed of di-
amond gadgets, like those shown, which significantly con-
strains the ways in which CC could be applied to enhance
the creativity of the puzzle without invalidating the reduc-
tion.

come to be known for its highly aesthetic and creative puz-
zles (e.g., see Figure 4a). However, when we take a different
NP-complete problem, e.g., the shortest common superse-
quence (SCS) problem, and reduce it to KAMI, the result
is always a puzzle consisting of several diamonds (the dia-
mond is a gadget), each consisting of a pattern of concentric
multicolored rings (color is another gadget), all on a com-
mon background canvas color (see Figure 4b). The number,
size, color scheme, and even shape (to some extent) of the
diamonds could change without invalidating the reduction,
but otherwise, all KAMI puzzles generated from a particular
SCS reduction will follow a similar pattern (Clifford et al.
2012). It is possible that other reductions could potentially
produce other patterns. The point being made here is that the
nature of reductions is highly prescriptive and consequently
places some limits on how CC would need to be applied to
enhance the creativity of puzzles derived from NP-complete
reductions in order not to invalidate the reductions.

An Ontology of NP-completeness
CC systems across a spectrum of application domains rely
on knowledge bases of existing artifacts from which they
extract patterns for the creation of new artifacts (Ventura
2017). Though some efforts have been made to create a
knowledge base of NP-complete problems, there does not
exist a well-established resource cataloging NP-complete
problems, reductions, and/or solutions. To this end we have
undertaken to create Redux, an ontological knowledge base
of NP-complete problems, reductions, solutions, and veri-
fiers accessible via a web API7. In addition to the knowledge
base, we also aim to build a pedagogical visualization front
end to the knowledge base. A mockup of the system can be
seen in Figure 5.

7http://redux.aws.cose.isu.edu/

We envision the Redux knowledge base allowing re-
searchers to perform meta-analyses over various aspects of
NP-complete problems in order to gain insights on such
questions as:

• What gadgets have been identified/created before when
reducing to/from a particular NP-complete problem?

• What patterns exist in how gadgets for one problem map
to gadgets for another problem?

• What in general is the relationship between previously
identified gadgets for a particular NP-complete problem
and the formulation of, say, a greedy heuristic solution
algorithm for the problem?

• What additional power or knowledge can be leveraged via
transitivity of the reductions in the knowledge base?

In addition, researchers will be able to directly access NP-
complete problem definitions, example instances, and for-
matting; call reduction algorithms between particular pairs
of NP-complete problems; run solution algorithms for par-
ticular NP-complete problems; and verify proposed solu-
tions for particular NP-complete problem instances. Our
hope is that this knowledge base will spur innovative ideas
and solutions in and around the domain of NP-completeness.

Conclusion
The CC research community has long been interested in
balancing its focus on applications in artistic domains with
more CC applications in the fields of science, mathematics,
and logic. Our purpose in this paper has been to suggest that
computational complexity theory, and NP-completeness in
particular, is a ripe candidate for contributing to this balance.
We have attempted to highlight and provide some definition
to four open CC problems in this domain. We have argued
that progress towards addressing these problems promises to
make significant impacts in the field of CCT, which in turn
promises to make significant impacts in many real-world do-
mains.

In addition we have presented Redux, a nascent ontolog-
ical knowledge base of NP-complete problem definitions,
reductions, and solution algorithms. Our intent is to aug-
ment the knowledge base through crowd-sourcing with the
ultimate goal of providing a comprehensive and accessible
resource on NP-completeness by which CC and other re-
searchers can push forward the boundaries of applied com-
putational complexity research. As a final note, it is worth
mentioning that many of the significant open problems in
applying CC are themselves likely NP-complete (or harder)
problems. And though it is also likely that creativity itself
lies beyond the realm of NP-completeness, advances in CCT
are likely to translate directly into advances in the field of
computational creativity.
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Figure 5: The Redux application. The tool shown serves as a graphical user interface providing access to a crowd-sourced
knowledge base of NP-complete problems, reduction algorithms, and solution algorithms. Users can select (or add new) prob-
lems. A unique reduction algorithm is required for each unique (ordered) pair of selected problems. Users can contribute new
reduction algorithms. Then for a given instance of the problem on the left [e.g., (nuclear) CORE SHUFFLING], the reduction
algorithm is applied to generate an equivalent instance of the problem on the right (e.g., TRAVELING SALESPERSON). A
solution to one problem instance can also be mapped to the equivalent solution for the equivalent problem instance. Visualiza-
tion of instances with gadgets and/or solutions highlighted is included for pedagogical purposes. The tool highlights the power
of reduction, allowing existing solutions to one problem to be reused to solve new problems. Possible applications of CC in
this context include using CC to create novel reduction algorithms; using CC to propose gadgets for co-creative development
of reduction algorithms; application of CC to aesthetically present reduced problem instances as engaging puzzles pursuant to
crowd-sourcing solutions to NP-complete problems; and using CC to create novel solution algorithms.
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