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Abstract

Generating novel items with desired characteristics re-
quires creativity. One method to achieve this is through
creative transformations. Deep learning network meth-
ods provide an interesting potential substrate for this
task. This paper presents a method for network-based
generation of novel images by applying variational au-
toencoders (VAEs) to learn features, which are then
perturbed based on a class-to-class (C2C) method for
learning of inter-class similarity and difference informa-
tion, enabling generating creative samples. Our method
learns the pattern between classes, applies this pattern
to samples of a source class, and generates new samples
of a target class. This study also proposes a general ap-
proach to evaluating the creativity of sample generators
for classification domains, by evaluating the samples
generated by the generator trained in a one-shot setting.
The evaluation approach requires only classification la-
bels but not human assessments of creativity. An ex-
periment in two image domains supports that the sam-
ples generated by our method satisfy two of Boden’s
creativity criteria: being valuable (falling into desired
categories) and novel (samples show high variance).

Introduction
Advances in machine learning have yielded many success-
ful deep generative models (Pan et al. 2019). Such models
generate samples conforming to the distribution of the train-
ing data, leading to samples that are “authentic” in the sense
of substantially sharing the properties of real examples. A
surge of research in computational creativity is applying
generative deep learning methods while inducing novelty—
and even surprise—for the sake of creativity, as described in
the surveys of Franceschelli and Musolesi (2021) and Broad
et al. (2021). For example, the creative adversarial network
proposed by Elgammal et al. (2017) is a generative adver-
sarial network (GAN) that generates artwork that is realistic
but also deviates from style norms. Similar work has in-
duced creativity in GANs by introducing additional goals
(loss functions) beyond the original adversarial loss (e.g.
StyleGAN (Karras, Laine, and Aila 2018) and (Sbai et al.
2018)). Following StyleGan, Nobari, Rashad, and Ahmed
(2021) proposed a systematical method to modify GANs to
automatically generate novel designs without human inter-
vention. Generally, variational auto encoder (VAE) methods

are less suited for creativity tasks because their reconstruc-
tion loss aims to mimic the data distribution within a learned
latent space and it is difficult to reflect other goals in the cor-
responding loss function. However, these latent spaces can
be manipulated to induce creative results (e.g. MusicVAE
(Roberts et al. 2018b) and sketchRNN (Ha and Eck 2017)).

Characterizing the creativity of AI systems requires crite-
ria for assessing the creativity of a process or of a system’s
results within a task context. Developing such criteria is
nontrivial and has received considerable attention (Wiggins
2021). Boden (1991) provides three criteria for assesssing
the creativity of outputs of a process: value, novelty, and
surprise. Many researchers have continued this school of
thought, refining and expanding on these criteria (Wiggins
2006; Draper 2010).

This paper addresses creativity as it applies to generating
new samples for a target class when training samples are
limited. We consider a sample (generated or not) to be valu-
able if it fits in the target class, and novel if it is different
from the observed samples of the target class. According to
Boden, surprise can happen when the sample is unexpected
(which requires a prior expectation entity). We do not con-
sider surprise when evaluating our model.

This paper makes two contributions. First, we present an
algorithm for generating creative samples in a classification
domain. The algorithm uses a method we call a class-to-
class variational autoencoder (C2C-VAE), which learns a
latent space of the difference patterns between samples of
all classes. The C2C-VAE then samples new differences
from this latent space, and applies the difference to exist-
ing samples in the original conceptual space to generate new
samples. Second, we address the general question of how
to evaluate the creativity of sample generators for classifi-
cation in a one-shot setting. We propose an approach which
we call GOF/TOM—“Generated On Few, Tested On Many.”
A generator is trained in a zero, one, or few-shot setting
where samples of a target class are trimmed from the train-
ing set. The generator is then used to generate new samples
of the target class. Meanwhile, an oracle is trained on the
untrimmed dataset to evaluate the generated samples. Be-
cause the generator has limited examples of the target class,
its ability to generate satisfactory unseen samples of the tar-
get class can be used as measure for its creativity. This is
used to evaluate the C2C-VAE.



We begin by discussing related techniques for generating
and measuring computational creativity. We then present
our C2C-VAE approach for generating creative samples, and
introduce our GOF/TOM approach for evaluating creativ-
ity. Finally, we evaluate C2C-VAE on two data sets, MNIST
(LeCun and Cortes 2010) and Fashion-MNIST (Xiao, Ra-
sul, and Vollgraf 2017), using the GOF/TOM approach. In
the two data sets, C2C-VAE successfully generates samples
that are valuable and novel with respect to its training data,
making a case for the potential of C2C-VAE as a creative
approach. We examine the limitations of C2C-VAE and pro-
pose methods for addressing them in future work.

Background
Active Divergence with Generative Deep Learning
In her seminal work, Boden (1991) identifies three forms of
creativity: combinatorial, exploratory and transformational.
Combinatorial creativity generates new ideas by combining
old ones. Exploratory and transformational creativity both
involve a conceptual space, where the former explores the
conceptual space while the later alters it, potentially causing
a paradigm shift (Wiggins 2006; Franceschelli and Musolesi
2021).

Franceschelli and Musolesi (Franceschelli and Musolesi
2021) consider VAEs and GANs to perform exploratory cre-
ativity, as they both sample from a conceptual space. GANs
can be also be transformational. As an example, in CANs
(Creative Adversarial Networks), the discriminator deter-
mines both whether a sample image is art or not and its artis-
tic style, while the generator tries to generate art and also
generates deviations from original style norms. GANs can
even be combinatorial. For example, StyleGAN can achieve
style mixing by combinig the latent codes of two samples at
multiple different levels of detail.

A CycleGAN is a image-to-image translation technique
that can translate an image of one class into an image of an-
other, e.g. modifying the image of a horse h into that of a
zebra z using a translation function Z (or conversely from
a zebra into a horse, using a function H). A CycleGAN is
trained with two loss functions: 1) An adversarial loss trains
the generators Z and H to generate quality images (so that
a horse h can be translated into a realistic zebra Z(h)); 2) A
cycle-consistency loss ensures the transition can go back-
and-forth (so that the horse-translated zerba Z(h) can be
translated back to a horse H(Z(h)) similar to the original
horse h). The artist Helena Sarin uses CycleGAN to gener-
ate creativity-related artwork (NVIDIA 2021).

Our proposed model is based on variational autoencoders
(VAEs) (Kingma and Welling 2013). A VAE is comprised of
an encoder and a decoder, both implemented as neural net-
works. The encoder takes samples as inputs and compresses
them into a Gaussian distribution of lower-dimension em-
bedding vectors in a latent space. The decoder takes an
embedding vector and recovers the original input sample.
Regularity—the property of similar samples having similar
representations—is encouraged in the latent space because a
sample is encoded as a distribution of embeddings, instead
of a single embedding as in autoencoders (the forerunners of

VAEs).
Features extracted by VAE can be manipulated by per-

turbation and even vector arithmetic for creative results.
For example, MusicVAE (Roberts et al. 2018b) has the
ability to “adjust the number of notes in a melody by
adding/subtracting a note density vector to/from the latent
code” (Roberts et al. 2018a). Similarly, sketchRNN can
“subtract the latent vector of an encoded pig head from the
latent vector of a full pig, to arrive at a vector that repre-
sents a body. Adding this difference to the latent vector of
a cat head results in a full cat (i.e. cat head + body = full
cat)” (Ha and Eck 2017). The effects of such modification
over VAE embeddings are not guaranteed and only partially
understood. As noted by Ha and Eck (2017), such analogy
is only possible when the embedding distribution is smooth
and any interpolation between two embeddings is coherent.
This study attempts to model the differences between pairs
of embeddings extracted by VAE.

In the taxonomy of active divergence by Broad et al.
(2021), this study proposes a method of chaining models.
The method is a combination of a standard VAE with a sec-
ondary VAE (C2C-VAE) that explores the learned represen-
tation of feature differences.

Class-to-class Approach
Classification methods commonly consider the similarity
of new instances to instances in a class. The Class-to-
class (C2C) approach considers both similarity and differ-
ence. It assumes that there exist inter-class patterns be-
tween each pair of classes, and the samples from the two
classes are consistently similar in some features and dif-
ferent in some other features. For example, zebras and
horses have the similarity of both belonging to the Equidae
family, and the difference that zebras have stripes while
horses do not. The inter-class patterns, once learned, can
be used to classify a query based on instances from an-
other or multiple other classes (Ye 2018a; Ye et al. 2020;
2021).

We hypothesize that inter-class patterns can also be used
in computational creativity. A system that learns inter-class
difference patterns can intentionally apply the patterns to
modify a sample. For example, knowing that zebras have
stripes and horses do not, the system can modify a horse im-
age by replacing its texture with black-and-white stripes and
thus create a new zebra image.

The C2C approach is highly related to GAN methods. For
example, CycleGAN is trained on unpaired image-to-image
data from one class to another and can generate zebra im-
ages from horse images (Zhu et al. 2017). GAN methods
are mostly end-to-end. For example, CycleGAN generates
an output image from an input image, and the inter-class
pattern is integrated into the procedure of the model and is
applied automatically in the forward pass of the neural net-
work. C2C methods work with the inter-class pattern di-
rectly. For example, the method to be presented in this study
uses the feature differences between two samples as both
inputs and expected outputs of an variational autoencoder.
This difference provides more flexibility to introduce cre-
ativity. More specifically, our approach can choose an inter-



class pattern as the modification and also choose a sample to
apply this modification.

Measurement of Creativity

Franceschelli and Musolesi (2021) survey multiple cre-
ativity measures implemented via machine learning algo-
rithms. Our method, GOF/TOM (“generated on few, tested
on many”), fits within the formalization of the generate
and test framework (Toivonen and Gross 2015), in which
the system uses a generative function to generate sam-
ples and an evaluation function to evaluate the samples.
The authors describe three works (Varshney et al. 2013;
Norton, Heath, and Ventura 2010; Morris et al. 2012) that fit
in this framework.

Varshney et al. (2013) proposes a system that generates
creative recipes. The novelty of a recipe is evaluated based
on Bayesian surprise, the difference between a prior proba-
bility distribution of recipe and a posterior probability distri-
bution after a new recipe is observed. The value of a recipe is
evaluated by a model predicting pleasantness of scent from
its ingredients and flavor compounds in those ingredients.

Ritchie (2007) describes that creativity can come from an
inspiring set, which is a set of usually highly valuable sam-
ples used to train or configure the generator. Gervás (2011)
expands on this by splitting an inspiring set into a learning
set, which informs the construction of the generator, and a
reference set, which is used to evaluate the novelty of gener-
ated samples. Similarly, Morris et al. (2012) uses an inspir-
ing set (crockpot recipes) to generate samples via a genetic
algorithm and to evaluate the quality of generated sample by
training a multilayer perceptron to predict user ratings from
a sample.

Creativity Inspired Zero-Shot Learning

The goal of a zero-shot learning task for classification is to
train on seen classes and then predict the class label of a
sample from an unseen class (or samples from seen and un-
seen classes in generalized zero-shot learning). Elhoseiny
and Elfeki (2019) implemented a creativity inspired zero-
shot learning algorithm. In that work, both visual and se-
mantic information are available for seen classes but only
semantic descriptions are available for unseen classes. The
authors introduce a creativity inspired zero-shot learning
method which trains a discriminator to differentiate between
real and fake images and also classifies an image into seen
classes. It also trains a generator to generate realistic images
based on texts describing seen classes and realistic yet hard-
to-classify (high entropy over seen classes) images from
“hallucinated” texts. This training goal drives the genera-
tor to explore the latent space of texts with two objectives:
1) Generate samples that are realistic; 2) Generate samples
from hallucinated texts. These properties enable the genera-
tor to generate realistic images based on the descriptions of
unseen classes.

Creative Sample Generation with a
Class-to-class Variational Autoencoder

This paper proposes a class-to-class variational autoencoder
(C2C-VAE) approach to generating creative samples in the
context of classification—that is, generating creative sam-
ples falling within desired categories (e.g., generating im-
ages for creative versions of a given letter of the alphabet).
For this task, the C2C-VAE approach learns the difference
pattern between pairs of samples of two different classes.
Four spaces are involved in this task: the original sample
space L1, the feature space L2, the space of feature differ-
ences L2′, and the space of feature difference embeddings
L3. As a precondition, C2C-VAE relies on a means to tran-
sition between L1 and L2, more specifically, to extract a
feature f(s) from a sample s and also to recover a sample s
from feature f(s).

For our testbed system (illustrated in Figure 1), we train
a traditional VAE on the training data and use the encoder
f to extract features and the decoder f ′ to recover samples.
Given a pair of samples from different classes, s1 ∈ C1 and
s2 ∈ C2, a VAE can extract their features f(s1) and f(s2) in
the space L2. The feature difference f∆(s1, s2) in the space
L2′ can be calculated as f∆(s1, s2) = f(s1) − f(s2), an
element-wise subtraction between two feature vectors. The
space L2′ can be thought of as the complement of the space
L2, whence the name L2′.

C2C-VAE is based on the class-to-class assumption that
the feature differences (in space L2′) from one class to an-
other class follow a consistent pattern. This pattern can be
represented as an embedding vector (or a distribution of em-
beddings) in another latent space L3. The C2C-VAE is itself
another variational autoencoder with an encoder g that en-
codes a feature difference f∆ in L2′ to an embedding g(f∆)
in L3 and a decoder g′ that decodes an embedding g(f∆)
back to a feature difference f∆. Note that both the VAE
encoder f and the C2C-VAE encoder g are variational en-
coders that encode an input to a distribution of embeddings.
This is to ensure regularity in the latent space L2 and L3.
For simplicity, the encoder f (or g) can be thought of as
extracting one feature (or a feature difference embedding)
from an input.

Because there exist multiple pairs of classes and each pair
Ci−Cj has its own unique pattern, a C2C-VAE either learns
only one pattern, reflecting a specific pair of classes Ci−Cj ,
or learns multiple patterns by conditioning its encoder and
decoder with extra parameters indicating Ci and Cj . In our
tests, we take the later approach. Therefore, the C2C-VAE
presented here is actually a conditional variational autoen-
coder (Sohn, Lee, and Yan 2015).

Training a C2C-VAE
A C2C-VAE is trained using the following procedure:
• Train a traditional VAE with encoder f and decoder f ′.
• Assemble training pairs: Randomly collect 10000 pairs

of samples during every training epoch. For each sample
pair si (of class Ci) and sj (of class Cj), extract their
features f(si) and f(sj), calculate their feature difference
f∆(si, sj) = f(si)− f(sj).
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Figure 1: A VAE extracts (recovers) a feature from (to) a sample. A C2C-VAE extracts (recovers) an embedding from (to) a
feature difference. L1 entities are marked with rectangles, L2 and L2′ entities with circles, and L3 entities with diamonds.

• Train C2C-VAE with the vector < f∆, Ci, Cj >: The en-
coder g (conditioned on the class pairs) learns to encode
the input to embedding g(< f∆, Ci, Cj >). The decoder
g′ (also conditioned on the class pairs) learns to decode
the embedding back to f ′

∆ = g′(g(< f∆, Ci, Cj >), <
Ci, Cj >). Both g and g′ are trained to minimize the
reconstruction loss and the KL-divergence between the
prior distribution (in this case, a Gaussian distribution)
and the distribution of embeddings g(< f∆, Ci, Cj >).
The loss function for C2C-VAE is:

loss =||g′(g(< f∆, Ci, Cj >), < Ci, Cj >)− f∆||2

+KL[g(< f∆, Ci, Cj >), N(0, 1)]

Just as a VAE can generate new samples of the original
space L1. A C2C-VAE can generate new feature differences
in L2′, which in turn can be used to modify features in L2.
The modified features can then be recovered as new sam-
ples in L1. More specifically, A C2C-VAE can be used to
generate a new sample sj of a target class Cj by adapting
an existing sample (called as the source sample) using the
following procedure:

• Choose a source sample si of class Ci in the space L1.
Get its feature f(si) in the space L2.

• Sample an embedding g(< f∆, Ci, Cj >) from the
Gaussian distribution N(0, 1) in space L3. Decode this
embedding to get a feature difference f ′

∆ = g′(g(<
f∆, Ci, Cj >), < Ci, Cj >) in the space L2′.

• Apply the feature difference f ′
∆ in L2′ to f(si) in L2, to

get the target sample feature f(sj) = f(si)− f ′
∆ in L2.

• Decode the target sample feature f ′(f(sj)) to the sample
space L1

This procedure touches each of Boden’s three proposed
aspects of creativity. It is exploring the space L3 of differ-
ence patterns, combining a feature difference with another
feature in L2, and transforming the sample in L1.

In Boden’s original definition, the boundary between ex-
ploratory and transformational creativity is blurred. For this
reason, Wiggins (2006) refines Boden’s original framework
by identifying two rule sets defining the conceptual space (in
our previous terminology, this is L1, perhaps even L2.): the

rule set R that constrains the space and the rule set T that
traverses the space. Transformational creativity can emerge
from either transforming R, leading to a new conceptual
space, or T , leading to new traversal in the same concep-
tual space. Under Wiggins’ definition, C2C-VAE is applying
T -transformation, where samples in the original conceptual
space are modified by difference patterns sampled by C2C-
VAE.

From the perspective Boden’s three criteria of creativity,
we hypothesize that C2C-VAE can generate realistic feature
differences leading to valuable (within-category) samples,
thanks to the regularity offered by both VAE and C2C-VAE.
C2C-VAE provides three means for achieving novelty: 1)
sampling in the space L3, allowing variation in the feature
difference; 2) diversifying the source sample and adapting
from different samples or classes; 3) sampling in the space
L2, allowing variation in the feature of the source sample.
Our testbed system focuses on the first means for creativity.

Evaluating Creativity for One-Shot
Classification Domains

We consider automated evaluation of creativity of gener-
ated samples in a classification domain in which a generator
can learn to generate samples from data and a classifier can
learn to classify samples. We propose a creativity evalua-
tion approach named GOF/TOM (for “generate on few, test
on many”). The approach is applicable to multiple forms of
generators (e.g. VAE, GAN). Although we describe it in a
classification task domain (as we focus on evaluating C2C-
VAE), this approach could be applied to regression or other
task domains as well.

Given a data set, a class is chosen as the target class. Data
samples of that class are called target samples. Some or all
target samples are removed from the training set, creating a
zero/one/few-shot setting (for simplicity, we will ignore the
differences between the three settings and refer them as the
one-shot setting), where the target data is not available to
the generator in its entirety. Then the generator is trained on
the trimmed training set. Meanwhile, a separate model (e.g.
classifier) is trained on the untrimmed data set. Because the
model sees target samples unknown to the generator, we call
it the oracle. There can exist multiple oracles serving differ-



ent purposes, as in our experimental evaluation.
After training of both the generator and the oracle, the

generator is used to generate new target samples. The oracle
can facilitate the evaluation of the generated sample on the
three aspects of creativity (Boden 1991). We assume that
the oracle is implemented using deep learning or other tech-
niques enabling extraction of features for the assessment of
novelty and/or surprise.

Value The oracle classifies the generated samples. We
consider the generator able to generate valuable samples if
it can consistently generate samples of the target class. The
accuracy of the generator is the percentage of the gener-
ated samples falling into the intended class. High accuracy
means highly valuable generator.

Novelty The oracle can extract features of the samples into
a latent space. The latent space needs to be smooth so that
similar samples are close together and different samples are
distant from each other. The generated samples are novel
if their extracted features show variety. For our experiment,
we use the activation of the embedding layer of an VAE as
the feature values extracted for each sample. The variance
of the features is used as the measure of the variety of the
samples generated.

Surprise A generator achieves surprising results if it can
consistently generate samples of the target class that are
unexpected. Existing measures of surprise are surveyed in
Franceschelli and Musolesi (2021). Surprise is beyond the
scope of this paper and the capability for C2C-VAE to gen-
erate surprising samples is left for future research.

Uniqueness and Benefits
Our evaluation method differs from those mentioned earlier
in a few ways: The untrimmed data set is not the same as
the inspiring set (Ritchie 2007) because the data contained
are not necessarily creative; The generator learns from the
trimmed data set and its knowledge of the target class is de-
liberately limited. Even if the untrimmed data set is inspir-
ing, its trimmed version may not be; Instead of using a refer-
ence set as in Gervás (2011), the oracle classifier is used to
evaluate the samples; Unlike the many evaluations such as in
Norton, Heath, and Ventura (2010) and Morris et al. (2012),
the oracle classifier does not require user rating data or other
human assessment of artistry or creativity. It requires only
classification labels, which are more widely available.

Methods (Gervás 2011; Morris et al. 2012) that use some
(portion of) inspiring set for the evaluation integrate evalu-
ation within the creative system. The creative system filters
generated samples by evaluation. However, GOF/TOM esti-
mates is envisioned as a tool for after-the-fact evaluation of
the system’s performance.

Caveats
In GOF/TOM, the generator is trained in a one-shot setting
and then its generated samples are evaluated by an oracle
trained using the untrimmed data set. There are three im-
plications: 1) If the task domain is truly one-shot, then the
construction of the oracle is impossible, due to the lack of

additional data. 2) GOF/TOM may be less suitable for gen-
erators with weaker one-shot learning capability. 3) The
method assesses value based on classifications by the oracle
and novelty based on features generated by the oracle; such
features could potentially be used for assessing surprise as
well. The usefulness of all three measures depends on how
well the oracle has learned from the training data.

A concern for any automated evaluation of creativity is
whether it truly captures the important characteristics. We
believe that the use of accuracy as a proxy for value, and
variance as a proxy for novelty, is reasonable in the domains
used for the evaluation. However, these measures may miss
important aspects of creativity for some domains. More
work is needed on the measures to apply.

Evaluation
We carried out experiments on two data sets, using the
GOF/TOM approach to evaluate the creativity of C2C-VAE.
The first data set is the MNIST dataset of hand-written dig-
its from 0 to 9. The second is the fashion-MNIST dataset
of 10 classes of clothing and accessories. Each of MNIST
and fashion-MNIST is provided with predetermined splits
for training (60,000 samples) and testing (10,000 samples)
data sets; these were used for training and validation. Each
sample is a 28x28 grayscale image, associated with a label
from 10 classes. The oracle classifier and the VAE are both
trained with the full data set. The two data sets are chosen
because a traditional VAE can extract features from them.

In all experiments, each class is successively chosen as the
target class. For comparison with C2C-VAE, we also trained
a conditional VAE (CVAE). The CVAE is trained to generate
a sample conditioned on an additional parameter controlling
the class of the sample generated. During testing, both C2C-
VAE and CVAE generate samples of the target class.

System Design
The oracle for value is a resnet18 (not pretrained) net-
work, of which the first layer is replaced with a convo-
lutional layer with (in channels = 1, out channels =
64, kernel size = (7, 7), stride = (2, 2), padding =
(3, 3), bias = False), and the last layer is replaced with
a linear layer with 10 outputs for classifications.

The VAE follows a standard design. The encoder
of the VAE is composite of two consecutive convo-
lutional layers (out channels = c, kernel size =
4, stride = 2, padding = 1) and (out channels = c ∗
2, kernel size = 4, stride = 2, padding = 1), where
c = 64. A linear layer for mean and another linear layer
for log variance follow the convolutional layers and extract a
distribution of features from the output of the convolutional
layers. A feature is a vector of dimension 32. The decoder
of the VAE reverses the design of the encoder: It consists of
a linear layer and two consecutive convolutional layers. The
input and output dimensions are the reverse of their corre-
sponding encoder layers, other parameters being equal. The
VAE is trained with standard reconstruction loss and KL-
divergence loss: Lossvae = lossrecon +KL-divergence

The VAE’s encoder f serves as a feature extractor for the
C2C-VAE and also as the oracle for novelty. The resnet18



(a) MNIST (b) Fashion-MNIST

Figure 2: Average Samples Constructed by the VAE

classifier can also extract features but the feature space is not
as smooth as that of the VAE.

The C2C-VAE has its own encoder and decoder. Given
a pair of samples, their features are extracted by the VAE
and their class labels are one-hot encoded. The encoder
takes the feature difference and the two class labels as input.
The input is passed to a fully connected RELU layer with
(out features = 32). A linear layer for mean and another
linear layer for log variance follow and extract a distribution
of embeddings, which are of 10 dimensions. The decoder
takes an embedding and the two class labels as input. The
input is passed to two consecutive linear layers to recover a
feature difference similar to the original.

The CVAE has a very similar architecture to the VAE,
except it is modified to be conditioned on the class label.
Specifically, the encoder and the decoder use the same con-
volutional layers, but their linear layers that interact with
features also take in the class labels as extra inputs.

The C2C-VAE can only generate a new sample by adapt-
ing a source sample. We choose an average sample savg (see
Figure 2) from each class C (other than the target class) as
the source sample by the following procedure:

• Select all n samples s1 - sn of the class C;

• Calculate the average of their features avg(Σf(si)) =
(Σn

i=0f(si))/n;

• Use the decoder f ′ to recover the average sample
f ′(avg(Σf(si))).

In addition to the reconstruction loss, both the C2C-VAE
and the CVAE are learning to minimize a KL-divergence
loss with a Gaussian distribution (µ = 0, σ = 1). This
means that they are both trained to project their correspond-
ing input to the Gaussian distribution. Although their inputs
and embeddings carry different meanings (The CVAE takes
input from L1 while the C2C-VAE takes input from L2′),
we note that their embedding distributions are intended to be
the same Gaussian. This also means that we could compare
their performance with regard to the standard deviation std
of the Gaussian. The experimenter can make either model
produce more or less various samples by tuning std, con-
trolling the distribution from which the model is sampling
from. The higher std is, the wider the distribution becomes,
and the generated samples lose value (accuracy) but gain va-
riety. Note that the C2C-VAE can also introduce additional
novelty by altering the source sample, but this comes at a
further cost of stability of the results (discussed in the Dis-
cussion and Future Work section).

(a) C2C-VAE (b) CVAE

Figure 3: MNIST samples generated by the models trained
under normal setting. std = 1. Both models demonstrate
valuable and various samples.

(a) C2C-VAE (b) CVAE

Figure 4: Fashion-MNIST samples generated by the models
trained under normal setting. std = 1. Both models demon-
strate valuable and various samples.

Comparison between the C2C-VAE and the CVAE
Under the Normal Setting Before examining the mod-
els under the GOF/TOM setting, we present some results
under the normal setting to provide a backdrop for compar-
ison. Under the normal setting, all models are trained on
the untrimmed data set. In all figures of generated samples,
column j represents the samples generated for class Cj . In
all the figures of generated samples by the C2C-VAE, un-
less otherwise specified, the (i, j), where i ̸= j, sample is a
sample generated by choosing the average sample of class
Ci, sampling a feature difference from class i to class j,
and applying this feature difference to the chosen sample;
Additionally, the (i, i) sample (on the diagonal) is an aver-
age sample of class Ci. In all the figures of samples by the
CVAE, column j represents samples generated by random
sampling in class Cj .

Figures 3 and 4 illustrate that both C2C-VAE and C-VAE
produce valuable and varied samples. Because the models
have seen various samples of the target class during training,
the variety here is not equivalent to novelty (but it will be in
GOF/TOM evaluation).

Figure 5 illustrates the tradeoff between value (measured



(a) C2C-VAE (b) CVAE

Figure 5: Under the normal setting in MNIST, both C2C-
VAE and VAE trade off accuracy and variance as std is ad-
justed. Results are similar for the normal setting in fashion-
MNIST

by the accuracy of samples generated judged by the oracle
for value) and variety (measured by the variance of the fea-
tures extracted by the oracle for novelty). Under the normal
setting, the two models share similar tradeoffs.

Under the GOF/TOM Setting Our specific implementa-
tion of the GOF/TOM setting trims all samples of a tar-
get class except one average sample. We choose the av-
erage sample to better represent target class. Both CVAE
and C2C-VAE are trained with the trimmed data set. Dur-
ing each training epoch, 10% of the training batch is this
one-shot sample while 90% is randomly chosen from other
samples (CVAE trains on the batch directly while C2C-VAE
trains on pairs from the batch). This design counters the im-
balanced classes caused by trimming. Therefore the CVAE
learns about the target class from only the average sample,
while the C2C-VAE learns from pairs of this sample and
samples of other classes.

In contrast to the figures of generated samples under the
normal setting, the figures presented in this section follow an
additional rule: Column j is generated by models which are
trained under the one-shot setting, where all samples except
the average sample of class j are removed during training.
Because the models have only seen a single sample of the
target class during training, any variety of generated samples
of the target class is equivalent to novelty.

When std = 1, the C2C-VAE generates novel—thus
creative—samples while the CVAE can only generate simi-
lar samples, as shown in Figures 6 and 7.

Figures 8 and 9 illustrate the tradeoff between value (mea-
sured by the accuracy of samples generated judged by the
oracle for value) and novelty (measured by the variance of
the features extracted by the oracle for novelty). C2C-VAE
exhibits an accuracy and variance tradeoff as std is tuned.
For a given level of variance, CVAE needs a bigger std
change at a bigger cost of accuracy than C2C-VAE. For ex-
ample, CVAE needs std = 4 to gain the same variance as
C2C-VAE for std = 1 in MNIST, and std = 4.5 to gain the
same variance as C2C-VAE (std = 1) in fashion-MNIST.
When std is so high, the quality of the images is very poor,
as shown in Figure 10.

(a) C2C-VAE (b) CVAE

Figure 6: MNIST samples generated by the models trained
under one-shot setting. std = 1. Intuitively, C2C-VAE gen-
erates more creative samples.

(a) C2C-VAE (b) CVAE

Figure 7: Fashion-MNIST samples generated by the models
trained under one-shot setting. std = 1. Intuitively, C2C-
VAE generates more creative samples.

Discussion and Future Work
Conditions for Success of the C2C-VAE Method
The applicability of the C2C-VAE method depends on three
conditions: (1) There exists a VAE that can extract features
of samples, (2) there exists a C2C-VAE that can extract em-
beddings of feature differences of two classes, and (3) the
generated feature differences can be applied to a chosen
sample. Condition (1) depends on properties of VAEs and
is beyond the scope of this paper.

Condition (2) can fail if the feature differences between
two classes do not conform to a single pattern. When two
classes each have wide distributions, the difference between
the two distribution can have very high variation, decreasing
effectiveness of the C2C approach (Ye 2018b). For exam-
ple, drawings in the Quick, Draw! dataset vary considerably
within classes. For example, a cat or dog may be drawn with
a head only, or with a body, or with limbs and a tail.

Even if condition (2) holds, C2C-VAE can be sensitive to
the choice of source sample, causing the failure of condition
(3). C2C-VAE can generate creative samples by generating
from different source samples, while at the risk of generating
bad samples (see Figure 11).



(a) C2C-VAE (b) CVAE

Figure 8: Under the one-shot setting in MNIST, C2C-VAE
can trade off accuracy and variance when std is tuned. For
a given level of variance, CVAE needs a bigger std change
at a bigger cost of accuracy than C2C-VAE.

(a) C2C-VAE (b) CVAE

Figure 9: Under the one-shot setting in fashion-MNIST,
C2C-VAE can trade off accuracy and variance when std is
tuned. For a given level of variance, CVAE needs a bigger
std change at a bigger cost of accuracy than C2C-VAE.

In the procedure for generating new samples using C2C-
VAE, the choice of a source sample si and the choice of a
feature difference embedding and its subsequently induced
feature difference f ′

∆ are currently two independent choices.
There could (and perhaps even should) exist some depen-
dency between the two choices. As a future direction, both
conditions (2) and (3) may be resolved by conditioning the
C2C-VAE on the source sample.

Relationship to CycleGAN
C2C-VAE and CycleGAN are completely different tech-
niques but share many foundational assumptions. Cycle-
GAN assumes a pattern between two classes and trains
translation functions (generators) on all possible pairs be-
tween two classes to learn it. The reconstruction loss of
C2C-VAE (that the feature difference can be recreated) cor-
responds to the cycle-consistency loss of CycleGAN (that
the sample can be recovered). The reconstruction loss of
the VAE which C2C-VAE depends upon for feature extrac-
tion (a realistic sample can be reconstructed from a feature)
corresponds to the adversarial loss of CycleGAN (the recov-
ered sample is realistic). The two models are similar in their
foundations, but C2C-VAE works with the space L2′ while
CycleGAN works with the space L1 (and arguably L2).

GOF/TOM can benefit from GAN. In its current design,
the oracle for value often classifies a generated sample confi-
dently with high activation score even if it is of poor quality
by human perception. As a future direction, the oracle might

(a) MNIST (std = 4) (b) Fashion-MNIST
(std = 4.5)

Figure 10: To gain variance, CVAE requires greatly in-
creases std, sacrificing quality of generated samples

(a) Generated by Modifying
Average Samples

(b) Generated by Modifying
Random Samples

Figure 11: If the source samples are randomly selected,
C2C-VAE might generate bad samples. Here std = 0, so
variance is solely due to the choice of source samples.

be integrated with a discriminator of GAN to better distin-
guish poor samples.

Conclusion
Creativity from Inter-Class Patterns

Network-based models provide exciting mechanisms for
modeling creativity in AI systems. Existing work on gen-
erative methods for creativity can be seen as oriented pri-
marily towards the conceptual space of samples, while C2C-
VAE exploits the relationship between samples. If existing
approaches look at the foreground of conceptual space L2,
C2C-VAE looks at the background L2′, in order to bring
that background to bear as additional information to facil-
itate creative sample generation in one-shot settings. The
presented experiments support that for a creative image gen-
eration task, C2C-VAE can achieve high novelty—variance
in generated samples—while maintaining accuracy.
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