
BIPLEX: Creative Problem-Solving by Planning for Experimentation

Vasanth Sarathy1* and Matthias Scheutz2
1SIFT, LLC

2Tufts University
vsarathy@sift.net, matthias.scheutz@tufts.edu

Abstract
Creative problem-solving in humans often involves real-
world experimentation and observation of outcomes that then
leads to the discovery of solutions or possibly further exper-
iments. Yet, most work on creative problem-solving in AI
has focused on solely mental processes like variants of search
and reasoning for finding solutions. In this position paper, we
propose a novel algorithmic framework called BIPLEX that
is closer to how humans solve problems creatively in that
it involves hypothesis generation, experimentation, and out-
come observation as part of the search for solutions. We in-
troduce BIPLEX through various examples in a baking do-
main that demonstrate important features of the framework,
including its representation of objects in terms of proper-
ties, as well its ability to interleave planning for experimenta-
tion and outcome evaluation when execution impasses are de-
tected, which can lead to novel solution paths. We argue that
these features are essentially required for solving problems
that cannot be solved by search alone and thus most existing
creative problem-solving approaches.

Introduction
Suppose you need to tighten a screw but do not have a screw-
driver. Among the available objects you can use are a coin
and pliers. After short reflection, you grip the coin with
the pliers turning the “pliers-cum-coin” combination into
a makeshift screwdriver. Psychologists call this “creative
problem-solving” (Maier 1930).

While this solution might have been easy for you, it would
have been much more difficult for a novice or a child, and
practically impossible for current state-of-the-art AI sys-
tems. There several reasons for this difficulty. For one, an
agent would need to determine the relevant properties of a
screwdriver that makes it the appropriate tool to operate on
screws: that it has a flat tip that fits into the screw’s slot, and
that the fit is tight enough so that if the screw driver were
rotated, the screw would rotate with it, in addition to not-
ing that a rotational downward movement is needed with a
certain amount of force and that the screwdriver provide a
handle that makes gripping it and applying the force easier.
This analysis of the properties of the screwdriver can then
guide the search for objects and their properties that could
be used as a substitute. While one important insight is to
notice that the coin has the property of fitting tightly into the
slot, it does not have the property of providing enough of a

grip to apply the necessary forces to generate the required
rotational movement. The additional insight then is that the
pliers which has a much better handle can be used to grip
the coin tightly and thus establish a rigid connection so that
when the pliers is turned and push downward, the coin is
equally turned and pushed downward, turning the screw.

From the example it should be apparent why current sys-
tems cannot perform such feats: they would have to integrate
detailed perception and affordance inferences with common
sense knowledge, property-based analysis and planning, hy-
pothetical reasoning and simulation, and potentially exper-
imentation and on-the-fly learning (e.g., how to best grip
the coin). While providing a system that can do all of the
above is unrealistic at this point, we can nevertheless make
progress by focusing on important constituents of such as
system. This is what we set out to do for this position paper,
namely take a fresh look a planning for crafting objects like
make-shift tools based on object properties.

We will introduce a novel planner called BIPLEX which
has several important properties for this type of creative
problem-solving: (1) it represents objects in terms of their
properties and affordances, and can thus (2) handle unknown
objects to the extent that it can capture them in terms of
known properties, and most importantly, it can plan to craft
novel objects based on property requirements. We demon-
strate how BIPLEX can handle goals involving the crafting
of novel objects based on property specifications. While for
most planners a direct comparison to BIPLEX is not possi-
ble (because they cannot handle properties or unknown ob-
jects), we sketch out how even for goals that regular plan-
ners like Fast-Forward (FF) (Hoffmann 2001) can handle,
BIPLEX can lead to significant speedups. Finally, we con-
clude by discussing some limitations of BIPLEX as well as
future research questions in creative problem-solving.

Background and Related Work
Problem solving in humans typically involves deliberate
and conscious processing that advances a solution step by
step. Insight, on the other hand, is believed to involve
a “sudden” and unexpected emergence of an obvious so-
lution or strategy sometimes accompanied by an affective
“Aha!” experience which is why solvers often find it diffi-
cult to consciously explain how they generated a solution
in a sequential manner. MacGregor et al. proposed the



Criterion for Satisfactory Progress Theory (CSPT), which
is based on Newell and Simon’s original notion of prob-
lem solving as being a heuristic search through the prob-
lem space (MacGregor, Ormerod, and Chronicle 2001).
The key aspect of CSPT is that the solver is continually
monitoring their progress with some set of criteria. Im-
passes arise when there is a criterion failure, at which point
the solver tries non-maximal but promising states. Ohls-
son et al.’s Representational Change Theory (RCT), on the
other hand, suggests that impasses occur when the goal
state is not reachable from an initial problem representa-
tion (which may have been generated through unconscious
spreading activation) (Ohlsson 1992). To overcome an
impasse, the solver needs to restructure the problem rep-
resentation through (1) elaboration (noticing new features
of a problem), (2) reencoding (fixing mistaken or incom-
plete representations of the problem), and (3) changing con-
straints (believed to involve two sub-processes of constraint
relaxation and chunk-decomposition). Ollinger’s extended
RCT is a dynamic and iterative or recursive process that
involves repeated instances of search, impasse and repre-
sentational change (Oellinger, Jones, and Knoblich 2014;
Oellinger et al. 2017): a solver first forms a problem rep-
resentation and begins searching for solutions; when an im-
passe is encountered because no solution can be found, the
solver must restructure or change the problem representation
and once again search for a solution, thus combining heuris-
tic searches, hill climbing and progress monitoring with cre-
ative mechanisms of constraint relaxation and chunk decom-
position to enable restructuring.

Another related theory of creative problem solving views
insight as the retrieval of an analogy from long-term memory
using spreading activation (Langley and Jones 1988). This
view depends on having sufficient prior experience and thus
knowledge encoded such that an analogical mapping can be
established.

Different from the above proposals, we are making the
core claim that creative problem solving is not just a mental
exercise, one that can be approached with “searching” some
problem space alone, but that is essentially involves experi-
mentation when impasses due to knowledge limitations are
reached (e.g., when no plan for goal accomplishment can
be found or when the execution of a plan fails with no ex-
planation for what went wrong). Only through formulating
hypotheses that lead to new experiments and observation of
the outcome of these experiments is it possible for an agent
to augment its knowledge base with novel facts about ob-
jects, their properties, and their affordances, which, in turn
can be used by the planner to find different routes to the goal
states.

The view that creative problem solving requires the exten-
sion of one’s concepts has be echoed recently by (Gizzi et
al. 2020) who define creative problem solving as “the pro-
cess by which the agent discovers new concepts that were
not in the initial conceptual space of the agent, allowing it
to accomplish a previously impossible goal.” Yet, their pro-
posal only involves combinatorial methods (combining ex-
isting concepts), transformational methods (changing con-
ceptual representations), and exploratory methods (search-

ing the concept space). As we will show below, these meth-
ods are insufficient for discovering solutions to even simple
problems without experimentation.

(Freedman et al. 2020) use analogical reasoning to find a
substitution for a missing resource that is needed in a plan
that accomplishes the goal. However, all knowledge about
potential resource substitution candidates needs to be pro-
vided to the planner in order to accomplish the reasoning,
there is no discovery of potential resource candidates in-
volved. Analogical reasoning is solely used to find candi-
dates that are close in property structure. In contrast, our
approach hypothesizes potential substitutions based on com-
mon properties (which could be based on analogical reason-
ing as well) and devises experiments to test whether they, in
fact, have the desired properties. Consequently, it does not
require advance knowledge about all possible substitutions
but it can discover them.

The approach closest to our approach of planning exper-
iments to learn more about the domain is (Lamanna et al.
2021) which attempts to learn the actions and thus operators
in a planning domain under certain assumptions about the
structure of pre- and post-conditions in a deterministic set-
ting. The algorithm starts with a set of given operators but
without any knowledge about their pre- and post-conditions
and systematically performs experiments to determine the
exact conditions. This is done by initially starting with a set
of pre-conditions consisting of all atoms that can be formed
using a set of variables and predicates and an empty set of
post-conditions for all operators, observing the outcome of
performing an applicable operator in the current state and
updating the pre- and post-conditions based on what is true
in the predecessor and the successor states. However, their
learning algorithm does not deal with transformative actions
that change the objects in the planning domain, nor does it
deal with property representations of objects in pre- or post-
conditions, and hence cannot learn object substitutions in
actions as it requires constants denoting all objects ahead of
time. Moreover, since the goal is to learn the complete do-
main model, it does so without any particular preference for
a given operator or particular state; all that matters is that
the planner pick a state to explore that could potentially re-
fine the pre- and post-conditions and as long as such states
exist that the planner can get to using a finite state machine
model of the domain it has learned so far that has a state
size exponential in the number of facts, i.e., grounded pred-
icates – clearly that latter makes this approach intractable
for domains with a large number of objects. In contrast, our
approach explores only those actions that could advance its
goal to produce objects that are not available and thus does
is not impacted by large numbers of objects in the domain.

Another related experimentation system implemented on
a robot focuses on finding matching objects that can be used
for creating tools based on a set of given reference tools
(Nair et al. 2019). While this approach does not discover
the tool per se or infers properties of tools needed, it demon-
strates how an embodied agent could use its perceptual ap-
paratus to determine properties of objects that are similar
enough to desired properties, use those objects to assem-
ble tools and evaluate those tools on actions that use them.



As such, our planner would be synergistic with the robot
system in that it would provide the robot with tool prop-
erties that the robot can then assemble and evaluate, i.e.,
the robot would function as the experimenter carrying out
the actions proposed by our planner in order to determine
whether the resulting objects have the desired properties.
More recently, there have been advances, in the robotics
domain, for finding object substitutions based on properties
(Fitzgerald, Goel, and Thomaz 2021). This work proposes
the use of constraints (tool shape, segments, and visual fea-
tures) that will be useful in exploring and evaluating other
potential tool candidates. The approach suggests the discov-
ery of new tools, however, what is missing then is building
on this knowledge to compose and construct new tools using
available resources.

The general idea of learning domain knowledge through
experimentation is not new, and certainly not being claimed
as such in this paper. Early work in the symbolic AI lit-
erature explored how agents can adjust and improve their
symbolic models through experimentation. Gill proposed a
method for learning by experimentation in which the agent
can improve its domain knowledge by finding missing op-
erators (Gil 1994). The agent is able design experiments
at the symbolic level based on observing the symbolic flu-
ent states and comparing against an operator’s preconditions
and effects. Other approaches (to name a few: (Shen 1989;
Shen and Simon 1989; Mitchell, Keller, and Kedar-Cabelli
1986; Yang, Wu, and Jiang 2007; Aineto, Jiménez, and
Onaindia 2019; Cresswell, McCluskey, and West 2013;
Hogg, Kuter, and Munoz-Avila 2010; Sussman 1973)), com-
prising a significant body of literature, have explored learn-
ing from experimentation, recovering from planning fail-
ures, refining domain models, and open-world planning. Re-
cently, (Musliner et al. 2021) proposed a planning system
capable of hypothesis generation, model-modification and
evaluation using a library of domain-independent heuristics
useful to help agents accommodate novelties in the environ-
ment. What is missing from these approaches is a solution
for handling transformative actions (like object construction
or crafting) where new object types are generated during ex-
ecution, which are then needed to solve the problem at hand.
As we saw in the coin-plier example presented earlier, and as
we will demonstrate in the rest of the paper, selecting object
substitutions, composing them together to generate entirely
new types of objects and reasoning about these compositions
to re-plan and revise execution is needed for creative prob-
lem solving.

Introducing BIPLEX
In this section we introduce our novel BIPLEX (bind types,
plan and execute) approach to creative problem-solving.1
Rather than starting with abstract principles, we will mo-
tivate its core ideas and ways to solve problems by work-
ing through examples in a baking domain. We selected the
baking domain because it is a familiar domain with a com-
bination of navigation, manipulation and transformative ac-

1BIPLEX has been fully implemented and the code can be found
at: https://github.com/vasanthsarathy/biplex

tions involving mixing items to produce new products, thus
allowing ample room for creativity through creating novel
products and resourceful substitution of unavailable items.
Tracing through the operation of BIPLEX then will show the
synergistic effects of (1) open-world property-based plan-
ning and (2) experimentation through plan execution with
subsequent (3) rule learning, plan refinement and replanning
based on the outcome of hypothesized experiments. In ad-
dition to highlighting the involved principles, we will also
point the technically interested reader to place in the pseudo-
code that accomplish the various steps in the process.

We start with a departure from the classical planning
framework in how we represent objects by allowing object
definitions in terms of functional and material properties (the
reason for this will become clear in a bit). In the baking do-
main this means that we will describe the various baking in-
gredients such as eggs, egg whites, sugar, flour, etc. as well
as utensils such as bowls, spoons, frying pans, etc. in terms
of their defining properties (but critically without attempt-
ing to give sufficient conditions, only necessary ones for
the baking domain). For example, we might describe “egg
yolks” as “yellow and liquid and containing fatty acids” and
“egg whites” as “transparent and liquid and containing pro-
tein” (leaving out the color as they are transparent).2 Sim-
ilarly, we might describe actions in terms of pre-conditions
ensuring applicability, action signature (i.e., the action to-
gether with its arguments), and the expected post-conditions
when execution succeeds.3

Now consider a goal for the agent to make egg batter,
an important step in pancake-making. Egg batter, in our
environment is a class of objects of type yftl.4 Unlike
most classical planners, BIPLEX allows for specifying lifted-
goals5 of the form (have ?x-yftl), with variable and
type declaration. Such a goal can be satisfied if there exists
a literal in the current state that evaluates to true, where the
literal’s name unifies to the name of the goal and the literals
argument is a constant that has the same type or subtype6

as that specified in the goal. Most classical planners require
a grounded goal, which means, the agent would need to in-
stantiate the constant associated with a desired type, which,
in turn, means the agent would need to, apriori, instantiate
all the types it might be able to craft, in case, it will later
need to plan to craft one of those. This becomes intractable
very quickly, once one realizes that in many real-world set-
tings, there are many instances of each object type – many
tomatoes, many teaspoons of sugar, etc. We will explore
various cases, each of increasing difficulty to describe some
of the capabilities of BIPLEX .

2We can represent each property with a single character, e.g.,
“y” for yellow and “t” for protein and “f” for fatty acids

3This is generally how domains are represented in classical AI
planning.

4A “type” in our formulation is merely a sequence of characters,
each specifying a property.

5“lifted” here means goals that do not have grounded constants
in their terms, but instead have variables

6Subtypes might be represented as a type hierarchy provided to
planners to facilitate variable binding



Problem-Solving with Transformative Actions
Consider the goal, (have ?x-yftl) corresponding to egg
batter. Let us assume that the BIPLEX agent has all the re-
sources it needs to make egg batter yftl. That is, it has the
domain specification7 that contains several navigation and
manipulation actions along with several transformative ac-
tions like the following (variables start with a “?” and itali-
cized, types are in bold, action names are in bold and italic):
(:action mixeggbatter1

:parameters (?y - yftl ?x1 - yfl ?x2 - tl ?x3 - wl

?z - rmc)

:precondition (and (have ?x1) (have ?x2) (have ?x3)

(have ?z))

:effect (and (have ?y) (not (have ?x1))

(not (have ?x2)) (not (have ?x3)) ))

This action mixeggbatter1 requires the agent to have in-
gredients of type yfl (egg yolk), tl (egg white), wl (milk),
and an object of rmc (bowl) to mix the ingredients. At the
completion of then action, the ingredients are consumed (ex-
cept the bowl) and the agent is left with an egg batter object
yftl. This action is a “transformative action” in the sense
that a new object type is created and some ingredients are
consumed and cease to exist as objects in the problem space.
The agent may need to sequence a plan to find and collect
these ingredients and therefore must interleave navigation
and manipulation with mixing or crafting. To achieve this
goal with a state-of-the-art classical planner (like FF (Hoff-
mann 2001)), we would need to instantiate all constructable
objects, which in this case includes generating a constant
symbol for the egg batter. An FF agent would need to also
ground the goal to this constant object, and then proceed to
generating a complete plan before it can begin any execu-
tion. The FF agent, thus begins with an domain specifica-
tion and a problem specification8 with all possible constants
of all possible types and a grounded goal. In most classi-
cal offline planning scenarios, execution does not begin until
the FF agent has ground all the variables from all the types,
completed planning and produced a plan.

Like the FF agent, the BIPLEX agent is also given a do-
main (action schema) specification containing navigation,
manipulation and transformative actions. However, unlike
the FF agent, the BIPLEX agent is not given a complete prob-
lem specification. Instead, we embed the agent in an envi-
ronment allowing it to plan and execute in an interleaved
manner. The agent scans the environment and observes ob-
jects present in the current initial state along with their re-
spective types. Note, the agent cannot observe objects with
types that have not yet been generated by transformative
actions. So, initially, the BIPLEX agent does not observe
eggbatter1 as it does not yet exist. In addition to a do-
main specification, the BIPLEX agent is also provided a lifted
goal (have ?x-yftl).

From the domain specification, the BIPLEX agent gen-
erates (1) a stripped-down domain specification, and (2) a
tree with nodes representing inputs and outputs of the trans-
formative action and nodes representing the name of the

7This is a PDDL 1.2 representation of an action schema usually
contained in a domain.pddl file that is provided to a planner.

8Also provided to the planner as a problem.pddl file

transformative actions. The stripped-down action schema
contains all the transformative action schemas, but stripped-
down to only contain their output types, any preconditions,
and any types that the agent believes will not be trans-
formed by the action. For example, the mixeggbatter1 will
be stripped-down to hyp-mixeggbatter19 :

(:action hyp-mixeggbatter1
:parameters (?y - yftl ?z - rmc)
:precondition (and (have ?z))
:effect (and (have ?y) )

The BIPLEX agent first grounds the lifted-goal with
a gensym, a hypothetical constant symbol (e.g., (have
hyp-yftl-a9b88541)), and then generates a problem
specification based on information it can observe from the
initial state. It then attempts to generate a “plan sketch”
using the stripped-down domain specification and problem
specification (line 12, Algorithm 1). The agent can do this
at very low computational cost as the stripped transforma-
tive actions have far fewer parameters and no precondi-
tions. Moreover, using the stripped-down domain allows BI-
PLEX to reason about transformative actions that have ingre-
dients that themselves are products of other transformative
actions. Without any preconditions, BIPLEX can essentially
generate a list of resources and intermediate products it will
need, a shopping list of sorts, if you will. If the plan sketch
does not contain any stripped-down actions or any hypothet-
ical constant symbol names, the BIPLEX agent simply exe-
cutes the plan (lines 14-16, Algorithm 1). This occurs when
the actions are primarily navigational or involve manipula-
tion. If, however, the plan contains hypothetical symbols or
transformative actions, it will turn to the crafting tree to con-
struct the types it needs (lines 25-35, Algorithm 1). Instead
of having to apriori generate all the constants for all possible
types as is required for FF, BIPLEX only generates symbols
for types as and when it needs them. At the crafting tree,
it finds the type that it needs to construct, then traverses the
crafting tree to find the associated transformative action and
its linked input ingredients.

BIPLEX uses two operations – PROVE (Algorithm 2) and
GROUND (Algorithm 3) – to bind types to ground con-
stants as it traverses the crafting tree. In our running ex-
ample, the BIPLEX agent will find a plan-sketch (Algo-
rithm 1): (pickup bowl1)10 and then (hyp-mixeggbatter1
hyp-yftl-a9b88541 bowl1).11 This two-step plan-
sketch cannot be executed as there are hypothetical con-
stants as well as stripped-down actions. The agent will at-
tempt to “prove” the existence of an object of type yftl
by “grounding” any action that is a predecessor to type
yftl in the crafting tree, namely any action that con-
structs yftl (line 2, Algorithm2). In this example, we

9We adopt the convention of representing stripped-down action
names with the prefix “hyp-”

10We use LISP notation as is customary in AI planning for rep-
resenting actions with action name followed by parameters within
a list

11As part of Stanford’s MOLGEN project, Mark Stefik echoed
the idea of generating relevant “skeletal plans and then refining
them” (Stefik 1981).



only have one action mixeggbatter1, and so the agent will
attempt to “ground” it. Grounding an action in the craft-
ing tree involves (recursively) proving all of its predeces-
sor types (lines 2-10, Algorithm 3). Here, the action has
several predecessor types (which are the input ingredients
to the mix action) including yfl (egg yolk), wl (milk)
and tl (egg white). For each of these resources, BI-
PLEX will interleave planning and execution to first ac-
quire milk by planning and executing (gofromto bowl1
milk2), (pickup milk2), and then planning and execut-
ing (gofromto milk2 yolk2), (pickup yolk2), and then
(gofromto yolk2 eggwhite2), (pickup eggwhite2).
As it acquires each ingredient it proves the corresponding
type node in the crafting tree. Upon proving all the prede-
cessor nodes of the action, the BIPLEX agent then is ready
to perform the transformative mix action itself (lines 11-
26, Algorithm 3). To do so, it generates a new domain
specification containing the navigation and manipulation ac-
tions along with a single, fully specified transformative ac-
tion, which in this case is mixeggbatter1. The agent gen-
erates a new planning problem specification with the goal
of (have ?x-yftl). Remember, the agent still needs a
bowl, which it will acquire next. Upon completion of this
plan, a new constant appears in the agent’s observations
(eggbatter1) and several other constants disappear. We
perform some bookkeeping to replace the hypothetical sym-
bol for eggbatter with the one from the environment, as well
as removing objects that were consumed. We maintain a
strict separation of the agent and the environment, so the
agent does not know about an object unless it is perceivable
in the environment.

The approach of breaking down the problem is more in-
tuitive, allowing for not only easier debugging, but also sig-
nificantly faster performance. This is the case, because each
planning instance during grounding only contains a single
transformative action along with other navigational and ma-
nipulation actions. Moreover, only those types are instanti-
ated that are needed per the crafting tree.

Next we will explore the benefit of representing classes
of objects or types as a conjunction of properties. We have
alluded to this earlier that creative problem-solving involves
reasoning about object properties themselves. We will next
discuss how this reasoning process can be computational-
ized.

Creative Problem-Solving with Hypothesis
Generation and Testing
Thus far, we have shown that BIPLEX can solve problems
that classical planners can also solve, but BIPLEX solves
them faster and is able to handle transformative actions as
well as lifted specifications more naturally. We now turn to
discussing how BIPLEX is also creative. Continuing with our
running example, consider what happens if there is no egg
yolk. Classical planning systems like FF would fail as no
plan exists given the domain and problem – without yolk, the
agent cannot make egg batter. Using findings from human
problem-solving we propose that the agent should consider
other objects with similar, possibly overlapping properties.
We operationalize this creative mechanism as follows.

In addition to PROVE and GROUND, BIPLEX agents have
the ability to PLAY that is, “hypothesize” and “test” resource
substitution ideas. At the core of this capability is the abil-
ity to track object properties. The key idea here is that the
BIPLEX agent is able to compose available types to generate
ideas for new novel types. The agent does not know, apriori,
if these combinations will work or even if relevant proper-
ties will persist after combination. The best an agent can do
is assume that certain properties exist and experiment and
make discoveries. Based on the result of the experiment, the
agent is able to gain additional knowledge with which to de-
rive improved future hypotheses. We will now walk through
an example of how the BIPLEX agent accomplishes this task.

First, consider simpler goal of having a egg yolk (have
?x-yfl) when there isn’t any available in the environ-
ment. Moreover, there is no transformative action available
to make egg yolk. As noted earlier, BIPLEX will first try
to generate a plan-sketch using the stripped-down domain
specification (Algorithm 1). However, the planner will fail,
as we might expect. Upon failure, BIPLEX will enter “cre-
ative mode” and first attempt to hypothesize different ways
it can compose together objects (lines 18-24, Algorithm 1).
BIPLEX does this by generating a set of available interesting
types. This is a set of types, where each type (which is rep-
resented as a conjunction of properties) intersects with the
target type yftl in terms of properties. Thus, if the envi-
ronment contained the following objects: milk wl, water l,
yogurt wftl, applesauce yf then these would all be inter-
secting types as they contain one or more properties that are
also properties in our target type yftl. BIPLEX then gener-
ates a power set of these intersecting types (line 1, Algorithm
4). Each element of the power set represents a possible com-
position of multiple types that, in theory, could be combined
to generate the target type. BIPLEX also filters this power set
to only include those elements that when combined possess
all the properties of the target type. Thus, yogurt and apple-
sauce together have at least the properties y-f-l, and so are
included. However, yogurt and water together do not have
the property “y”, so this composition is not included in the
power set. This filtered power set is a complete set of hy-
potheses available to the BIPLEX agent to experiment with.

For each hypothesis in the set of candidate hypotheses,
BIPLEX generates a novel (generic) action (let’s call it mix1)
that is intended to serve as a generic template with which to
allow the agent to try to mix objects. not sure how to do this
generally. The agent uses this template to generate a domain
and problem specifications to allow it to plan and execute
the particular experiment (lines 10-12, Algorithm 4). Upon
completion, BIPLEX reviews the new state and compares it
against the previous state. It declares the experiment a suc-
cess if the new state contains an object of a novel type that
did not exist in the prior state. To compare states, the agent
inspects the type signature (conjunction of properties) of this
novel type to ensure that it possesses all the desired proper-
ties of its target type yfl.12 If so, the hypothesis-testing

12It is worth noting that we are assuming that the agent can ob-
serve all the types be it directly or indirectly via inference or mea-
surement instruments.



phase is declared complete, and the agent returns to generat-
ing plan-sketches followed by planning, crafting and execu-
tion as described earlier. When the agent discovers the new
type, it does not yet know if this will be all it needs for the
rest of the plan. If it encounters another impasse (say a miss-
ing resource), it will revisit hypothesis-testing then to trou-
bleshoot and make new discoveries. Now, if after perform-
ing the experiment, the agent does not observe a state change
(i.e., no new types were constructed), the agent will try the
next hypothesis. If none of the hypotheses work, the agent
will give up and end problem solving. It is conceivable, al-
though we have not implemented this capability, this may be
when and where the agent will need to discover or consider a
new property of the environment. Human creative problem-
solving involves this capability, and often solutions to in-
sight problems are found when a property is found to be rel-
evant, but previously thought to be irrelevant (Sarathy 2018;
Sarathy and Scheutz 2018). The classic example of this is
the three-bulb insight problem in which the solver must dis-
cover an unexpected property of the light bulb to solve it.

Thus, in our example of having egg yolk, the agent found
79 hypotheses, tested two of them before it found one that
works. First it considered combining yogurt wftl and oil
ly. While these two when combined possess all the proper-
ties of egg yolk yfl, when tested, there is no observed state
change. The reason for this is that in our testing environ-
ment, we did not encode any new type for combining these
two elements. The agent was not told this apriori, but instead
discovered it during hypothesis testing. The next hypothesis
the agent tried was to combine yogurt wftlwith applesauce
yf. When tested, the BIPLEX agent discovered that it pro-
duces a new type, ylft, which is really a wet batter without
any eggs. The agent declares success here because ylft
contains the properties “y”, “f” and “l”, which was what de-
fined egg yolk, the target type. Now, clearly this is not the
same as egg yolk and it might seem a bit strange to call this a
success, however, it is worth noting that in this example, we
did not equip the environment with any dynamics for mak-
ing egg-yolk. So, the agent found the best answer with the
resources it had on hand. What is particularly interesting
about this new type ylft is that it contains the same prop-
erties (in a different order) as egg batter. The agent might
have discovered this as a substitute for egg batter if it were
planning to make pancakes and not just egg yolks, is that
this new type allows it to skip the step of making egg batter
and move to the other steps of pancake making. This would
simplify the agent’s planning and execution as it would not
need to seek out and acquire all the other ingredients for
making egg batter as it already has what it needs, a discov-
ery it made while making something else, namely egg-yolk.
We next discuss how the agent might creatively make egg
batter with no egg-yolk if it did not make this discovery.

Consider the goal of having egg batter (have
?x-yftl), as we discussed previously. Unlike when
we trying to make egg yolk, here, the initial attempt at
generating plan-sketch will not fail. The agent will generate
a plan-sketch: (pickup bowl1), (hyp-mixeggbatter1
hyp-yftl-ac7adcdf). Realizing it needs to construct
an object of type yftl, it will search the crafting tree.

The crafting tree indeed has a node for egg batter, which
it will traverse and identify the ingredients needed, the
first of which is milk wl. The agent will then plan and
execute to go and get milk. Once it does that the next
ingredient for the agent is to acquire egg yolk yfl. As
we mentioned above, since there is no egg yolk, the agent
will enter creative mode, generate hypotheses (79), try and
experiment until it finds one that works. Let’s say the one
it finds is combining water l and applesauce yf to thereby
generate diluted applesauce lyf. At this point, we know
that diluted applesauce is not the same as egg yolk and
is only potentially a viable substitute for it in egg batter.
But, the agent marches on and continues the process of
making egg batter and plans and acquires egg whites tl.
Once it has “proved” all the ingredients or predecessors to
the action node mixeggbatter1, it is ready to “ground” the
action, and “prove” the type yftl for egg batter. However,
this plan will fail because it cannot make egg batter with
diluted apple sauce. At this point, the BIPLEX agent
once again enters creative mode to find a substitute for egg
batter. Amongst the many hypotheses, one that works is
one that requires the use of the newly created diluted apple
sauce to make non-egg egg batter ylft. The agent then
declares success in making a substitute and ends problem
solving. Again, this may not be a viable substitute for
downstream use, but in this particular instance of making
no-egg-yolk-pancakes, this substitute works just fine.

Thus far we have discussed creative resource substitu-
tion, when an agent is attempting to acquire a known type,
say egg batter or egg yolk. These are types listed in the
agent’s own domain, and types for which the agent has do-
main knowledge about the types of actions that can per-
formed with them and the fluents that apply to them. How-
ever, the approach underlying BIPLEX can be used to pur-
sue previously unknown goals. For example, if the agent is
tasked with making diluted applesauce lyf or even making
no-egg-yolk egg batter ylft or no-egg-yolk egg pancake
vaftuy. The planning, execution, constructing, hypothesis
generation and testing proceeds just as described before.

It should now be clear why we need to use properties to
represent object types instead of using those types them-
selves, or at the very least properties in additions to types;
for without explicit property representation we would not
be able to formulate the kinds of hypotheses we need in or-
der to handle novel situation and learn substitutions through
experimentation. It will also not be able to find plans that ul-
timately require the creation of novel objects or substances.

Discussion and Limitations
As we discussed earlier, most existing work, particularly
in AI, approaches creativity and creative problem-solving
as a mental search problem for possibilities and associa-
tions. This view, however, neglects the critical role of real-
world experimentation and its potential for gaining insight
from observations during the experimentation process. As
(Sarathy 2018) has noted, there is evidence in human neu-
roscientific studies that the environment, and the human’s
interaction with the environment is crucial to the creative



Algorithm 1: SKETCH()
Input: goals {global variable}
Input: completed {global variable}
1: while ∃ goals do
2: goal← goals.pop()
3: if goal ∈ s0 then
4: completed.append(goal)
5: return True, s0
6: end if
7: if goal ∈ completed then
8: return True, s0
9: end if

10: objects← observe-objects()
11: P ← construct-problem(goal, s0, objects)
12: π ← plan(Σ∗,P)
13: O∗ ← is-executable(π)
14: if π ̸= ∅ and O∗ = ∅ then
15: completed.append(goal)
16: return execute(π)
17: end if
18: if π = ∅ then
19: status, s1 ← play(goal)
20: if status = False then
21: return False, s0
22: end if
23: return True, s1
24: end if
25: if O∗ ̸= ∅ then
26: objects← get-objects-to-construct(O∗)
27: for object ∈ objects do
28: type← get-type(object)
29: status, s1 ← PROVE(type)
30: if status = False then
31: return False, s0
32: end if
33: end for
34: return True, s1
35: end if
36: return False, s0
37: end while
38: return True

process. For new knowledge needs to enter the mind some-
where and we claim that this interaction with environment
must be interleaved with mental search and reasoning pro-
cesses. Moreover, there is a mutually-supportive aspect
of this relationship between environmental experimentation
and mental search, whereby when the agent notices some-
thing interesting in the environment, it may trigger new men-
tal search and reasoning processes that can lead to new ex-
periments to further understand the observation, and so on.

The BIPLEX approach to planning is thus different from
most existing planning approaches that rely solely on
grounding action schemas to every object provided in a
problem instance and finding a path in the search space to
the goal. Although BIPLEX calls a planner as part of its op-
eration, the planning is limited to small instances enabling
BIPLEX to handle large problem instances with a large num-
ber of objects. Creativity in the real-world involves the abil-
ity to reason about large number of possible objects, ill-

Algorithm 2: PROVE(type)
Input: type {An object type}
Input: tree {global variable}
1: s0 ← observe()
2: actions← get-predecessors(tree, type)
3: if actions = ∅ then
4: return False, s0
5: end if
6: while actions ̸= ∅ do
7: action← actions.pop()
8: status, s1 ← GROUND(action)
9: if status = True then

10: return True, s1
11: end if
12: end while
13: return False, s0

Algorithm 3: GROUND(action)
Input: action {An action name}
Input: tree {global variable}
Input: grounded {global variable}
1: types← get-predecessors(tree, action)
2: for type in types do
3: s0 ← observe()
4: goal← construct-goal-literal(type)
5: goals.push(goal)
6: status, s1 ← SKETCH()
7: if status = False then
8: return False, s0
9: end if

10: end for
11: if action /∈ grounded then
12: grounded.append(action)
13: Σ← create-domain(Σ−, action, tree)
14: type← get-successoraction, tree
15: goal← construct-goal-literal(type)
16: status, s1 ← plan-and-execute(goal,Σ)
17: if status = True then
18: goals.push(goal)
19: return SKETCH()
20: end if
21: status, s1 ← PLAY(goal)
22: if status = True then
23: return True, s1
24: end if
25: return False, s0
26: end if
27: return True, s1

defined problem statements and partial knowledge. These
real-world conditions prevent standard planners from being
easily applied in creative settings. Here, we suggest that
BIPLEX can serve as a “wrapper” over fast state-of-the-art
planners, one that can handle these real-world constraints
more effectively. Moreover, it is unclear how BIPLEX should
decide which properties are relevant to a particular prob-
lem instance. BIPLEX was designed with “fluidity” in mind,
which can be seen in how it dynamically defines and rede-
fines new problem instances as it approaches its goal. This



Algorithm 4: PLAY(goal)
Input: goal
1: combinations← get-intersecting-properties(goal)
2: hypotheses← ∅
3: for comb ∈ combinations do
4: if goal.type ⊆ comb then
5: tree← make-tree(comb, goal)
6: hypotheses.append(tree)
7: end if
8: end for
9: s0 ← observe()

10: for hypo in hypotheses do
11: Σ← create-domain(Σ−,generic,hypo)
12: status, s1 ← plan-and-execute(goal,Σ
13: if status = True then
14: if s0

type
= s1 then

15: continue
16: else
17: completed.append(goal)
18: return True, s1
19: end if
20: end if
21: end for
22: return False, s1

fluidity, however, has many dimensions beyond what we
have already shown: from selection of properties, granular-
ity of representations, and selection of relevant objects to
consider. In future work, we intend to study other dimen-
sions of fluidity as we believe it can help lower complexity
by reducing the particular problem instances for an underly-
ing planner.

A limitation of the current approach is that the agent tries
each hypothesis independent of any prior attempts. It is rea-
sonable to expect that the agent should “learn” from each
experiment and only try hypotheses that are likely to pro-
duce new information. (Lamanna et al. 2021) discuss the
value of this idea in their online planner that learns a plan-
ning domain during execution. One avenue for future work
is to consider how the agent could learn from an experience
and use this knowledge in a different problem. We are not
advocating that creative problem-solving be fully-unguided
exploration. Instead, BIPLEX relies on a predefined set of
relevant properties over which the object types are defined,
and the agent itself is goal-directed, in that we have provided
a planning goal that they agent must reach. We intend to ex-
plore, in future work, different strategies for guided exper-
imentation, hypothesis generation, and representations for
learned and acquired knowledge.

Another limitation is that BIPLEX executes each viable
hypothesis until it finds one that works. However, there may
be other constraints (such as cost, time, availability of ma-
terials, normative and ethical ones) that limit what is doable
and acceptable to experiment with for the agent. In some
cases it may thus be prudent to put a human in the loop and
allow BIPLEX to suggest new ideas and give the human final
decision-making authority as to whether to test a hypothesis
or not, especially if it is likely that the human or even another
agent might already know what will happen. In collabora-

tive settings, the agent may essentially be able to eliminate
hypotheses without even trying them.

BIPLEX generates hypotheses when it must construct
novel types or when it needs to find a substitute to a known
type and it declares success in its hypothesis testing when
it finds a type that has all the desired properties of its tar-
get type. At this point, BIPLEX does not know if the newly
found type will work for the rest of its plan. It is thus possi-
ble that somewhere downstream an action fails as a result of
not having found the right substitute here. In such a case, BI-
PLEX should backtrack and revisit other successful hypothe-
ses, which is currently not implemented.

Finally, BIPLEX assumes, during hypothesis generation,
that a target type must be formed with a combination of other
types that have intersecting properties. However, it is pos-
sible that non-intersecting types produce novel types. Take
for example, combining salt and ice: salt is of type solid-
granular-white and ice is of type solid-cold. When com-
bined, salt melts the ice to produce water which is not a
solid, does not contain granules, is not white and presum-
ably is less cold than ice. So, if the target object is water
of type clear-liquid, BIPLEX would not combine these two.
Clearly, the possibility of combining known types to yield
potentially novel types is an important direction for future
work as it will allow the agent to expand its conceptual basis
(and, of course, is it yet another interesting question of how
the agent would be able to recognize the new type).

Conclusion
In this position we introduced the BIPLEX framework,
a novel approach for creative problem-solving that uses
property-based representations of objects to enable plan-
ning with transformative actions and object substitution in
a tightly integrated hypothesis generation, experimentation,
observation, and adaptation loop. By planning experiments
and performing them to utilizing observations of their out-
comes in the planning process, BIPLEX offers an approach
for problem solving that goes beyond mere search-based
methods and more closely mimics the process of scientific
discovery which essentially involves experiments in the real
world to try out theoretical predictions and confirm or reject
hypotheses. In a next steps, we plan to evaluate the perfor-
mance of BIPLEX and compare it to state-of-the-art planners
to demonstrate that it can better handle large numbers of ob-
jects due to its property-based representations and that it can
solve problems that other planners cannot solve due its abil-
ity to perform experiments.

Author Contributions
Vasanth Sarathy and Matthias Scheutz jointly developed and
wrote the ideas and algorithms in this paper.

Acknowledgements
This work was funded by DARPA grant W911NF-20-2-
0006.



References
Aineto, D.; Jiménez, S.; and Onaindia, E. 2019. Learning
strips action models with classical planning. arXiv preprint
arXiv:1903.01153.
Cresswell, S. N.; McCluskey, T. L.; and West, M. M. 2013.
Acquiring planning domain models using locm. Knowledge
Engineering Review 28(2):195–213.
Fitzgerald, T.; Goel, A.; and Thomaz, A. 2021. Modeling
and learning constraints for creative tool use. Frontiers in
Robotics and AI 8.
Freedman, R.; Friedman, S.; Musliner, D.; and Pelican, M.
2020. Creative problem solving through automated plan-
ning and analogy. In AAAI Workshop on Generalization in
Planning.
Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. In Machine
Learning Proceedings 1994. Elsevier. 87–95.
Gizzi, E.; Nair, L.; Sinapov, J.; and Chernova, S. 2020.
From computational creativity to creative problem solving
agents. In Proceedings of the 11th International Conference
on Computational Creativity (ICCC’20).
Hoffmann, J. 2001. Ff: The fast-forward planning system.
AI magazine 22(3):57–57.
Hogg, C.; Kuter, U.; and Munoz-Avila, H. 2010. Learning
methods to generate good plans: Integrating htn learning and
reinforcement learning. In Twenty-Fourth AAAI Conference
on Artificial Intelligence. Citeseer.
Lamanna, L.; Saetti, A.; Serafini, L.; Gerevini, A.; and
Traverso, P. 2021. Online learning of action models for
pddl planning. In Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence.
Langley, P., and Jones, R. 1988. A computational model
of scientific insight. In Sternberg, R. J., ed., The Nature of
Creativity: Contemporary Psychological Perspectives. New
York, NY: Cambridge University Press. 177–201.
MacGregor, J. N.; Ormerod, T. C.; and Chronicle, E. P.
2001. Information processing and insight: a process model
of performance on the nine-dot and related problems. Jour-
nal of Experimental Psychology: Learning, Memory, and
Cognition.
Maier, N. R. 1930. Reasoning in humans. i. on direction.
Journal of comparative Psychology 10(2):115.
Mitchell, T. M.; Keller, R. M.; and Kedar-Cabelli, S. T.
1986. Explanation-based generalization: A unifying view.
Machine learning 1(1):47–80.
Musliner, D. J.; Pelican, M. J.; McLure, M.; Johnston, S.;
Freedman, R. G.; and Knutson, C. 2021. Openmind: Plan-
ning and adapting in domains with novelty. In Proceedings
of the Ninth Annual Conference on Advances in Cognitive
Systems.
Nair, L.; Shrivastav, N.; Erickson, Z.; and Chernova, S.
2019. Autonomous tool construction using part shape and
attachment prediction. In Proceedings of Robotics: Science
and Systems.

Oellinger, M.; Fedor, A.; Brodt, S.; and Szathmary, E.
2017. Insight into the ten-penny problem: guiding search
by constraints and maximization. Psychological Research
81(5):925–938.
Oellinger, M.; Jones, G.; and Knoblich, G. 2014. The
dynamics of search, impasse, and representational change
provide a coherent explanation of difficulty in the nine-dot
problem. Psychological research 78(2):266–275.
Ohlsson, S. 1992. Information-processing explanations of
insight and related phenomena. Advances in the Psychology
of Thinking 1–44.
Sarathy, V., and Scheutz, M. 2018. Macgyver problems:
Ai challenges for testing resourcefulness and creativity. Ad-
vances in Cognitive Systems 6:31–44.
Sarathy, V. 2018. Real world problem-solving. Frontiers in
human neuroscience 12:261.
Shen, W.-M., and Simon, H. A. 1989. Rule creation and
rule learning through environmental exploration. In IJCAI,
675–680. Citeseer.
Shen, W.-M. 1989. Learning from the environment based on
percepts and actions. Ph.D. Dissertation, Carnegie Mellon
University.
Stefik, M. 1981. Planning with constraints (molgen: Part 1).
Artificial intelligence 16(2):111–139.
Sussman, G. J. 1973. A computational model of skill acqui-
sition. Technical report.
Yang, Q.; Wu, K.; and Jiang, Y. 2007. Learning action mod-
els from plan examples using weighted max-sat. Artificial
Intelligence 171(2-3):107–143.


