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Abstract

This paper argues that generative art driven by confor-
mance to a visual and/or semantic corpus lacks the nec-
essary criteria to be considered creative. Among sev-
eral issues identified in the literature, we focus on the
fact that generative adversarial networks (GANs) that
create a single image, in a vacuum, lack a concept of
novelty regarding how their product differs from pre-
viously created ones. We envision that an algorithm
that combines the novelty preservation mechanisms in
evolutionary algorithms with the power of GANs can
deliberately guide its creative process towards output
that is both good and novel. In this paper, we use re-
cent advances in image generation based on semantic
prompts using OpenAI’s CLIP model, interrupting the
GAN’s iterative process with short cycles of evolution-
ary divergent search. The results of evolution are then
used to continue the GAN’s iterative process; we hy-
pothesise that this intervention will lead to more novel
outputs. Testing our hypothesis using novelty search
with local competition, a quality-diversity evolutionary
algorithm that can increase visual diversity while main-
taining quality in the form of adherence to the semantic
prompt, we explore how different notions of visual di-
versity can affect both the process and the product of the
algorithm. Results show that even a simplistic measure
of visual diversity can help counter a drift towards sim-
ilar images caused by the GAN. This first experiment
opens a new direction for introducing higher intention-
ality and a more nuanced drive for GANs.

Introduction
Visual art is among the most well-researched domains in
computational creativity as it is perhaps the most recognis-
able among tasks which, when performed by humans, are
deemed creative (Ritchie 2007). Painting in any style or
medium requires some degree of skill (Colton 2008), and en-
dowing machines with painting skill has a long and exciting
history (Cohen 2017; Colton 2012; Lindemeier et al. 2015;
Machado and Cardoso 2002). A watershed moment in this
endeavour has been the advent of Generative Adversarial
Networks (GANs) (Goodfellow et al. 2014), which not only
started to bridge the gap between human and machine per-
formance but also allowed novices to generate compelling
images without extensive technical knowledge, development

effort, or access to specialised hardware. Generative art pro-
duced through deep learned models has taken the world by
storm in the last five years. The strength of models trained
in vast image databases in producing highly typical content,
such as human faces, has led to an almost ubiquitous fascina-
tion by researchers, artists, laymen, media, and speculators.
We follow McCormack, Gifford, and Hutchings (2019) and
refer to visuals generated via deep learning as “AI Art” in
this paper.

As the general public became more interested in AI Art, a
crucial component for the perception of creativity hinged on
whether the software could explain in natural language the
framing information regarding what it was trying to portray
(Colton, Charnley, and Pease 2011). While several GAN
architectures addressed the generation of images from text
prompts (Reed et al. 2016; Zhang et al. 2017), they per-
formed well only in limited datasets and could not scale to
generate visuals based on broader themes. The recent intro-
duction of OpenAI’s Dall-E (Ramesh et al. 2021) demon-
strated an unprecedented high correspondence between a
given text prompt and the generated image on different
prompts. While neither the Dall-E model nor the training
dataset have been publicly released at the time of writing, a
pre-trained model of Contrastive Language-Image Pretrain-
ing (CLIP) is available (Radford et al. 2021). The release of
CLIP energised researchers and enthusiasts alike, leading to
many open-source projects and twitter bots that take advan-
tage of the links between semantics and images to produce
more convincing AI Art, such as album titles and covers1.

In the context of computational creativity, however, it
would be easy to argue that images generated only to con-
form to the patterns of the corpus fall into “mere generation”
(Ventura 2016) and lack authenticity (McCormack, Gifford,
and Hutchings 2019). Using the criteria of novelty, qual-
ity and typicality regarding products of a creative process
(Ritchie 2007), we argue that GANs and similar architec-
tures target only typicality by conforming to patterns dis-
covered in their training corpus. While we appreciate that
there are several issues—such as intent and attribution (Mc-
Cormack, Gifford, and Hutchings 2019)—that AI Art should
address before it can be considered creative, we focus in this
paper on the novelty of the product by endowing the algo-

1https://twitter.com/ai_metal_bot



rithm with a way to assess and prioritise diversity in its gen-
erated output.

While a product’s novelty can be assessed in terms of
past artefacts of the same type, we focus instead on con-
temporaneous novelty in a population of artefacts that are
generated—iteratively—at the same time. While GANs
are typically applied to generate a single image, our study
also tests how diverse a population of images produced by
GANs can be when the initial seeds are different. We take
advantage of evolutionary algorithms that perform quality-
diversity search (Pugh, Soros, and Stanley 2016) and com-
bine them with the power of deep learning through cycles
of exploration and refinement. Taking advantage of trained
models of semantic-image similarities, we test this process
of iterative refinement (Liapis, Yannakakis, and Togelius
2013) when generating sets of images for five text prompts.
This first experiment raises a number of questions regarding
e.g. how image novelty can be assessed, and we test two
different image metrics as both evolutionary goals and for
analysing the quality of the final results.

Background Technologies
The proposed methodology combines complex, cutting-
edge technologies of deep learning and divergent evolution.
The relevant technologies and a high-level overview of their
inner workings are presented below.

OpenAI CLIP
OpenAI’s CLIP is a supervised neural network architecture
which associates images with corresponding text and vice
versa, learning underlying concepts within each of these do-
mains (Radford et al. 2021). CLIP was released in January
2021 and quickly became popular for a wide variety of tasks,
such as image classification (Esmaeilpour et al. 2021), se-
mantic image generation (Ramesh et al. 2021), and caption-
ing (Mokady, Hertz, and Bermano 2021).

CLIP is essentially a zero-shot classifier, which was pre-
trained using images and corresponding textual phrases
scraped from the internet. The training dataset itself was
not released but it contained 4 · 108 text-image pairs. The
structure of CLIP consists of a Transformer-based model
(Vaswani et al. 2017) which encodes the tokenised input
text batches. For the image encoding, two different archi-
tectures were compared; a ResNET-D based model (He et
al. 2019) and a Vision Transformer (ViT) model (Dosovit-
skiy et al. 2021). Batches of image-text pairs are encoded
and cross-processed using contrastive learning (Van den
Oord, Li, and Vinyals 2018) in order to train the model
to predict the probability that a given text input matches
a given image or vice versa. The resulting trained mod-
els matched or outperformed some of the best classifiers
when applied to broad datasets, but ranked worse on spe-
cific, narrow-domain datasets. The benefit of CLIP in the
current work is that it can provide a singular cosine sim-
ilarity score (we refer to this as CLIP score in this pa-
per) between a textual prompt and an image, for any se-
mantic prompt. This CLIP score has been used to as-
sess generated images and predetermined text input, and

thus to steer various methods of GAN image generation
towards some predetermined text input (Gal et al. 2021;
Kim and Ye 2021). These CLIP-guided image generation
experiments are often performed by enthusiasts and are not
published; however, many early contributions are available
in online repositories2.

In practice, CLIP-guided image generation starts from a
random fractal noise array as an image, and uses CLIP to
generate its embedding. CLIP is also used to embed the in-
put text prompt and the two sets of vectors are compared
using cosine similarity, given by:

similarity(⃗timage, t⃗prompt) =
t⃗image · t⃗prompt

|⃗timage| · |⃗tprompt|
(1)

where t⃗image and t⃗prompt are the CLIP vector embeddings
of the image and the text prompt respectively, and |⃗t| denotes
the magnitude of vector t⃗.

Generative Adversarial Networks
Generative Adversarial Networks (GANs) were introduced
by Goodfellow et al. (2014) and have since become an im-
portant milestone in AI Art. GANs consist of a generator
which learns to generate artefacts within its domain, and a
discriminator network which learns to distinguish between
what the generator creates versus real artefacts. The out-
put of the discriminator is used to train the generator, pitting
their progress against each other, and resulting in greatly en-
hanced performance compared to previous techniques. Gen-
erally, the discriminator is discarded after training and only
the generator is used for inference. This technique has been
used extensively across different domains, for text to im-
age generation (Brock, Donahue, and Simonyan 2018), style
transfer (Karras, Laine, and Aila 2019), super-resolution up-
scaling (Ledig et al. 2017), and many more applications.

Vector Quantized Variational Autoencoders (VQVAE) are
autoencoders which operate on image segments instead of
individual pixels (Esser, Rombach, and Ommer 2021). Their
networks combine convolutional layers with transformer
structures, capturing short-range feature interactions with
the former and long-range ones with the latter. An image at
the encoder input is converted into a sequence of segments
which are stored in a discrete code book of representations.
An image is thus compressed to a sequence of indices repre-
senting the position of each segment within the code book.

During VQVAE training, a GAN architecture is used (of-
ten referred to as a VQGAN) to learn the weights and bi-
ases of the encoding and decoding networks, and also to de-
termine the code book entries which will be available for
these processes. Therefore, the training data has a signifi-
cant impact on the variety of images which can be encoded
or decoded by a VQGAN. Specifically, images with fea-
tures that bear the closest resemblance to the training data
set will be compressed and decompressed more faithfully

2https://github.com/lucidrains/big-sleep
and https://colab.research.google.com/drive/
1L8oL-vLJXVcRzCFbPwOoMkPKJ8-aYdPN, among others.



than images in a different domain. As discussed in the in-
troduction, products of VQGANs therefore target typicality
(Ritchie 2007) with the training set above all else.

VQGANs enable an easy translation between an image
and its latent vector representation, offering a way to manip-
ulate images that can be combined with both CLIP evalua-
tion and latent vector evolution. By applying backpropaga-
tion to the latent vector conditioned by the CLIP score of its
corresponding image to a given text prompt, an image can
be directed towards a suitable representation for the latter.

Novelty Search with Local Competition
Evolutionary computation has a long history and has proven
to be powerful in numerical optimisation tasks (De Jong,
Fogel, and Schwefel 1997). However, it often struggles
to discover appropriate individuals that can act as stepping
stones for further improvements towards an objective. In
deceptive fitness landscapes, such individuals may perform
poorly in terms of the objective but may possess the neces-
sary genotypic structure that can lead to highly fit individ-
uals after a number of genetic operators are applied. Nov-
elty as the (sole) evolutionary objective was introduced “as
a proxy for stepping stones” (Lehman and Stanley 2008).
Novelty search has shown great promise in many applica-
tion domains such as robotics (Lehman and Stanley 2008;
2011), game content generation (Liapis, Yannakakis, and
Togelius 2015; 2013; Liapis et al. 2013) and generative
art (Lehman and Stanley 2012). While most publications
in this vein apply novelty search to neuroevolution (Stan-
ley and Miikkulainen 2002), it can also be applied to other
types of indirect (Liapis 2016; Liapis et al. 2013) or direct
embryogenies (Liapis, Yannakakis, and Togelius 2015).

Emulating evolutionary processes in nature, applying lo-
cal competition to the process of natural selection showed
greater promise in some applications (Lehman and Stanley
2011). Local competition pits individuals against phenotyp-
ically similar individuals in the search space. This Novelty
Search with Local Competition (NSLC) allowed diverse fea-
tures to survive and serve as stepping stones towards better
specimen, even if their performance was only optimal lo-
cally. It empowered individuals with diverse features to sur-
vive and evolve without being overpowered by better devel-
oped features in other individuals. In practice, NSLC op-
erates as a multi-objective optimisation problem where one
objective is increasing the novelty score and the other objec-
tive is increasing the individual’s local competition score.
Both scores compare an individual with its nearest neigh-
bours in a behavioural space; these neighbours may be from
the current population or from an archive of novel past indi-
viduals. The novelty archive is populated during evolution,
with the most novel individuals in every generation being
added to the archive. The novelty score is calculated via
Eq. (2), as the average distance of this individual with its
nearest k neighbours. The local competition score is calcu-
lated via Eq. (3), as the ratio of nearest k neighbours that
the individual outperforms in terms of fitness. Evidently,
the algorithm hinges on two important parameters: the fit-
ness metric which affects the local competition score, and
the distance metric which affects the nearest neighbours be-

ing considered and the novelty score in general.

n(i) =
1

k

k∑
j=1

d(i, µj) (2)

lc(i) =
1

k

k∑
j=1

of (i, µj) (3)

where d(x, y) is the behavioural distance between individ-
uals x and y and depends on the domain under considera-
tion, µj is the j-th nearest neighbour to i, of (x, y) is 1 if
f(x) > f(y) and 0 otherwise, where f is the fitness func-
tion for the current problem. The current population and the
novelty archive are used to find the nearest neighbours.

Proposed Methodology
At its core, our proposed methodology revolves around an
alternating sequence of refining cycles (via backpropaga-
tion) and exploration cycles (via divergent evolution). Us-
ing CLIP-guided VQGANs in this instance, we describe the
specific methods followed in each cycle below.

Backpropagation Cycle
In order to take advantage of the power of GAN architec-
tures in converting seemingly random noise into visually
appealing images, we use backpropagation-driven cycles to
start the process and as a final step of refining an image be-
fore showing it to a human audience.

The code used for semantic image generation is based
on Pixray3, using pixel-based generation through VQGANs
(Esser, Rombach, and Ommer 2021). Details of the VQ-
GAN technologies are in the Background section. For
this paper we adopt a VQGAN pre-trained on the WikiArt
dataset (Tan et al. 2016). WikiArt is a dataset of 81, 444
images of artistic creations (paintings, images) across many
different art styles4. The images produced from the WikiArt-
trained VQGAN are more illustrative and surreal rather
than representational or photorealistic, which suits our goals
of producing artefacts that observers would consider cre-
ative. Moreover, the images generated for each prompt were
deemed to be more visually similar to each other than other
models, when starting from different random seeds.

The generated images have dimensions of 384 by 384 pix-
els, and the VQVAE model sectioned the images into blocks
of 16 by 16 pixels, resulting in a latent vector of 576 in-
tegers, each representing an index of the code book entry
used to represent that block. Each integer’s value range is
[0, 16384], as part of the autoencoder’s code book.

At the start of the experiment, we randomise each latent
vector using a random fractal noise array, and use CLIP to
generate its embedding. In subsequent iterations, we use the
negated CLIP’s cosine similarity of Eq. (1) as a loss function
to guide the backpropagation process towards a latent vector
which produces an image that better matches the semantic

3https://github.com/pixray/pixray
4https://archive.org/details/wikiart-

dataset



Figure 1: GAN iterations guided by CLIP.

prompt. Since the latent vector consists of integers and is not
compatible with the continuous requirement for gradient de-
scent, the internal tensor representation of the vector within
VQGAN (consisting of floating point numbers) is used to
backpropagate the CLIP loss. Fig. 1 visualises this process.

Exploration Cycle
Exploration cycles are carried out via novelty search with lo-
cal competition (NSLC) operating on the latent vector rep-
resenting the image. The genotype (latent vector) consists
of 576 integers, ranging between 0 and 16384. Since each
gene is an integer that is mapped in a very indirect way to
some image segment, the evolutionary algorithm uses only
mutation operators. In each mutation, 5% of the individual’s
genes (chosen randomly) are replaced with random integers
between [0, 16384]. This mutation rate was chosen based on
initial trials, as it can create perceptible perturbations in the
image without making it unrecognisable within one applica-
tion of mutation (as is the case with higher mutation rates).

For this experiment, k = 15 nearest individuals are con-
sidered for calculating both the novelty score and the local
competition (LC) score, as per Eq. (2)-(3). In each gener-
ation, the e = 3 most novel individuals are added to the
novelty archive. Note that the novelty archive starts empty at
the start of each exploration cycle; there is no carryover from
previous exploration cycles. The archive growth as the algo-
rithm progresses increases the computational requirements,

so this strategy of always adding a few individuals offered a
good compromise between benefit and performance.

A Non-dominated Sorting Genetic Algorithm (NSGA-II)
(Deb et al. 2002) was used to process the resulting two met-
rics (novelty and LC score) as a multi-objective optimisation
problem, using the Pymoo Python library (Blank and Deb
2020). A minimal Pareto front is calculated for the two ob-
jectives; individuals closest to this front are dominant over
the remaining population and are selected for the next gener-
ation. If more individuals are required after exhausting those
on the Pareto front, a next best Pareto front is calculated and
a next set of individuals is selected from therein. If there
are more individuals on the Pareto front than those required
to survive, then individuals are selected to create sparsity in
the objective space. The sparsity is based on the Manhattan
distance between individuals within this space.

One of the major challenges in this work was defining di-
versity in the generated images for the purposes of NSLC.
As noted in the Background section, the behavioural dis-
tance affects which neighbours are considered for both nov-
elty and LC, and in turn affects how we envision novelty
in the final product (Ritchie 2007). It is a relatively easy
task for a human to identify visual similarity between two
images, but there are several challenges in quantifying sim-
ilarity or diversity into a simple metric. In this work we
compare image novelty by using two different approaches:

Chromatic Diversity (HSV): With this approach, we hy-
pothesise that the distribution of colours in the pixels reflect
the diversity of the images (Machado et al. 2015). We con-
sider the hue, saturation and brightness of each pixel and for
any two generated images I1 and I2 we derive a diversity
metric from their means and standard deviations as follows:

m1 = ∆b = |b1 − b2| (4)
m2 = ∆σ(b) = |σ(b1)− σ(b2)| (5)
m3 = ∆s = |s1 − s2| (6)
m4 = ∆σ(s) = |σ(s1)− σ(s2)| (7)

m5 = ∆h = |min[h1 − h2, h1 − (1− h2)]| (8)
m6 = ∆σ(h) = |σ(h1)− σ(h2)| (9)

where h, s and b denote the hue, saturation and brightness,
the means (h, s, b) are taken across all the pixels in I1 and I2,
and σ denotes the standard deviation of these values. Note
that since the hue value is cyclic, its mean and standard de-
viation were calculated as follows:

h = tan−1

(∑N
i=1 sin(h)∑N
i=1 cos(h)

)
(10)

σ(h) =

√∑N
i=1(min(hi − h, hi − (1− h)))2

N − 1
(11)

where N is the number of pixels in the image.
All h, s, b values are normalised in the [0, 1] value range

before the above calculations. We calculate the distance
metric dHSV as the mean square value of the individual met-
rics m1. . .m6.



Figure 2: Structure of the experiments alternating between
GAN and evolutionary NSLC cycles.

Visual Transformer Diversity (ViT): Another way to as-
sess diversity is based on the embeddings of pre-trained
models. Transformers (Vaswani et al. 2017) have shown
an outstanding performance when applied to image classifi-
cation (Dosovitskiy et al. 2021; Wu et al. 2020). Within its
layers, the model encodes information about different im-
ages in its training set, and uses it to discern different im-
ages. We utilise this encoded information with a ViT model
pre-trained on the ImageNet data set (Deng et al. 2009), and
stripping its last layer. Since the last layer of ViT is used for
image classification, by removing it we retain a latent vector
of 768 floating point values for each processed image. We
calculate a value of diversity (dV iT ) by taking the Euclidean
distance between the latent vectors of two images.

Experiment
In order to assess how our envisioned algorithm that com-
bines latent variable evolution (Bontrager et al. 2018) to-
wards novelty with GANs, the following section reports our
findings when producing novel sets of images for different
semantic prompts. We first describe our choice of prompts
and parameter setup, followed by a quantitative analysis of
both the process and the final product, and conclude with a
qualitative view of the resulting images.

Protocol
For the purposes of demonstrating our proposed methodol-
ogy in a visual creativity task, we use the Pixray image gen-
eration system which leverages pretrained VQVAE models.
Importantly, we wish to explore how the method operates in
a variety of settings while still being able to compare with
existing research. To facilitate this, we test five semantic
prompts (SP) used by the community5:

• a lonely house in the woods (SP1)

• a pyramid made of ice (SP2)

• artificial intelligence (SP3)

• cosmic love and attention (SP4)

• fire in the sky (SP5)

For this experiment, we generate a population of 50 im-
ages by running Pixray for a total of 600 iterations. The ini-
tial population consists of latent vectors encoded from a set
of randomly generated fractal noise images. The same initial

5https://github.com/lucidrains/big-sleep

population of images is used in all tested variations of our al-
gorithms, across all prompts. To establish our GAN baseline
(GAN-BSL), we run the process uninterrupted for each ini-
tial latent vector for 600 iterations in order to collect the final
population. Initial experiments showed that at 600 iterations
the composition of the image is stable, and although more it-
erations will refine it, the image does not change much. For
our NSLC experiments, we interrupt the GAN process after
100, 200, 300 and 400 iterations and take the latent vectors
of the images at that point to produce an initial population
for NSLC; NSLC evolves for 50 generations, guided by ei-
ther ViT (NSLC-ViT experiment) or HSV (NSLC-HSV ex-
periment) distance metrics, and the final evolved population
is then used to continue the GAN process (until interrupted
again). The process is clarified in Figure 2.

Evaluating the novelty or quality of the generated output
is not straightforward (Ritchie 2007). For the purposes of
this paper, we align these notions with the quality-diversity
characterisations of NSLC and use the following perfor-
mance metrics to compare the different algorithms:

• mean fitness based on the CLIP score across all 50 im-
ages in the population.

• mean ViT diversity calculated as the average ViT dis-
tance from the nearest 15 neighbours per individual, aver-
aged across all 50 images in the population. Note that for
this metric only the current population is considered for
finding nearest neighbours (no archive).

• mean HSV diversity is calculated identically to mean
ViT novelty using the HSV metric for measuring distance
and finding nearest neighbours.

Numerical Results
We are equally interested in the process followed by the al-
gorithms tested as we are in the product at the end of 600 it-
erations (Jordanous 2016). Therefore, Figure 3a shows how
the mean fitness (CLIP score) fluctuates at different GAN
iterations. Evidently, with the uninterrupted GAN-BSL the
algorithm increases its accuracy quickly in the first 20 iter-
ations but then continues to slowly improve. When the pro-
cess is interrupted by NSLC cycles, the evolved population’s
fitness drops by 12% on average for NSLC-HSV and by 21%
for NSLC-ViT. Surprisingly, the drop is nearly as substantial
when NSLC is applied at later iterations, even if the (seed)
images are well-formed at that point. It is evident that af-
ter each NSLC cycle, the GAN has a similar behaviour as
when facing random initial seeds and can quickly restore the
CLIP score to a similar level as the GAN-BSL at the same
iteration (before quickly dropping again at the next NSLC
cycle). At the end of the 600 iterations, all three algorithms
seem to be reaching a very similar mean fitness score, al-
though in almost all cases both NSLC variants reach slightly
higher scores than the GAN baseline (with the exception of
SP4 where the mean fitness of NSLC-ViT is 2.9% lower
than GAN-BSL). Overall, NSLC-HSV seems more stable in
performance, reaching on average 1.5% higher mean fitness
than GAN-BSL. By comparison, NSLC-ViT has more fluc-
tuations between prompts and reaches an average increase



(a) Mean population fitness (b) Mean HSV diversity (c) Mean ViT diversity

Figure 3: Progression of the performance metrics over GAN iterations. The iterations at which evolutionary NSLC cycles were
performed are marked in red.

of 0.7% from the GAN-BSL mean fitness. The biggest in-
crease in CLIP score is for SP3, where NSLC-HSV outper-
forms GAN-BSL by 3.9% in terms of mean fitness.

Figures 3b and 3c show how the mean diversity of the
population fluctuates at different GAN iterations. Both im-
age distance metrics are displayed, and the interim popula-
tions of all three methods (GAN-BSL, NSLC-ViT, NSLC-
HSV) are parsed to derive these diversity values—even if
they were not evolving towards that specific novelty mea-
sure. It is fairly surprising that for both image distance met-
rics the diversity increases during the first 20 GAN itera-
tions. One would expect that the swift increase of the CLIP
score (see Fig. 3a) during those early stages would come
at the cost of diversity as the images are pushed towards
a generic style imposed by the manifold. For both image
distance metrics, the diversity for the GAN-BSL stays fairly
stable after these first few iterations, or tends to drop. This is
most pronounced in SP5 for both ViT diversity and HSV di-
versity; we hypothesise that the (literal) prompt itself pushes
images that are fairly similar in colour (red and blue) and in
terms of image classification. Regarding the NSLC variants,
we observe the reverse behaviour compared to the mean fit-
ness plots of Fig. 3a: diversity increases after each explo-
ration cycle, at least for the distance metric targeted by nov-
elty search. Interestingly, NSLC-HSV manages to increase
both HSV diversity and ViT diversity, even if it evolves to-
wards the former. On average, in each exploration cycle
NSLC-ViT increases ViT diversity by 25% while NSLC-

HSV increases ViT diversity by 10% (per prompt). NSLC-
ViT however underperforms in terms of HSV diversity, with
minor or no increases after each cycle. On the other hand,
with NSLC-HSV we observe an average increase of 43%
in HSV diversity after each cycle (per prompt). Since im-
ages produced by NSLC are more diverse but less fit, once
GAN iterations re-start the diversity quickly drops as CLIP
score increases. GAN iterations after NSLC tend to lead
the population to a lower ViT diversity than the GAN base-
line. This behaviour is surprising, especially considering
that both NSLC variants manage to increase ViT diversity
during the evolutionary cycles. Even more surprising is the
fact that the GAN increases ViT diversity quite dramatically
when dealing with random images (at 0 iterations), but this
does not seem to be the case when NSLC produces noisy
images at iterations 100, 200, 300, 400. After 600 iterations,
the final images of NSLC-HSV have an average of 6.3% in-
crease in HSV diversity compared to the GAN baseline but
an average 11.5% decrease in ViT diversity, per prompt. The
final images for NSLC-ViT however are less diverse for both
ViT and HSV compared to the GAN baseline (by 5.8% and
13.7% respectively).

Indicative results
In order to better understand the process introduced in this
paper, we show the most diverse images at different stages
of the process. We use the HSV diversity and measure only
the nearest-neighbour distance to choose the most diverse



Figure 4: The progression of 5 individuals (chosen for their
highest nearest-neighbour HSV diversity) per population at
the end of each stage in the NSLC-HSV experiment for SP3.

individuals at that point. Since NSLC-HSV led to more di-
verse individuals while maintaining comparable quality to
the GAN baseline, we show results of NSLC-HSV in Fig-
ure 4. For the purposes of brevity, we focus on SP3 since
its final products have the highest increase in terms of CLIP
score (3.9% above the GAN baseline) and a good increase
in HSV diversity (7% above the GAN baseline).

It is evident that even after 100 GAN iterations, images
are recognisable although their details are rough. At 100
GAN iterations, images are fairly diverse, while after the

first exploration cycle new patterns are introduced (e.g. a
human nose) but some images become more indistinguish-
able. These rough images are refined during the next GAN
cycle, which results in similar-looking but crisper images.
Similar rounds of exploration and refining add more details.
Later NSLC cycles result in more recognisable, less noisy
images. Notably, after 400 iterations the images start be-
coming more similar, and overarching patterns such as the
introduction of the text “artificial” starts appearing in most
images. At that stage, the last NSLC cycle does not quite
manage to break these patterns and the final products at 600
iterations show more similarities than e.g. interim images
at 300 iterations. We can assume that NSLC is more mean-
ingful in early stages, and given enough time GANs will
enforce their patterns even to initially novel images. Per-
haps stopping the process earlier or intervening with NSLC
in earlier stages (e.g. at 20 or 50 iterations rather than at 400)
may better counter this drift towards dominant patterns.

Discussion
Our experiments investigated how quality-diversity evolu-
tionary search applied in interim phases of a Generative Ad-
versarial Network process can impact the creative process
and products. Results show that seeding diversity in explo-
ration cycles through NSLC can increase the diversity tem-
porarily, but with a lesser impact in the long run as the GAN
process re-asserts patterns in the corpus. While simplistic,
HSV distance was shown to be better as a measure for the
novelty score that guides evolution. However, observing the
most diverse images in terms of HSV distance (see Fig. 4)
the differences are not as obvious to a human. It is also worth
noting that this study is the first to assess the diversity of a
population of random initial seeds refined through the GAN
iterative process; the final products were surprisingly more
diverse than expected. As a general overview, NSLC man-
ages to increase slightly the typicality (in terms of semantic
prompts) of the final generated images; however, the small
increase in diversity (and only for one visual similarity met-
ric) compared to random seeds is perhaps underwhelming
considering the computational overhead of multi-objective
evolution over multiple cycles throughout the process. De-
spite these mixed results, the notion of diversifying products
of AI Art has many interesting research directions beyond
the experiments reported in this paper.

While this paper explored visual diversity under different
perspectives (based on models trained on labelled data and
based on simple visual metrics), there are many more ways.
Other measures based on deep learning, such as the Learned
Perceptual Image Patch Similarity (LPIPS) metric (Zhang et
al. 2018) can be used both as a distance metric for novelty
search or as a way to evaluate the existing products’ diver-
sity. In our preliminary experiments using LPIPS for nov-
elty score, however, the final products were not as diverse
as those of the GAN baseline (in term of LPIPS). Given that
HSV distance was surprisingly efficient as a novelty metric,
other metrics of visual quality in the literature such as com-
pressibility (Machado et al. 2015) could also be explored. It
should be noted that in our preliminary experiments we also



explored using the binary distance6 between latent vectors
(i.e. the genotype) as a measure of novelty, but the results
were underwhelming.

Beyond the distance measures, other ways of perform-
ing changes on the image during evolution can be explored.
While our preliminary experiments that used recombination
between two parents’ latent vectors resulted in less diverse
final products, better operators for mutation and recombi-
nation could lead to more creative outcomes. A potential
alternative to the current random mutation of the latent vec-
tor could be to use the intermediate representation used by
the GAN, which consists of a tensor of real values, in or-
der to provide a smoother gradient if mutation is based on
Gaussian noise. The disadvantage to such an approach is
an increase in computational time, since this intermediate
representation is much larger than the latent vector used in
our current work. Another alternative would be to apply
mutations on the image itself, and then allow these to be
decoded into a new latent vector (rather than the reverse,
which is done in the current implementation). Changes to
the image can be performed as filters applied to the en-
tire image, similar to (Colton, Valstar, and Pantic 2008;
Heath and Ventura 2016), as local changes in a portion of
the image, or taking advantage of machine-learned models
such as style transfer (Gatys, Ecker, and Bethge 2016).

Extensions of this work that go beyond applying NSLC
on the images themselves could provide a more direct way
to demonstrate the intentionality of the computational cre-
ator. OpenAI’s CLIP already offers a human understand-
able (Colton 2008) goal in the form of the semantic prompt.
Allowing the computational creator to adapt the semantic
prompt itself (e.g. by applying latent variable evolution on
the semantic prompt, rather than on the image) could lead
to more visually diverse images and—more importantly—
to a creative process where the computational creator could
change its goal and explain towards which direction it is
changing (and why, presuming some objective or distance
criterion). More ambitious goals in this vein could include
both image adjustments (through evolution) and a corre-
sponding change in the best semantic prompt that matches
these image adjustments. Finally, the refinement could come
in the form of additions to the semantic prompt, such as
maximising or minimising cosine similarity with keywords
(e.g. “photorealistic”) or with intended emotional outcomes
from the audience (Galanos, Liapis, and Yannakakis 2021)
that are added during exploration cycles. Further work in
this direction could involve a human audience assessing di-
versity of the resulting images, thereby highlighting how the
metrics match (or not) human perception and aesthetics.

Conclusion
In this work, we highlighted how what is considered to-
day “AI Art” (McCormack, Gifford, and Hutchings 2019)
largely ignores any creative dimensions except typicality
(Ritchie 2007). We explored ways of injecting novelty both
in the final products and in the process of a generative ad-

6We measure binary distance as the number of items in the two
images’ latent vectors that were not identical at the same position.

versarial network, by interspersing cycles of artificial evo-
lution that targets both typicality and novelty as objectives.
Applying several cycles of exploration between cycles of it-
erative refinement, we investigated how image generation
driven by state-of-the-art image-language mappings can lead
to more diverse outcomes. This first experiment has shown
that Novelty Search with Local Competition can lead to
more visually diverse results, but also highlighted that evo-
lution applied on the code book led to more noisy interim
results which forced GAN refinements to overcompensate in
terms of conformity. Many extensions to the general concept
of cycles of evolutionary exploration and backpropagation-
based refinement in different aspects of the AI Art process
(e.g. on the image level or the prompt level) can allow for a
more direct and more explainable creative process.
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