
Learning to Surprise: A Composer-Audience Architecture

Razvan C. Bunescu and Oseremen O. Uduehi
School of Electrical Engineering and Computer Science

Ohio University
Athens, OH 45701

bunescu,ou380517@ohio.edu

Abstract

The ability to generate surprising outputs is essential
for creative behavior. Surprise, or violation of expec-
tation, has been hypothesized to be part of a fundamen-
tal mechanism enabling the capacity for emotion found
in creative fields such as music, art, humor, or litera-
ture. Machine learning approaches to music generation
train one model and sample from its distribution to gen-
erate new outputs. We show that this one-model sam-
pling is fundamentally limited in its capacity for sur-
prise. Drawing on insights from music and humor un-
derstanding, we propose a two-model architecture com-
posed of an audience model for learning expectations
connected to a composer model for learning to surprise.
The new architecture facilitates a natural measure for
surprise that is used in experimental evaluations on a
set of synthetic tasks with binary strings. When in-
stantiated with neural networks, the composer-audience
model is shown to successfully learn to generate deter-
ministic or random patterns of surprise, demonstrating
its potential as a general framework for machine learn-
ing approaches to creative processes.

Introduction and Motivation
Creativity is widely considered to be an essential compo-
nent of intelligent behavior (Boden 1991; Grace and Maher
2015). Surprise is a powerful driver for creativity and dis-
covery, as such it has been used to guide search algorithms
in models of computational creativity and discovery (Yan-
nakakis and Liapis 2016). Owing to its importance for the
creative process, surprise has become one of the core criteria
for the evaluation of creative artifacts, together with novelty
and value (Grace et al. 2015). As reviewed in (Itti and Baldi
2009), surprise is an essential concept in many studies on
the neural basis of behavior, with surprising stimuli shown
to be strong attractors of attention.

Surprise, or violation of expectation, has also been hy-
pothesized to be an essential mechanism through which mu-
sic and stories elicit emotion. According to (Meyer 1961),
the principal emotional content of music arises from the
composers manipulation of expectation. Composers build
expectations in time, which then they purposely violate in
order to elicit tension, prediction, reaction, and appraisal re-
sponses (Huron 2008). While significant progress has been
made towards models that learn harmony, voice leading, and

even long-term structure, e.g. (Boulanger-Lewandowski,
Bengio, and Vincent 2012), (Hadjeres, Pachet, and Nielsen
2017), (Oore et al. 2018), (Huang et al. 2019), the impor-
tance of surprise for eliciting emotion is not reflected in the
design of machine learning (ML) approaches to music gen-
eration, which use sampling from the trained model distri-
bution to generate new musical output. In this paper, we
show that one-model sampling is fundamentally limited in
its capacity to generate surprising outputs and propose an
architecture for learning to surprise comprised of an audi-
ence model that learns expectations and a composer model
that learns patterns of violations of expectations. We instan-
tiate the proposed architecture with LSTMs and evaluate it
on three synthetic tasks with binary strings. Experimental
results show that sampling from the two-model architecture
enables much higher levels of surprise when compared with
traditional one-model sampling. We conclude the paper by
positioning our model in the context of previous work.

One-Model Sampling is Unsurprising
The vast majority of ML models used for generative tasks
train one model PM on one dataset D that is sufficiently
large to enable a good approximation of the true data distri-
bution. Given a trained model PM , a sampling procedure is
used to generate an output x̂ ∼ PM (x). When a language
modeling approach is used for sequences of discrete events
x = 〈x1, x2, ...〉, such as tokens in text generation or chords
in music composition, it is common to use a left-to-right se-
quential sampling based on the factorization below:

PM (x) =

|x|∏
k=1

PM (xk|hk) =

|x|∏
k=1

PM (xk|xk−1, ..., x1)

Such factorization could be provided for example by a uni-
directional RNN. To generate an output sequence from left
to right, at every step k a token x̂k is sampled according the
model, i.e. x̂k ∼ PM (xk|hk), where hk = 〈x̂k−1, ..., x̂1〉 is
the history (or context) of previously sampled tokens. If xk
itself is high-dimensional, as is the case with chords in mu-
sic, models such as the restricted Boltzman machine (RBM)
(Smolensky 1986; Hinton 2002) or the neural autoregres-
sive distribution estimators (NADE) (Larochelle and Mur-
ray 2011) can be used to compute PM (xk|hk) and generate
approximate or exact samples, respectively. More complex

factorizations of the distribution, such as the bi-directional
model of DeepBach (Hadjeres, Pachet, and Nielsen 2017) or
general probabilistic graphical models require more sophis-
ticated sampling procedures, e.g. MCMC methods, varia-
tional methods, or sampling via random projections. Deep-
Bach, for example, uses a pseudo-Gibbs sampling procedure
where at every iteration a note k is selected at random and
then its pitch value x̂k ∼ PM (xk|hk) is re-sampled. In this
case the history hk contains all the other notes in the piece.

It is possible for this type of one-model sampling to gen-
erate surprising events. For example, if xk is a binary vari-
able and PM (xk = 1|hk) = 0.9, then on average 1 out of 10
times the sampling procedure will generate the ”surprising”
event x̂k = 0. The following informal observations can be
made from this example:

Remark 1. Generation of surprise is possible only in event
spaces with non-uniform probability distribution.

Remark 2. The more surprising an event needs to be, the
less likely it is for it to be generated by one-model sampling.

Based on the later, one-model sampling would be ill-suited
for tasks that require generating surprising events with high
probability. Furthermore, one-model sampling generates
surprising events in a completely random manner, which can
be deeply unsatisfying if the task requires control over when
to generate surprise or learning patterns of surprise.

We now present more formal versions of these statements,
together with the corresponding proofs. While the two infor-
mal remarks seem obviously true, a formal specification has
the advantage that it quantifies the notion of surprise, which
will also help in clarifying the meaning of more surprising
and its connection to sampling.

Definition 1. Let ψ ∈ (0, 1] be an expectation level, with
lower levels used to represent higher surprise. Let M be a
model that computes the categorical distribution PM (x|h)
over K categories. A discrete event x observed in a context
h is called ψ-surprising for model M if PM (x|h) < ψ/K.

Definition 2. Let S(ψ,h,M) denote the expectation under
M that a sampled event x̂∼PM (x|h) is ψ-surprising forM :

S(ψ,h,M) = Ex̂∼PM
[JPM (x̂|h) < ψ/KK]

where we use the Iverson bracket JP K = 1 if the proposition
P is satisfied, and 0 otherwise.

Using these definitions, the formal versions of the two re-
marks above are expressed as Theorems 1 and 2 below.

Theorem 1. S(ψ,h,M) = 0 for any uniform categorical
distribution M , irrespective of the level ψ ∈ (0, 1].

Proof. If M is a uniform categorical distribution,
PM (x̂|h) = 1/K. Therefore JPM (x̂|h) < ψ/KK = 0 for
any x̂ ∼ PM (x|h), which means that the corresponding
ψ-surprising expectation is S(ψ,h,M) = 0.

According to Theorem 1, a maximum entropy distribution
offers no opportunity for surprise.

Theorem 2. Let M be a non-uniform categorical distribu-
tion and ρk = PM (x = k|h) for each category k ∈ 1..K.
Without loss of generality assume that the categories are

indexed in the order of their sampling probabilities, i.e.
ρ0 = 0 ≤ ρ1 ≤ ρ2 ≤ ... ≤ ρK ≤ 1. Then:

(a)
ψ

K
∈ (ρk, ρk+1] for some k ∈ 0..K−1.

(b) S(ψ,h,M) =

k∑
j=0

ρj ≤ ψ
k

K
.

Proof. To prove (a) note that ψ ∈ (0, 1]∧K ≥ 2⇒ ψ/K ∈
(0, 1/K] ⊂ (0, 1]. This means that ψ/K must belong to one
of the sub-intervals from the following partition of (0, 1]:

(0, 1] = (0, ρ1] ∪
K−1⋃
k=1

(ρk, ρk+1] ∪ (ρK , 1]

However, it is not possible for ψ/K to belong to the last sub-
interval. Since M is non-uniform and ρK is the largest, this
means ρK > 1/K ≥ ψ/K ⇒ ψ/K /∈ (ρK , 1]. Therefore,
there can be only two scenarios:

1. ψ/K ∈ (0, ρ1], if k = 0 in (a).
2. ψ/K ∈ (ρk, ρk+1], for some k ∈ 1..K−1 in (a).

We prove (b) separately for each of the two cases. In sce-
nario 1, ψ/K ≤ ρ1 implies ψ/K ≤ ρk for all categories
k ∈ 1..K. Therefore, JPM (x̂|h) < ψ/KK = 0 for any x̂,
which means that the expectation of a ψ-surprising event is:

S(ψ,h,M) = 0 (1)

Since k = 0 in this scenario, this means S(ψ,h,M) =
ψk/K which satisfies (b).

In scenario 2, because of how the categories were indexed,
we have ρ1 ≤ ρ2 ≤ ... ≤ ρk < ψ/K ≤ ρk+1. Thus, for
PM (x̂|h) < ψ/K to be true, x̂ must satisfy 1 ≤ x̂ ≤ k.
Therefore, the ψ-surprising expectation is:

S(ψ,h,M) = Ex̂∼PM
[JPM (x̂|h) < ψ/KK]

=

k∑
j=1

PM (x̂ = j|h) (2)

=

k∑
j=1

ρj ≤
k∑

j=1

ρk = kρk < ψ
k

K
(3)

which satisfies (b).

Corollary 2.1 below expresses the fact that generating very
surprising events (small ψ/K) is impossible in the absence
of very unlikely events (smaller ρ1 < ψ/K).
Corollary 2.1. S(ψ,h,M) = 0 if ψ/K ≤ ρ1.
The dependence on the categorical distribution M can be
removed from Theorem 2, as shown in Corollary 2.2 below.

Corollary 2.2. S(ψ,h,M) ≤ ψ
(
1− 1

K

)
< ψ.

For Bernoulli distributions K = 2, for which the bound
S(ψ,h,M) ≤ ψ/2 in the theorem is tight.

Overall, Theorem 2 and its corollaries show that it is im-
possible for one-model sampling to generate very surprising
events (i.e. very low level ψ) with high probability (i.e. large
expectation S(ψ,h,M)).

Why Controlled Surprise is Important
Using one-model sampling as the sole means of generating
surprise has therefore two fundamental limitations:

1. Generation of truly surprising events, i.e. ψ-surprising
with very small ψ, is very unlikely.

2. Surprising events are generated completely at random,
with no mechanism available to (learn to) control surprise
generation.

To better understand why the two limitations are important,
consider the task of generating satirical news headlines. As
observed by West and Horvitz (2019), changing a single
word in a satirical news headline is often sufficient to make
it sound like serious news, as in ”BP ready to resume oil
{spilling, drilling}”. Furthermore, the changed word tends
to reside towards the end of the headline. Using the notation
introduced earlier, the context h can be seen as carefully
building an expectation in the audience that is then turned
upside-down by the word xk appearing at position k towards
the end of the headline. If M is the reader’s model of ex-
pectation and V is the vocabulary, this can be expressed as
PM (xk|h) < ψ/|V | � 1/|V |, i.e. xk is ψ-surprising for
M with ψ very small. However, according to Theorem 2,
a very small ψ makes it highly unlikely that sampling from
a trained audience model would generate such a surprising
event. Even when surprise is allowed at any position in
the headline, the overall likelihood of sampling a surpris-
ing word is still very small because satirical headlines are
usually very short. Thus, a writer generating headlines by
sampling from the language model would have to discard a
very large number of outputs before stumbling upon a satir-
ical one. However, this is not how writers generate satirical
headlines: while some randomness is probably still part of
the process, there is also a significant mechanism at play that
makes the generation of surprise substantially more likely
than mere sampling from a language model shared with the
audience.

The second limitation can manifest in multiple ways, for
example as an inability to determine the required level of
expectation violation or the frequency of surprising events.
To illustrate, consider a headline generator primed with the
word ”BP” that generates phrases sequentially as shown be-
low:
BP⇒ BP wind farms
⇒ BP wind farms to provide
⇒ BP wind farms to provide grazing land
⇒ BP wind farms to provide grazing land to nearby

ranchers for free.
In the first step, it samples ”wind farms”, which happens to
be just a bit surprising, as it is less expected to appear after
”BP” than other phrases, such as ”oil tankers”. At the next
step the high expectation verb ”to provide” is sampled. Then
the model samples ”grazing land” which too happens to be
just a bit more surprising in this context than other phrases,
such as ”electricity”. Finally, the model samples relatively
high expectation phrases, resulting in the complete headline
”BP wind farms to provide grazing land to nearby ranch-
ers for free”. The level of surprise in this headline is much

milder than in the satirical ”BP ready to resume oil spilling”,
where ”spilling” is much less expected than ”drilling” given
the previously generated words. While this type of control
over the level of surprise is not available in one-model sam-
pling, it can be achieved using a two-model architecture, as
described in the next section.

A Two-Model Architecture for Surprise
To enable a data-driven control over the generation of sur-
prise, we propose an architecture that contains two models:
an audience model Ma and a composer model M c that
has access to expectations computed by Ma. These mod-
els will be trained on separate datasets, Da and Dc, respec-
tively. While the definition of ψ-surprising events remains
the same as in the one-model sampling case, the definition of
the ψ-surprising expectation is generalized to accommodate
the two models, as shown in Definition 3 below.
Definition 3. Let S(ψ,h,Ma|M c) denote the expectation
that an event x̂ ∼ P c

M (x|h) sampled from a composer model
M c is ψ-surprising for an audience model Ma:

S(ψ,h,Ma|M c) = Ex̂∼P c
M
[JP a

M (x̂|h) < ψ/KK]

where the Iverson bracket JP K = 1 if the proposition P is
satisfied, and 0 otherwise.
The previous Definition 2 can be obtained from 3 by using
the audience model also as a composer model, i.e. M c =
Ma = M . The adaptation of Theorem 1 for the two-model
case still holds:
Theorem 3. S(ψ,h,Ma|M c) = 0 for any uniform cate-
gorical distribution Ma, irrespective of ψ ∈ (0, 1].
The corresponding version of Theorem 2 (b) however does
not hold anymore, as Equation 2 now changes to Equation 4:

S(ψ,h,Ma|M c) =

k∑
j=1

P c
M (x̂ = j|h) (4)

While S(ψ,h,Ma|M c) is still 0 for ψ/K ≤ ρ1 =
mink P

a
M (x̂ = k|h), it can now become arbitrarily large

when ψ/K > ρ1, depending on how much probability the
composer allocates to categories that are unlikely in the au-
dience distribution.

In order to learn to control violations of expectations
(VoE), the composer model uses as input expectations com-
puted by the audience model. We use the notation M c ←
Ma to show this dependency. It is important that the two
models are trained separately, on different datasets, in this
sequence: Ma is first trained on data Da, then it is plugged
in the M c ←Ma architecture for training M c on its dataset
Dc while keeping Ma fixed. This training procedure is
shown in Agorithm 1. During training of the M c model in
the M c ← Ma architecture, the same composer sequence
xck is provided as input to both Ma and M c. To gener-
ate samples from the composer at test time, the previously
trained Ma can be used or a new one can be trained on
a different audience dataset D, as shown in Algorithm 2.
When used in generation mode at test time, a token x̂ct is
sampled according to the categorical distribution P c

t and

Algorithm 1 TRAINCAMODEL(Da, Dc)
Input: Datasets Da and Dc.
Output: Composer model M c.

1: train Ma on Da

2: train M c ←Ma on Dc . Keep Ma fixed.
3: return M c

Algorithm 2 TESTCAMODEL(M c, D)
Input: Composer model M c.
Input: New audience examples D.
Output: Samples x̂c from composer (and x̂a from audi-

ence).
1: train Ma on D
2: sample x̂c ∼M c ←Ma (and x̂a ∼Ma)
3: return x̂c (and x̂a)

fed as the next input token to both Ma and M c. We use
x̂c ∼ M c ← Ma to denote the entire sequence sampled
from the composer, whereas x̂a ∼ Ma is used to refer to a
sequence sampled from the audience model.

The composer-audience (CA) architecture M c ← Ma

can be instantiated using various ML models, depending on
the type of data that needs to be processed. Figure 1 shows
the architecture used in our experiments with synthetic data,
which relies on LSTM units for processing sequential data.
At the bottom, the audience LSTM processes the input se-
quence and computes at each time step t − 1 a hidden state
ht−1 and the categorical distribution P a

t over the possible
values for the next token. We call this the audience expec-
tation for the next token. Together with the current token in
the sequence, this expectation is used as input to the com-
poser LSTM shown at the top of the figure. Optionally, the
hidden state of the audience model could also be provided as
input to the composer. The composer LSTM then computes
its own categorical distribution P c

t over the possible values
for the next token.

Possible Scenarios for Text and Music
For the computational humor task described earlier, Da

could be a large collection of news headlines, perhaps aug-
mented with text from news articles or open domain text.
When trained on it, the Ma model would capture the expec-
tation P a

M (x|h) of seeing word or phrase x in a textual con-
text h in a normal, largely non-humorous text. The dataset
Dc on the other hand would be composed only of satirical
news headlines. Accordingly, training the composer model
M c on Dc using the CA architecture M c ← Ma would
enable M c to learn patterns of violations of expectations,
such as generating a word that is ψ-surprising for Ma only
when the audience expectation P a

M (x|h) for other words is
very large. When used in the M c ← Ma architecture, the
composer will also be able to learn the tendency for surpris-
ing words to be generated towards the end of the headline.
In contrast, as shown earlier, training only one model on Da

will have very limited capacity for surprise and offer no con-
trol over when to violate expectations. Training one model
on Dc is not going to work either, as it will not be able to

Figure 1: LSTM instantiation of M c ←Ma architecture.

distinguish between words that are expected by an audience
and words that violate the audience’s expectations.

The two-model architecture could be applied in a simi-
lar way to music generation. The common practice is to
train one model on one corpus of music D and generate mu-
sic by performing one-model sampling from it, a method
that has limited capacity for surprise, as shown earlier. In-
stead, we propose training a composer-audience model, for
which the music corpus needs to be partitioned into an au-
dience corpus and a composer corpus, i.e. D = Da ∪ Dc.
One solution is to choose a ”present” time t and partition D
around that time, i.e. store all music composed before t in
the ”old music” dataset Da whereas all music composed af-
ter t is stored in the ”new music” dataset Dc. After training
the M c ← Ma architecture on this partition, the audience
model would be re-trained on the entire dataset, plugged
back in the M c ← Ma architecture, and new music would
be generated by sampling from M c in this architecture. The
method can be refined in many ways, such as moving into
Da all music from Dc that is deemed too similar or deriva-
tive with respect to Da. Furthermore, the fixed time cutoff
for the partition can be avoided, as shown in the approach
below aimed at addressing individual differences.

The Personalized Composer While it has the advantage
of being simple, training just one M c ← Ma model does
not consider individual differences in humor appreciation or
music enjoyment. With respect to music, significant indi-
vidual differences exist, from individuals who tend to ex-
perience a complex array of intense physiological and men-
tal responses (Panksepp 1995) to individuals who report be-
ing unable to derive pleasure from listening to music (Mas-
Herrero et al. 2014). While individual differences in aes-
thetic reward sensitivity were shown to have a neural ba-
sis (Sachs et al. 2016), differences in musical ability and
familiarity were also observed to be important for experi-
encing intense emotional responses to music (Nusbaum and
Silvia 2011). If we use the individual’s performing or listen-
ing history D = {x1, x2, ..., xT } as a proxy for their musi-
cal ability and familiarity, then the CA architecture can be

used to train a composer model using a series of audience
models. As shown in Algorithm 3 below, at each timestep
t an audience model Ma

t is trained on all current music
Da

t = {x1, ..., xt} and plugged in the M c ← Ma
t archi-

tecture to create together with xt+1 a training example for
the composer model.

Algorithm 3 TRAINCASERIES(D)
Input: Chronological dataset D = {x1, x2, ..., xT }.
Output: Composer model M c.

1: for t = 1 to T − 1 do
2: train Ma

t on Da
t = {x1, ..., xt}

3: train M c on examples {M c ← (Ma
t , xt+1)}t=1..T−1

4: return M c

Experimental Evaluation
The proposed CA architecture was evaluated on three syn-
thetic tasks using binary strings: 1) violation of all high ex-
pectations, 2) violation followed by resolution of expecta-
tion, and 3) self-perpetuating random VoE. These synthetic
tasks use clear patterns of expectations that enable us to de-
termine the extent to which the models learn the expecta-
tions (audience) and their patterns of violation (composer).
We use two evaluation measures for surprise throughout:

1. Expected maximum surprise:

Smax(M
a|M c) = Ex̂∼P c

M

[
1− min

1≤j≤|x̂|
P a
M (x̂j |h)

]
2. Expected count of ψ-surprise:

Scnt(ψ,M
a|M c) = Ex̂∼P c

M

[∣∣∣∣{x̂j | P a
M (x̂j |h) <

ψ

K

}∣∣∣∣]
Smax and Scnt are calculated by averaging the sequence-
level maximum surprise or count, respectively, over a set
of generated sequences. Because all generated strings x̂ in
the experiment have the same fixed length N , the averaged
count Scnt(ψ,M

a|M c)/N can be seen as an estimate of the
average ψ-surprising expectation from Definition 3.

The two models are trained using teacher forcing, i.e. the
true token xt is used as input for the next step. We use the
cross entropy loss with respect to all the bits (random or pat-
tern) in the training sequences. We emphasize that there is
no explicit surprise-related loss and the only means for the
composer to learn surprise is from the data. The extent to
which the trained composer surprises the audience reflects
the extent to which the patterns in Dc violate the expecta-
tions of a model trained on the patterns in Da.

Violation of Expectation
In this scenario, the audience model learns when to gener-
ate high expectations, whereas the composer model learns
to violate all expectations that are sufficiently high, where
the expectation level required for VoE is learned from the
data. Training and test examples are generated as quasi-
random sequence of bits that are constrained to contain a

Training patterns Test
Audience xa1(0011) xa2(1100) xa(0101)

Composer xc1(0010) xc2(1101) x̂c(0100)

Table 1: Audience & Composer examples for VoE.

Algorithm 4 PAIREDTRAINING(Da, Dc)
Input: Audience dataset Da = {xa1 , ..., xaK}.
Input: Composer dataset Da = {xc1, ..., xcK}.
Output: Composer model M c.

1: for k = 1 to K do
2: train Ma

k on {xak}
3: train M c on examples {M c ← (Ma

k , x
c
k)}k=1..K

4: return M c

given bit pattern. To compress the dataset description, let
xmj (b1b2...bkbk+1, p,N) specify that example number j for
the audience (m = a) or the composer (m = c) is a sequence
of N bits that are generated at random with the following
constraints:

1. Any time the sequence of bits 〈b1, b2, ..., bk〉 is generated,
it is immediately followed by the bit value bk+1.

2. The complete pattern 〈b1, b2, ..., bk, bk+1〉 appears pN
times in the entire string of N bits (p < 1).

For the rest of the paper we will be dropping the pattern
frequency p and length N from the notation, as these will
be global parameters that stay the same for all examples:
p = 0.1 and N = 200. Table 1 shows training patterns
used for the audience and composer in the experiments for
this section. Below we show example training sequences
generated for two patterns, one for the audience and one for
the composer:

xa1(0011) = 〈0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, ...〉
xc1(0010) = 〈1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, ...〉

The composer patterns are designed to be the ”opposite” of
the audience patterns: any antecedent string 0, 0, 1 in the
audience sequence above is followed by the consequent bit
1. For the composer sequence, the antecedent is the same but
the consequent is flipped to 0. By training on this data, the
composer is expected to learn that whenever the audience
expectation is high (i.e. for a consequent bit) it should go
against that expectation and generate the opposite bit.

We experimented with two training scenarios:
1. Paired training: In this scenario, shown in Algorithm 4, a

separate audience model is trained for each pattern. When
training the composer model on a composer pattern xck,
we plug in the audience model that was trained on the
corresponding pattern xak.

2. Unpaired training: This is the original training scenario
shown in Algorithm 1 which is more realistic, as it does
not require having knowledge of which patterns are used
during training.
For paired training, we used the K = 2 training patterns

shown in Table 1. For the more difficult case of unpaired

training we added 3 more patterns to enable the composer
model to better learn the importance of audience expecta-
tion: xa3(1101), x

a
4(1010), x

a
1(0110) for the audience, and

the corresponding opposite patterns for the composer. At
test time, the audience model is trained on the new pattern
D = {xa} and plugged in the M c ← Ma architecture, as
shown in Algorithm 2. When used for sampling, the M c

model is expected to generate a string x̂c that violates the
expectation engendered by this new pattern. Note that the
M c model does not see the new pattern xa during training.

The LSTMs were trained with Adam (Kingma and Ba
2015) for 10,000 epochs using a learning rate of 0.001. We
generated 1,000 of training sequences of 200 bits each, for
each pattern. The LSTM had two layers of neurons, with 2
neurons per layer for both the audience and composer model
in the paired training mode. For unpaired training, where
just one model had to learn all patterns, these were increased
to 5 neurons for the audience and 4 for the composer. Over-
all, it was important to keep the capacity small so that the
audience does not memorize the input sequences, while en-
suring that the composer does not overfit to the bit pattern.
We report results for two input scenarios for the composer:

1. Using only the audience expectation as input (first result
in the table cells.

2. Using both the bit at the current position and the audience
expectation (results in parentheses in the table cells).

Sampling model M Smax(M
a|M) Scnt(ψ,M

a|M)

Audience: M=Ma 0.61 (0.64) 0.07 (0.13)

Composer: M=Mc 0.99 (0.99) 11.03 (12.14)

Table 2: Expected ψ-surprise for Paired training: ψ = 0.1,
Scnt is per 100 bits, composer accuracy 99% (99%).

Sampling model M Smax(M
a|M) Scnt(ψ,M

a|M)

Audience: M=Ma 0.55 (0.54) 0.02 (0.05)

Composer: M=Mc 0.99 (0.99) 11.17 (11.23)

Table 3: Expected ψ-surprise for Unpaired training: ψ =
0.1. Scnt is per 100 bits, composer accuracy 99% (99%).

Tables 2 and 3 report the surprise that the audience model
Ma experiences on samples x̂c from composer (two-model
sampling), as well as on samples x̂a from the audience itself
(one-model sampling). For each model, the surprise num-
bers are averaged over 100 sampled sequences of 200 bits
each. The results show that the audience model is much
more surprised by examples sampled from the composer
model, both in terms of maximum surprise Smax and aver-
age count of ψ-surprising events Scnt. The sequences gener-
ated by the composer satisfy the opposite pattern x̂c shown
on dark background in Table 1 with an accuracy of 98% or
higher (accuracy numbers shown in the caption).

Delayed Resolution of Expectation
Delayed resolution of dissonance is one major tool com-
posers use to play with the audience’s sense of expectation.

Training patterns Test
Audience xa1(0011) xa2(1100) xa(0101)

Composer xc1(00101) xc2(11010) x̂c(01001)

Table 4: Audience & Composer examples for Delayed VoE.

To emulate this, we experimented with the dataset shown
in Table 4 where the composer had to first violate the ex-
pectation (flip the consequent bit) and then satisfy it (follow
with the expected bit). For example, by training on pattern
xa1(0011), the audience learns to compute a high expectation
for the bit 1 whenever it follows the antecedent sequence 0,
0, 1. Thus, whenever the composer sees the antecedent 0, 0,
1, it also sees that the audience model has a high expectation
for 1 to follow. By being trained on xc1(00101), the com-
poser learns that it should generate a 0 when the audience
expectation is high, effectively violating the expectation, and
then follow with the bit 1 expected by the audience.

Tables 5 and 6 show the results in the paired and unpaired
training scenarios, respectively, using the same methodol-
ogy as in the previous section. Here too the results show
that the audience is much more surprised by examples sam-
pled from the composer model, in terms of both maximum
surprise and average frequency of ψ-surprising events.

Sampling model M Smax(M
a|M) Scnt(ψ,M

a|M)

Audience: M=Ma 0.68 (0.67) 0.13 (0.14)

Composer: M=Mc 0.99 (0.99) 12.90 (11.71)

Table 5: Delayed ψ-surprise for Paired training, ψ = 0.1.
Scnt is per 100 bits, composer accuracy 99% (99%).

Sampling model M Smax(M
a|M) Scnt(ψ,M

a|M)

Audience: M=Ma 0.54 (0.55) 0.00 (0.00)

Composer: M=Mc 0.99 (0.99) 11.98 (11.83)

Table 6: Delayed ψ-surprise for Unpaired training, ψ = 0.1.
Scnt is per 100 bits, composer accuracy 99% (98%).

Longer Patterns For all surprise scenarios from this sec-
tion (delayed VoE) and the previous section (direct VoE), we
also evaluated the composer model on longer patterns at test
time, i.e. using an audience model trained on xa(01101),
xa(111010), and xa(0101101). Even though at training
time the composer had seen expectation patterns with only
4 bits, its performance on longer patterns was overall very
similar with the performance reported in Tables 2 to 6, in
terms of both surprise measures and accuracy. This can be
seen as further evidence of the ability of the CA architecture
with LSTMs to learn general VoE patterns.

Never-Ending Surprise
In this scenario, surprise is generated by violating high ex-
pectation at random. We first create a training dataset Da =
{o0} for the audience that contains only a sequence of N
random bits o0. Let Dc = {o1,o2, ...} be a training dataset

for the composer containing two or more sequences that are
similar to o0 but not exactly the same. Each sequence in
Dc is generated by starting from o0 and randomly flipping
bits, where at each position in the sequence the probabil-
ity of flipping the bit is given by a Bernoulli distribution
with mean p = 1/N. If Bernoulli(p,N) is a sequence
of N draws from this distribution, then each composer se-
quence oj can be seen as the element-wise exclusive-or be-
tween o0 and this random vector, i.e. oj = o0 ⊕ rj =
o0 ⊕ Bernoulli(p,N). For example, if N = 10, the two
datasets could be as follows:

Da = {o0 = 〈0, 1, 0, 0, 1, 1, 0, 1, 0, 0〉}
r1 = 〈0, 0, 1, 0, 0, 0, 0, 0, 0, 0〉
r2 = 〈0, 0, 0, 0, 0, 1, 0, 0, 0, 0〉
r3 = 〈0, 0, 0, 1, 0, 0, 0, 1, 0, 0〉

Dc = {o1 = o0 ⊕ r1 = 〈0, 1, 1, 0, 1, 1, 0, 1, 0, 0〉,
o2 = o0 ⊕ r2 = 〈0, 1, 0, 0, 1, 0, 0, 1, 0, 0〉,
o3 = o0 ⊕ r3 = 〈0, 1, 0, 1, 1, 1, 0, 0, 0, 0〉}

To train the composer model, first an audience model Ma is
trained on Da. Then the composer model M c ← (Ma, r)
is trained on Dc, using as input the expectations computed
by Ma for each example oj , as well as the random sample
vectors rj . Upon training in this setting, the expectation is
that the composer model will learn to violate the high ex-
pectations produced by the audience model only at the times
specified by the random control vector r. Thus, if the au-
dience is trained on an arbitrary sequence o0 then, given a
random control pattern r, the composer should learn to com-
pute mostly the element-wise exclusive-or between the two,
i.e. o ≈ o0 ⊕ r (deviations may happen due to the sampling
done at each step in the sequence).

Algorithm 5 NEVERENDING(o0, N, p)
Input: An initial sequence of bits o0.
Output: An infinite stream of bit sequences o1,o2,

1: let k = 0, Dc
0 = {o0}

2: for ever do
3: set k = k + 1
4: train Ma

k on Dc
k−1

5: let rk ∼ Bernoulli(p,N)
6: let Dc

k = {ok ∼M c ← (Ma
k , rk)}

7: yield ok

Once the composer model is trained, it can be used to gen-
erate an infinite stream of surprising sequences using Algo-
rithm 5. The algorithm starts by initializing the set of com-
positions Dc

0 with an input sequence o0. This can be an ar-
bitrary sequence of N bits, for example all zeroes. At every
iteration of the never-ending generation loop, the current au-
dience model Ma

k is trained on the previous set of composi-
tions (step 4). Then a random control pattern rk is generated
(step 5) and together with the current audience model Ma

k
are used as input to the composer model M c, which gen-
erates a new surprising sequence ok (step 6). An example
output is illustrated below:
Dc

0 = {o0 = 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉}

r1 = 〈0, 0, 0, 1, 0, 0, 0, 0, 0, 0〉
Dc

1 = {o1 ≈ o0 ⊕ r1 ≈ 〈0, 0, 0, 1, 0, 0, 0, 0, 0, 0〉}
r2 = 〈0, 0, 1, 0, 0, 0, 0, 0, 1, 0〉

Dc
2 = {o2 ≈ o1 ⊕ r2 ≈ 〈0, 0, 1, 1, 0, 0, 0, 0, 1, 0〉}

r3 = 〈0, 0, 0, 1, 0, 0, 0, 1, 0, 0〉
Dc

3 = {o3 ≈ o2 ⊕ r3 ≈ 〈0, 0, 1, 0, 0, 0, 0, 1, 1, 0〉}
r4 = 〈0, 0, 0, 0, 0, 0, 0, 1, 0, 0〉

Dc
4 = {o4 ≈ o3 ⊕ r4 ≈ 〈0, 0, 1, 0, 0, 0, 0, 0, 1, 0〉}...

The composer LSTM was reduced to one layer with 2 neu-
rons, and both models were trained for 5,000 epochs. The
results in Table 7 show that the audience model experiences
no surprise on samples from itself, whereas samples from
the composer are very effective at eliciting surprise.

Sampling model M Smax(M
a|M) Scnt(ψ,M

a|M)

Audience: M=Ma 0.00 0.00
Composer: M=Mc 0.99 1.65

Table 7: Expected Never-Ending ψ-surprise: ψ = 0.1, Scnt

is per 10 bits, composer accuracy 100%.

Relation to Previous Work
Itti and Baldi (2006; 2009) define the surprise of an
agent M upon observing data D as the KL-divergence
KL(P (M |D)‖P (M)) between the posterior distribution of
beliefs after the agent observes the data and its prior distribu-
tion of beliefs. This Bayesian definition of surprise is shown
to be a good predictor of events that attract human attention
in video frames. Macedo and Cardoso (2001) define the sur-
prise of an event E as 1 − PM (E). Given that a low prob-
ability alone cannot fully account for surprise (Teigen and
Keren 2003), such as in models with uniform distributions,
Macedo, Reisezein, and Cardoso (2004) refined the defini-
tion of surprise to also consider the most likely eventEh, i.e.
log(1+P (Eh)−P (E)). Note that our definition of surprise
naturally solves the uniform distribution dilemma by using a
threshold that depends on the number of categories. Similar
to (Macedo and Cardoso 2001), Horvitz et al. (2005) define
surprising events to be those with low likelihood, e.g. 0.1 or
less. They also go one step further and train a Bayesian net-
work to forecast surprising events 30 minutes in advance for
their traffic flow model JamBayes. In the context of evaluat-
ing creative designs, Maher, Brady, and Fisher (2013) iden-
tify surprising designs as outliers with respect to predictions
based on features from previous designs.

Overall, these approaches were aimed at recognizing or
forecasting surprise. To the best of our knowledge, the
two-model architecture described in this paper is the first
to address the task of producing surprising outputs by learn-
ing patterns of surprise from data. In terms of models that
learn to generate surprising data, the most relevant work is
Schmidhuber’s Formal Theory of Creativity, summarized in
(Schmidhuber 2012). There, the learning agent is entirely
unsupervised and is expected to create novel and surprising
data on its own, using a reinforcement learning algorithm

that rewards the agent when it generates data that helps it
better compress its history of interactions with the environ-
ment. In contrast, our learning approach is data-driven in the
sense that it is trained to minimize loss on data that is given
to it, e.g. bit sequences. At the same time, like Schmidhu-
ber’s creative agent, it does not require explicit supervision
in terms of surprise, i.e. the composer is never told whether
a particular event is surprising or not. The composer learns
to surprise the audience only to the extent that the data pro-
vided to it is surprising for its model of the audience, which
itself learns patterns of expectation from its own data.

There are also other two-model architectures, albeit de-
signed for different purposes, such as the discriminator-
generator model of generative adversarial nets (Goodfellow
et al. 2014) or the student-teacher model used in the music
theory learning system of (Yu and Varshney 2017).

Acknowledgments
We would like to thank Kristen Masada and Gordon Stewart
for useful discussions on an earlier draft and the anonymous
reviewers for their constructive feedback.

References
Boden, M. A. 1991. The Creative Mind: Myths and Mech-
anisms. New York, NY, USA: Basic Books, Inc.
Boulanger-Lewandowski, N.; Bengio, Y.; and Vincent, P.
2012. Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation and
transcription. In Proceedings of ICML’12, 1–8.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NIPS, 2672–2680.
Grace, K., and Maher, M. L. 2015. Specific curiosity as
a cause and consequence of transformational creativity. In
Proceedings of ICCC, 260–267.
Grace, K.; Maher, M. L.; Fisher, D.; and Brady, K. 2015.
Modeling expectation for evaluating surprise in design cre-
ativity. In Design Computing and Cognition, 189–206.
Hadjeres, G.; Pachet, F.; and Nielsen, F. 2017. DeepBach:
a steerable model for Bach chorales generation. In Proceed-
ings of ICML’17, 1362–1371.
Hinton, G. E. 2002. Training products of experts by
minimizing contrastive divergence. Neural Computation
14(8):1771–1800.
Horvitz, E.; Apacible, J.; Sarin, R.; and Liao, L. 2005. Pre-
diction, expectation, and surprise: Methods, designs, and
study of a deployed traffic forecasting service. In Proceed-
ings of UAI’05, 275–283.
Huang, C.-Z. A.; Vaswani, A.; Uszkoreit, J.; Simon, I.;
Hawthorne, C.; Shazeer, N.; Dai, A. M.; Hoffman, M. D.;
Dinculescu, M.; and Eck, D. 2019. Music transformer. In
International Conference on Learning Representations.
Huron, D. 2008. Sweet Anticipation: Music and the Psy-
chology of Expectation. MIT.
Itti, L., and Baldi, P. F. 2006. Bayesian surprise attracts
human attention. In NIPS. MIT Press.

Itti, L., and Baldi, P. 2009. Bayesian surprise attracts human
attention. Vision Research 49(10):1295 – 1306.
Kingma, D. P., and Ba, J. L. 2015. Adam: A method for
stochastic optimization. International Conference on Learn-
ing Representations 1–15.
Larochelle, H., and Murray, I. 2011. The neural autoregres-
sive distribution estimator. In AISTATS, 29–37.
Macedo, L., and Cardoso, A. 2001. Modeling forms of
surprise in an artificial agent. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 23.
Macedo, L.; Reisezein, R.; and Cardoso, A. 2004. Modeling
forms of surprise in artificial agents: empirical and theoret-
ical study of surprise functions. In Proceedings of the 26th
Annual Meeting of the Cognitive Science Society.
Maher, M. L.; Brady, K.; and Fisher, D. H. 2013. Compu-
tational models of surprise in evaluating creative design. In
Proceedings of ICCC, volume 147.
Mas-Herrero, E.; Zatorre, R. J.; Rodriguez-Fornells, A.; and
Marco-Pallarés, J. 2014. Dissociation between musical and
monetary reward responses in specific musical anhedonia.
Current Biology 24(6):699–704.
Meyer, L. 1961. Emotion and Meaning in Music. University
of Chicago.
Nusbaum, E. C., and Silvia, P. J. 2011. Shivers and timbres:
Personality and the experience of chills from music. Social
Psychological and Personality Science 2(2):199–204.
Oore, S.; Simon, I.; Dieleman, S.; Eck, D.; and Simonyan,
K. 2018. This time with feeling: learning expressive musical
performance. Neural Computing and Applications.
Panksepp, J. 1995. The emotional sources of ”chills” in-
duced by music. Music Perception: An Interdisciplinary
Journal 13(2):171–207.
Sachs, M. E.; Ellis, R. J.; Schlaug, G.; and Loui, P. 2016.
Brain connectivity reflects human aesthetic responses to mu-
sic. Social Cognitive and Affective Neuroscience 11(6):884–
891.
Schmidhuber, J. 2012. A formal theory of creativity to
model the creation of art. In McCormack, J., and dInverno,
M., eds., Computers and Creativity. Springer-Verlag.
Smolensky, P. 1986. Parallel distributed processing: Ex-
plorations in the microstructure of cognition, vol. 1. MIT
Press. chapter Information Processing in Dynamical Sys-
tems: Foundations of Harmony Theory, 194–281.
Teigen, K. H., and Keren, G. 2003. Surprises: Low proba-
bilities or high contrasts? Cognition 87(2):55–71.
West, R., and Horvitz, E. 2019. Reverse-engineering satire,
or ”Paper on computational humor accepted despite making
serious advances”. In Proceedings of AAAI, 1–8.
Yannakakis, G. N., and Liapis, A. 2016. Searching for sur-
prise. In Proceedings of the Seventh International Confer-
ence on Computational Creativity, 25–32.
Yu, H., and Varshney, L. R. 2017. Towards deep inter-
pretability (MUS-ROVER II): Learning hierarchical repre-
sentations of tonal music. In ICLR.

