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Abstract 

Art analysis is a key aspect for computational systems 
whose goal is to generate visual artifacts. This paper pro-
poses a six steps methodology to analyze and represent 
design principles from art works. Our approach starts 
with an image segmentation followed by the construc-
tion of a straight skeleton. Then we extract some color 
information and perform shape analysis and classifica-
tion. Finally some design principles are calculated and 
groups of elements are built over a complete graph. Our 
internal art work representation gives us a way to ap-
proximate the phases of artistic appreciation proposed by 
some authors. We show a procedure to generalize com-
positional rules for the generation of new abstract art 
works based on the steps of the proposed methodology. 
We plan to use a self organizing map to cluster our art 
work representations and use this information to build a 
hypergraph and/or multigraph. Since these graphs can 
represent design principles, the system will be able to use 
these structures to explore new ways to generate artifacts 
and measure their novelty compared to previous exem-
plars.  

 Introduction 

As suggested by Cetinic et al. (2018), analyzing artworks is 
a complex task which generally involves understanding as-
pects like form, content and meaning. These aspects origi-
nate from the formal elements present in the artwork such as 
line, shape, color, texture, mass and composition (Barnet, 
2015). Art experts usually do their analysis comparing 
paintings to find relations between them (Seguin et al., 
2016). Generally, the outcomes of those analyses can lead 
to style classifications, genre determinations, formal com-
ments and influences between artists, artworks or art move-
ments (Saleh et al. 2014, Florea et al. 2017, Badea et al., 
2018).  
 In the last few years, research in computer vision tech-
niques to analyze visual art has increased in quantity and 
quality (Badea et al., 2018). This trend depends on two facts. 
First, there have been consistent efforts by museums and 
collectionists to digitize more paintings and include relevant 
meta-data. This permits us to have larger datasets to do anal-
ysis. The second fact is the development of deep neural net-
works. Style classification has received more attention (Bar 

et al., 2015; Saleh and Elgammal, 2015; Elgammal et al. 
2018). Genre classification has been explored but there are 
still complex open challenges (Condorovici et al., 2013). 
The approach used in such classificators, usually includes 
extracting a set of image features and using them to train 
different classifiers such as support vector machines, neural 
networks or k-nearest neighbors (Cetinic et al., 2018).  
 Art analysis is a key aspect for computational systems 
whose goal is to generate visual artifacts. Such analysis al-
lows building knowledge structures from real pieces of art 
that can be exploited by creative agents to create more elab-
orated outputs. Thus, we need to develop mechanisms that 
allow computer systems to improve their “art appreciation” 
in general (Norton et al., 2010; Health et al., 2016). In order 
to accomplish this goal, we require general and specific 
knowledge (Barret, 2007). That is what this project is about.  
We are interested in studying and representing notions re-
lated to composition and design principles like balance, 
symmetry, size, contrast and shape (Pérez y Pérez et al. 
2013; Pérez y Pérez & Guerrero 2019) from abstract pieces 
of visual art. In this paper, we claim that the development of 
systems that allow analyzing and representing design prin-
ciples from well-known pieces of art are important to gen-
erate better creative agents. Thus, we propose a six steps 
methodology (6SM) that combines and advances well 
known algorithms for image processing in order to obtain 
such design principles.  
 This is a work in progress. Therefore, the key target of 
this text is to present to the reader the core aspects of our six 
steps methodology to represent design principles (see the 
section titled Art Work Representation) as well as showing 
some partial results. The first step consists of an image seg-
mentation using the algorithm proposed by Syu et al. (2017) 
(see the Image Segmentation section). The objective of this 
phase is to build a hierarchical multi-resolution representa-
tion of the regions that make up an image. The second step 
builds a planar graph called straight skeleton over every re-
gion or segment of the previous step (see the Straight Skel-
eton and Centrality Measure section). The purpose of this 
graph is to induce a terrain model. With this model a cen-
trality measure can be computed and a generalized notion of 
center of mass can be defined. The third step extracts color 
information (see the section titled Color Information) based 



on Itten’s model (1974). To achieve this phase, we follow 
Sartori et al. (2015) proposal to build a 180 color swatch. 
With this color palette we replace every original color and 
calculate spatial relations over Itten’s color sphere generated 
by these 180 colors. The fourth step consists of a shape clas-
sification process (see the Shape Classification section). The 
objective of this step is to do a clustering procedure to have 
a reduced number of general shapes that can represent most 
of the regions of the art works analyzed. The next phase im-
plements some binary relations between regions based on 
some design principles (see the Design Principles and Bi-
nary Relations section). We calculate relations on pairs of 
shapes based on measurements over the mean shape bound-
ing box, direction and aspect ratio. The final step consists on 
building groups as suggested by (Pérez y Pérez et al. 2013; 
Pérez y Pérez and Guerrero 2019) (see the section titled 
Groups of Regions). The goal of this step is to have a repre-
sentation of the elements of the art work at different levels 
of abstraction.    
 We are employing the Tlahcuilo visual composer (Pérez 
y Pérez et al., 2013; Pérez y Pérez & Guerrero, 2019) to im-
plement a proof of concept. We will include new design 
principles and new evaluation procedures. Because having 
more artistic knowledge should help achieve higher quality 
artifacts (Heath et al. 2016), we hope to improve the quality 
and novelty of the artifacts the Tlahcuilo produces.  

Related Work 

Recently, a large number of image representations presented 

in the literature are exclusively or highly dependent on ab-

stract neural network feature maps. Of particular interest to 

this research are works that suggest image representations 

such as the one proposed by Bar et al. (2014) that involve 

more concepts interpretable by humans directly. The authors 

suggest using a combination of powerful neural network vis-

ual features with other descriptors. The effectiveness of con-

volutional neural network based features, particularly in 

combination with other hand-crafted features, was con-

firmed also for genre classification by Cetinic and Grgic 

(2016).  

Artistic style classification is another related problem that 

has been addressed with continuous increasing interest. 

Some recent work used object recognition (Crowley and 

Zisserman, 2014). The authors show that finding objects in 

paintings by learning object-category classifiers from avail-

able sources of natural images is possible. Artistic scene or 

genre understanding is also important. Badea et al. (2018) 

investigate the relation between genre, scene and artistic im-

age subject. The authors investigate abstraction achieved by 

deep convolutional neural networks. In particular, “Abstract 

Art”, is targeted by the authors as a challenging problem 

since a subject is not necessarily present.  

Saleh et al. (2014) study how painters influence each 

other using visual similarity. They implemented a procedure 

based on computer vision and machine learning. The au-

thors perform several comparisons using different visual 

features and similarity measurements. Since there is not 

enough ground truth information to achieve influence anal-

ysis directly, the authors use a highly correlated task such as 

style classification to show some results. The authors inves-

tigate features aspect of the paintings and compare seman-

tic-level features vs low-level and intermediate level fea-

tures. They claim that their study confirms that high-level 

semantic features are more useful for style classification and 

hence for influence analysis. In a similar direction, Seguin 

et al. (2016) investigate how state-of-the-art machine vision 

algorithms can be used to retrieve common visual patterns 

shared by sets of paintings. Florea et al. (2017) suggest that 

visual similarity has space for improvement because most of 

the research and results have been developed for older artis-

tic movements where scene depiction has high-level seman-

tic concepts and does not present particular abstractions.   

In the domain of computational creativity, DARCI (Nor-

ton et al. 2010; Heath et al. 2016) is a reference. The goal of 

this system is to eventually produce images through creative 

means. In the process to achieve this, the authors propose to 

teach DARCI some artistic image appreciation and under-

standing. They implement this through the association of 

low-level image features to artistic descriptions. They show 

that the system successfully learns 150 different descriptors 

from images. Pérez y Pérez and his colleagues (Pérez y Pé-

rez et al. 2013; Pérez y Pérez & Guerrero 2019) propose a 

computer model to develop visual compositions based on 

the Engagement and Reflection Model. The system uses de-

sign principles to analyze examples provided by designers 

and generate a knowledge base to progress a visual work and 

also measure the novelty of its artifacts. 

Garcia and Vogiatzis (2018) argue that to build artistic 

knowledge, we have to work outside the style classification 

tasks and expand our research goals. The authors present Se-

mArt, a multi-modal dataset for semantic art understanding. 

The authors suggest a challenge called Text2Art to evaluate 

art understanding based on a retrieval task. They also sug-

gest several models for encoding visual and textual artistic 

representations into a common semantic space. Strezoski 

and Worring (2018) created a large dataset with more than 

430,000 samples called “The OnmiArt Challenge”. They 

suggest analyzing more attributes related to the art works.  

Art Work Representation 

The knowledge structures constructed in this paper are 
based on examples of abstract art created by human artists. 
Since abstract art can be thought of as lacking representation 
of common everyday objects, these art works are more 
prone to intrinsic artistic formal aspects. Initially we pro-
pose to develop an analysis using exclusively 165 of 
Rothko’s art works. We have a partial prototype that imple-
ments the pipeline described in the next few sections. It re-
ceives an image as input and outputs our internal represen-
tation. 



Step 1: Image Segmentation 

Syu et al. (2017), claim that even though plentiful segmen-
tation algorithms have already been proposed, how to effec-
tively partition an image into segments that are “meaning-
ful” to human visual perception is still very challenging. 
Sometimes it is not enough to choose a specific image char-
acteristic such as color or texture to achieve a successful im-
age segmentation. This paper proposes to use the new algo-
rithm developed by Syu et al. (2017) which builds a hierar-
chical image segmentation. One of the objectives of the al-
gorithm is to generate a dendrogram in which every node 
corresponds to a segment and all the nodes in the same level 
build up a segmentation. This dendrogram is a consistent 
multi-resolution representation of the contents of the seg-
mented image. In our context, consistent means that every 
new segment comes exclusively from a previous node. This 
characteristic is one of the main differences between the al-
gorithm developed by the authors and similar hierarchical 
solutions. 
 The algorithm proposed by Syu et al. (2017) works in two 
steps like almost all hierarchical procedures. The first phase 
works directly with the raw pixels and has the objective to 
group up similar pixels into regions. For the second step of 
the first phase of the algorithm, the authors present an itera-
tive process of contraction and merging. The contraction 
step is based on an optimization process over an affinity ma-
trix that groups pixels. The merging is characterized by a 
fixed grid in which previously contracted pixels are joined 
together. These two steps work exclusively on the similarity 
at color level between adjacent pixels.  

 The second phase keeps on making a contraction and 

merging procedure. The affinity matrix gets updated based 

on color, size, texture and intertwining of the regions. The 

affinity matrix for the second phase depends on the dissim-

ilarity between regions 𝑅𝑖 and 𝑅𝑗. The factors that make up 

the dissimilarity metric are the following: 
 Color Component: For a region 𝑅𝑖, Syu et al. (2017) de-
note its color feature as the averaged color values inside the 
region. For adjacent regions 𝑅𝑖 and 𝑅𝑗, the color-based dis-
similarity measure is 𝐷𝐶(𝑅𝑖, 𝑅𝑗) =∥ 𝐶𝑅𝑖

− 𝐶𝑅𝑗
∥2.  

 Texture Component: two adjacent regions with similar 
texture patterns and similar colors should have a larger af-
finity value. To describe the texture pattern of a region, Syu 
et al. (2017) convert the region color values to gray and cal-
culate the Weber Local Descriptor (WLD). This descriptor 
consists of two components, differential excitation and ori-
entation, over a local window around every pixel.  
 Region Size Component: To take into account the region 
size in the merging process of the second phase, the authors 
define an additional distance function is design to facilitate 
the merging of two small regions or the merging of small 
regions into their neighboring regions fast.  

Spatial Intertwining Component: this component is used 

to merge together small regions produce during the cycles. 

Syu et al. (2017) measure the intertwining of any pair of re-

gions 𝑖 and 𝑗 based on a fixed 5x5 window over every pixel 

𝑝 of 𝑅𝑖. They calculate the most common index in the local 

window. Based on these indexes, a decision to merge 

smaller groups of pixels to neighboring regions is taken. 

Figure 1 and 2 give examples of the result of the first phase 

of the process we are describing. We show the hierarchical 

segmentation procedure achieved by our partial prototype 

applied to one of Rothko’s and Kandinsky’s artworks. 

Step 2: Straight Skeleton and Centrality 
Measure 

According to Huber (2012), the notion of a straight skeleton 

for a simple polygon 𝑃 was introduced for the first time by 

Aichholzer et al. (1995). The authors used a wavefront prop-

agation process to define it. As reported by Huber (2012), 

every edge 𝑒 of 𝑃 sends out a wavefront which moves in-

wards at unit speed and parallel to 𝑒. Figure 3 shows a visu-

alization of the described process. During the wavefront 

propagation process, topological changes named events are 

produced. Huber distinguishes two types: edge and split 

events. An edge event occurs when two neighboring convex 

vertices 𝑢 and 𝑣 of the wavefront meet. This event causes 

the wavefront edge 𝑒, which connects 𝑢 and 𝑣, to collapse 

to zero length. The wavefront edge 𝑒 is removed and the 

vertices 𝑢 and 𝑣 are merged into a new convex vertex. A 

split event occurs when a reflex vertex 𝑢 of the wavefront 

meets and edge 𝑒 of the wavefront. The vertex 𝑢 splits the 

entire wavefront into polygonal parts (Huber, 2012).  

The formal definition of a straight skeleton taken from 

Huber (2012) is as follows: the straight skeleton 𝑆(𝑃) of a 

polygon 𝑃 corresponds to the straight segments that are 

traced out by the vertexes of any wavefront. These segments 

are denominated arcs or edges of 𝑆(𝑃). The places where 

topological changes take place are defined as nodes. To 

every edge 𝑒 of 𝑃 belongs a face 𝑓(𝑒), which consists of 

every point traced by the wavefront border started by edge 

Figure 3 – visualization of the wavefront propagation process. 

The edge 𝑒 has the associated front wave 𝑓(𝑒). Image repro-

duced from Huber (2012), pg. 13. 

 

Figure 2 – original, 2, 13 and 60 segments 

 

Figure 1 – original, 3, 13 and 60 segments 

 



𝑒. Every node of 𝑆(𝑃) is incident to multiple arcs. The bor-

der of any given face consists of the arcs and vertices of 

𝑆(𝑃). 

The straight skeleton has several interesting properties. 

Central to this work is the fact that this skeleton is a tree 

(Aichholzer et al., 1995). Based on that fact, we know there 

exists a unique node that can be named as the root. The same 

authors generalized the concept of straight skeletons to pla-

nar straight-line graphs. According to Huber (2012), this 

generalization allowed a better interpretation of the visuali-

zation suggested initially by Aichholzer et al (1995). This 

intuition is formalized with the definition of model terrain: 

the terrain 𝑇(𝐺) of 𝐺 a straight-line graph is: 𝑇(𝐺) =
 ⋃ 𝑊(𝐺, 𝑡) ∗ {𝑡}𝑡≥0  were 𝑊(𝐺, 𝑡) corresponds to the wave-

front of a straight-line graph 𝐺 for a time 𝑡 ≥ 0. According 

to Huber (2012), 𝑊(𝐺, 0) corresponds geometrically to the 

same graph 𝐺 and it should be visualized like a superposi-

tion with the same topology over the original graph.  

The straight skeleton induces an Euclidean graph given 

by the spatial coordinates of the nodes. Taking into account 

the terrain model induced by the straight skeleton and the 

distance between every node, a weight for every edge is as-

signed. The value is just the multiplication of the 𝑡 ≥ 0 pa-

rameter or third dimensional value of 𝑇(𝐺) with the distance 

between every pair of nodes. We calculate a centrality meas-

ure based on closeness and using the weights as cost func-

tion to find a unique node that can represent each region. 

Since the straight skeleton is a tree, we can be certain that 

such a unique node always exists. The center of this Euclid-

ean graph, can represent each region and acts as a general-

ized notion of a mass center. Figure 4 shows the terrain 

model induced by the straight skeleton of a region and visu-

alizes the center of the Euclidean graph.  

The process by which the straight skeleton is generated is 

computationally demanding. To cope with this time and the 

large number of regions used in this paper, we propose to 

make a region simplification based on the Ramer–Douglas–

Peucker algorithm. The objective of the algorithm is, given 

a linear segment curve, to find an approximated curve with 

less points. The dissimilarity measure used to compare both 

curves is based on the Hausdorff distance. One of the most 

important characteristics of the procedure is that the approx-

imated curve points, come from a subset of the original 

curve points. For the algorithm to work, a tolerance param-

eter 𝜀 > 0 needs to be given by the user. After some trial 

and error, we found 𝜀 = 0.1 to be a good candidate. The first 

step of the algorithm is to find the farthest points on the orig-

inal curve. Once both points of the maximum diameter are 

identified, the region is split in two curves and the algorithm 

is invoked recursively on both segments. The original two 

points are automatically assigned as elements of the new ap-

proximated curve. The next step is to find the farthest point 

between the straight line made up by the two original points 

and every other point of the segment. Once this point is iden-

tified, the distance between the line and the point is calcu-

lated. If the distance is less than 𝜀 then any given points be-

tween the original points and the farthest point get elimi-

nated. This guarantees that the tolerance requirement is met 

in every step. In case the distance is greater than 𝜀, the algo-

rithm marks this new point as belonging to the new approx-

imated curve. The algorithm gets recursively invoked be-

tween the new subsegments. The recursion process is over 

when there are no more segments to check. Setting 𝜀 = 0.1 

allows us to simplify every border region without losing im-

portant perceptual geometrical characteristics. After the 

simplification based on the Ramer–Douglas–Peucker algo-

rithm, we order all the components of every segmentation in 

every level. In case we find more than one component, we 

only calculate the straight skeleton over the largest compo-

nent. If holes are found inside any of the regions, we calcu-

late their size and include them only if they represent more 

than 1% of the original containing region.  

Step 3: Color Information 
Most of the color information is going to be based on Itten’s 

theory (1974). Itten studied and taught almost all aspects re-

lated to aesthetic and expressivity of color during several 

years in the Bauhaus school. His theory defined a set of rules 

for colors and combinations of them. These principles were 

named by the author as “objective principles of color”. Ad-

ditionally, Itten also tried to formalize some of the emotional 

aspects of color combinations. The author’s theory is visu-

ally represented by a color wheel. This structure is com-

posed of 12 color shades made out of primary, secondary 

and tertiary colors. Colors that are opposed in the color 

wheel are complementary and make up a harmonic pair 

(Sartori et al., 2015). Itten’s wheel was further expanded us-

ing 5 levels of luminance and 3 levels of saturation. This last 

model, composed of 180 colors was named by the author as 

Itten’s color sphere (Sartori et al., 2015). 

In order to condense and reduce color information, we im-

plement a color swatch construction process, based on what 

Sartori et al. (2015) suggested. The idea of this process is to 

sample all the colors out of a dataset and use a cluster pro-

cess like k-means to find 180 centroids in RGB color space. 

In our case, the dataset is based on all the color regions of 

every hierarchical segmentation level.  The similarity metric 

used by the k-means algorithm in our case is the ordinary 

three dimensional Euclidean distance. Once the 180 cen-

troids are found (Figure 5), we proceed to replace every 

Figure 4. Terrain model induced by a straight skeleton. Center 

of Euclidean graph based on closeness centrality measure. 

𝑑 <  𝜀 



color with the nearest centroid to change every color in 

terms of the newly built color swatch (Figure 6). 

The color relationships used in this paper are going to be 

binary and related to contrast and harmony. For the first re-

lation, we simply use Itten’s color sphere and try to locate 

opposite elements. For harmony relations, we suggest using 

the Itten’s relations that correspond to defined geometric 

patterns over the sphere or color wheel. The color swatch 

also permits us to establish some groups of colors that give 

global information of the subset of colors from the swatch 

that are present in an artwork. 

 

Step 4: Shape Classification 
The definition of the concept of “shape” has always been 

complicated. According to Dryden & Mardia (2016), in the 

ordinary and common use of the word “shape”, we almost 

always use it in an indirect way and using relations of simi-

larity to other objects to try to specify a specific “shape”. 

Dryden & Mardia (2016) present the following definition: 

“shape is all the geometrical information that remains when 

location, scale and rotational effects are removed from an 

object” (pg. 22). 

Based on this definition, the shape of an object is invari-

ant under any Euclidean similarity transformation. Two ob-

jects have the same shape if one of them can be translated, 

rescaled and rotated in such a way that superimposing it over 

the other one, they match completely. The way in which a 

shape is represented is fundamental to developing any anal-

ysis. This work is going to use a finite set of points over the 

straight skeleton to build some pseudo-landmarks. The con-

figuration matrix X is the kxm matrix of Cartesian coordi-

nates of the k landmarks in m dimensions. In particular, we 

are going to work with 𝑘 ≥ 3 landmarks and the dimension 

𝑚 will be 2. Kendall (1984) demonstrated that for the par-

ticular case in which 𝑚 is 2, the shape space is a Riemannian 

manifold (complex projective space). In particular and for 

the purposes of this paper, we need to use the Riemannian 

distance to be able to compare the difference between any 

two shapes once any translation, scale or rotation is re-

moved.  
To classify the regions generated by the hierarchical seg-

mentation algorithm, we suggest a process that builds sev-

eral configuration matrixes. The construction starts with 

𝑘 = 12 and ends as soon as one of the following two condi-

tions are met: a) the maximum number of points of the re-

gion is less than 50, b) 𝑎𝑙𝑟
𝑎𝑙𝑜⁄ ≥ 0.90 and 1 ≥ 𝑎𝑟

𝑎𝑜⁄ ≥

0.90, where 𝑎𝑙𝑟 is the arc-length of the approximated curve,  

𝑎𝑙𝑜 is the arc-length of the original curve, 𝑎𝑟 is the area of 

the approximated curve and 𝑎𝑜 is the area of the original 

curve.  

We compare every pair of regions based on a 12-points 

configuration matrix and gradually increase the number of 

configurations if necessary. We use the Ramer–Douglas–

Peucker algorithm to simplify every region on our dataset to 

find the respective configuration matrixes. In applying the 

algorithm, we use the notion of tortuosity: 𝜏 =
𝐿

𝐶
 where 𝐿 

corresponds to the length of the curve and 𝐶 corresponds to 

the distance between the extreme points. Since every region 

is closed, we start by splitting every border by the major axis 

and using the tortuosity measure to decide what sub curve 

has more complexity and start the procedure. On every step, 

we compare the tortuosity of every subsegment to decide the 

next candidate. Figure 7 shows some steps of the above pro-

cedure for one region. In case a region has less than 12 

points, we artificially interpolate points between the longest 

segments until necessary.  

To classify these simplified regions, we do a clustering 

procedure over all the 12 points configuration matrixes us-

ing the ideas of Vinué et al. (2014). The authors suggest an 

extension to the original k-means algorithm so that it can be 

applied directly over configuration matrixes using the Pro-

crustes analysis and the Riemannian distance. Starting with 

1553 simple regions, we suggest to find initially 90 cen-

troids on this first step. In the second step of our procedure, 

we do a hierarchical clustering with single linkage to have 

the possibility of reducing further the number of clusters. To 

try to identify where the hierarchical tree should be cut, we 

analyze the distance matrix calculated with the Riemannian 

distance function between all the centroids. After some ex-

perimentation using between 2 and 10 nearest neighbors of 

every element in this matrix, we found that taking 25% of 

the maximum distance between any element was a good 

Figure 7. Region 2 of Rothko’s “Violet, Black, Orange, 

Yellow on White and Red” (1949) work. 3, 4, 5 and 6 

points simplification in red.  

Figure 5. Color palette – 180 colors. 11 groups of colors. 

Up to down: black, blue, brown, grey, green, orange, pink, 

purple, red, white and yellow.  

Figure 6. Color palette application.  



condition to stop the pruning procedure. We check the con-

dition “b” stated before (𝑎𝑙𝑟
𝑎𝑙𝑜⁄ ≥ 0.90 and 1 ≥ 𝑎𝑟

𝑎𝑜⁄ ≥

0.90) to decide if every centroid is a good representative of 

the cluster. In case there is a configuration region which 

does not fulfill this condition, we propose to split the respec-

tive cluster augmenting the configuration matrixes one step 

at a time until condition “b” is true. After doing this proce-

dure, the hierarchical clustering tree allows us to move up 

or down in the representation of any region. If we want to 

simplify the configuration matrix to generate simpler re-

gions, we use the tree and all the members of a cluster to 

pick a simpler configuration matrix or generate a new mean 

shape. The final centroids act as the color swatch we defined 

before and is going to allow us to generalize some binary 

relations mentioned in the next section. Figure 8 shows a 

contrast relation between two regions and gives us an idea 

of how a generalization of this relation is possible. 

 

Step 5: Design Principles and Binary Rela-

tions 
Based on the output of the previous step, we are going to 

define some contrast binary relations between the centroids. 

After a linear transformation that takes the end points of the 

major axis of every centroid to the coordinates (−
1

2
, 0) and 

(
1

2
, 0) we calculate the mean shape bounding box, aspect ra-

tios, distance and mean direction. To define this direction, 

we propose to use a histogram based on the shortest path that 

connects the major axis end points and passes through the 

center of the straight skeleton (Figure 9). We suggest having 

6 bins in the histogram. Every bin is 30º and the range starts 

in -15º. Once the histogram is normalized, we can have an 

approximation to the orientation of the longest path and use 

this as a general notion of direction for the region.  

This work also proposes to calculate balance, symmetry 

and rhythm relations as suggested by Pérez y Pérez et al. 

(2013). We also propose to expand the use of contrast from 

color (Pérez y Pérez et al. 2010) to shape and incorporate 

more design principles than the original work developed by 

the authors. We believe the region representation suggested 

will allow us to generate even more art principles in future 

works since the straight skeleton lets us calculate internal 

symmetries of the shape, proportions and more. In Figure 10 

we show some examples of binary relations found using our 

partial prototype.  

Step 6: Groups of Regions 
Based on the ideas presented in (Pérez y Pérez et al. 2013; 

Pérez y Pérez and Guerrero 2019), we build groups of re-

gions based on the distance. We construct a complete graph 

of the first 20 regions of an art work using the normalized 

center of every region (Figure 11). The order in which the 

graph is built is based on the size. We calculate the distance 

between every pair of nodes. The final weight of every edge 

is the normalized Euclidean distance by the main diagonal 

of the image of the art work. To start building the groups of 

layer 1, we follow the procedure described by Pérez y Pérez 

et al. (2013) and iterate their procedure until no more groups 

or layers are possible. 

 

Internal Representation 
The goal of the internal representation is to extract the infor-

mation of the art work related to the design principles and 

binary relations suggested for the analysis. We suggest a cat-

egorical-numerical vector that represents the art work with 

the following structure: 

a) Global information: artist name, year of creation and 

the artistic style of the art work. 

b) Specific art work information: width, height, aspect ra-

tio, first 20 simple regions based on the dendrogram of 

Figure 9. Major axis and shortest path on SS. 

Figure 11. Rothko’s “Violet, Black, Orange, Yellow on White 

and Red” (1949). 10 simple regions and complete graph (SS). 

Figure 10. Binary relations – directional, size and proportion 

contrast examples. Balance and Symmetry. 

Figure 8. Contrast binary relation – directional, size and pro-

portion. 12-points simplification, cluster centroid and similar 

regions for relation generalization. 



segmentation ordered by area in decreasing order. In 

case there are less regions, values are filled with zeros. 

c) Region specific information: every region is repre-

sented by the following attributes: area of the region 

normalized by the total area of the art work, centroid 

identifier of the cluster to which this region is closer 

based on Riemannian distance, normalized width of the 

bounding box of the region, histogram of direction and 

color identifier from the color swatch. 

d) Groups of Regions: information based on the groups 

constructed using the procedure described previously.  

e) Relations between Regions: using the complete graph 

induced by the center of every one of the simple re-

gions, we propose to analyze every possible binary re-

lation between every pair of regions. Existence of the 

respective binary relation between any pair of simple 

regions is represented by 1 or 0. The order of the attrib-

utes is based on literal b. Every binary relation is 

weighted by the distance between the nodes of the com-

plete graph. 

Discussion and Future Work 

In this paper we have introduced what we refer to as the Six-
Steps Methodology (6SM) to analyze and represent design 
principles from well-known pieces of abstract visual art. 
The knowledge representation was built taking into account 
some important aspects of the appreciation and perception 
processes such as color, orientation, shape, proportion, con-
trast size and grouping (Liu et al., 2017). In the near future, 
we plan to include texture more explicitly and work some 
design principles based on it. The hierarchical segmentation 
gives us a way to approximate the phases of artistic appre-
ciation proposed by Tinio (2013) and Leder (2013). In par-
ticular, the first simple regions can capture the initialization 
phase mentioned by Tinio, while the rest of the levels of the 
segmentation can be associated to the expansion, adaptation 
and finalization phases proposed by the author. And since 
our representation allows us to get a global structure, recog-
nize and simplify shapes, build groups and get further details 
as needed, we think that some of Leder’s ideas (2013) re-
lated to knowledge, familiarity, content and style processing 
stages are captured too. We believe these facts are important 
for the development of computational creative systems that 
generate visual artifacts, because they allow them to analyze 
information better and constantly move between general and 
specific knowledge, that is necessary throughout the evalu-
ation of the creative process. We hope to be moving in the 
right direction to improve the artistic appreciation of our 
system so it can be even more autonomous. 
 We have shown a procedure to classify shapes that allow 
us to generalize compositional rules for the generation of 
new abstract art works that impact directly the novelty of the 
artifacts generated by the system. As far as we know there 
are no other systems capable of obtaining, from human 
made abstract visual art, design principles that then can be 

used for generating new pieces. Based on the work reported 
in this paper, we expect to be able to incorporate all these 
algorithms into the agent Tlahcuilo visual-composer in the 
following months. Then, we will be able to test the quality 
of the new products generated by the system and hopefully 
produce more results to support our view.  
 Besides describing the core components of the 6SM, we 
also suggest that the work reported here can be useful as a 
base to produce more robust systems. For instance, we plan 
to use a self organizing map to cluster our art work repre-
sentations, probably using a variation of the Growing Hier-
archical Self Organizing Map (GHSOM) (Rauber et al., 
2002). With the cluster’s information and temporal data 
from the art works, we suggest to build a hypergraph and/or 
a multigraph. Because these graphs can represent design 
principles, the system will be able to exploit such infor-
mation, find correlations and explore new ways to generated 
new pieces (Hackett 2016). 
   The information represented by these graphs might be also 
useful to improve the automatic evaluation of visual pieces. 
For instance, it is possible to compare the hypergraph of a 
creative agent’s products against some recognized visual art. 
Based on the GHSOM we can check how many previous 
examples share similar compositional principles and guide 
the creative agent’s composition process depending on these 
results. In a similar way, depending on the distance to other 
nodes in the hypergraph and/or the multigraph, we could 
evaluate novelty. Finally, we believe these structures can be 
used by the system to give some explanations as to why a 
partial or finished composition is interesting, what design 
principles it is based on, what previous stablished rules it 
might break and probably to what style or styles it belongs.  
 We are also comparing the results of some state-of-the-
art style classification neural networks feature maps with 
our art work representation to see if it is possible to improve 
the performance of those models or ours. We require more 
experiments to produce more hypotheses about how compu-
tational systems can generate interesting abstract artifacts 
that are grounded in an artistic context. The methodology 
we describe here is one step towards answering deeper ques-
tions about how a system uses previously available 
knowledge in the quest for producing new creative visual 
artifacts.  
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