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Abstract

One of the defining characteristics of human creativ-
ity is the ability to make conceptual leaps, creating
something surprising from existing knowledge. In com-
parison, deep neural networks often struggle to handle
cases outside of their training data, which is especially
problematic for problems with limited training data.
Approaches exist to transfer knowledge from models
trained on one problem with sufficient data to new prob-
lems with insufficient data, but they tend to require addi-
tional training or a domain-specific method of transfer.
We present conceptual expansion, a general approach
for reusing existing trained models to derive new mod-
els without backpropagation. We evaluate our approach
on few-shot variations of two tasks: image classification
and image generation, and outperform standard transfer
learning approaches.

Introduction
Modern deep learning systems perform well with large
amounts of training data on known classes but often struggle
otherwise. This is a general issue given the invention or dis-
covery of novel classes, rare or illusive classes, or the imag-
ining of fantastical classes. For example, if a new traffic sign
were invented tomorrow it would have a severe, negative im-
pact on autonomous driving efforts until enough training ex-
amples were collected.

Deep learning success has depended more on the size of
datasets than on the strength of algorithms (Pereira, Norvig,
and Halevy 2009). A significant amount of training data for
many classes exists. But there are also many novel, rare, or
fantastical classes with insufficient data that can be under-
stood as derivations or combinations of existing classes. For
example, consider a pegasus, a fantastical creature that ap-
pears to be a horse with wings, and therefore can be thought
of as a combination of a horse and a bird. If we suddenly dis-
covered a pegasus and only had a few pictures, we couldn’t
train a typical neural network classifier to recognize a pega-
sus as a new class nor a generative adversarial network to
create new pegasus images. However we might be able to
approximate both models given existing models trained on
horse and bird data.

Various approaches exist that reuse knowledge from mod-
els trained on large datasets for a particular problem to try

to solve problems with smaller datasets, such as zero-shot
and transfer learning. In these approaches, knowledge from
a source model trained is applied to a target problem by ei-
ther retraining the network on the target dataset (Levy and
Markovitch 2012) or leveraging sufficiently general or au-
thored features to represent new classes (Xian, Schiele, and
Akata 2017). The latter of these two approaches is not guar-
anteed to perform well depending on source and target prob-
lems, and the former of these is limited in terms of what final
target models can be learned.

Combinational creativity is the type of creativity humans
employ when combining existing knowledge to create some-
thing new (Boden 2004). Many algorithms exist that at-
tempt to reflect this process, but they have historically re-
quired hand-authored graphical representations of input con-
cepts with combination only occurring across symbolic val-
ues (Fauconnier 2001). A neural network is a large, com-
plex graph of numeric values derived from data. If combi-
national creativity techniques could be applied to recombine
trained neural networks, this could allow us to address the
novel class problem (e.g. pegasus) without the introduction
of outside knowledge or heuristics.

We introduce a novel approach, conceptual expansion,
that allows for the recombination of an arbitrary number of
learned models into a final model without additional train-
ing. In the domains of image recognition and image genera-
tion we demonstrate how recombination via conceptual ex-
pansion outperforms standard transfer learning approaches
for fixed neural network architectures. The remainder of the
paper is organized as follows: first we discuss related work
and differentiate this technique from similar approaches for
few-shot problems. Second, we discuss conceptual expan-
sions in detail and the search-based approach we employ to
construct them in this paper. Third, we present a variety of
experiments to demonstrate the limitations and advantages
of the approach.

Related Work
Computational Creativity
Combinational creativity represents both a type of creativity
and class of algorithm for knowledge reuse through recom-
bining existing knowledge and concepts for the purposes of
inventing novel concepts (Boden 2004). There have many



prior combinational creativity algorithms. Case-based rea-
soning (CBR) represents a general AI problem solving ap-
proach that relies on the storage, retrieval, and adaptation of
existing solutions (De Mantaras et al. 2005). The adap-
tation function has lead to a large class of combinational
creativity algorithms (Wilke and Bergmann 1998; Fox and
Clarke 2009; Manzano, Ontañón, and Plaza 2011). These
tend to be domain-dependent, for example for the problem
of text generation or tool creation (Hervás and Gervás 2006;
Sizov, Öztürk, and Aamodt 2015).

The area of belief revision, modeling how beliefs change,
includes a function to merge prior existing beliefs with new
beliefs (Cojan and Lieber 2009; Konieczny and Pérez 2011;
Fox and Clarke 2009). Amalgams are an extension of this
belief merging process that looks to output the simplest com-
bination (Ontañón and Plaza 2010). The mathematical no-
tion of convolution has been applied to blend weights be-
tween two neural nets in work that parallels our desire to
combine combinational creativity and machine learning, but
with inconclusive results (Thagard and Stewart 2011).

Conceptual blending is perhaps the most popular combi-
national creativity technique, though it has traditionally been
limited to hand-authored input (Fauconnier 2001). Li et al.
(2012) introduced goals to conceptual blending, which par-
allels our usage of training data to optimize the structure of
a combination. Conceptual blending has further tradition-
ally relied on symbolic values, which makes it ill-suited to
statistical machine-learning. Visual blending (Cunha et al.
2017), combines pieces of images using conceptual blend-
ing and parallels our use of combinational creativity with
Generative Adversarial Networks, however it requires hand-
defined components and combines images instead of mod-
els. Guzdial and Riedl (2016) utilized conceptual blending
to recombine machine-learned models of video game level
design by treating all numbers as ordinal values, but their
approach does not generalize to neural networks.

Combinational creativity algorithms tend to have many
possible valid outputs. This is typically viewed as undesir-
able, with general heuristics or constraints designed to pick a
single correct combination from this set (Fauconnier 2001;
Ontañón and Plaza 2010). This limits the potential output
of these approaches, we instead employ a domain-specific
heuristic criterion to explore the space of possible combina-
tions for an optimal one.

In Boden’s model of three types of creativity (Boden
2009), we can consider our approach to combine elements
of combinational and exploratory creativity. Conceptual ex-
pansion is a combinational creativity algorithm as, given a
set of existing knowledge, it defines a space of possible valid
combinations. We then employ a search process, which we
call conceptual expansion search, to explore this space for
particular combinations that meet some goal or heuristic.

Knowledge Reuse in Neural Networks
A wide range of prior approaches exist for the reuse or
transfer of knowledge in neural networks, such as zero-shot,
one-shot, and few-shot learning (Xian, Schiele, and Akata
2017; Fei-Fei, Fergus, and Perona 2006), domain adapta-
tion (Daumé III 2009), and transfer learning (Lampert, Nick-

isch, and Harmeling 2009; Wang and Hebert 2016). These
approaches require an additional set of features for trans-
fer, or depend upon backpropagation to refine learned fea-
tures from some source domain to a target domain. In the
former case these additional transfer features can be hand-
authored (Lampert, Nickisch, and Harmeling 2009; Kulis,
Saenko, and Darrell 2011; Ganin et al. 2016) or learned
(Norouzi et al. 2013; Mensink, Gavves, and Snoek 2014;
Ba et al. 2015; Elhoseiny et al. 2017). In the case requiring
additional training these approaches can freeze all weights
of a network aside from a final classification layer or can
tune all the weights of the network with standard training
approaches (Wong and Gales 2016; Li et al. 2017). As
an alternative one can author an explicit model of transfer
such as metaphors (Levy and Markovitch 2012) or hypothe-
ses (Kuzborskij and Orabona 2013).

Kuzborskij et al. (2013) investigate the same n to n+1
multiclass transfer learning problem as our image classifica-
tion experiments, and make use of a combination of existing
trained classifiers. However, their approach makes use of
Support Vector Machines with a small feature-set and only
allows for linear combinations. Rebuffi et al. (2017) ex-
tended this work to convolutional neural nets, but still re-
quires retraining via backpropagation. Chao et al. (2016)
demonstrated that average visual features can be used for
zero-shot learning, which represents a domain independent
zero-shot learning measure that does not require human au-
thoring or additional training. We employ this last approach
as a baseline.

One alternative to reusing learned knowledge in neural
networks, is to extend a dataset to new classes using query
expansions on the web (Yao et al. 2017) . However, we are
interested primarily in the question of how existing learned
features can be applied to problems in which no additional
training data exists, even online, due to the class in ques-
tion being new, fantastical, or rare. Similarly, Neuroevolu-
tion is an approach to train neural networks via evolutionary
search, which includes an explicit recombination step (Flo-
reano, Dürr, and Mattiussi 2008). However, this approach
does not transfer knowledge from one domain to another.

Conceptual Expansion
Imagine tomorrow we discover that a pegasus exists. Ini-
tially we lack enough images of this newly discovered fly-
ing horse to build a traditional classifier or image genera-
tor. However, suppose we have neural network classifiers
and generators trained on classes including horses and birds.
Conceptual expansion, a combinational creativity algorithm,
allows us to reuse the learned features from machine learned
model(s) to produce new models without additional training
or additional transfer features.

The intuition behind conceptual expansion is that it de-
fines a high-dimensional, parameterized search space from
an arbitrary number of pretrained input models, where each
point of this search space is a new model that can be un-
derstood as a combination of existing models. We can
then explore this space to find models that better meet a
goal or heuristic. Each point of this space—each combined
model—is a valid conceptual expansion. We can consider



the case where a class or concept (cX ) is a combination
of other classes (c1, ...cn) and that the learned features of
models of classes c1, ...cn can be recombined to create the
features of a model of cX . In these cases, we hypothesize
that conceptual expansions can represent models one can-
not necessarily discover using conventional machine learn-
ing techniques with the available data. Furthermore, we hy-
pothesize that these conceptual expansion models may per-
form better on specific tasks than standard models in cases
with small amounts of available data, such as identifying
or generating new classes of objects. In prior work (2018),
we demonstrated the application of conceptual expansion
to non-neural graphs with hundreds of thousands of edges,
which suggests the potential for their application to neural
networks. We can use a heuristic informed by this small
amount of training data to guide the search for our final con-
ceptual expansion. This process is inspired by the human
ability to make conceptual leaps, but is not intended as an
accurate recreation.

A conceptual expansion of concept X is represented as
the following function:

CEX(F,A) = a1 ∗ f1 + a2 ∗ f2...an ∗ fn (1)

Where F = {f1, ...fn} is the set of all mapped features and
A = {a1, ...an} is a set of filters each dictating what of and
what amount of mapped feature fi should be represented in
the final conceptual expansion. In the ideal case X = CEX

(e.g. a combined model of birds and horses equals our ideal
pegasus model). The exact shape of ai depends upon the
feature representation. If features are symbolic, ai can have
values of either 0 or 1 (including the mapped feature or not),
or vary from 0 to 1 if features are numeric or ordinal. Note
that for numeric values one may choose a different range
(e.g. -1 to 1) dependent on the domain. If features are ma-
trices, as in a neural net, each ai is also a matrix. In the case
of matrices the multiplication is an element-wise multipli-
cation or Hadamard product. As an example, in the case of
neural image recognition, {f1, ..., fn} are the variables in a
convolutional neural network learned via backpropagation.
Deriving a conceptual expansion is the process of finding an
A for known features F such that CEX(·) optimizes a given
objective or heuristic towards some target concept X .

In this representation, the space of conceptual expansions
is a multidimensional, parameterized search space over pos-
sible combinations of our input models. There exists an
infinite number of possible conceptual expansions for non-
symbolic features, which makes naively deriving this repre-
sentation ill-advised. Instead, as is typical in combinational
creativity approaches, we first derive a mapping. The map-
ping determines what particular prior knowledge—in this
case the weights and biases of a neural network—will be
combined to address the novel case. This will determine the
starting point of the later search process we employ to ex-
plore the space of possible conceptual expansions.

Given a mapping, we construct an initial conceptual
expansion—a set of F = {f1, ..., fn} and an A =
{a1, ..., an}—that is iterated upon to optimize for domain
specific notions of quality (in the example pegasus case im-
age recognition accuracy). In the following sections we dis-

Algorithm 1: Conceptual Expansion Search
input : available data data, an initial model model, a

mapping m, and a score score
output: The maximum expansion found according to the

heuristic

1 maxE← DefaultExpansion(model)+m;
2 maxScore← score;
3 v← [maxE ];
4 improving← 0;
5 while improving < 10 do
6 n← maxE.GetNeighbor(v);
7 v← v + n;

8 s← Heuristic(n, data);
9 oldMax← maxScore maxScore, maxE←

max([maxScore, maxE ], [s, n ]);
10 improving←oldMax < maxScore?0:improving ++

11 return maxE;

cuss the creation of the mapping and then the refinement of
the conceptual expansion.

Mapping Construction
Constructing the initial mapping is relatively straightforward
for the purposes of this paper. As input we assume we have
an existing trained model or models (CifarNet trained on
CIFAR-10 for the purposes of this example (Krizhevsky and
Hinton 2009)), and data for a novel class (whatever pegasus
images we have). We construct a mapping with the novel
class data by examining how the model or models in our
knowledge base perform on the data for the novel class. The
mapping is constructed according to the ratio of the new im-
ages classified into each of the old classes. For example,
suppose we have a CifarNet trained on CIFAR-10 and we
additionally have four pegasus images. Say CifarNet clas-
sifies two of the four pegasus images as a horse and two
as a bird. We construct a mapping of: f1 consisting of the
weights and biases associated with the horse class, and f2
consisting of the weights and biases associated with the bird
class. We initialize the A values for both variables to all
be 0.5—the classification ratio—meaning a floating point a
value for the biases and an a matrix for the weights.

Conceptual Expansion Search
The space of potential conceptual expansions grows expo-
nentially with the number of input features, and the map-
ping construction stage gives us an initial starting point in
this space from which to search. We present the pseudocode
for the Conceptual Expansion Search in Algorithm 1. Line
1 creates an initial expansion by combining a default expan-
sion with the mapping information. The exact nature of this
depends on the final network architecture. For example, the
mapping may overwrite the entirety of the network if the in-
put models and final model have the same architecture or just
the final classification layer if not (as in the case of adding
an additional class). In this case a default expansion is a
conceptual expansion equivalent to the original model(s), in
that each variable is replaced by an expanded variable with



its original fi value and an ai of 1.0 (or matrix of 1.0’s).
This means that the initial expansion is functionally identi-
cal to the original model, beyond any weights impacted by
the mapping. This initial conceptual expansion derived at
the end of the mapping construction will be a linear com-
bination of the existing knowledge, but the final conceptual
expansion need not be a linear combination.

Once we have a mapping we search for a set of F and
A for which the conceptual expansion performs well on a
domain-specific measure Heuristic (e.g. pegasus classifi-
cation accuracy). For the purposes of this paper we imple-
ment a greedy optimization search that checks a fixed num-
ber of neighbors before the search ends. The GetNeighbor
function randomly selects between one of the following: al-
tering a single element of a single ai, replacing all of the
values of a single ai replacing values of xi with a randomly
selected alternative xj , or adding an additional xi and corre-
sponding random ai to an expanded variable. The final out-
put of this process is the maximum scoring conceptual ex-
pansion found during the search. For the purposes of clarity
we refer to these conceptual expansions of neural networks
as combinets.

CifarNet Experiments
In this section we present a series of experiments meant to
demonstrate the strengths and limitations of conceptual ex-
pansions for image classification with deep neural networks.
We chose CIFAR-10 and CIFAR-100 (Krizhevsky and Hin-
ton 2009) as the domains for this approach as these represent
well-understood datasets. It is not our goal to achieve state
of the art on CIFAR-10 or CIFAR-100; we instead use these
datasets to construct problems in which a system must iden-
tify images of a class not present in some initial training set
given limited training data on the novel class. We then ap-
ply our approach to these problems, comparing them with
appropriate baselines. For the source deep neural network
model we chose CifarNet (Krizhevsky and Hinton 2009),
again due to existing understanding of its performance on
the more traditional applications of these datasets. We chose
not to make use of a larger dataset like ImageNet or a larger
architecture (Deng et al. 2009), as we aim to compare how
our approach constructs new features given a limited set of
input features. We do not include a full description of Cifar-
Net but note that it is a two-layer convolutional neural net
with three fully-connected layers.

For each experiment, we ran our conceptual expansion
search algorithm ten times and took the most successful
combinet found across the ten runs in terms of training ac-
curacy. We did this to ensure we had found a near optimal
conceptual expansion, but anticipate that future work will
explore more sophisticated optimization strategies. We note
that this approach was still many times faster than initially
training the CifarNet on CIFAR-10 with backpropagation.

Our first experiment expands a CifarNet trained on
CIFAR-10 to recognize one additional class selected from
CIFAR-100 that is not in CIFAR-10. We vary the amount
of training data for the newly introduced class. This al-
lows us to evaluate the performance of recombination via

conceptual expansions under a variety of controlled con-
ditions. Our second experiment fully expands a CifarNet
model trained on CIFAR-10 to recognize the one-hundred
classes of CIFAR-100 with limited training data. Finally, we
investigate the running example throughout this paper: ex-
panding a CifarNet model trained on CIFAR-10 to classify
pegasus images.

CIFAR-10 + Fox/Plain
For our initial experiment we chose to add fox and plain (as
in a grassy field) recognition to the CifarNet, as these classes
exist within CIFAR-100, but not within CIFAR-10 (CIFAR-
10 is made up of the classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck). We chose foxes and
plains for this initial case study because they represented il-
lustrative examples of conceptual expansion performance.
There exists a number of classes in CIFAR-10 that can be
argued to be similar to foxes, but no classes similar to plains.

For training data we drew from the 50,000 training ex-
amples for the ten classes of CIFAR-10, adding a varying
number of training instance of fox or plain. For test data
we made use of the full 10,000 CIFAR-10 test set and the
100 samples in the CIFAR-100 test set for each class. For
each size slice of training data (i.e. 1, 5, 10, 50, and 100)
we constructed five unique random slices. We chose five for
consistency across all the differently sized slices, given that
there was a maximum of 500 training images for fox and
plain, and our largest slice size was 100. We present the av-
erage test accuracy across all approaches and with all sample
sizes in Table 1. This table shows results when we provide
five slices of fox or plain images in the quantities of 1, 5, 10,
50, or 100. For each slice, we provide the accuracy on the
original CIFAR-10 images and the accuracy of identifying
the 11th class (either fox or plains).

We evaluate against three baselines. Our first baseline
(standard) trains CifarNet with backpropagation with strat-
ified branches on the 10,000 CIFAR-10 images and newly
introduced foxes or plains. This baseline makes the assump-
tion that the new class was part of the same domain as the
other classes as in (Daumé III 2009). For our second base-
line we took inspiration from transfer learning and student-
teacher models (Wong and Gales 2016; Li et al. 2017;
Furlanello et al. 2017), and train an initial CifarNet on only
the CIFAR-10 data and then retrain the classification layers
to predict the eleventh class with the newly available data.
We note that transfer learning typically involves training on
a larger dataset, such as ImageNet, then retraining the final
classification layer. However, we wished to compare how
these different approaches alter the same initial features for
classifying the new class. For our third baseline we drew on
the zero-shot approach outlined in (Chao et al. 2016), using
the average activation of the trained CifarNet classification
layer on the training data to derive feature classification vec-
tors. In all cases we trained the model until convergence.

There exist many other transfer approaches, but other
approaches tend to require additional human authoring of
transfer methods or features and/or an additional dataset to
draw from. We focus on comparing the behavior of these ap-
proaches in terms of altering or leveraging learned features.



Table 1: A table with the average test accuracy for the first experiment. The orig. column displays the accuracy for the 10,000
test images for the original 10 classes of CIFAR-10. The 11th column displays the accuracy for the CIFAR-100 test images.

100 50 10 5 1
Fox 11th orig. 11th orig. 11th orig. 11th orig. 11th orig.
combinet 34.0±3.5 81.8±2.2 26.0±5.2 81.59±1.9 28.3±3.5 79.1±1.6 23.0±8.5 80.6±1.2 12.0±9.8 80.7±7.2
standard 7.0±2.7 62.04 0.0±0.0 62.17 0.0±0.0 62.34 0.0±0.0 62.44 0.0±0.0 76.44±3.5
transfer 5.0±4.3 87.2±0.5 0.0±0.0 87.9±0.2 0.0±0.0 88.1±0.4 0.0±0.0 87.7±0.2 0.0±0.0 88.0±1.1
zero-shot 11.0±0.7 86.2±0.4 11.0±1.0 86.2±0.8 9.6±2.3 86.2±0.2 10.0±4.6 86.0±1.4 6.0±3.3 83.2±2.5
Plain 11th orig. 11th orig. 11th orig. 11th orig. 11th orig.
combinet 53.0±10.0 84.0±3.6 45.7±7.6 84.2±7.8 31.3±22.0 83.9±2.4 28.3±12.6 82.3±2.2 23.0±17.4 84.0±2.4
standard 50.0±7.7 62.54 42.0±3.2 62.18 16.0±12.8 61.67 0.0±0.0 62.27 0.0±0.0 62.27
transfer 4.5±3.0 86.92 0.0±0.0 86.91 0.0±0.0 86.96 0.0±0.0 87.20 0.0±0.0 87.20
zero-shot 23.0±0.7 86.2±0.5 23.6±1.1 86.2±0.3 22±2.8 86.1±13.9 18.6±3.8 83.7±3.4 15.6±7.3 82.7±2.9

As can be seen in Table 1, the combinet consistently
outperforms the baselines at recognizing the newly added
eleventh class. We note that the expected CifarNet test ac-
curacy for CIFAR-10 is 85%. Combinets achieve the best
accuracy on the newly added class while only losing a small
amount of accuracy on average on the 10 original classes.
The combinet loss in CIFAR-10 accuracy was almost al-
ways due to overgeneralizing. The transfer approach did
slightly better than the expected CIFAR-10 accuracy, but this
matches previously reported accuracy improvements from
retraining (Furlanello et al. 2017).

Foxes clearly confused the baselines, leading to no cor-
rectly identified test foxes for the standard or transfer base-
lines at the lowest values. Compared to plains, foxes had
significant overlap in terms of features with cats and dogs.
With these smaller size samples transfer and standard were
unable to learn or adapt suitable discriminatory features.
Comparatively, the conceptual expansion approach was ca-
pable of combining existing features into new features that
were more successfully able to discriminate between these
classes. The zero-shot approach did not require additional
training and instead made use of secondary features to make
predictions, which was more consistent, but still not as suc-
cessful as our approach in classifying the new class. In com-
parison plain was much easier to recognize for our baselines,
likely due to the fact that it represented a class that differed
significantly from the existing ten. However, our approach
was still able to outperform this, creating novel features that
could better differentiate the plain class.

Note that combinets do not always outperform these other
approaches. For example, the standard approach beats out
combinets, getting an average of 83% accuracy with access
to all 500 plain training images, while the combinet only
achieves an accuracy of roughly 50%. This suggests that
combinets are only suited to problems with low training data
with this current approach.

Expanding CIFAR-10 to CIFAR-100
For the prior experiments we added a single eleventh class
from CIFAR-100 to a CifarNet trained on CIFAR-10. This
experiment looks at the problem of expanding a trained Ci-
farNet from classifying the ten classes of the CIFAR-10
dataset to the one-hundred classes of the CIFAR-100 dataset.

For this experiment we limited our training data to ten ran-

domly chosen samples of each CIFAR-100 class. We altered
our approach to account for the change in task, constructing
an initial mapping for each class individually as if we were
expanding a CifarNet to just that eleventh class. We utilized
the same three baselines as with the first experiment.

We note that one would not typically utilize CifarNet for
this task. Even given access to all 50,000 training samples of
CIFAR-100 a CifarNet trained using backpropagation only
achieves roughly 30% test accuracy for CIFAR-100. We
mean to show the relative scale of accuracy before and after
conceptual expansion and not an attempt to achieve state of
the art on CIFAR-100 with the full dataset. We tested on the
100,000 test samples available for CIFAR-100.

The average test accuracy across all 100 classes are as
follows: the combinet achieves 11.13%, the standard base-
line achieves 1.20%, the transfer baseline achieves 6.43%,
and the zero-shot baseline achieves 4.10%. We note that our
approach is the only one to do better than chance, and sig-
nificantly outperforms all other baselines. However no ap-
proach reaches anywhere near the 30% accuracy that could
be achieved with full training data for this architecture.

Pegasus
We return to our running example of an image recognition
system that can recognize a pegasus. Unfortunately we lack
actual images of a pegasus. To approximate this we col-
lected fifteen photo-realistic, open-use pegasus images from
Flickr. Using the same combinet as the above two exper-
iments we ran a 10-5 training/test split and a 5-10 train-
ing/test split. For the former we recognized 4 of the 5 pega-
sus images (80% accuracy), with 80% CIFAR-10 accuracy,
and for the latter we recognized 5 of the 10 pegasus images
(50% accuracy) with 82% CIFAR-10 accuracy.

DCGAN Experiment
In this section we demonstrate the application of concep-
tual expansions to generative adversarial networks (GANs).
Specifically, we demonstrate the ability to use conceptual
expansions to find GANs that can generate images of a class
without traditional training on images of that class. We also
demonstrate how our approach can take as input an arbi-
trary number of initial neural networks, instead of the one
network for the classification experiments. We make use



Table 2: Summary of results for the GAN experiments.
combiGAN combi+N combi+T Naive Transfer

Samples I KL I KL I KL I KL I KL
500 3.83±0.32 0.33 4.61±0.22 0.28 3.05±0.23 0.31 2.98±0.25 0.33 3.38±0.19 1.05
100 4.23±0.15 0.10 4.38±0.37 0.29 4.40±0.19 0.43 1.76±0.04 0.33 3.26±0.23 0.36
50 4.05±0.24 0.22 4.03±0.35 0.12 1.69±0.05 2.36 1.06±0.00 10.8 3.97±0.22 0.21
10 4.67±0.44 0.44 4.79±0.28 0.13 3.06±0.19 1.20 1.20±0.01 10.8 4.40±0.19 0.11

of the DCGAN (Radford, Metz, and Chintala 2015) as the
GAN architecture for this experiment, as it has known per-
formance on a number of tasks. We make use of the CIFAR-
100 dataset from the prior section and in addition use the
Caltech-UCSD Birds-200-2011 (Wah et al. 2011), the CAT
(Zhang, Sun, and Tang 2008), the Stanford Dogs (Khosla et
al. 2011), FGVC Aircraft (Maji et al. 2013), and the Stand-
ford Cars (Krause et al. 2013) datasets. We make use of
these five datasets as they represent five of the ten CIFAR-
10 classes, but with significantly more images and images
of higher quality. Sharing the majority of classes between
experiments allows us to draw comparisons between results.

We trained a DCGAN on each of these datasets till con-
vergence, then used all five of these models as the origi-
nal knowledge base for our approach. Specifically, we built
mappings by testing the proportion of training samples the
discriminator of each GAN classified as real. We then built
a combinet discriminator for the target class from the dis-
criminators of each GAN. Finally we built a combinet gen-
erator from the generators of each GAN, using the combinet
discriminators as the heuristic for the conceptual expansion
search. We nickname these combinet discriminators and
generators combiGANs. As above we made use of the fox
images of CIFAR-100 for the novel class, varying the num-
ber of available images.

We built two baselines: (1) A naive baseline, which in-
volved training the DCGAN on the available fox images in
the traditional manner. (2) A transfer baseline, in which we
took a DCGAN trained on the Stanford Dogs dataset and
retrained it on the fox dataset. We also built two variations
of combiGAN: (1) A combiGAN baseline in which we used
the discriminator of the naive baseline as the heuristic for
the combinet generator (Combi+N). (2) Same as the last,
but using the transfer baseline discriminator (Combi+T). We
further built a baseline trained on the Stanford Dogs, CAT
dataset, and Fox images simultaneously as in (Cheong and
Teo 2018), but found that it did not have any improvement
over the other baselines. We omit it to save space. We do
not include the zero shot baseline from the prior section as
it is only suitable for classification tasks.

CombiGAN Results
We made use of two metrics: the inception score (Salimans
et al. 2016) and Kullback-Leibler (KL) divergence between
generated image classification and true image classification
distributions. We acknowledge that inception score was
originally designed for ImageNet; since we do not train on
ImageNet, we cannot use this as an objective score, but we

Figure 1: Most fox-like output according to our model for
each baseline and sample size.

Figure 2: Four fox-like images hand-picked by the authors
from the first 1,000 images output by the combiGAN trained
on 500 foxes.

can use it as a comparative metric of objectness. For the sec-
ond metric we desired some way to represent how fox-like
the generated images were. Thus we made use of the stan-
dard classifier trained on 500 foxes, though we could have
made use of any classifier in theory. We compare the distri-
bution over classes of real CIFAR-100 fox images and the
fake images with the KL divergence. We generated 10,000
images from each GAN to test each metric. We summarize
the results of this experiment in Table 2.

We note that in almost all cases our approach or one of
its variations (combi+N and combi+T) outperform the two
baselines. In the case with 10 training images the transfer
baseline beats our approach on our fox-like measure, but
this 0.11 differs only slightly from the 0.13 combi+N value.
In Figure 1, we include the most fox-like image in terms
of classifier confidence from the training samples (real) and
each baseline’s output. We note that the combiGAN output
had a tendency to retain face-like features, while the trans-
fer baseline tended to revert to fuzzy blobs. We also include



four hand-picked fox-like images from the 500 sample case
in Figure 2.

Discussion and Limitations
Conceptual expansions of neural networks—combinets and
combiGANs—outperform standard approaches on problems
with limited data without additional knowledge engineering.
We refer to this approach generally as conceptual expansion,
which is inspired by the human ability to make conceptual
leaps by combining existing knowledge. Our main contri-
bution in this paper is the initial exploration of conceptual
expansion of neural networks; we speculate that more so-
phisticated optimization search routines may achieve greater
improvements.

We anticipate the future performance of conceptual ex-
pansions to depend upon the extent to which the existing
knowledge base contains relevant information to the new
problem and ability for the optimization function to find
helpful conceptual expansions. We note that one choice of
optimization function could be human intuition, and we have
had success hand-designing conceptual expansions for suf-
ficiently small problems.

Conceptual expansions appear less dependent on training
data than existing transfer learning approaches as evidenced
by the comparative performance of the approach with low
training data, This is further evidenced by those instances
where conceptual expansion outperformed itself with less
training data. We anticipate further exploration of this in
future work.

Conclusions
We present conceptual expansion of neural networks: com-
binets, an approach to produce recombined versions of exist-
ing machine learned deep neural net models. We ran four ex-
periments of this approach compared to common baselines,
and found we were able to achieve greater accuracy with less
data. Our technique relies upon a flexible representation of
recombination of existing knowledge that allows us to rep-
resent new knowledge as a combination of particular knowl-
edge from existing cases. To our knowledge this represents
the first attempt at applying a model of combinational cre-
ativity to neural networks.
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