
Engagement-Reflection in Software Construction

Quinten Rosseel and Geraint A. Wiggins
Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 9, 1050 Brussels, Belgium

quinten.rosseel@vub.be, geraint@ai.vub.ac.be

Abstract

This paper introduces experimental research in progress
concerning a novel creative software construction
method that uses the Engagement-Reflection model and
Floyd-Hoare logic. By considering software construc-
tion as a creative writing task, we demonstrate how prin-
ciples from story generation can be applied in software
construction.

Introduction
In this paper, we present work in progress on the auto-
mated construction of programs. Our approach differs from
most such activities because we view program construction
as a creative process, rather than a deductive one, and we
apply technology from computational creativity to address
it. The Engagement-Reflection model (Sharples, 1995) is
a well-known approach to narrative generation. Here, we
metaphorically replace the narrative with a program, and the
well-formedness constraints on narratives with program se-
mantics specified using a standard method of program anal-
ysis.

The paper is laid out as follows. In the background sec-
tion, we illustrate prior research in creative story writing
and story generation that inspired this work. More specif-
ically, the Engagement-Reflection model (Sharples, 1995)
and an application of it, named MEXICA (Pérez ý Pérez
and Sharples, 2001).

In the preamble, we look more closely at Floyd-Hoare
(FH) logic (Hoare, 1969), the principal formalism for rea-
soning about programs in this work. We employ FH-logic
for describing assignments with boolean conditions over
program variables and extend it with distance measures and
transformations that enable construction of simple programs
within the ER-model, given user-defined specifications.

After a technical description of the construction process,
we provide an outlook for the most important challenges that
are to be tackled in the research following this paper.

In essence, the conditions set out by the user define the
conceptual space (Boden, 1992) of programs that the system
can explore. Exploration of this conceptual space is done
by virtue of the ER-cycle that drives program composition
forward. After each ER-cycle, the conditions bounding the
conceptual space can be transformed by applying transfor-

mational rules, yielding new conceptual spaces that can in
turn be explored by additional ER-cycles.

Background
The Engagement-Reflection (ER) Model
The ER-model of Sharples (1995) is a cognitive model that
describes the creative process of authors writing stories. The
idea is to decompose the writing task into two phases called
engagement and reflection. This composition is based on
the observation that a writer cannot simultaneously enact
a writing procedure and re-represent it at the same time
(Karmiloff-Smith 1990, quoted by Sharples 1995). This
means that reflecting on a text requires the writer to stop
writing, resulting in a cycle of engaged knowledge telling,
interleaved with periods of reflection (Sharples, 1995).

Cycles can have a short period, as when a writer looks
back over each sentence as it is written, or a longer period,
as when a writer looks back over a paragraph as it is written.
The interaction between engagement and reflection pushes
the composition of material forward, with engagement pro-
viding new material for consideration and reflection offering
a re-interpretation of the material, together with new plans
to be enacted (Sharples, 1995).

The ER-model has been successfully applied in story gen-
erator MEXICA (Pérez ý Pérez and Sharples, 2001), that
produces story frameworks about the Mexicas, old inhab-
itants of modern México City. MEXICA shows that it is
possible to generate coherent content that satisfies an initial
set of user-defined constraints using the ER-model.

From Stories to Programs
Cognitive models of creative writing and story generators
are of interest because stories and programs share properties
that suggest how ideas from creative writing procedures can
be applied in the domain of software construction.

Characters and variables are arguably the most straight-
forward correspondence. Just as characters may take differ-
ent forms and personalities, variables may be bound to dif-
ferent types and values. Characters in the story are subject
to actions and events, pushing the emerging story in a partic-
ular direction. Likewise, variables are subject to statements
calls that modify the variable state, causing the program to
behave accordingly.

In most stories, the plot builds up to one or more protago-
nists that partake in some final activity or event that ends the
story. In the same way, the goal of the program is to assign
a set of variables to a desired value or mutual relation. In
some cases, story actions and events require that characters
are in a particular state or mutual relation before they can be
executed. This accords with conditional statements of the
programming language.

Preamble
Floyd-Hoare (FH) Logic
FH logic is the principal formalism behind the software con-
struction processes in this work. The central component of
the logic is the Hoare triple, that represents how a set of
statements S changes the variable state. This state is cap-
tured in a set of conditions on the values of the variables.

Condition A condition c is a boolean assertion on the
value of a variable, before or after execution of a set of state-
ments S. Conditions are stored in a global set of conditions
C , statements are stored in a global set of statements S .

Hoare Triple (Q) S (R) is a Hoare triple that asserts that
an ordered set of program statements S ⊆ P(S), satisfying
a set of preconditions Q ⊆ P(C) before running, will sat-
isfy a set of post-conditions R ⊆ P(C) after running. All
Hoare triples are stored in the global set of Hoare triples T .
P is the standard power set operation over a set.

In practice, we use triple constructions backwards when
generating programs. We know that the result of a set of
statements S satisfies a program state R, and we need to
infer an assertion Q on the state before S, provided that S
terminates.

Axiom of Assignment When we know that a set of con-
ditions Q is true after assigning an expression E to variable
V , then this means that the substitution of V by E in the set
of conditions Q must hold before the assignment. Note that
Q ⊆ P(C) and {(V := E)} ⊆ P(S).

(Q[V 7→E]) {(V := E)} (Q)

The assignment axiom has no premises and generates the
weakest set of preconditions that is needed for the execution
of the assignment to result in a state that satisfies the set of
post-conditions (Bridge, 2003).

Example 1 Proof that x = 1, given that x = 2 after the
assignment x := x+ x using the assignment axiom.

({x = 2}[x 7→(x+x)]) x := (x+ x) ({x = 2})

({(x+ x) = 2}) x := (x+ x) ({x = 2})
({x = 1}) x := (x+ x) ({x = 2})

Extensions to Floyd-Hoare logic
If we know how to transform a program state R to another
state Q with a set of statements S, example 1 suggests that

program construction is possible with a set of start condi-
tions Q ⊆ P(C), a set of goal conditions R ⊆ P(C) and
an ordered set of statements S ⊆ P(S).

Valued Condition Distance Inserting relevant statements
requires a distance metric that quantifies how a set of state-
ments influences the state of a program with respect to its
goal. When conditions are real-valued, a distance δ between
two conditions setsQ ⊆ P(C) andR ⊆ P(C) can be deter-
mined by a pairwise difference of each variable v, asserted
in both Q and R, where E(c) evaluates a condition c ∈ C
to the asserted value of its variable.

δ(Q,R) =
∑

∀v: qv∈Q,rv∈R

| E(qv)− E(rv) |

Condition Variables In order to specify abstract relations
over triple conditions, we introduce condition variables,
stored in a global dictionary V . Each entry (C, p) in V is
a one-to-one mapping between a condition variable C, de-
noted with an uppercase letter, to a program variable p, de-
noted with a lowercase letter. Condition variables enable us
to specify abstract relations that allow conditions to satisfy
a broader set of program states.

Abstract Condition Distance Conditions that involve ab-
stract expressions cannot be evaluated by value but are com-
pared with respect to an abstract distance function. In this
context, we look at the minimum tree edit distance (TED)
of the abstract syntax tree (AST) associated with the ex-
pression in the condition. Hence, insertions, deletions and
substitutions are executed on the level of operators, function
applications, variables and values.

+

* C

A B

A+

*

C B

Figure 1: A mapping between A ∗B + C and (C +B) ∗A with
4 substitutions.

The TED problem has a well-known, dynamic program-
ming solution (Zhang and Shasha, 1989) that allows for a
customizable cost function γ to evaluate insertions, dele-
tions and substitutions of nodes in trees. This is desirable
as not all tree operations need the same associated weight in
the distance metric.

Variable Dependency Transformation Being informed
on condition variables in V , enables the system to rewrite
conditions from triples in C when given patterns arise.

The following rule is aimed at separating abstract variable
dependencies. A Hoare triple with a set of statements S ∈

P(S), a set of post-conditions R ⊆ P(C) and a singleton
precondition of the form{(

p0 = f1(C1) ◦1 . . . ◦n−1 fn(Cn)
)}
⊆ P(C)

with f1 . . . fn functions involving one and only one con-
dition variable, C0 . . . Cn mutually independent condition
variables and ◦1 . . . ◦n−1 binary operations ∈ {⊕,	,⊗,�},
can be transformed with the variable dependency transfor-
mation when (C0, p0) . . . (Cn, pn) ∈ V .({(

p0 = f1(C1) ◦1 . . . ◦n−1 fn(Cn)
)})

S

(
R

)
({(

p1 = f1(C1)
)
. . .
(
pn = fn(Cn)

)})
p0 = p1 ◦1 p2 . . . pn−1 ◦n−1 pn ; S

(
R

)

Example 2 The following proof employs condition vari-
ables and a variable dependency transformation. The goal is
to generate the Pythagoras relation between three program
variables a, b and c. The start specifications t1, t2 and t3
make sure that (A, a), (B, b) and (C, c) ∈ V .

t1 :

(
∅
)
∅
({(

a = A
)})

t2 :

(
∅
)
∅
({(

b = B
)})

t3 :

(
∅
)
∅
({(

c = C
)})

The goal specification t4 is defined in terms of A and B
and should be satisfied for all programs that are generated.
By equaling c to both C and

√
A2 +B2 in the start and goal

conditions, the system is told to find a way to make C =√
A2 +B2.

t4 :

({(
c =

√
A2 +B2

)})
∅

(
∅

)
As the derivation process works backwards from t4,

the system might at some point infer a triple t5 using
the assignment axiom. Assume that c is positive in this
example.({(

c =
√
A2 +B2

)
[c 7→sqrt(c)]

})
c := sqrt(c);

({(
c =
√
A2 +B2

)})
({(√

c =
√
A2 +B2

)})
c := sqrt(c);

({(
c =
√
A2 +B2

)})

t5 :

({(
c = A2 +B2

)})
c := sqrt(c);

({(
c =
√
A2 +B2

)})

Using the variable dependency transformation
rule, the system is now able to rewrite triple
t5 as follows. This allows the triple to be fur-
ther evaluated in terms of A and B separately.

t5 :

({(
c = A2 +B2

)})
c := sqrt(c);

({(
c =
√
A2 +B2

)})
({(

a = A2
)
,
(
b = B2

)})
c := a+ b; c := sqrt(c);

({(
c =
√
A2 +B2

)})

Finally, in the optimal case, the system might finish the
program by applications of the assignment axiom, resulting
in t6 and t7.

({(
a = A2

)
[a7→(a∗a)]

,
(
b = B2

)
[a 7→(a∗a)]

})
a := a ∗ a;

({(
a = A2

)
,
(
b = B2

)})

t6 :

({(
a = A

)
,
(
b = B2

)})
a := a ∗ a;

({(
a = A2

)
,
(
b = B2

)})

({(
a = A

)
[b7→(b∗b)]

,
(
b = B2

)
[b 7→(b∗b)]

})
b := b ∗ b;

({(
a = A

)
,
(
b = B2

)})

t7 :

({(
a = A

)
,
(
b = B

)})
b := b ∗ b;

({(
a = A

)
,
(
b = B2

)})

Construction of Programs
This section provides more background on how program
construction employs previously described concepts to gen-
erate software in the C programming language. We distin-
guish three main processes at the highest level.
• Program Input Parsing: extract and generalize statements

from the input programs to Hoare triples.
• Program Sequence Engagement: select Hoare triples and

construct programs.
• Program Sequence Reflection: verify and edit engaged

program sequences and its Hoare triples according to the
specifications set out by the user.

In order to generate programs, the user provides an inventory
of programs and specifies the start and goal conditions in the
form of Hoare triples, like for example t1, t2, t3 and t4 in ex-
ample 2. After parsing the inventory, the system uniformly
draws statements from S and retains those that reduce the
distance between the user-defined start and goal conditions.

Program
Sequence

Engagement

Inventory
Parsing

User-defined
Specification

Program
Sequence
Reflection

Figure 2: The program construction process.

Program Input Parsing
Before any meaningful program can be constructed, the sys-
tem requires an inventory of valid C programs to serve as
experience during engagement and reflection. This inven-
tory is parsed and represented as Hoare triples in the triple
store T together with statements in the statement store S .

At parse-time, statements are generalized before storage
in S so that they can be instantiated to a variable that is
part of the user’s specification. Additionally, user-defined
goal specifications are not taken into account at parse-time
as boolean assertions inside conditions are only initialized
upon reaching reflection. However, each statement inside

a Hoare triple gets equipped with a Hoare transition rule
that semantically corresponds with that statement, such that
boolean assertions can get propagated through when they are
used inside triples.

It is worth mentioning that there are many ways to ex-
tract triples from an inventory of programs. We choose to
retain the semantics of the inventory as much as possible
when storing triples inside the triple store T and do not
bother to extract every possible sub-program within a parsed
program, as this would cause a combinatorial explosion of
triples in T . Although we see that it can yield benefits for
better and more diverse composition, this is not the current
focus in this research.

Program Sequence Engagement
The engagement phase constructs programs from the knowl-
edge stored in the triple store T , the statement store S and
the condition store C . The selection process selects a ran-
dom triple from T and instantiates the triple’s statements
with a random variable from the user’s specification in C .
Subsequently, triples are inserted to the program sequence,
a structure that represent the program under construction.
This process repeats until the maximum number of engage-
ment iterations is reached.

We are aware of the fact that this process has more po-
tential beyond random selection methods and that more in-
formed selection procedures can be explored in future work.

Program Sequence Reflection
Reflection is the most decisive factor in the software con-
struction process. When engagement transmits a program
sequence, it’s up to reflection to determine what triples are
relevant for the specification passed by the user. Reflec-
tion picks up from the last analyzed triple in the program
sequence and propagates its initialized post-conditions up-
wards through the triple’s associated statements, using the
Hoare transition rules. When a condition has propagated
through all statements inside the triple, the condition is part
of the set of preconditions of that triple. The goal is to ob-
tain a triple with the same preconditions as the start con-
ditions set out by the user. Reflection continues until the
maximum amount of reflection cycles is reached or when
the user-defined start conditions are satisfied.

A triple under consideration is deemed relevant when the
list of statements inside that triple transforms the precondi-
tions of the last analyzed triple closer to the start conditions.
This is done by initializing the post-conditions of the triple
under consideration, applying its transition rules and com-
paring these preconditions with the start conditions. If rele-
vant, the triple is kept in the program sequence, otherwise it
is removed.

One might rightfully object that this can introduce local
minima with respect to the distance metric in the trajectory
of triple insertions. Inserting one triple might not improve
the conditions with respect to the start conditions, but it
might improve the conditions as a combination with other
triples. This leads into territory of Hoare triple merging and
block structures, the current focus of this research and one
of the topics in the next section.

Finally, when the maximum number of engagement itera-
tions is reached, the system checks if it is able to rewrite the
triples in T by applying transformation rules that are trig-
gered by predefined patterns in conditions, like the variable
dependency transformation.

Conclusions
At this point, we have discussed the most significant mecha-
nisms that underlie the program construction process of this
work. This last section provides a short framing of the future
challenges to be tackled.

Blocks and Control Flow
The system described up until now focuses on combinations
of single statements, allowing it to compose simple pro-
grams in the C programming language. The next logical
steps lie in the ability to work with compound statements or
blocks, paving the way for control flow structures that spec-
ify the logical order in which computations are performed,
like conditionals and loops.

Blocks are delimited by curly braces to group together
declarations and statements, which makes them syntacti-
cally equivalent to single statements for the parser of a C
compiler (Kernighan and Ritchie, 1978). All control-flow
structures of interest employ block structures, so it is no sur-
prise that Hoare triples need to be general and flexible in
their representation for block structures. Additionally, block
representations will need to be editable, such that reflection
can evaluate and edit nested block statements too. Allowing
block-structure flexibility will enable the system to combine
and reuse different parts from the inventory of programs.
These merging strategies will proof useful when local op-
tima arise in the construction of programs.

On a more technical note, compound statements require
the parser to pass additional information to the triple repre-
sentation in T so that its transitional rules can be applied
accordingly. As each block deals with its own scope, the
engagement phase needs to employ more informed initial-
izations for the variables in each block and take into account
lexical scoping.

Software Construction as a Creative Activity
Before we can consider the system creative, it needs a com-
ponent that evaluates generated concepts (Wiggins, 2006).
Currently, system output is manually evaluated after the start
conditions are satisfied by the ER-cycle. In future work,
more automated evaluation processes based on software en-
gineering metrics of size and complexity need to be incor-
porated (Fenton and Bieman, 2014). This information can
be used as a feedback signal to adapt the conceptual space
that determines program construction, similar to MEXICA’s
filter system.

References
Boden, M. 1992. The Creative Mind. London: Abacus.

Bridge, D. 2003. Lecture 17: Floyd-hoare logic for partial
corectness.

Fenton, N., and Bieman, J. 2014. Software metrics: a rigor-
ous and practical approach. CRC press.

Hoare, C. A. R. 1969. An axiomatic basis for computer
programming. Communications of the ACM 12(10):576–
580.

Karmiloff-Smith, A. 1990. Constraints on representational
change: Evidence from children’s drawing. Cognition
34(1):57–83.

Kernighan, B. W., and Ritchie, D. M. 1978. The C program-
ming language. Prentice Hall.

Pérez ý Pérez, R., and Sharples, M. 2001. Mexica: A com-
puter model of a cognitive account of creative writing.
Journal of Experimental & Theoretical Artificial Intelli-
gence 13(2):119–139.

Sharples, M. 1995. An account of writing as creative design.
University of Sussex.

Wiggins, G. A. 2006. A preliminary framework for de-
scription, analysis and comparison of creative systems.
Knowledge-Based Systems 19(7):449–458.

Zhang, K., and Shasha, D. 1989. Simple fast algorithms for
the editing distance between trees and related problems.
SIAM journal on computing 18(6):1245–1262.

